Nanophotonic antennas for enhanced single-molecule fluorescence detection and nanospectroscopy in living cell membranes

par Raju Regmi

Thèse de doctorat en Physique et sciences de la matière. Optique, photonique et traitement d'image

Sous la direction de Jérôme Wenger et de María García-Parajo.

Le président du jury était Didier Marguet.

Le jury était composé de Niek F. Van Hulst, Hervé Rigneault.

Les rapporteurs étaient Peter Zijlstra, Guillermo Acuna.

  • Titre traduit

    Nanophotoniques antennas pour la détection de fluorescence à une seule molécule et la nanospectroscopie dans les membranes cellulaires vivantes


  • Résumé

    La spectroscopie de fluorescence de molécule individuelle a révolutionné le domaine des sciences biophysiques, en permettant la visualisation des interactions moléculaires dynamiques et des caractéristiques nanoscopiques avec une haute résolution spatio-temporelle. Le contrôle des réactions enzymatiques et l'étude de la dynamique de diffusion de molécules individuelles permet de comprendre l'influence et le contrôle de ces entités nanoscopiques sur plusieurs processus biophysiques. La nanophotonique basée sur la plasmonique offre des nouvelles opportunités de suivi d'évènements à molécule unique, puisque il est possible de confiner des champs électromagnétiques dans les hotspots à nano-échelle, à dimensions spatiales comparables à une molécule unique. Dans ce projet de thèse, nous explorons plusieurs plateformes de nanoantennas photoniques avec des hotspots, et nous avons démontré les applications dans l'amélioration de la spectroscopie de fluorescence de molécule individuelle. En utilisant la fluorescence burst analysis, l'analyse de fluctuations temporelle de fluorescence,TCSPC, nous quantifions les facteurs d'amélioration de fluorescence, les volumes de détection de nanoantennas; ainsi, nous discutons l'accélération de fluorescence photo dynamique. En alternative aux structures plasmoniques, des antennes diélectriques basées sur les dimères en silicone ont aussi démontré d'améliorer la détection de fluorescence à molécule unique, pour des concentrations micro molaires physiologiquement pertinentes. En outre, nous explorons des systèmes planaires antennas in box pour l'investigation de la dynamique de diffusion de la PE et de la SM dans les membranes des cellules vivantes.


  • Résumé

    Single-molecule fluorescence spectroscopy has revolutionized the field of biophysical sciences by enabling visualization of dynamic molecular interactions and nanoscopic features with high spatiotemporal resolution. Monitoring enzymatic reactions and studying diffusion dynamics of individual molecules help us understand how these nanoscopic entities influence and control various biochemical processes. Nanophotonic antennas can efficiently localize electromagnetic radiation into nanoscale spatial dimensions comparable to single bio-molecules. These confined illumination hotspots there by offer the opportunity to follow single-molecule events at physiological expression levels. In this thesis, we explore various photonic nanoantenna platforms and demonstrate their application in enhanced single-molecule fluorescence detection. Using fluorescence burst analysis, fluorescence correlation spectroscopy (FCS), time-correlated TCSPC measurements, and near field simulations, we quantify nanoantenna detection volumes, fluorescence enhancement factors and discuss the fluorescence photodynamic accelerations mediated by optical antennas. Further, using resonant planar antenna-in-box devices we investigate the diffusion dynamics of phosphoethanolamine and sphingomyelin on the plasma membrane of living cells and discuss the results in the context of lipid rafts. Together with cholesterol depletion experiments, we provide evidence of cholesterol-induced nanodomain partitioning within less than 10~nm diameters and characteristic times being ~100 microseconds.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université d'Aix-Marseille. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.