Study of mathematical models of phenotype evolution and motion of cell populations

by Karina Vilches

Doctoral thesis in Mathématiques, biomathématiques

Under the supervision of Carlos Conca and Benoît Perthame.

defended on 17-04-2014

in Paris 6 and the jointly supervising institution l'Universidad de Chile , under the authority of École doctorale de Sciences mathématiques de Paris Centre (Paris) .

Thesis committee members: Alexander Quaas, Elio Edouardo Espejo, Thierry Cazenave, Juan Diego Davila.


  • Abstract

    In Chapter 1, we consider a cell population where the individuals live in the same environmental conditions for some fixed period of time where they compete for nutrients among themselves, considering that offspring has the same trait as their parents, we were defining a fitness function that is trait and density dependent, assuming there were a unique trait best adapted at fixed environmental conditions. We modeled this phenomenon using a Transport Equation. The main result have been obtaining a Dirac mass concentration like solutions for the asymptotic behavior, incorporating a parameter, which is biologically sustained. We applied the classical framework to obtain this result. First, we give the apriori estimates and existence result to the simplified problem, next we add terms to have a more realistic model, then we study an approximate problem given some regularity and properties at solutions, finally we obtain this limit. We used tools as BV convergence properties, Anzats, sub and super solutions, maximum principle, etc.Chapter 2 had been publishing in the following papers (see part II):- E. ESPEJO, K. VILCHES, C. CONCA (2012), Sharp conditon for blow-up and global existence in a two species chemotactic Keller-Segel system in R^2, European J. Appl. Math- C. CONCA, E. ESPEJO, K. VILCHES (2011), Remarks on the blow-up and global existence for a two species chemotactic Keller-Segel system in R^2. European J. Appl. Math.In this chapter, we give the main results obtained in these two publications. We have been studying the sharp condition to global existence and Blow-up in time to the parabolic PDE system in R^2, inspired by the studies were done in the one species case. We model the movement for two chemotactic populations produced by one chemical substance. The main result is to extend the result obtained to classical simplified Keller-Segel model in one species case to the multispecies case, using the adequately tools for PDE’s systems. We used the moment method to prove Blow-up and have been bounding the entropy to show global existence.

  • Alternative Title

    Étudier sur des modèles mathématiques du mouvement et de l'évolution phénotypique d'une population de cellules


  • Abstract

    Cette thèse porte sur deux équations aux dérivées partielles qui modélisent les phénomènes biologiques de l'évolution génétique et mouvement dans l'espace d'une population de cellules. Le premier problème (Partie I, Chapitre 1), il est sur l'évolution phénotypique d'une population de cellules, nous avons réussi à démontrer que la limite asymptotique des solutions de l'équation différentielle partielle proposée est une masse de Dirac. Pour modéliser ce phénomène, nous avons étudié une équation de transport sur le mouvement génétique, y compris des éléments classiques de l'écologie mathématique et ajouter un transport terme dans la variable génétique x pour modéliser le phénomène de sélection naturelle. Nous intégrons un paramètre approprié dans notre modèle, qui a un problème associé normalisée. Ensuite, nous faisons quelques estimations pour donner des propriétés des solutions et obtenir sa limite. Pour ce faire, nous définissons une sous-solution et sur-solution, qui délimitent la solution du problème en appliquant un principe du maximum.Le deuxième problème (Partie II, Chapitre 2), résume les principaux résultats obtenus dans l'étude d'un système d'équations aux dérivées partielles paraboliques inspiré par l'équation Keller-Segel. C'est pourquoi le résultat principal est d'obtenir des conditions optimales sur la masse initiale pour l'existence globale et blow-up des solutions du système étudié, utilisé la méthode des moments et des inégalités de Hardy-Littlewood-Sobolev pour systèmes.


It's available in the institution of thesis defence.

Consult library

Version is available

Where is this thesis?

  • Library : Sorbonne Université. Bibliothèque de Sorbonne Université. Bibliothèque numérique.
See the Sudoc catalog libraries of higher education and research.