Thèse soutenue

Dynamique de stockage souterrain de gaz : aperçu à partir de modèles numériques de dioxyde de carbone et d'hydrogène

FR  |  
EN
Auteur / Autrice : Álvaro Sáinz-García
Direction : Eric H. OelkersFidel Grandia
Type : Thèse de doctorat
Discipline(s) : Hydrologie
Date : Soutenance le 16/10/2017
Etablissement(s) : Toulouse 3
Ecole(s) doctorale(s) : École doctorale Sciences de l’univers, de l’environnement et de l’espace (Toulouse)

Résumé

FR  |  
EN

L'atténuation du changement climatique est l'un des défis majeurs de notre époque. Les émissions anthropiques de gaz à effet de serre ont augmenté de façon continue depuis la révolution industrielle, provoquant le réchauffement climatique. Un ensemble de technologies très diverses doivent être mises en œuvre pour respecter les accords internationaux relatifs aux émissions de gaz à effet de serre. Certaines d'entre elles ont recours au sous-sol pour le stockage de diverses substances. Cette thèse traite plus particulièrement de la dynamique du stockage souterrain du dioxyde de carbone (CO2) et de l'hydrogène (H2). Des modèles numériques de transport réactif et multiphasiques ont été élaborés pour mieux comprendre la migration et les interactions des fluides dans des milieux poreux de stockage souterrain. Ils fournissent des recommandations pour améliorer l'efficacité, la surveillance et la sécurité du stockage. Trois modèles sont présentés dans ce document, dont deux dans le domaine du captage et du stockage du CO2 (CCS pour Carbon Capture and Storage), et le troisième s'appliquant au stockage souterrain de l'hydrogène (UHS pour Underground Hydrogen Storage). Chacun d'entre eux traite plus spécifiquement un aspect de la recherche : Modèle multiphasique appliqué au CCS L'efficacité et la sécurité à long terme du stockage du CO2 dépend de la migration et du piégeage du panache de CO2 flottant. Les grandes différences d'échelles temporelles et spatiales concernées posent de gros problèmes pour évaluer les mécanismes de piégeage et leurs interactions. Dans cet article, un modèle numérique dynamique diphasique a été appliqué à une structure aquifère synclinale-anticlinale. Ce modèle est capable de rendre compte des effets de capillarité, de dissolution et de mélange convectif sur la migration du panache. Dans les aquifères anticlinaux, la pente de l'aquifère et la distance de l'injection à la crête de l'anticlinal déterminent la migration du courant gravitaire et, donc, les mécanismes de piégeage affectant le CO2. La structure anticlinale arrête le courant gravitaire et facilite l'accumulation du CO2 en phase libre, en dessous de la crête de l'anticlinal, ce qui stimule la mise en place d'une convection et accélère donc la dissolution du CO2. Les variations de vitesse du courant gravitaire en raison de la pente de l'anticlinal peuvent provoquer la division du panache et une durée différente de résorption du panache en phase libre, qui dépend de l'endroit de l'injection.