Thèse soutenue

Dynamique et ingénierie de la photostriction dans des microdispositifs à base de films minces épitaxiés d'oxydes ferroélectriques

FR  |  
EN
Auteur / Autrice : Loïc Guillemot
Direction : Philippe Lecoeur
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 07/12/2018
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Electrical, optical, bio : physics and engineering (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Centre de nanosciences et de nanotechnologies (Palaiseau, Essonne ; 2016-....)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Antoine Barbier
Examinateurs / Examinatrices : Philippe Lecoeur, Antoine Barbier, Pascal Ruello, Houssny Bouyanfif, Thomas W. Cornélius, Sylvia Matzen
Rapporteurs / Rapporteuses : Pascal Ruello, Houssny Bouyanfif

Résumé

FR  |  
EN

Les matériaux ferroélectriques sont de bons candidats pour réaliser des microdispositifs photostrictifs, capables de se déformer mécaniquement sous éclairement. En effet, lorsqu’ils sont soumis à un rayonnement d’énergie supérieure à leur bande interdite, les charges photoinduites sont séparées par le champ électrique interne du matériau qui dépend de sa polarisation rémanente. Cette séparation de charges génère alors une modification photoinduite du champ électrique et par conséquent une déformation puisque le matériau ferroélectrique est aussi piézoélectrique. Dans cette thèse, le matériau ferroélectrique Pb(ZrₓTi₁₋ₓ)O₃ (PZT) a été choisi pour son coefficient piézoélectrique important. Des couches minces de PZT de haute qualité cristalline ont été déposées par ablation laser pulsé (PLD), et intégrées dans une géométrie capacitive, entre deux électrodes afin de contrôler électriquement les propriétés du matériau. Dans un premier temps, les propriétés piézoélectriques, diélectriques, ferroélectriques et de conduction électrique des couches minces de PZT ont été étudiées et ont montré l’influence des interfaces électrode/ferroélectrique. Les propriétés photovoltaïques des couches minces ont ensuite été étudiées, en fonction de la longueur d’onde d’excitation et de l’état de polarisation, et les résultats obtenus ont démontré l’importance de l’ingénierie sur les réponses photoinduites dans le PZT, notamment le choix de l’électrode supérieure et de la longueur d’onde d’excitation. Le choix de l’électrode supérieure s’est en effet révélé très important pour contrôler le signe des courants et tensions photoinduites ainsi que leur stabilité temporelle. Finalement, les déformations photoinduites dans des films minces de PZT après une impulsion UV ont été étudiées par diffraction des rayons X résolue en temps. L’une des avancées les plus importante de ces travaux réside dans le contrôle in situ de la photostriction (à la fois du signe et de l’amplitude des déformations photoinduites) en faisant varier l’état de polarisation. En considérant les différentes contributions intervenant dans le champ électrique total dans la couche mince, un modèle a été proposé pour expliquer le rôle de la polarisation dans la photostriction. Pour aller plus loin dans l’étude et le contrôle de la photostriction et son optimisation, plusieurs approches ont été explorées, comme la modification de la polarisation rémanente, de la longueur de pénétration des UV, de la fréquence d’excitation UV ou de l’interface électrode/PZT, qui ont montré des effets plus ou moins forts sur la dynamique et l’amplitude de la réponse photostrictive.