Thèse soutenue

Réactivité de surface des minéraux mous à l'échelle atomique

FR  |  
EN
Auteur / Autrice : Bahareh Zareeipolgardani
Direction : Jean Colombani
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 14/02/2019
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale de Physique et Astrophysique de Lyon (1991-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Claude Bernard (Lyon ; 1971-....)
Laboratoire : Institut Lumière Matière
Jury : Président / Présidente : Pierre Müller
Examinateurs / Examinatrices : Jean Colombani, Catherine Barentin, Dag Kristian Dysthe, Rémi Lespiat, Olivier Pierre-Louis
Rapporteurs / Rapporteuses : Sergey Churakov, Pierpaolo Zuddas

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Il est indispensable pour comprendre la diagenèse, i.e., la formation des roches sédimentaires, le durcissement des matériaux de construction hydrauliques comme le ciment ou le plâtre, ou la biominéralisation, d'identifier les mécanismes élémentaires de la cristallisation minérale. Le taux de réaction macroscopique des minéraux est généralement déduit de mesures de chimie des solutions. A côté de ces mesures macroscopiques, l'étude de la réactivité des minéraux inclut maintenant l'analyse des mécanismes atomiques a l'origine des réactions chimiques. Cela a été rendu possible depuis deux décennies par l'apparition d'outils capables d'observer des surfaces avec une résolution nanométrique, tels que la microscopie à force atomique et l'interférométrie à balayage vertical. Le gypse et la calcite font partie des minéraux dits mous. Ce sont des minéraux extrêmement répandus, que l'on peut trouver autant dans la nature sous forme de roches sédimentaires que dans le monde industriel. Le gypse (CaSO4,2H2O) est une évaporite dont les applications incluent la fabrication des plaques de plâtre, l'ajout au ciment Portland comme retardateur, l'élaboration du plâtre de Paris et l'amendement des sols. La sélénite ou l'albâtre sont des variétés de gypse utilisés comme matériaux pour l'ornement, mais leur faible dureté limite leur durabilité. La calcite, forme la plus stable de CaCO3, est un des principaux biominéraux, et un des constituants majeurs des roches des réservoirs carbonates, stockant naturellement de l'eau, du pétrole ou du gaz naturel. Quand les organismes biologiques font croitre leur coquille, ils contrôlent la morphologie, la taille, l'orientation et même la phase des cristaux de carbonates de calcium qui la constituent. Cela conduit à des biomatériaux présentant des propriétés physiques et chimiques qui diffèrent significativement de ceux de la calcite inorganique. Une connaissance plus approfondie des mécanismes sous-jacents à la réactivité de surface de la calcite et de l'effet des impuretés sur celle-ci permettra de nous rapprocher de la possibilité de synthétiser des minéraux biomimétiques, aux propriétés comparables à celles de la calcite biogénique. Dans ce contexte, ma thèse s'est développée dans trois directions. Dans la première, j'ai étudié l'influence d'une contrainte mécanique sur les mécanismes de dissolution. Mon objectif dans cette partie a été de tacher de déduire le taux de dissolution macroscopique à partir de la cinétique des mécanismes atomiques. La seconde partie de la thèse, la plus conséquente, a consisté à étudier l'influence d'une contrainte mécanique sur la croissance de la calcite, et à sonder le rôle d'un additif organique lors de cette croissance sous contrainte. Dans la troisième partie, je me suis penchée sur la dissolution de cristaux de calcite à l'aide de mesures topographiques quantitatives sur des aires relativement étendues de la surface des cristaux, dans une large gamme de pH. J'ai en particulier étudié l'influence d'un additif organique sur la dissolution et la cinétique de réaction à grande échelle. Les taux de dissolution macroscopique et microscopique, c'est-à-dire déduits de la dynamique d'évènements moléculaires (croissance de piqure d'attaque, migration de marche atomique), ne sont presque jamais en accord, même qualitativement, et l'élaboration d'une théorie générale liant la cinétique du phénomène aux deux échelles est encore en cours. Je présente ici des taux de dissolution microscopique du gypse, mesures par microscopie par force atomique (AFM), en accord quantitatif avec les taux de dissolution macroscopiques. Cet accord inédit a été obtenu en prenant soin de neutraliser le biais induit par le fait que la pointe AFM applique une force sur la surface qu'elle sonde, et en identifiant avec soin les mécanismes moléculaires majeurs à l'œuvre lors de la dissolution...[etc]