Thèse soutenue

Modélisation multi-échelle de l’infiltration chimique à partir de la phase vapeur de composites à renforts fibreux

FR
Auteur / Autrice : William Ros
Direction : Christian GermainGérard Louis Vignoles
Type : Thèse de doctorat
Discipline(s) : Génie des procédés
Date : Soutenance le 13/12/2011
Etablissement(s) : Bordeaux 1
Ecole(s) doctorale(s) : École doctorale des sciences chimiques (Talence, Gironde ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire des Composites Thermostructuraux (Bordeaux)
Jury : Président / Présidente : Dominique Salin
Examinateurs / Examinatrices : Michel Cataldi, Philippe Supiot
Rapporteurs / Rapporteuses : Christian Geindreau, Jérôme Vicente

Résumé

FR  |  
EN

Les composites à matrice céramique ou carbone sont des matériaux de structure pour des applications à haute température. Ils sont constitués d’un renfort fibreux enrobé d’une matrice. Cette dernière est obtenue par infiltration chimique en phase vapeur. Une préforme, fibreuse avec ou sans une première matrice, est placée dans un four dans lequel sont injectés des gaz dit précurseurs. Leur réaction hétérogène avec la préforme est à l’origine de la formation matricielle. Cette thèse a été motivée par la nécessite d’optimiser via une modélisation numérique ce procédé long et couteux.Deux programmes ont dès lors été développés puis validés. Chacun est dédié à une échelle spécifique du matériau : microscopique (fibre) et macroscopique (composite). Ils s’appuient tout deux sur des algorithmes de marche aléatoire et requièrent des représentations tridimensionnelles de la préforme. Dans cette optique, des images tomographiques de préformes de composites C/C et SiC/SiC ont été acquises aux deux échelles souhaitées. Le code propre à l’échelle de la fibre a été utilisé pour déterminer les propriétés géométriques, diffusives et réactives dans plusieurs zones de l’image afférente. Des corrélations entre ces propriétés ont été mises en place puis intégrées dans le code afférent à l’échelle du matériau pour infiltration numérique.Dans le cas des composites C/C, cet outil multi-échelle a été couplé à un modèle chimique permettant d’anticiper, en fonction des conditions opératoires, l’épaisseur ainsi que la microtexture de la matrice déposée. Des prévisions de densification ont également été employées pour qualifier et comparer l’infiltrabilité de plusieurs composites SiC/SiC.