Thèse soutenue

Nouvelles sources compactes dans le moyen-infrarouge : Lasers à cascade quantique au-delà de 16 microns et LED électroluminescentes en régime de couplage fort.

FR  |  
EN
Auteur / Autrice : Daniel Chastanet
Direction : Raffaele Colombelli
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 20/06/2016
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Electrical, optical, bio : physics and engineering (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Institut d'électronique fondamentale (Orsay, Essonne ; 19..-2016)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Isabelle Sagnes
Examinateurs / Examinatrices : Raffaele Colombelli, Isabelle Sagnes, Olivier Gauthier-Lafaye, Jérôme Tignon, Roland Teissier, Adel Bousseksou
Rapporteurs / Rapporteuses : Olivier Gauthier-Lafaye, Jérôme Tignon

Résumé

FR  |  
EN

Le lointain infrarouge (16 µm < λ < 30 µm) est un domaine important pour des applications telles que la détection de large molécules organiques (dont les empreintes d'absorption tombe dans cette gamme de longueur d'onde) et pour la radio-astronomie (oscillateurs locaux pour la détection hétérodyne). Malheureusement, cette fenêtre de transparence atmosphérique, communément appelé la 4eme fenêtre de transparence, est un domaine quasi inexploré.Les LCQ sont des sources de lumière cohérentes, couvrant une gamme allant du moyen infrarouge jusqu'au THz, basées sur l'ingénierie de structures de bandes de matériaux semi-conducteurs. Ils démontrent d'excellentes performances dans le domaine du proche infrarouge mais leur efficacité diminue dans la 4ème fenêtre et au-delà.L'un des buts de cette thèse est le développement d'une nouvelle génération de LCQ capable de couvrir cette zone spectral avec de bonnes performances, en terme de puissance de sortie du dispositif et de température maximale d'opération. Un point clé dans cette optique est l'utilisation d'un nouveau système de matériaux pour ces longueurs d'onde : l'InAs/AlSb. L'avantage de cette solution réside dans sa très faible masse effective : 0,023 m0 (comparée à 0,043 m0 dans les puits d'InGaAs), qui permet d’obtenir un gain plus élevé, résultant dans l'amélioration significative des performances.Une autre approche fondamentalement différente réside dans le régime de couplage fort. L'utilisation d'un temps caractéristique ultra-rapide, associé aux oscillations de Rabi, peut permettre dans un premier temps de réaliser des sources électroluminescentes avec un meilleur rendement quantique (comparé à une transition inter-sous-bandes nue). Les pseudos particules qui découlent du régime de couplage fort dans les transitions inter-sous-bandes (appelés polaritons inter-sous-bandes) peuvent sous certaines limites se comporter comme des bosons. On entrevoit alors la possibilité de réaliser des sources cohérentes basées sur la relaxation d'un condensat polaritonique.