Graph based approaches for image segmentation and object tracking

par Xiaofang Wang

Thèse de doctorat en Informatique

Sous la direction de Simon Masnou et de Liming Chen.

Soutenue le 27-03-2015

à l'Ecully, Ecole centrale de Lyon , dans le cadre de École doctorale en Informatique et Mathématiques de Lyon , en partenariat avec Extraction de Caractéristiques et Identification (équipe de recherche) .

Le président du jury était Anuj Srivastava.

Le jury était composé de Christine Fernandez-Maloigne.

Les rapporteurs étaient Su Ruan, Patrick Bouthémy.

  • Titre traduit

    Méthodes de graphe pour la segmentation d'images et le suivi d'objets dynamiques


  • Résumé

    Cette thèse est proposée en deux parties. Une première partie se concentre sur la segmentation d’image. C’est en effet un problème fondamental pour la vision par ordinateur. En particulier, la segmentation non supervisée d’images est un élément important dans de nombreux algorithmes de haut niveau et de systèmes d’application. Dans cette thèse, nous proposons trois méthodes qui utilisent la segmentation d’images se basant sur différentes méthodes de graphes qui se révèlent être des outils puissants permettant de résoudre ces problèmes. Nous proposons dans un premier temps de développer une nouvelle méthode originale de construction de graphe. Nous analysons également différentes méthodes similaires ainsi que l’influence de l’utilisation de divers descripteurs. Le type de graphe proposé, appelé graphe local/global, encode de manière adaptative les informations sur la structure locale et globale de l’image. De plus, nous réalisons un groupement global en utilisant une représentation parcimonieuse des caractéristiques des superpixels sur le dictionnaire de toutes les caractéristiques en résolvant un problème de minimisation l0. De nombreuses expériences sont menées par la suite sur la base de données <Berkeley Segmentation>, et la méthode proposée est comparée avec des algorithmes classiques de segmentation. Les résultats démontrent que notre méthode peut générer des partitions visuellement significatives, mais aussi que des résultats quantitatifs très compétitifs sont obtenus en comparaison des algorithmes usuels. Dans un deuxième temps, nous proposons de travailler sur une méthode reposant sur un graphe d’affinité discriminant, qui joue un rôle essentiel dans la segmentation d’image. Un nouveau descripteur, appelé patch pondéré par couleur, est développé pour calculer le poids des arcs du graphe d’affinité. Cette nouvelle fonctionnalité est en mesure d’intégrer simultanément l’information sur la couleur et le voisinage en représentant les pixels avec des patchs de couleur. De plus, nous affectons à chaque pixel une pondération à la fois local et globale de manière adaptative afin d’atténuer l’effet trop lisse lié à l’utilisation de patchs. Des expériences approfondies montrent que notre méthode est compétitive par rapport aux autres méthodes standards à partir de plusieurs paramètres d’évaluation. Finalement, nous proposons une méthode qui combine superpixels, représentation parcimonieuse, et une nouvelle caractéristisation de mi-niveau pour décrire les superpixels. Le nouvelle caractérisation de mi-niveau contient non seulement les mêmes informations que les caractéristiques initiales de bas niveau, mais contient également des informations contextuelles supplémentaires. Nous validons la caractéristisation de mi-niveau proposée sur l’ensemble de données MSRC et les résultats de segmentation montrent des améliorations à la fois qualitatives et quantitatives par rapport aux autres méthodes standards. Une deuxième partie se concentre sur le suivi d’objets multiples. C’est un domaine de recherche très actif, qui est d’une importance majeure pour un grand nombre d’applications, par exemple la vidéo-surveillance de piétons ou de véhicules pour des raisons de sécurité ou l’identification de motifs de mouvements animaliers.


  • Résumé

    Image segmentation is a fundamental problem in computer vision. In particular, unsupervised image segmentation is an important component in many high-level algorithms and practical vision systems. In this dissertation, we propose three methods that approach image segmentation from different angles of graph based methods and are proved powerful to address these problems. Our first method develops an original graph construction method. We also analyze different types of graph construction method as well as the influence of various feature descriptors. The proposed graph, called a local/global graph, encodes adaptively the local and global image structure information. In addition, we realize global grouping using a sparse representation of superpixels’ features over the dictionary of all features by solving a l0-minimization problem. Extensive experiments are conducted on the Berkeley Segmentation Database, and the proposed method is compared with classical benchmark algorithms. The results demonstrate that our method can generate visually meaningful partitions, but also that very competitive quantitative results are achieved compared with state-of-the-art algorithms. Our second method derives a discriminative affinity graph that plays an essential role in graph-based image segmentation. A new feature descriptor, called weighted color patch, is developed to compute the weight of edges in an affinity graph. This new feature is able to incorporate both color and neighborhood information by representing pixels with color patches. Furthermore, we assign both local and global weights adaptively for each pixel in a patch in order to alleviate the over-smooth effect of using patches. The extensive experiments show that our method is competitive compared to the other standard methods with multiple evaluation metrics. The third approach combines superpixels, sparse representation, and a new midlevel feature to describe superpixels. The new mid-level feature not only carries the same information as the initial low-level features, but also carries additional contextual cue. We validate the proposed mid-level feature framework on the MSRC dataset, and the segmented results show improvements from both qualitative and quantitative viewpoints compared with other state-of-the-art methods. Multi-target tracking is an intensively studied area of research and is valuable for a large amount of applications, e.g. video surveillance of pedestrians or vehicles motions for sake of security, or identification of the motion pattern of animals or biological/synthetic particles to infer information about the underlying mechanisms. We propose a detect-then-track framework to track massive colloids’ motion paths in active suspension system. First, a region based level set method is adopted to segment all colloids from long-term videos subject to intensity inhomogeneity. Moreover, the circular Hough transform further refines the segmentation to obtain colloid individually. Second, we propose to recover all colloids’ trajectories simultaneously, which is a global optimal problem that can be solved efficiently with optimal algorithms based on min-cost/max flow. We evaluate the proposed framework on a real benchmark with annotations on 9 different videos. Extensive experiments show that the proposed framework outperforms standard methods with large margin.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Informations

  • Détails : 1 vol. (xviii-157 p.)
  • Annexes : Bibliogr. p. [154]-157

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Ecole centrale de Lyon. Bibliothèque Michel Serres.
  • Disponible pour le PEB
  • Cote : T2483
  • Bibliothèque : Ecole centrale de Lyon. Bibliothèque Michel Serres.
  • Non disponible pour le PEB
  • Cote : T2483 mag
  • Bibliothèque : Ecole centrale de Lyon. Bibliothèque Michel Serres.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.