Thèse soutenue

Optimisation de l’accélération d’ions par choc électrostatique dans un jet de gaz et application à la production de radioisotopes

FR  |  
EN
Auteur / Autrice : Julien Bonvalet
Direction : Philippe NicolaïEmmanuel D'humieres
Type : Thèse de doctorat
Discipline(s) : Astrophysique, Plasmas, nucléaire
Date : Soutenance le 31/03/2022
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale des sciences physiques et de l’ingénieur (Talence, Gironde)
Partenaire(s) de recherche : Laboratoire : Centre Lasers Intenses et Applications (Bordeaux ; 1999-....)
Jury : Président / Présidente : Fazia Hannachi
Examinateurs / Examinatrices : Philippe Nicolaï, Emmanuel D'humieres, Fazia Hannachi, Julien Fuchs, Caterina Riconda, Mickael Grech, Rachel Nuter, Anaëlle Maury
Rapporteurs / Rapporteuses : Julien Fuchs, Caterina Riconda

Résumé

FR  |  
EN

La production de radioisotopes, notamment d’intérêt médical, est aujourd’huiprincipalement assurée par des accélérateurs conventionnels circulaires: les cyclotrons. Cesisotopes radioactifs, une fois produits, sont injectés dans le corps du patient à des fins diag-nostique ou curative. Pour des radioisotopes émetteurs Beta+, les positrons émis s’annihilenten deux gammas de façon instantannée par réaction avec les électrons de la matière. Cesdeux gammas émis à 180° sont détectés en coincidence et permettent de remonter au pointd’émission du positron et ainsi de cartographier l’organe du patient. Pour des radioisotopesémetteurs Beta-, alpha et gamma, les rayonnements ionisants émis permettent quant à eux de traiter le patient en irradiant les cellules cancéreuses.Les radioisotopes utilisés en médecine nucléaire doivent présenter une courte durée de vieafin de ne pas engendrer de dommages collatéraux chez le patient. Cette courte durée de vieimpose de les produire directement dans les servives de médecine nucléaire pour les plus cou-rants (Fluor-18 en diagnostic) grâce à des cyclotrons conséquents en termes d’encombrementet d’investissement. D’autres radioisotopes utilisés nécessitent des moyens de production en-core plus importants (cyclotron de type ARRONAX, réacteurs nucléaires pour le Technicium99) et doivent être livrés dans les hopitaux de façon régulière. Les délais d’acheminement,les coûts de production et de maintenance des cyclotrons, le vieillissement des réacteursnucléaires, parallèlement au développement continu des systèmes laser de haute puissanceet de haute intensité, ont amené à envisager la production de radioisotopes par laser. Eneffet, l’accélération d’ions par laser permettrait d’abaisser les coûts de production mais aussid’obtenir un système beaucoup plus flexible qu’un accélérateur conventionnel: en choisissantles cibles irradiées selon la gamme d’énergie du faisceau d’ions obtenu par accélération laser,la création de nombreux radioisotopes deviendrait possible avec un unique et même système:l’accélérateur laser.L’objectif de cette thèse est, dans un premier temps, d’optimiser l’accélération d’ionspar laser ultra haute intensité, notamment par choc électrostatique dans les jets de gaz etd’explorer la production de radioisotopes à l’aide de ce faisceau d’ions dit primaire. L’ob-tention d’un faisceau d’ions accélérés avec un nombre important d’ions dans une certainegamme d’énergie est une étape cruciale dans le but de produire d’un radioisotope afin defaire correspondre le spectre énergétique de ce faisceau d’ions avec les maxima des sectionsefficaces de production du radioisotope souhaité. La première partie de cette thèse s’inscritdonc dans la production de ce type de faisceau d’ions et son optimisation en termes denombre et d’énergie (avec un maximum d’ions accélérés dans des structures de type quasimono-énergétiques). L’utilisation de cibles gazeuses est privilégiée dans ce travail puisqueces dernières permettent de profiter des lasers à hauts taux de répétition qui, eux seuls, per-mettront de concurrencer les cyclotrons en terme de courant pour le faisceau d’ions primaire.Cette étude s’appuie sur des simulations numériques permettant de modéliser l’accélé-ration d’ions lors de l’interaction du laser avec des cibles solides ou gazeuses (via un codeParticle-In-Cell) et la génération des radioisotopes lors de la propagation de ces ions dansune cible secondaire (via un code Monte Carlo). La production in situ de radioisotopes paréclairement direct d’une cible est aussi étudiée à l’aide de ces deux types de codes. Cesdéveloppements numériques ont permis de dimensionner et d’analyser des expériences surdes installations laser actuelles mais aussi de servir de base pour de futures expériences.