Thèse soutenue

Synthèse et étude structurale de la gehlénite au bore Ca2Al2-xBxSiO7 : mécanisme de substitution B/AI et ordre local

FR  |  
EN
Auteur / Autrice : Emmanuel Véron
Direction : Guy Matzen
Type : Thèse de doctorat
Discipline(s) : Sciences des matériaux
Date : Soutenance le 25/11/2011
Etablissement(s) : Orléans
Ecole(s) doctorale(s) : École doctorale Sciences et technologies (Orléans ; 2009-2012)
Partenaire(s) de recherche : Laboratoire : Conditions extrêmes et matériaux : haute température et irradiation (Orléans ; 2008-...)
Jury : Président / Présidente : Thierry Chartier
Examinateurs / Examinatrices : Guy Matzen, Thierry Chartier, Christian Bonhomme, Pascal Roussel, Daniel Caurant, Dominique Massiot
Rapporteurs / Rapporteuses : Christian Bonhomme, Pascal Roussel

Résumé

FR  |  
EN

Dans cette thèse, nous décrirons les effets structuraux (structure moyenne et à l’ordre local) engendrés par la substitution de l’aluminium par du bore dans la gehlénite (Ca2Al2-xBxSiO7). Les modifications des environnements atomiques à courtes et moyennes distances ont pu être déterminées grâce à une analyse poussée par diffraction sur poudre et à l’utilisation des dernières techniques de RMN haute résolution en phase solide. La première partie du manuscrit donne une description complète de la structure du minéral non substitué Ca2Al2SiO7. L’ensemble des 7 environnements de l’aluminium a été décrit par une simulation combinée de spectres RMN MAS et MQMAS 27Al acquis à différents champs et attribué à l’aide d’expériences d’édition spectrale. L’existence de liaisons Al-O-Al a été démontrée. Par ailleurs, la détermination de la proportion des unités Q3(2Al) nous a permis d’accéder à l’enthalpie de mise en ordre Al/Si dans ce système. Le mécanisme de substitution Al/B et l’évolution structurale de la solution solide Ca2Al2-xBxSiO7 (0 x 2), synthétisée par cristallisation de verres de même composition, ont été caractérisés par affinements Rietveld de données collectées par diffraction des rayons X et des neutrons. Des observations effectuées par RMN MAS sur les trois noyaux du système (27Al, 29Si et 11B) nous ont permis de compléter ces résultats. Un nouveau borosilicate de calcium de formule CaSi1/3B2/3O8/3, appartenant au diagramme de phase Ca2Al2SiO7-Ca2B2SiO7, a pu être identifié et synthétisé. Sa structure a été déterminée in situ et ab initio en combinant des techniques de diffraction, de microscopie électronique en transmission et de résonance magnétique nucléaire.