Thèse soutenue

Quelques modèles mathématiques en chimie quantique et propagation d'incertitudes

FR  |  
EN
Auteur / Autrice : Virginie Ehrlacher
Direction : Eric Cancès
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 12/07/2012
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-2015)
Partenaire(s) de recherche : Laboratoire : Centre d'enseignement et de recherche en mathématiques et calcul scientifique (Champs-sur-Marne, Seine-et-Marne)
Jury : Président / Présidente : Patrick Joly
Examinateurs / Examinatrices : Eric Cancès, Tony Lelièvre, Yvon Maday, Patrice Hauret, Endre Suli
Rapporteurs / Rapporteuses : Albert Cohen, Gero Friesecke

Résumé

FR  |  
EN

Ce travail comporte deux volets. Le premier concerne l'étude de défauts locaux dans des matériaux cristallins. Le chapitre 1 donne un bref panorama des principaux modèles utilisés en chimie quantique pour le calcul de structures électroniques. Dans le chapitre 2, nous présentons un modèle variationnel exact qui permet de décrire les défauts locaux d'un cristal périodique dans le cadre de la théorie de Thomas-Fermi-von Weiszäcker. Celui-ci est justifié à l'aide d'arguments de limite thermodynamique. On montre en particulier que les défauts modélisés par cette théorie ne peuvent pas être chargés électriquement. Les chapitres 3 et 4 de cette thèse traitent du phénomène de pollution spectrale. En effet, lorsqu'un opérateur est discrétisé, il peut apparaître des valeurs propres parasites, qui n'appartiennent pas au spectre de l'opérateur initial. Dans le chapitre 3, nous montrons que des méthodes d'approximation de Galerkin via une discrétisation en éléments finis pour approcher le spectre d'opérateurs de Schrödinger périodiques perturbés sont sujettes au phénomène de pollution spectrale. Par ailleurs, les vecteurs propres associés aux valeurs propres parasites peuvent être interprétés comme des états de surface. Nous prouvons qu'il est possible d'éviter ce problème en utilisant des espaces d'éléments finis augmentés, construits à partir des fonctions de Wannier associées à l'opérateur de Schrödinger périodique non perturbé. On montre également que la méthode dite de supercellule, qui consiste à imposer des conditions limites périodiques sur un domaine de simulation contenant le défaut, ne produit pas de pollution spectrale. Dans le chapitre 4, nous établissons des estimations d'erreur a priori pour la méthode de supercellule. En particulier, nous montrons que l'erreur effectuée décroît exponentiellement vite en fonction de la taille de la supercellule considérée. Un deuxième volet concerne l'étude d'algorithmes gloutons pour résoudre des problèmes de propagation d'incertitudes en grande dimension. Le chapitre 5 de cette thèse présente une introduction aux méthodes numériques classiques utilisées dans le domaine de la propagation d'incertitudes, ainsi qu'aux algorithmes gloutons. Dans le chapitre 6, nous prouvons que ces algorithmes peuvent être appliqués à la minimisation de fonctionnelles d'énergie fortement convexes non linéaires et que leur vitesse de convergence est exponentielle en dimension finie. Nous illustrons ces résultats par la résolution de problèmes de l'obstacle avec incertitudes via une formulation pénalisée