Thèse soutenue

Développement et réalisation d'un klystron à haut-rendement de type kladistron

FR  |  
EN
Auteur / Autrice : Antoine Mollard
Direction : Claude Marchand
Type : Thèse de doctorat
Discipline(s) : Physique des accélérateurs
Date : Soutenance le 07/12/2017
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Particules, hadrons, énergie et noyau : instrumentation, imagerie, cosmos et simulation (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Institut de recherche sur les lois fondamentales de l'Univers (Gif-sur-Yvette, Essonne ; 1991-....)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Entreprise : Thales (Firme)
Jury : Président / Présidente : Jean-Marcel Rax
Examinateurs / Examinatrices : Claude Marchand, Jean-Marcel Rax, Walter Wuensch, Jean-Marie de Conto, Armel Beunas, Juliette Plouin
Rapporteurs / Rapporteuses : Walter Wuensch, Jean-Marie de Conto

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les klystrons sont des tubes électroniques dans lesquels un ou plusieurs faisceaux d'électrons sont modulés afin de d'amplifier un signal radiofréquence. Pour ce faire, des cavités passives constituant la ligne d’interaction du klystron échangent de l’énergie électromagnétique avec le faisceau. Il en résulte une modification périodique de la vitesse des électrons, qui sont regroupés en paquets. A la fin de la ligne d’interaction, cette énergie est partiellement transmise à un circuit radiofréquence externe. Afin d’améliorer les performances des klystrons et d’augmenter leur rendement énergétique, une nouvelle architecture, inspirée des RFQ (Radio-Frequency Quadrupole), a été proposée. Il s’agit d’utiliser un nombre plus important de cavités, faiblement couplées au faisceau, et permettant la mise en paquets des électrons de façon très progressive et économe en énergie. Dans l’optique de tester cette nouvelle architecture, le point de départ de ce projet a été la modification de la ligne d’interaction d’un klystron existant. Les éléments d’origines ont été modélisés avec différents programmes de simulation (AJ-Disk, Klys2D et MAGIC2D). Plusieurs architectures ont été ensuite simulées avec ces programmes, afin d’améliorer le rendement énergétique de ce klystron. Une fois que les paramètres électromagnétiques des cavités ont été déterminés, il a été nécessaire de concevoir les pièces constituant cette nouvelle ligne. Le développement de ce nouveau klystron a imposé la création d’un système d’accord des cavités en fréquence, et d’une méthode de titanage, afin d’empêcher la création de phénomène de multipactor. Pour ce faire, deux séries de prototypes ont été conçues, fabriquées et testées. Cette étape a également permis la vérification des méthodes de brasage prévues avec les pièces finales. Les différents éléments de la ligne d’interaction ont été réalisés par un partenaire industriel extérieur au projet. Ces pièces ont été ensuite assemblées à Thales Electron Devices Vélizy, avant que le nouveau klystron soit testé sur un banc dédié.