Thèse soutenue

Le potentiel des mesures du radiocarbone du CO2 atmospherique pour l’inversion des émissions fossiles de CO2 à l’échelle régionale

FR  |  
EN
Auteur / Autrice : Yilong Wang
Direction : Philippe CiaisGrégoire Broquet
Type : Thèse de doctorat
Discipline(s) : Météorologie, océanographie, physique de l'environnement
Date : Soutenance le 30/11/2016
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences de l'environnement d'Île-de-France (Paris ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire des sciences du climat et de l'environnement (Gif-sur-Yvette, Essonne ; 1998-....) - Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] / LSCE
Jury : Président / Présidente : Philippe Bousquet
Examinateurs / Examinatrices : Ingebord Levin
Rapporteurs / Rapporteuses : Heather Graven, John Miller Noaa

Résumé

FR  |  
EN

Dans le contexte du réchauffement climatique, des états et des villes s’engagent à réduire leurs émissions de gaz à effet de serre et en particulier celles de CO2. Une quantification précise des émissions est nécessaire aux scientifiques et aux décideurs politiques. La qualité des inventaires des émissions dues à la consommation des combustibles fossiles, qui reposent sur des données statistiques compilées et rapportées par les émetteurs, reste très variable selon les pays. Les mesures atmosphériques et la modélisation inverse pourraient fournir une information indépendante pour la vérification de ces émissions. Il est cependant difficile de séparer le signal de CO2 fossile (CO2CF) du signal des flux naturels dans les mesures atmosphériques fournies par les réseaux continentaux de mesure au sol. L’objectif de ma thèse est d’améliorer la compréhension du potentiel des données de 14CO2, un des traceurs permettant de séparer le signal de CO2CF des autres sources de CO2, pour l’estimation objective des émissions fossiles aux échelles nationales par inversion atmosphérique.J’ai développé des systèmes d’inversions mondiaux basés sur le modèle de transport atmospherique LMDz à basse résolution (2.5° ×3.75°), et reposant sur des réseaux de mesure du CO2 et du 14CO2, résolvant les émissions fossiles à l’échelle subcontinentale / mensuelle en Europe et en Chine.Dans le Chapitre 2, j’ai défini et quantifié les sources d’erreurs de modélisationprincipales, puis analysé leur impact pour l’estimation des bilans d’émissions fossiles à grande échelle avec un système d’inversion mondial en faisant l’hypothèse que les données de CO2CF peuvent être directement déduites des données de 14CO2. Les analyses soulignent l’impact de la méconnaissance de la distribution spatiale des émissions de CO2 et du CO2CF aux résolutions spatiales plus fines que celle du modèle de transport.Dans le Chapitre 3, j’ai utilisé le système, les hypothèses et les diagnostics d’erreurs de modélisation du Chapitre 2 dans une série d’expériences avec des données synthétiques pour évaluer le potentiel d’un tel système d’inversion et de différents réseaux d’observation virtuels pour l’estimation les bilans régionaux d' émission fossile en Europe. Les résultats indiquent qu’en assimilant des moyennes sur 2 semaines de mesures CO2CF issues du réseau actuel de 17 sites 14CO2 en Europe, l’inversion réduirait l’incertitude sur les émissions mensuelles pour l’Ouest de l’Allemagne de 30% par rapport à l’incertitude supposée sur les inventaires utilisés comme connaissance a priori dans le cadre du formalisme Bayésien de l’inversion. En utilisant un réseau plus dense en Europe, constitué de 43 futurs sites, des réductions d’incertitude de 47% pourraient être réalisées pour les bilans annuels des émissions pour les régions où le réseau serait le plus dense.Dans le Chapitre 4, j’ai implémenté un système d’inversion global isotopique permettant d'assimiler conjointement des données atmosphériques de CO2 et de 14CO2 pour résoudre simultanément les émissions fossiles et les flux naturels de CO2 en Europe et en Chine. L’objectif est de dépasser l’hypothèse que les variations de 14CO2 ne sont liées qu’au CO2CF, en tenant compte ses flux de 14CO2 non fossiles. Les résultats confirment que les données de 14CO2 sont utiles pour séparer le CO2CF du signal des flux naturels près des régions fortement émettrices, rendant les données de 14CO2 moyennes sur 2 semaines plus efficaces que les données journalières de CO2 pour l’estimation des émissions.