Influence de la protéine de fusion mitochondriale OPA1 sur le métabolisme oxydatif neuronal et la transmission synaptique

by Ambre Bertholet

Doctoral thesis in Gène, cellule et développement

Under the supervision of Pascale Belenguer and Marie-Christine Miquel.

defended on 2011

in Toulouse 3 .

  • Alternative Title

    Impact of the mitochondrial fusion protein OPA1 on neuronal oxidative metabolism and synaptic transmission


  • Abstract

    In the past few years, multiple findings have suggested that disruptions of mitochondrial functions and dynamics contribute to neurodegenerative diseases. Mitochondrial functions in neurons include regulation of calcium and redox signaling, developmental and synaptic plasticity as well as the arbitration of cell survival and death. Mitochondrial dynamics controls the organelle's morphology via a delicate balance of two opposing forces: mitochondrial fusion and fission that are regulated by large dynamin-related GTPases evolutionary conserved from yeast to human. We have previously demonstrated that the fusion protein OPA1 loss or mutations led to mitochondrial inner membrane dysfunctions and apoptosis of particular importance in optic nerve pathologies like ADOA1 (autosomal dominant optic atrophy). While links emerge between defects in mitochondrial fusion and neurodegeneration, the processes involved are still largely unknown. To understand the mechanisms by which alterations of mitochondrial dynamics could contribute to mitochondria dysfunction, eventually leading to neurodegeneration, we studied the effects of OPA1 loss of function in neurons ex vivo. In cortical neurons, RNA interference of the fusion protein OPA1 led to mitochondrial fragmentation without altering neither mitochondrial distribution nor neuronal death rate. While there was no incidence on dendrites and axon size and numbers, the quantity of several synaptic proteins was reduced, suggesting synaptic impairment. In these conditions, the redox state of OPA1 depleted-neurons was impaired and specific respiratory complex proteins quantities were decreased. Finally, electrophysiological recordings showed that OPA1 depletion induced changes in synaptic transmission, particularly in decreasing of EPSC frequency and by increasing IPSC frequency. Interestingly, forskolin treatment rescue these electrophysiological defaults. In conclusion, our data may offer new insights not only into mitochondrial dynamics-linked neurodegenerative diseases like ADOA1 but to other neurodegenerative pathologies correlated with oxidative metabolism such as Huntington's, Parkinson's and Alzheimer's diseases


  • Abstract

    Depuis quelques années, de nombreux travaux suggèrent que des perturbations des fonctions mitochondriales contribuent aux maladies neurodégénératives. Les mitochondries sont particulièrement importantes pour les neurones en raison à leur rôle dans la régulation calcique, la signalisation redox, la plasticité synaptique et, in fine, la survie cellulaire. La dynamique mitochondriale contrôle la morphologie de l'organelle via un équilibre délicat entre deux forces opposées : la fusion et la fission régulées par des dynamines de la grande famille des GTPases. Notre équipe a montré que la perte ou des mutations de la protéine de fusion OPA1 entraînent des dysfonctionnements de la membrane interne mitochondriale pouvant mener à l'apoptose, qui revêtent une importance particulière dans l'atrophie optique autosomale dominante (ADOA-1). Pour comprendre les mécanismes par lesquels des altérations de la dynamique mitochondriale pourraient contribuer à des dysfonctionnements mitochondriaux et éventuellement à l'origine de la neurodégénérescence, nous avons étudié les effets de la perte d'OPA1 dans des neurones corticaux ex vivo. La perte de fonction à l'interférence à l'ARN mène à la fragmentation mitochondriale sans perturbation de la distribution mitochondriale, ni mort neuronale. Si l'arborescence dendritique est inchangée, la quantité de plusieurs protéines synaptiques est réduite, suggérant une déficience synaptique. De plus, dans ces conditions, l'état redox est altéré et la quantité protéique de complexes respiratoires spécifiques est réduite. Enfin, l'enregistrement des propriétés électrophysiologiques montrent des changements dans la transmission synaptique, notamment par une diminution de la fréquence des courants excitateurs et une augmentation de la fréquence des courants inhibiteurs. De façon intéressante, un traitement à la forskoline permet de restaurer un fonctionnement électrophysiologique normal. Pour conclure, nos données offrent de nouvelles pistes non seulement dans la compréhension de maladies neurodégénératives liées directement à la dynamique mitochondriale comme l'ADOA1, mais aussi d'autres pathologies neurodégénératives liées à un défaut du métabolisme oxydatif comme les maladies d'Alzheimer, Parkinson ou Huntington

Consult library

Version is available as a paper

Informations

  • Details : 1 vol. (309 p.)
  • Annexes : Bibliogr. p. 251-288

Where is this thesis?

  • Library : Université Paul Sabatier. Bibliothèque électronique.
  • Available for PEB
  • Odds : 2011 TOU3 0261
See the Sudoc catalog libraries of higher education and research.