Thèse soutenue

Mesure de dose ionisante en champs de rayonnement mixte

FR  |  
EN
Auteur / Autrice : Matteo Brucoli
Direction : Laurent DusseauFrédéric Wrobel
Type : Thèse de doctorat
Discipline(s) : Électronique
Date : Soutenance le 30/11/2018
Etablissement(s) : Montpellier
Ecole(s) doctorale(s) : École doctorale Information, Structures, Systèmes (Montpellier ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Institut d'électronique et des systèmes (Montpellier)
Jury : Président / Présidente : Lionel Torres
Examinateurs / Examinatrices : Laurent Dusseau, Frédéric Wrobel, Lionel Torres, Lodovico Ratti, Sylvain Girard, Salvatore Danzeca
Rapporteurs / Rapporteuses : Lodovico Ratti, Sylvain Girard

Résumé

FR  |  
EN

La mesure de la dose ionisante est aujourd'hui une tâche cruciale pour une large gamme d'applications fonctionnant dans des environnements de rayonnement sévères. Dans le contexte de l'amélioration de la luminosité du grand collisionneur de hadrons (LHC), la mesure des niveaux de rayonnement le long du complexe d'accélérateurs du CERN va devenir encore plus difficile. A cet effet, une connaissance plus détaillée du champ de rayonnement dans le tunnel de l'accélérateur et ses zones adjacentes devient nécessaire pour définir les exigences d'installation, de déplacement ou de blindage de l'électronique sensible au rayonnement. Dans l’objectif d’améliorer la mesure de la dose absorbée par les systèmes exposés au champ de rayonnement mixte généré par l’accélérateur, des investigations sur des nouveaux dosimètres ont été menées.Dans le cadre de cette recherche, deux dispositifs ont été étudiés et caractérisés pour être utilisés comme dosimètres et éventuellement pour compléter l'utilisation du dosimètre au silicium actuellement utilisé au CERN, à savoir le RADFET (RADiation-sensitive Field Effect Transistor) : un NMOS commercial et un ASIC (Application-specific Integrated Circuit) nommé FGDOS. Les dispositifs ont été sélectionnés selon deux approches opposées : d'une part, la réduction des coûts permettrait d'augmenter la densité des capteurs déployés. En conséquence directe, une carte des doses plus détaillée serait obtenue pour les grands systèmes distribués comme le LHC. D'autre part, la dosimétrie peut être améliorée en déployant des détecteurs plus sensibles, ce qui permettrait de mesurer la dose lorsque les niveaux sont trop faibles pour le RADFET. De plus, des capteurs à plus haute résolution permettraient de caractériser le champ de rayonnement dans un temps plus court, c'est-à-dire avec une luminosité intégrée plus faible.La première approche a été réalisée en recherchant des solutions alternatives basées sur des dispositifs COTS (Commercial Off-The-Shelf), qui réduiraient considérablement les coûts et garantiraient une disponibilité illimitée sur le marché. À cette fin, des recherches ont été menées sur un transistor NMOS discret commercial, qui s'est révélé très sensible au rayonnement.La nécessité d'améliorer la résolution de la mesure de dose a conduit à étudier le FGDOS, un dosimètre en silicium innovant à très haute sensibilité qui permet de détecter des doses extrêmement faibles.La calibration du transistor NMOS et du FGDOS a été effectuées en exposant les dosimètres à des rayons gamma. Leur réponse au rayonnement a été caractérisée en termes de linéarité, de variabilité d'un lot à l'autre et d'effet du débit de dose. L'influence de la température a été étudiée et une méthode pour compenser l'effet de la température a été développée et mise en œuvre.Le FGDOS étant un système sur puce (SoC) avec plusieurs caractéristiques qui font du dosimètre un système extrêmement flexible, la caractérisation de ses différents modes de fonctionnement (actif, passif et autonome) a été effectuée. Suite à la première caractérisation, des questions se sont posées concernant les mécanismes de dégradation de la sensibilité affectant le dosimètre. Pour étudier ce phénomène, des campagnes d’irradiations ont été effectuées avec une puce d'essai incorporant seulement le circuit sensible au rayonnement du FGDOS. L'analyse des expériences a permis de comprendre les processus responsables de la dégradation de la sensibilité, en séparant la contribution du transistor de lecture de celle du condensateur à grille flottante. Les résultats de cette étude nous ont amenés à envisager de nouvelles solutions de conception et des méthodes de compensation.L’aptitude du transistor NMOS et du FGDOS à mesurer la dose ionisante dans les champs de rayonnement mixtes produits par le complexe d’accélérateurs du CERN a été vérifiée à l’aide de test radiatifs accélérés effectués dans le centre de tests en champs mixte à haute énergie du CERN (CHARM).