Thèse soutenue

Etude numérique de la propagation et l’atténuation des ondes de choc en milieux confinés

FR  |  
EN
Auteur / Autrice : Nassim Brahmi
Direction : Abdellah Hadjadj
Type : Thèse de doctorat
Discipline(s) : Mécanique des fluides
Date : Soutenance le 01/10/2020
Etablissement(s) : Normandie
Ecole(s) doctorale(s) : École doctorale physique, sciences de l’ingénieur, matériaux, énergie (Saint-Etienne du Rouvray, Seine Maritime)
Partenaire(s) de recherche : Etablissement de préparation : Institut national des sciences appliquées Rouen Normandie (Saint-Etienne-du-Rouvray ; 1985-....)
Laboratoire : Complexe de recherche interprofessionnel en aérothermochimie (Saint-Etienne-du-Rouvray, Seine-Maritime ; 1967-....)
Jury : Président / Présidente : Bechara Taouk
Examinateurs / Examinatrices : Abdellah Hadjadj, Isabelle Sochet, Georges Jourdan, Arnab Chaudhuri, Sergey Kudriakov, Arnaud Bultel
Rapporteurs / Rapporteuses : Isabelle Sochet, Georges Jourdan

Résumé

FR  |  
EN

La propagation des ondes de choc implique des interactions complexes entre ondes et milieux environnants, ce qui engendre plusieurs phénomènes tels que la réflexion, la diffraction, etc. Pour clarifier davantage la physique associée à ces phénomènes, des simulations numériques hautes résolutions ont été réalisées. En particulier l'analyse de la diffraction des ondes de choc sur deux surfaces concaves cylindriques a révélé que les angles de transition, d'une réflexion régulière à une réflexion de Mach, augmentent avec le nombre de Mach, alors qu'ils sont presque égaux sur les deux surfaces concaves pour les régimes de Mach transsoniques et relativement plus important sur la deuxième surface pour les nombres de Mach plus élevés. Ceci prouve que l'écoulement est en mesure de conserver l'historique des événements passés sur l'ensemble du processus pour des nombres de Mach élevés. L'analyse de l'équation de transport de vorticité a montré, pour la première fois, que la diffusion de la vorticité due aux effets visqueux est assez importante par rapport au terme baroclinic pour les faibles nombres de Mach, alors que cette tendance est inversée pour les nombres de Mach les plus élevés. L'étude a également montré que le stretching de la vorticité dû aux effets de compressibilité joue un rôle important dans la production de vorticité. A la base de ces simulations numériques, une relation universelle a été proposée, permettant de prédire la trajectoire et la vitesse de l'onde incidente en fonction du nombre de Mach incident, du rayon de courbure de la géométrie et des propriétés du gaz. Par la suite, l'étude de la propagation des ondes de choc et leur atténuation dans des conduites de différentes hauteurs et présentant des cavités circulaires creuses de différentes profondeurs a été effectuée. Les résultats ont montré l'importance de la réduction de la hauteur du canal et le changement de la position de la section réduite en plus de l'angle de diffraction et de la profondeur de la cavité pour une meilleure atténuation des ondes. Un arrangement optimal de la position/hauteur du canal et de l'emplacement / profondeur de la cavité a été trouvé.