Contributions a l'estimation de modeles conditionnellement heteroscedastiques et a l'etude de problemes de fiabilite dans un contexte de donnees doublement censurees

by YANN VERNAZ

Doctoral thesis in Sciences et techniques communes

Under the supervision of Christian Lavergne.

defended on 2000

in Grenoble 1 .


  • Abstract not available

    keywords keywords


  • Abstract

    La premiere partie de ce travail est consacree a l'etude des modeles conditionnellement heteroscedastiques a temps discret. Son but principal est de fournir des methodes d'estimation lorsque l'hypothese habituelle de loi conditionnelle gaussienne est relachee, ceci dans un cadre parametrique puis non parametrique. Pour ce faire nous proposons une methode fondee sur la notion de quasi-vraisemblance. Celle-ci associee a une procedure adaptative permet d'obtenir un algorithme d'estimation performant. L'approche presentee s'adapte a un grand nombre de modeles, comme par exemple les modeles arch. Dans le contexte non parametrique, les fonctions iconnues sont estimees par la methode les polynomes locaux avec un choix de fenetre adaptatif. Les experimentations numeriques sur des donnees reelles et simulees confirment le bon comportement pratique des approches proposees. La seconde partie traite de deux problemes d'inference statistique, issus d'applications reelles, pour des modeles de durees de vie. L'originalite est que les seules donnees disponibles sont censurees a droite ou a gauche. Nous precisons les difficultes theoriques et pratiques rencontrees, et decrivons des methodes d'estimation susceptibles d'etre appliquees.

Consult library

Version is available as a paper

Informations

  • Details : 182 p.
  • Annexes : 130 ref.

Where is this thesis?

  • Library : Service interétablissements de Documentation (Saint-Martin d'Hères, Isère). Bibliothèque universitaire de Sciences.
  • Available for PEB
See the Sudoc catalog libraries of higher education and research.