Thèse soutenue

Analyse, reconnaissance et réalisation des gestes pour l'entraînement en chirurgie laparoscopique robotisée

FR  |  
EN
Auteur / Autrice : Fabien Despinoy
Direction : Philippe PoignetPierre Jannin
Type : Thèse de doctorat
Discipline(s) : Systèmes automatiques et micro-électroniques
Date : Soutenance le 14/12/2015
Etablissement(s) : Montpellier
Ecole(s) doctorale(s) : École doctorale Information, Structures, Systèmes (Montpellier ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'informatique, de robotique et de micro-électronique (Montpellier ; 1992-....)
Jury : Président / Présidente : Jacques Hubert
Examinateurs / Examinatrices : Philippe Poignet, Pierre Jannin, Jacques Hubert, Jocelyne Troccaz, Jérôme Szewczyk, Nabil Zemiti
Rapporteurs / Rapporteuses : Jocelyne Troccaz, Jérôme Szewczyk

Résumé

FR  |  
EN

L'intégration de systèmes robotiques au sein du bloc opératoire a modifié le déroulement de certaines interventions, laissant ainsi place à des pratiques favorisant le bénéfice médical rendu au patient en dépit des aspects conventionnels. Dans ce cadre, de récentes études de la Haute Autorité de Santé ont mis en avant les effets indésirables graves intervenant au cours des procédures chirurgicales robotisées. Ces erreurs, majoritairement dues aux compétences techniques du praticien, remettent ainsi en cause la formation et les techniques d'apprentissage pour la chirurgie robotisée. Bien que l'utilisation abondante de simulateurs facilite cet apprentissage au travers différents types d'entraînement, le retour fourni à l'opérateur reste succinct et ne lui permet pas de progresser dans de bonnes conditions. De ce fait, nous souhaitons améliorer les conditions d'entraînement en chirurgie laparoscopique robotisée. Les objectifs de cette thèse sont doubles. En premier lieu, ils visent le développement d'une méthode pour la segmentation et la reconnaissance des gestes chirurgicaux durant l'entraînement en se basant sur une approche non-supervisée. Utilisant les données cinématiques des instruments chirurgicaux, nous sommes capables de reconnaître les gestes réalisés par l'opérateur à hauteur de 82%. Cette méthode est alors une première étape pour l'évaluation de compétences basée sur la gestuelle et non sur l'ensemble de la tâche d'entraînement. D'autre part, nous souhaitons rendre l'entraînement en chirurgie robotisée plus accessible et moins coûteux. De ce fait, nous avons également étudié l'utilisation d'une nouvelle interface homme-machine sans contact pour la commande des robots chirurgicaux. Dans ces travaux, cette interface a été couplée au Raven-II, un robot de téléopération dédié à la recherche en robotique chirurgicale. Nous avons alors évalué les performances du système au travers différentes études, concluant ainsi à la possibilité de téléopérer un robot chirurgical avec ce type de dispositif. Il est donc envisageable d'utiliser ce type d'interface pour l'entraînement sur simulateur afin de réduire le coût de la formation, mais également d'améliorer l'accès et l'acquisition des compétences techniques spécifiques à la chirurgie robotisée.