Thèse soutenue

Nanosondes fluorescentes pour l'exploration des pressions et des températures dans les films lubrifiants

FR  |  
EN
Auteur / Autrice : Hamza Hajjaji
Direction : Jean-Marie BluetPhilippe Vergne
Type : Thèse de doctorat
Discipline(s) : Matériaux
Date : Soutenance le 14/10/2014
Etablissement(s) : Lyon, INSA
Ecole(s) doctorale(s) : Ecole doctorale Matériaux de Lyon (Villeurbanne ; 1992?-....)
Partenaire(s) de recherche : Laboratoire : INL - Institut des Nanotechnologies de Lyon, UMR5270 (Rhône) - Institut des Nanotechnologies de Lyon - Site de l'INSA / INL
Jury : Président / Présidente : Gérard Guillot
Examinateurs / Examinatrices : Jean-Marie Bluet, Philippe Vergne, Gérard Guillot, Kamel Khirouni, Vincent Paillard, Mathieu Maillard, Peter Reiss
Rapporteurs / Rapporteuses : Kamel Khirouni, Vincent Paillard

Résumé

FR  |  
EN

L’objectif de ce travail est d’utiliser les nanoparticules (NPs) de nanosondes fluorescentes de température en particulier dans les films lubrifiants. Le développement de ces nanosondes nécessite la détermination de leurs sensibilités thermiques afin de pouvoir sélectionner les NPs les plus prometteuses. Pour atteindre cet objectif, nous avons présenté deux méthodes d’élaboration utilisées pour la synthèse des nanostructures à base de SiC-3C, la méthode d’anodisation électrochimique et la méthode d’attaque chimique. Dans le premier cas, les analyses FTIR,RAMAN et MET des NPs finales ont montré que la nature chimique de ces NPs est majoritairement formée de carbone graphitique. L’étude détaillée de la photoluminescence de ces NPs a montré que le processus d’émission dépend de la chimie de surface des NPs, du milieu de dispersion et de sa viscosité, de la concentration des suspensions et de la température du milieu. Pour la deuxième famille de NP de SiC, les analyses cohérentes MET, DLS et PL ont montrées une taille moyenne de 1.8 nm de diamètre avec une dispersion de ±0.5nm. Le rendement quantique externe de ces NPs est de l’ordre de 4%. Les NPs dispersées dans l’éthanol, n’ont pas montré une dépendance à la température exploitable pour notre application. Par contre, les NPs de SiC produites par cette voie, étant donné la distribution en taille resserrée et le rendement quantique « honorable » pour un matériau à gap indirect, sont prometteuses pour des applications comme luminophores en particulier pour la biologie grâce à la non toxicité du SiC. Dans le cas des NPs de Si, nous avons également étudié deux types différents de NPs. Il s’agit de : (i) NPs obtenues par anodisation électrochimique et fonctionnalisées par des groupements alkyls (décène, 1-octadécène). Nous avons mis en évidence pour la première fois une très importante variation de l’énergie d’émission dEg/dT avec la température de type red-shift entre 300 et 400K. Les mesures de(T) conduisent à une sensibilité thermique de 0.75%/°C tout à fait intéressante par rapport aux NPs II-VI. De plus il a été montré que la durée de vie mesurée n’est pas fonction de la concentration. (ii) NPs obtenue par voie humide et fonctionnalisées par le n-butyl. Pour ce type de NPs nous avons mis pour la première fois en évidence un comportement de type blue-shift pour dEg/dT de l’ordre de -0.75 meV/K dans le squalane. Pour ces NPs, la sensibilité thermique pour la durée de vie de 0.2%°C est inférieure à celle des NPs de type (i) mais largement supérieure à celle des NPs de CdSe de 4 nm (0.08%/°C). La quantification de cette la sensibilité à la température par la position du pic d’émission dEg/dT et de la durée de vie nous permet d’envisager la conception de nanosondes de température basée sur les NPs de Si avec comme recommandations l’utilisation de NPs obtenues par anodisation électrochimique et de la durée de vie comme indicateur des variations en température.