Thèse soutenue

Influence de la transformation de phase métallurgique sur la propagation des fissures de 15-5PH et 16MND5

FR  |  
EN
Auteur / Autrice : Jikai Liu
Direction : Michel CoretAlain Combescure
Type : Thèse de doctorat
Discipline(s) : Génie mécanique
Date : Soutenance le 07/12/2012
Etablissement(s) : Lyon, INSA
Ecole(s) doctorale(s) : Ecole doctorale Mécanique, Energétique, Génie Civil, Acoustique (Villeurbanne ; 2011-....)
Partenaire(s) de recherche : Laboratoire : LaMCoS - Laboratoire de Mécanique des Contacts et des Structures (Lyon, INSA ; 2007-....)
Jury : Président / Présidente : Helmut Klöcker
Examinateurs / Examinatrices : Michel Coret, Alain Combescure, Helmut Klöcker, Hervé Louche, Stéphane Marie, René Billardon, Philippe Gilles, Jean-Yves Guedou
Rapporteurs / Rapporteuses : Hervé Louche, Stéphane Marie

Résumé

FR  |  
EN

Cette thèse porte sur l’influence des transformations de phases solide-solide sur la propagation de fissure. On souhaite ainsi mieux comprendre les variations de ténacité en cours de soudage par exemple, ou bien pendant la réparation d’une fissure. Dans ce travail, la ténacité est obtenue à partir de l’intégrale J. Il existe de nombreuses méthodes expérimentales permettant d’obtenir la ténacité critique JIC mais qui sont difficilement applicables pour des essais se déroulant pendant une transformation de phase. C’est pourquoi nous avons proposé une méthode couplant essai mécanique et mesure par corrélation d’images avec de la simulation par éléments finis. Les essais sont réalisés sur de simples éprouvettes plates pré fissurées, faciles à usiner et simple à chauffer par induction. Les essais sont conduits pour différentes températures et jusqu’à rupture. En sus des mesures d’efforts et déplacements de traverse, la corrélation d’images nous fourni également les champs de déplacement sur chaque face de l’éprouvette. Chaque essai est ensuite simulé par éléments finis où la ténacité critique est calculée par la méthode G-Theta au maximum de la charge supportée par l’éprouvette. Les simulations précédentes intègrent les conditions aux limites obtenues par corrélation et le comportement mécanique considéré est celui que nous avons identifié sur des essais de caractérisation. Deux nuances de matériau ont été étudiées avec cette méthode ; l’acier inoxydale 15-5PH ainsi que l’acier ferritique 16MND5. Pour ces deux matériaux, différentes températures d’essai ont été choisies avant, pendant et après la transformation pour effectuer les essais de rupture ainsi que de caractérisation du comportement mécanique. Les résultats de cette étude montrent que la transformation de phase peut avoir un impact non négligeable sur la ténacité. Ainsi, pour le 15-5PH, le taux d’austénite résiduel est un facteur important et les essais pendant la transformation martensitiques montrent que la ténacité critique peut être inférieure pendant celle ci à celle du matériau purement austénitique. Dans le cas du 16MND5, la ténacité est beaucoup plus faible à 600°C (et bainitique) qu’à température ambiante ce qui est assez logique. Par contre, lors du refroidissement, depuis 600° (austénitique) jusqu’à la température ambiante (bainitique), nous avons obtenu une ténacité critique relativement constante. En conclusion, cette étude apporte une solution quant à la mesure de la ténacité critique de matériau pendant des transformations de phases, ce que ne permettent pas forcément les essais normalisés. Pour le 15-5PH, la ténacité critique semble évoluer pendant la transformation martensitique et est assez dépendante du taux d’austénite résiduelle. Il semble par contre que pour le 16MND5, la ténacité critique soit assez peu dépendante de la fraction volumique d’austénite et la valeur obtenue varie peu au cours du refroidissement du matériau depuis 600°C.