Thèse soutenue

Suivi par vision d’objets articulés et flexibles

FR  |  
EN
Auteur / Autrice : Daniel Wesierski
Direction : Bernadette Dorizzi
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 25/03/2013
Etablissement(s) : Evry, Institut national des télécommunications
Ecole(s) doctorale(s) : École doctorale Sciences et Ingénierie (Evry ; 2008-2015)
Partenaire(s) de recherche : Université : Université d'Évry-Val-d'Essonne (1991-....)

Résumé

FR  |  
EN

Les humains sont capables de suivre visuellement des objets sans effort. Cependant les algorithmes de vision artificielle rencontrent des limitations pour suivre des objets en mouvement rapide, sous un éclairage variable, en présence d'occultations, dans un environnement complexe ou dont l'apparence varie à cause de déformations et de changements de point de vue. Parce que des systèmes génériques, précis, robustes et rapides sont nécessaires pour de nombreuses d’applications, le suivi d’objets reste un problème pratique important en vision par ordinateur. La première contribution de cette thèse est une approche calculatoire rapide pour le suivi d'objets de forme et de mouvement variable. Elle consiste en un système unifié et configurable pour estimer l'attitude d’un objet déformable dans un espace d'états de dimension petite ou grande. L’objet est décomposé en une suite de segments composés de parties et organisés selon une hiérarchie spatio-temporelle contrainte. L'efficacité et l’universalité de cette approche sont démontrées expérimentalement sur de nombreux exemples de suivi de divers objets flexibles et articulés. Les caractéristiques de Haar (HLF) sont abondement utilisées pour le suivi d’objets. La deuxième contribution est une méthode de décomposition des HLF permettant de les calculer de manière efficace. Ces caractéristiques sont décomposées en noyaux plus simples, éventuellement réutilisables, et reformulées comme des convolutions multi-passes. La recherche et l'alignement des noyaux dans et entre les passes permet de créer des arbres récursifs de noyaux qui nécessitent moins d’opérations en mémoire que les systèmes de calcul classiques, pour un résultat de convolution identique et une mise en œuvre plus efficace. Cette approche a été validée expérimentalement sur des exemples de HLF très utilisés