Thèse soutenue

Synthèse et caractérisation de nanomatériaux hybrides de type Au@SiO2 : potentialités dans le domaine de la nanomédecine

FR  |  
EN
Auteur / Autrice : Samantha Soulé
Direction : Hervé Martinez
Type : Thèse de doctorat
Discipline(s) : Chimie Physique
Date : Soutenance le 10/12/2015
Etablissement(s) : Pau
Ecole(s) doctorale(s) : École doctorale sciences exactes et leurs applications (Pau, Pyrénées Atlantiques ; 1995-)

Résumé

FR  |  
EN

Depuis une décennie, dans le domaine de la nanomédecine, les recherches s’orientent de plus en plus vers l’élaboration de nanomatériaux multifonctionnels avec l’espoir d’améliorer la précision des diagnostics ou encore l’efficacité des traitements à mettre en place. Dans ce contexte, notre travail visait à mettre en œuvre des nanoparticules hybrides Au@SiO2 de type cœur-coquille associant les propriétés photothermiques de la phase métallique à la fonction délivrance de médicaments du réseau inorganique poreux. Avec le greffage d’obturateurs organiques à l’entrée des pores de la silice, ces assemblages deviennent dès lors de véritables nanosystèmes « mécanisés ». La première partie du travail a donc concerné la synthèse du cœur du nanomatériau (nanoparticules d’or creuses appelées « nanoshells ») réalisée par un procédé de remplacement galvanique. L’influence des paramètres de synthèse sur la morphologie et la structure, sur l’état de surface ainsi que sur les propriétés optiques des nanoparticules a été largement discutée ici. Après la coupe transverse des nanoshells ainsi élaborées, les techniques d’analyse de surface (XPS, AES) ont permis de préciser la formation d’un alliage Ag-Au de composition hétérogène. L’élaboration d’une coquille de silice mésoporeuse autour des cœurs métalliques a ensuite été réalisée. Après avoir démontré le potentiel de ces nanoparticules pour le confinement moléculaire, les nano-objets Au@SiO2 ont finalement été fonctionnalisés par des assemblages supramoléculaires constitués d’un diaminoalcoxysilane (greffé à la surface) en interaction avec un macrocycle. Le couplage spécifique des techniques XPS et RMN a permis de caractériser précisément la fonctionnalisation. Une ouverture à ce travail a été initiée vers des systèmes davantage biocompatibles avec l’élaboration cette fois-ci d’une coquille hybride polymère/silice. Une première série de tests in vitro a permis d’explorer l’impact et l’interaction des nanoparticules avec des cellules de type HaCaT et a montré tout le potentiel de la poly-L-lysine dans cette approche. Cette étude originale propose de nouvelles informations dans l’étude des systèmes nanostructurés avec une caractérisation physico-chimique appropriée qui signale l’importance des phénomènes aux interfaces au sein de l’architecture hybride. Les perspectives visent maintenant à une optimisation fonctionnelle de ces nano-objets pour des applications en nanomédecine.