Thèse soutenue

Sur les algorithmes d'approximation combinatoires en géométrie

FR  |  
EN
Auteur / Autrice : Bruno Jartoux
Direction : Nabil Mustafa
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 12/09/2018
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'informatique de l'Institut Gaspard Monge (1997-2009) - Laboratoire d'Informatique Gaspard-Monge / LIGM
Jury : Président / Présidente : Jean Cardinal
Examinateurs / Examinatrices : Nabil Mustafa, Frédéric Meunier, Vera Sacristán Adinolfi, Lilian Buzer
Rapporteurs / Rapporteuses : Jesús A. De Loera, Guilherme Dias Da Fonseca, Kasturi R. Varadarajan

Résumé

FR  |  
EN

L'analyse des techniques d'approximation est centrale en géométrie algorithmique, pour des raisons pratiques comme théoriques. Dans cette thèse nous traitons de l'échantillonnage des structures géométriques et des algorithmes d'approximation géométriques en optimisation combinatoire. La première partie est consacrée à la combinatoire des hypergraphes. Nous débutons par les problèmes de packing, dont des extensions d'un lemme de Haussler, particulièrement le lemme dit de Shallow packing, pour lequel nous donnons aussi un minorant optimal, conjecturé mais pas établi dans les travaux antérieurs. Puis nous appliquons ledit lemme, avec la méthode de partition polynomiale récemment introduite, à l'étude d'un analogue combinatoire des régions de Macbeath de la géométrie convexe : les M-réseaux, pour lesquels nous unifions les résultats d'existence et majorations existants, et donnons aussi quelques minorants. Nous illustrons leur relation aux epsilon-réseaux, structures incontournables en géométrie combinatoire et algorithmique, notamment en observant que les majorants de Chan et al. (SODA 2012) ou Varadarajan (STOC 2010) pour les epsilon-réseaux (uniformes) découlent directement de nos résultats sur les M-réseaux. La deuxième partie traite des techniques de recherche locale appliquées aux restrictions géométriques de problèmes classiques d'optimisation combinatoire. En dix ans, ces techniques ont produit les premiers schémas d'approximation en temps polynomial pour divers problèmes tels que celui de calculer un plus petit ensemble intersectant pour un ensemble de disques donnés en entrée parmi un ensemble de points donnés en entrée. En fait, il a été montré que pour de nombreux tels problèmes, la recherche locale de rayon Θ (1/epsilon²) donne une (1 + epsilon)-approximation en temps n^{O(1/epsilon²)}. Savoir si l'exposant de n pouvait être ramené à o (1/epsilon²) demeurait une question ouverte. Nous répondons par la négative : la garantie d'approximation de la recherche locale n'est améliorable pour aucun desdits problèmes