Thèse soutenue

Convolution intermédiaire et théorie de Hodge

FR  |  
EN
Auteur / Autrice : Nicolas Martin
Direction : Claude Sabbah
Type : Thèse de doctorat
Discipline(s) : Mathématiques fondamentales
Date : Soutenance le 09/07/2018
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : École polytechnique (Palaiseau, Essonne ; 1795-....)
Laboratoire : Centre de mathématiques Laurent Schwartz (Palaiseau, Essonne)
Jury : Président / Présidente : Michael Dettweiler
Examinateurs / Examinatrices : Claude Sabbah, Javier Fresán
Rapporteurs / Rapporteuses : Jean-Michel Granger, Christian Sevenheck

Résumé

FR  |  
EN

Cette thèse est constituée de deux parties complètement indépendantes.Dans une première partie, nous montrons que la paire de Fourier-Mukai (X,Y) issue de la correspondance double miroir Pfaffienne-Grassmannienne vérifie l'identité ([X]-[Y])L^6=0 dans l'anneau de Grothendieck, où L est la classe de la droite affine. Ce résultat est un raffinement d'un théorème de Borisov par la suppression d'un facteur, qui montre que la classe de la droite affine est un diviseur de zéro dans l'anneau de Grothendieck, et fournit par ailleurs un premier exemple intéressant de variétés D-équivalentes qui sont L-équivalentes. D'autres exemples ont par la suite été explicités par d'autres auteurs.Dans une seconde partie, nous nous intéressons au comportement d'invariants de théorie de Hodge par convolution intermédiaire, à la suite des travaux de Dettweiler et Sabbah. Le principal résultat concerne le comportement des données numériques locales de Hodge cycles proches à l'infini par convolution intermédiaire additive par un module de Kummer. Nous donnons également des formules pour les invariants locaux h^p et globaux delta^p sans faire l'hypothèse de monodromie scalaire à l'infini. De plus, à l'aide d'une relation de Katz reliant les convolutions additives et multiplicatives, nous explicitons le comportement des invariants de Hodge par convolution intermédiaire multiplicative. Enfin, le théorème principal permet de redémontrer un résultat de Fedorov sur les invariants de Hodge d'équations hypergéométriques.