Thèse soutenue

Laser à semiconducteur en cavité verticale étendue émettant à 1550 nm et perspectives pour la génération d'impulsions brèves

FR  |  
EN
Auteur / Autrice : Clémentine Symonds
Direction : Jean Louis Oudar
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance en 2003
Etablissement(s) : Paris 11

Résumé

FR  |  
EN

Les OP-VECSELs (Optically Pumped Vertical External Cavity Semiconductor Lasers) sont des sources permettant d'obtenir des faisceaux circulaires de bonne qualité et de puissance élevée. De plus, la cavité externe permet d'envisager la réalisation de sources impulsionnelles par l'insertion d'un miroir à absorbant saturable (SESAM) dans la cavité et la mise en place d'un régime de blocage de modes passif. Ce travail de thèse a porté sur la réalisation et l'étude des OP-VECSEL, des SESAMs et des cavités optiques adaptés à la réalisation d'une source impulsionnelle à l,55 [mu]m. Le cœur de ce travail de thèse a consisté en la conception, la caractérisation, et l'obtention du fonctionnement laser en continu d'OP-VECSELs réalisés monolithiquement sur InP. La principale difficulté pour l'obtention de l'effet laser en continu a été la gestion de l'échauffement, particulièrement important lors du pompage optique des matériaux à l'accord de maille sur InP. L'effet laser à 1,55 [mu]m en pompage continu à température ambiante a cependant été obtenu, avec un seuil de 6 kW/cm^2, et une puissance de sortie de 4 mW à OʿC. Ce résultat est une première pour une structure OP- VECSEL monolithique sur InP émettant à 1,55 [mu]m. La réalisation d'une source impulsionnelle nécessite l'amélioration des propriétés thermiques des OP-VECSELs, et nous proposons de nouvelles structures satisfaisant à cette contrainte. La génération d'impulsions brèves à haut débit nécessite l'accélération de la dynamique de fonctionnement des SESAMs. Pour ce faire, nous proposons une méthode originale, consistant à placer le puits quantique jouant le rôle d'absorbant saturable très près de la surface du composant, pour bénéficier des recombinaisons rapides des porteurs sur les états de surface. Nous proposons également des configurations de cavités optiques compactes adaptées à l'obtention d'impulsions à un débit supérieur à 2 GHz.