Thèse soutenue

Fibres microstructurées pour la mise en forme spatiale : fibres délivrant un mode fondamental aplati

FR  |  
EN
Auteur / Autrice : Pierre Gouriou
Direction : Géraud BouwmansEmmanuel HugonnotConstance Valentin
Type : Thèse de doctorat
Discipline(s) : Milieux denses, matériaux et composants
Date : Soutenance le 15/09/2017
Etablissement(s) : Lille 1
Ecole(s) doctorale(s) : École doctorale Sciences de la matière, du rayonnement et de l'environnement (Villeneuve d'Ascq, Nord)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM) - Centre d'études scientifiques et techniques d'Aquitaine (Le Barp, France)

Résumé

FR  |  
EN

La mise en forme spatiale de faisceau laser, en particulier l’obtention d’un profil d’intensité homogène intéresse aussi bien la recherche que l’industrie (recherche biomédicale, microscopie, découpe, gravure, marquage laser, Laser MegaJoule…). De par ses avantages intrinsèques, nous sommes désireux d’apporter une solution fibrée, monomode et à maintien de polarisation. Ces travaux s’articulent autour de 2 problématiques :L’obtention d’un mode plat polarisé linéairement.Différentes solutions ont été mises en place pour satisfaire cette contrainte (embouts, fibres air-silice et fibres toute solide incluant des barreaux de contraintes). Nous avons notamment réalisé une fibre microstructurée air-silice monomode délivrant un mode plat de diamètre 20µm à 1050nm de polarisation linéaire (taux d’extinction de 20dB, biréfringence ~0,6x10-4). Cette fibre a été intégrée avec succès dans une chaine amplificatrice délivrant un faisceau cohérent avec un profil d’intensité aplati polarisé linéairement dépassant 100µJ en régime nanoseconde. En parallèle le développement de codes numériques a permis de proposer des designs augmentant la biréfringence voire polarisants.L’augmentation de l’aire effective du mode.Nos études ont permis de mettre en évidence les compromis entre qualité modale et pertes par courbures y compris dans le cas de structure présentant des résonateurs pour « vider » les modes d’ordre supérieur. L’impact sur le contenu modal des indices de différents types de barreaux de contraintes et de la biréfringence induite a également été étudié. Enfin nous avons réalisé une fibre mode plat à 1050nm de diamètre 34µm (aire effective ~1200µm2) utilisable en tant qu’embout.