Thèse soutenue

Assemblage de molécules fonctionnelles sur surface solide

FR  |  
EN
Auteur / Autrice : Giuseppina Pace
Direction : Paolo Samorì
Type : Thèse de doctorat
Discipline(s) : Chimie physique
Date : Soutenance en 2007
Etablissement(s) : Strasbourg 1

Résumé

FR  |  
EN

Les nanotechnologies tendent à générer et exploiter de nouvelles structures ayant une taille caractéristique allant de 1 à 100 nanomètres, ceci dans le but de fabriquer des matériaux fonctionnels ainsi que des composants électroniques. Durant les dernières décennies, un effort a été particulièrement dévolu à la création et l’étude de composants électroniques de taille extrêmement réduite utilisant des molécules individuelles en tant que composants électroactifs, ce domaine de recherche s’appelle l’électronique moléculaire. Ce travail de thèse s’inscrit dans ce contexte scientifique et est plus particulièrement focalisé sur la caractérisation physico-chimique à l’échelle du nanomètre des propriétés de commutation de molécules modèles pour, à terme, les implémenter au sein de composants moléculaire. Au long de ce travail, nous nous sommes appliqué à étudier les conditions requises pour qu’une molécule chimisorbée au sein d’une monocouche auto-assemblée (ou SAM pour Self Assembled Monolayer) puisse se comporter comme un interrupteur. Un interrupteur moléculaire peut-être défini comme une molécule ayant la capacité de changer son état de manière contrôlée, ceci résultant d’un stimuli externe physique ou chimique comme par exemple la lumière, un changement de pH, la coordination réversible d’ions ou l’application d’un potentiel. Un des principaux challenges de l’électronique moléculaire est de préserver les caractéristiques commutatrices de ces molécules lorsqu’elles sont adsorbées sur des substrats solides. Nous avons donc focalisé notre attention sur des interrupteurs moléculaires pouvant s’ancrer sur des substrats solides tout en formant des auto-arrangements bidimensionnels. Les monocouches d’organothiols auto-assemblées sur des surfaces cristallines d’or se sont avérées être de bons candidats puisqu’elles sont connues pour leur grande stabilité sous environnement inerte, ainsi que pour leur grande reproductibilité et leur ordre à grande distance (jusqu’à quelques centaines de nanomètres). De plus, au vue de leurs propriétés physico-chimiques contrôlées, les monocouches d’organothiols représentent de bons éléments pour le développement de « biosensors » ou plus généralement de l’électronique moléculaire[. . . ]