Conception et analyse d'algorithmes numériques parallèles : réalisations sur la connection machine

par Denis Delesalle

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Denis Trystram.

Soutenue en 1993

à Grenoble INPG .


  • Résumé

    Cette thèse présente les limites du mode s. I. M. D. Dans le cadre de la programmation parallèle d'algorithmes d'algèbre linéaire. Plus précisément, celles de la règle d'or du parallélisme massif: un élément de la matrice par processeur, sont développées. Des expérimentations sont effectuées sur une connection machine 2. Néanmoins, la première partie montre comment la création de procédures de communications écrites a partir d'un nouvel algorithme de construction d'arbres équilibres, et un placement de données judicieux permettent d'atteindre des performances proches de la puissance crête. Mais ce type de travail ne peut pas être effectue sur n'importe quel algorithme, et tout ne s'adapte pas aussi bien. Dans la deuxième partie, nous présentons les avantages de la décomposition en blas pour la construction d'algorithmes massivement parallèles. Elle met, dans le chapitre 4, en évidence la barrière de synchronisation pour la methode du gradient conjugue. Nous proposons dans ce cas particulier comme solution, une ancienne methode qui bien qu'elle soit, en séquentiel, de convergence plus lente, est plus rapide en parallèle. De plus, la structure des matrices est un facteur important. Elle permet d'accélérer les calculs et d'augmenter la dimension des problèmes a résoudre. L'architecture des machines actuelles en limite encore trop l'utilisation. La dernière partie est entièrement consacrée aux permutations, et aux communications qu'elles entrainent. Dans le cadre de l'algorithme de Burg, nous proposons une solution qui calcule a la fois les coefficients de réflexion et ceux d'autoregression sans cout supplémentaire

  • Titre traduit

    Design and analysis of parallel numerical algorithms: implementation on a CM2


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (181 p.)
  • Annexes : Bibliogr. p. 169-175

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Service interétablissements de Documentation (Saint-Martin d'Hères, Isère). Bibliothèque universitaire Joseph-Fourier.
  • Disponible pour le PEB
  • Cote : TS 93/INPG/0025
  • Bibliothèque : Service interétablissements de Documentation (Saint-Martin d'Hères, Isère). Bibliothèque universitaire Joseph-Fourier.
  • Accessible pour le PEB
  • Bibliothèque : Moyens Informatiques et Multimédia. Information.
  • Disponible pour le PEB
  • Cote : IMAG-1993-DEL
  • Bibliothèque : Bibliothèque Diderot Sciences (Lyon).
  • Disponible pour le PEB
  • Bibliothèque : Sorbonne Université. Bibliothèque de Sorbonne Université. Bibliothèque Mathématiques-Informatique Recherche.
  • Disponible pour le PEB
  • Cote : THESE 01761
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.