Thèse soutenue

Modélisation de composants d'extraction de la chaleur : application à l'optimisation de système d'électronique de puissance

FR  |  
EN
Auteur / Autrice : Anne Castelan
Direction : Thierry MeynardSébastien DutourBernardo Cogo
Type : Thèse de doctorat
Discipline(s) : Genie électrique
Date : Soutenance le 22/12/2017
Etablissement(s) : Toulouse 3
Ecole(s) doctorale(s) : École doctorale Génie électrique, électronique, télécommunications et santé : du système au nanosystème (Toulouse)
Partenaire(s) de recherche : Laboratoire : Laboratoire Plasma et Conversion d'Energie (Toulouse ; 2007-....)

Résumé

FR  |  
EN

Avec le remplacement des réseaux hydrauliques et pneumatiques à bord des aéronefs par des réseaux électriques, le nombre d'équipements embarqués pour assurer un bon fonctionnement augmentera. Le passage à un avion entièrement électrique permettrait de réduire les couts de production et fonctionnement, assurerait une meilleure fiabilité des systèmes, et réduirait l'impact écologique de la circulation d'un tel appareil. En effet, un tel avion serait plus léger qu'un avion actuel. Pour s'assurer de cela, il est nécessaire de réduire la masse des équipements embarqués servant à la gestion, la mise en forme, la distribution d'énergie électrique. Le dimensionnement et l'optimisation de la masse des équipements embarqués est donc une problématique fondamentale dans le développement de l'avion plus électrique. Cette masse est majoritairement fixée par les systèmes de refroidissement lorsque l'on considère des systèmes de conversion d'énergie. Parmi l'ensemble des systèmes de refroidissement disponibles et dédiés au refroidissement des convertisseurs statiques, deux grandes technologies ont été sélectionnées, dans l'objectif d'en produire des modèles dédiés à des routines d'optimisation. Les dissipateurs à ailettes droites en convection forcée, ainsi que les systèmes associant dissipateurs à ailettes et caloducs seront modélisés au cours de ces travaux de thèse. Des modèles analytiques de ces systèmes de refroidissement seront proposés, dans l'optique de pouvoir optimiser au mieux leur masse tout en assurant un bon fonctionnement thermique. Même si de nombreuses méthodes de dimensionnement et d'optimisation dédiées aux systèmes de refroidissement existent, notre choix de modélisation s'est porté sur une représentation analytique. En effet, ce type de modélisation est déduit d'une résolution exacte de l'équation de la chaleur pour représenter des configurations géométriques et thermiques simples. Les configurations sélectionnées correspondent à des configurations simples à modéliser analytiquement. L'avantage de tels modèles réside dans le fait que le comportement thermique de systèmes de refroidissement, i.e de la température de la source de chaleur à l'ambiant, est une fonction des paramètres géométriques, des matériaux et des conditions environnementales des systèmes de refroidissement. Ce sont donc des modèles très rapides d'exécution qui donnent une solution exacte du comportement thermique des dissipateurs modélisés. Ils présentent donc un réel intérêt dans l'optique d'optimiser la masse de ces systèmes.