Dynamique non-linéaire des écoulements confinés : application à l'instabilité de Marangoni-Bénard et aux écoulements entre surfaces texturées

by Pauline Assemat

Doctoral thesis in Dynamique des fluides

Under the supervision of Alain Bergeon and Franck Plouraboué.

defended on 2008

in Toulouse 3 .

  • Alternative Title

    Application to the Marangoni-Bénard instability and to flows between patterned surfaces


  • Abstract

    The work focuses on two different physical situations: the convective structures resulting from the Marangoni-Bénard instability and the flow between patterned surfaces. The two systems are spatially constrained and are analysed using dynamical systems theories. Marangoni-Bénard convection has been studied in cylindrical geometries with either a circular or a weakly elliptical cross-section. The comparison of the two situations is carried out in the non-linear regime and the corresponding bifurcation diagrams are analysed using bifurcation theory with symmetries. Two-dimensional Marangoni convection in binary mixtures with Soret effect has also been studied in large periodic domains. The results show the formation of steady convective structures localized in space called convectons and the onset of stable convectons embedded in a background of small amplitude standing waves. Finally, the transport properties of flows in between patterned surfaces under weak inertia influence is studied. The flow is induced by a constant applied pressure gradient and the velocity field is calculated using an extension of the lubrication approximation taking into account the first order inertial corrections. Trajectories of tracers are obtained by integrating numerically the quasi-analytic velocity field. The transport properties are analysed by the study of Poincaré sections and their invariants.


  • Abstract

    Le travail porte sur deux problématiques scientifiques : la formation de structures convectives induites par l'instabilité de Marangoni-Bénard et les propriétés de transport des écoulements entre surfaces texturées. Bien que physiquement distincts, ces deux systèmes présentent les points communs d'être assujettis à de fortes contraintes spatiales. Il sont analysés par le biais de la théorie des bifurcations. L'étude de la convection de Marangoni-Bénard a été menée dans des géométries cylindriques à section transverse circulaire et faiblement elliptique. La comparaison des deux situations dans le régime non-linéaire a été menée par l'étude des changements induits sur les diagrammes de bifurcation eux mêmes interprétés par la théorie des bifurcations en présence de symétries. Nous avons ensuite mené l'étude de cette instabilité en présence de mélanges fluides binaires sujets à l'effet Soret et dans des couches fluides bidimensionnelles. Ce travail a révélé la formation de structures convectives spatialement localisées appelées convectons dont nous avons révélé la formation sur un fond d'ondes de plus faible amplitude. Enfin, nous avons étudié les propriétés de transport des écoulements entre surfaces texturées. Le système étudié est confiné transversalement à la direction de l'écoulement ce qui place cette étude dans le contexte de la microfluidique et de l'élaboration de micro-mélangeurs passifs. La simulation numérique et l'analyse des propriétés de transport de traceurs passifs est menée sur les équations issues d'un développement asymptotique faiblement inertiel dans un canal formé d'une succession périodique de cellules texturées.

Consult library

Version is available as a paper

Informations

  • Details : 1 vol. (203 p.)
  • Annexes : Bibliogr. p.199-200

Where is this thesis?

  • Library : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Available for PEB
  • Odds : 2008 TOU3 0356
See the Sudoc catalog libraries of higher education and research.