Estimation d'erreur pour des problèmes aux valeurs propres linéaires et non-linéaires issus du calcul de structure électronique

par Geneviève Dusson

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Yvon Maday et de Jean-Philip Piquemal.

Soutenue le 23-10-2017

à Paris 6 , dans le cadre de École doctorale de Sciences mathématiques de Paris Centre (Paris) , en partenariat avec Laboratoire Jacques-Louis Lions / LJLL (laboratoire) .

Le président du jury était Maria Esteban.

Le jury était composé de Lin Lin, Reinhold Schneider, Éric Cancès, Pascal Frey, Thierry Deutsch.

Les rapporteurs étaient Lin Lin, Reinhold Schneider.


  • Résumé

    L'objectif de cette thèse est de fournir des bornes d'erreur pour des problèmes aux valeurs propres linéaires et non linéaires issus du calcul de structure électronique, en particulier celui de l'état fondamental avec la théorie de la fonctionnelle de la densité. Ces bornes d'erreur reposent principalement sur des estimations a posteriori. D'abord, nous étudions un phénomène de compensation d'erreur de discrétisation pour un problème linéaire aux valeurs propres, grâce à une analyse a priori de l'erreur sur l'énergie. Ensuite, nous présentons une analyse a posteriori pour le problème du laplacien aux valeurs propres discrétisé par une large classe d'éléments finis. Les bornes d'erreur proposées pour les valeurs propres simples et leurs vecteurs propres associés sont garanties, calculables et efficaces. Nous nous concentrons alors sur des problèmes aux valeurs propres non linéaires. Nous proposons des bornes d'erreur pour l'équation de Gross-Pitaevskii, valables sous des hypothèses vérifiables numériquement, et pouvant être séparées en deux composantes venant respectivement de la discrétisation et de l'algorithme itératif utilisé pour résoudre le problème non linéaire aux valeurs propres. L'équilibrage de ces composantes d'erreur permet d'optimiser les ressources numériques. Enfin, nous présentons une méthode de post-traitement pour le problème de Kohn-Sham discrétisé en ondes planes, améliorant la précision des résultats à un faible coût de calcul. Les solutions post-traitées peuvent être utilisées soit comme solutions plus précises du problème, soit pour calculer une estimation de l'erreur de discrétisation, qui n'est plus garantie, mais néanmoins proche de l'erreur.

  • Titre traduit

    Error estimation for linear and nonlinear eigenvalue problems arising from electronic structure calculation


  • Résumé

    The objective of this thesis is to provide error bounds for linear and nonlinear eigenvalue problems arising from electronic structure calculation. We focus on ground-state calculations based on Density Functional Theory, including Kohn-Sham models. Our bounds mostly rely on a posteriori error analysis. More precisely, we start by studying a phenomenon of discretization error cancellation for a simple linear eigenvalue problem, for which analytical solutions are available. The mathematical study is based on an a priori analysis for the energy error. Then, we present an a posteriori analysis for the Laplace eigenvalue problem discretized with finite elements. For simple eigenvalues of the Laplace operator and their corresponding eigenvectors , we provide guaranteed, fully computable and efficient error bounds. Thereafter, we focus on nonlinear eigenvalue problems. First, we provide an a posteriori analysis for the Gross-Pitaevskii equation. The error bounds are valid under assumptions that can be numerically checked, and can be separated in two components coming respectively from the discretization and the iterative algorithm used to solve the nonlinear eigenvalue problem. Balancing these error components allows to optimize the computational resources. Second, we present a post-processing method for the Kohn-Sham problem, which improves the accuracy of planewave computations of ground state orbitals at a low computational cost. The post-processed solutions can be used either as a more precise solution of the problem, or used for computing an estimation of the discretization error. This estimation is not guaranteed, but in practice close to the real error.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Sorbonne Université. Bibliothèque de Sorbonne Université. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.