Thèse soutenue

Modèle physique de prédiction des effets des événements singuliers destructifs dans les composants électroniques de puissance

FR  |  
EN
Auteur / Autrice : Sara Siconolfi
Direction : Jean-Pierre DavidGuillaume Hubert
Type : Thèse de doctorat
Discipline(s) : Génie électrique
Date : Soutenance le 15/01/2015
Etablissement(s) : Toulouse, ISAE
Ecole(s) doctorale(s) : École doctorale Génie électrique, électronique, télécommunications et santé : du système au nanosystème (Toulouse)
Partenaire(s) de recherche : Equipe de recherche : Équipe d'accueil doctoral Optronique, laser, imagerie physique, environnement Spatial (Toulouse, Haute-Garonne)
Laboratoire : Office national d'études et recherches aérospatiales (Toulouse, Haute-Garonne). Département Environnement Spatial (DESP)
Jury : Président / Présidente : Patrick Austin
Examinateurs / Examinatrices : Frédéric Darracq, Julien Mekki
Rapporteurs / Rapporteuses : Jean Luc Leray, Raoul Velazco

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

L’environnement radiatif naturel est connu pour être sévère sur les composants électroniques de puissance. Il est caractérisé par des particules chargées électriquement, notamment des ions lourds et des protons. Dans le contexte avionique, c’est maintenant essentiel d’estimer les effets de dites particules : les MOSFETs de puissance sont en fait largement utilisés pour les caractéristiques électriques et le coût. Cette étude s’occupe de la prédiction du Single Event Effect (SEB) dans les MOSFETs de puissance : sur la base d’une analyse physique à travers des simulations TCAD, lemodèle de prédiction DELPHY est construit pour calculer les taux d’occurrence du SEB généré par ions lourds et protons. Le SEB provient de la génération d’une charge dans le composant, qui évolue via un courant élevé et auto-alimenté, ayant comme conséquence la destruction thermique du composant. Le SEB a été étudié dans ses différents aspects : c’est admit qu’il dépend de plusieurs facteurs, notamment la géométrie du composant, son dopage et sa polarisation ; la nature et le LET (Linear Energy Transfer) de la particule, le lieu et l’angle d’impact. Tous ces paramètres ne peuvent pas être contrôlés, et le compromis entre le coût et la fonctionnalité limite la mise en place des solutions de durcissement. Pour cette raison, un modèle de prédiction de l’occurrence SEB est nécessaire, ce qui fait l’objet de cette étude. Le modèle DELPHY est basé sur l’analyse physique du Single Event Burnout, à travers la simulation composant 2D TCAD, afin de maîtriser les paramètres cités auparavant qui sont pertinents pour le phénomène. Deux différentes topologies de composant on été étudiées (HEXFET et STRIPFET). A partir de cette analyse, une loi empirique de déclenchement a été calculée et un critère SEB basé sur le champ électrique et la charge déposée dans la couche epitaxiée a été défini. Les sections efficaces SEB ont été calculées pour des injections d’ions lourds. En prenant en compte la probabilité différentielle de génération des particules secondaires sous impact proton, les taux SEB ont été prédis aussi pour le cas du SEB généré par les protons. Toutes les sections efficaces calculées ont été comparées avec succès aux données expérimentales : d’abord avec les caractérisations composant publiées par le CNES ; en suite dans le cadre d’une étude spécifique commune ONERA-CERN afin de caractériser la prochaine génération des convertisseurs de puissance dans le Large Hadron Collider. DELPHY propose donc d’avoir un rôle essentiel comme instrument de prédiction SEB, et trace la route pour une amélioration de l’estimation des taux SEB.