Numerical Computations for Backward Doubly Stochastic Differential Equations and Nonlinear Stochastic PDEs

par Achref Bachouch

Thèse de doctorat en Mathématiques

Sous la direction de Anis Matoussi et de Mohamed Mnif.

Soutenue le 01-10-2014

à Le Mans en cotutelle avec École nationale d'ingénieurs de Tunis (Tunisie) , dans le cadre de École doctorale Sciences et technologies de l'information et mathématiques (Nantes) , en partenariat avec Laboratoire manceau de mathématiques (laboratoire) et de Laboratoire Manceau de Mathématiques / LMM (laboratoire) .

  • Titre traduit

    Calculs numériques des équations différentielles doublement stochastiques rétrogrades et EDP stochastiques non-linéaires


  • Résumé

    L’objectif de cette thèse est l’étude d’un schéma numérique pour l’approximation des solutions d’équations différentielles doublement stochastiques rétrogrades (EDDSR). Durant les deux dernières décennies, plusieurs méthodes ont été proposées afin de permettre la résolution numérique des équations différentielles stochastiques rétrogrades standards. Dans cette thèse, on propose une extension de l’une de ces méthodes au cas doublement stochastique. Notre méthode numérique nous permet d’attaquer une large gamme d’équations aux dérivées partielles stochastiques (EDPS) nonlinéaires. Ceci est possible par le biais de leur représentation probabiliste en termes d’EDDSRs. Dans la dernière partie, nous étudions une nouvelle méthode des particules dans le cadre des études de protection en neutroniques.


  • Résumé

    The purpose of this thesis is to study a numerical method for backward doubly stochastic differential equations (BDSDEs in short). In the last two decades, several methods were proposed to approximate solutions of standard backward stochastic differential equations. In this thesis, we propose an extension of one of these methods to the doubly stochastic framework. Our numerical method allows us to tackle a large class of nonlinear stochastic partial differential equations (SPDEs in short), thanks to their probabilistic interpretation. In the last part, we study a new particle method in the context of shielding studies.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Le Mans Université (Le Mans). Service commun de documentation.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.