Compression vidéo basée sur l'exploitation d'un décodeur intelligent

by Dang Khoa Vo Nguyen

Doctoral thesis in Automatique, traitement du signal et des images

Under the supervision of Marc Antonini and Joël Jung 19..-.....

defended on 18-12-2015

in Nice , under the authority of École doctorale Sciences et technologies de l'information et de la communication (Sophia Antipolis, Alpes-Maritimes) , en partenariat avec Laboratoire Informatique, signaux et systèmes (Sophia Antipolis, Alpes-Maritimes) (laboratoire) et de Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Projet MEDIACODING (laboratoire) .

  • Titre traduit

    Video compression based on smart decoder


  • Résumé

    This Ph.D. thesis studies the novel concept of Smart Decoder (SDec) where the decoder is given the ability to simulate the encoder and is able to conduct the R-D competition similarly as in the encoder. The proposed technique aims to reduce the signaling of competing coding modes and parameters. The general SDec coding scheme and several practical applications are proposed, followed by a long-term approach exploiting machine learning concept in video coding. The SDec coding scheme exploits a complex decoder able to reproduce the choice of the encoder based on causal references, eliminating thus the need to signal coding modes and associated parameters. Several practical applications of the general outline of the SDec scheme are tested, using different coding modes during the competition on the reference blocs. Despite the choice for the SDec reference block being still simple and limited, interesting gains are observed. The long-term research presents an innovative method that further makes use of the processing capacity of the decoder. Machine learning techniques are exploited in video coding with the purpose of reducing the signaling overhead. Practical applications are given, using a classifier based on support vector machine to predict coding modes of a block. The block classification uses causal descriptors which consist of different types of histograms. Significant bit rate savings are obtained, which confirms the potential of the approach.


  • Abstract

    Cette thèse de doctorat étudie le nouveau concept de décodeur intelligent (SDec) dans lequel le décodeur est doté de la possibilité de simuler l’encodeur et est capable de mener la compétition R-D de la même manière qu’au niveau de l’encodeur. Cette technique vise à réduire la signalisation des modes et des paramètres de codage en compétition. Le schéma général de codage SDec ainsi que plusieurs applications pratiques sont proposées, suivis d’une approche en amont qui exploite l’apprentissage automatique pour le codage vidéo. Le schéma de codage SDec exploite un décodeur complexe capable de reproduire le choix de l’encodeur calculé sur des blocs de référence causaux, éliminant ainsi la nécessité de signaler les modes de codage et les paramètres associés. Plusieurs applications pratiques du schéma SDec sont testées, en utilisant différents modes de codage lors de la compétition sur les blocs de référence. Malgré un choix encore simple et limité des blocs de référence, les gains intéressants sont observés. La recherche en amont présente une méthode innovante qui permet d’exploiter davantage la capacité de traitement d’un décodeur. Les techniques d’apprentissage automatique sont exploitées pour but de réduire la signalisation. Les applications pratiques sont données, utilisant un classificateur basé sur les machines à vecteurs de support pour prédire les modes de codage d’un bloc. La classification des blocs utilise des descripteurs causaux qui sont formés à partir de différents types d’histogrammes. Des gains significatifs en débit sont obtenus, confirmant ainsi le potentiel de l’approche.


It's available in the institution of thesis defence.

Consult library

Version is available

Where is this thesis?

  • Library : Université Nice Sophia Antipolis. Service commun de la documentation. Bibliothèque électronique.
See the Sudoc catalog libraries of higher education and research.