Thèse soutenue

Conception modulaire d'une caisse de véhicule par des méthodes d'optimisation robuste

FR
Auteur / Autrice : Martin Charrier
Direction : Louis JézéquelOlivier Dessombz
Type : Thèse de doctorat
Discipline(s) : Mécanique
Date : Soutenance le 18/09/2018
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : Ecole doctorale Mécanique, Energétique, Génie Civil, Acoustique (Villeurbanne ; 2011-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : École Centrale de Lyon (1857-....)
Laboratoire : Laboratoire de tribologie et dynamique des systèmes (Écully, Rhône ; 1970-)
Jury : Président / Présidente : Thouraya N. Baranger
Examinateurs / Examinatrices : Louis Jézéquel, Olivier Dessombz, Marie-Maud Chatillon, Yves Tourbier
Rapporteurs / Rapporteuses : Pascal Drazetic, David Ryckelynck

Mots clés

FR  |  
EN

Mots clés contrôlés

Mots clés libres

Résumé

FR  |  
EN

Dans l'industrie automobile, les volumes de vente sont tels que le moindre kilogramme gagné sur un véhicule génère des économies colossales : diminution du coût des matériaux bruts, réduction de la consommation et de la taxe carbone (meilleure perception client). L'utilisation de simulations par éléments finis et l'optimisation font désormais partie intégrante des processus de développement des véhicules : crash, NVH (Noise and Vibration Harshness), aérodynamique, mécanique des fluides. . . L'optimisation réduit la masse d'un véhicule en faisant varier des variables de conception sous contraintes du cahier des charges. Le nombre de simulations requises à une optimisation classique varie entre 3 et 10 fois le nombre de variables quantitatives (épaisseurs, variables de formes). Ce nombre augmente rapidement si le problème contient des variables qualitatives (présence/absence/alternatives de pièces). Dans ce cas, lorsque les simulations sont très coûteuses comme en crash, les algorithmes d'optimisation deviennent inefficaces. Pour cette raison, l'optimisation est utilisée tardivement dans le cycle de développement des véhicules, lorsque le nombre de variables qualitatives a été réduit par plusieurs décisions stratégiques (architecture de caisse, pièces à ré-utiliser, usines de fabrication. . .). De telles décisions ne sont pas toujours prises de manière pertinente, particulièrement lorsque le planning est serré et les données indisponibles. De mauvais choix à ce stade peuvent s'avérer très coûteux par la suite. La méthode proposée dans les premiers chapitres de cette thèse utilise un algorithme de Branch and Bound pour étendre le périmètre de l'optimisation en permettant un grand nombre de variables qualitatives et une adaptation rapide aux possibles changements de contraintes. Avec ces deux caractéristiques, de nouvelles variables qualitatives généralement pré-contraintes par des décisions stratégiques peuvent être prises en compte dès lors que les modèles numériques sont disponibles. Différents scenarii liés à différents jeux de contraintes stratégiques peuvent alors être comparés. Les chapitres suivants sont dédiés à la méthode de réduction de modèles ReCUR, qui complète l'amélioration de l'algorithme par une réduction drastique du nombre de simulations nécessaires à l'établissement d'un modèle du comportement crash du véhicule. La méthode surpasse le traditionnel fléau de la dimension (ou curse of dimensionality) en proposant une modélisation en fonction de variables exprimées non plus aux pièces, mais aux nœuds (ou éléments) du maillage. Les deux versions de ReCUR testées aujourd'hui seront présentées, et chacune d'entre elle sera appliquée à l'optimisation d'une caisse complète de véhicule. Deux méthodes qui permettraient à ReCUR de prendre en compte des variables de type alternatives géométriques de pièces seront également proposées.