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Abstract

Français
Cette thèse utilise les données de la mission Gaia pour modéliser la dynamique de la Voie
lactée, incluant la barre et les bras spiraux. Un potentiel Galactique paramétrique est ajusté
aux données via une méthode d’intégration rétrograde pour évaluer la fonction de distribution
stellaire à quatre dimensions d’espace des phases dans le plan Galactique. Nous avons ainsi
été les premiers (et les seuls à ce jour) à réaliser un ajustement direct au champ de vitesses
radiales médianes du disque tel que mesuré par Gaia. Il s’agit du modèle dynamique non-
axisymétrique le plus réaliste à ce jour pour la Voie Lactée. Ce modèle est ensuite généralisé
en trois dimensions spatiales avec des simulations particules tests, ce qui permettra d’étudier
les perturbations verticales et le halo de matière noire. Cette approche permettra, à terme, une
comparaison étoile par étoile dans l’étude des populations stellaires de la Voie Lactée.

English
This thesis uses Gaia data to model the dynamics of the Milky Way, including the bar and
spiral arms. A parametric Galactic potential is fitted to the data via a backward integra-
tion method to evaluate the four-dimensional phase-space stellar distribution function in the
Galactic plane. This allowed me to be the first (and only to date) to achieve a direct fit to
the median radial velocity field of the disk as measured by Gaia. This is therefore the most
realistic non-axisymmetric dynamical model of the Milky Way to date. This model is then
generalized in three spatial dimensions with test particle simulations, which should enable us
to study vertical perturbations or the dark matter halo. This approach will eventually enable
star-by-star comparisons in the study of stellar populations.
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Summary

This thesis uses Gaia data to model the dynamics of the Milky Way, including the bar and spiral

arms. The unprecedented precision of Gaia’s astrometric and kinematic measurements has

enabled me to reveal the non-axisymmetric velocity field of the Galactic disk in detail, providing

the basis for building models that extend beyond the traditional axisymmetric framework. A

parametric Galactic potential is fitted to the data via a backward integration method, which

makes use of the conservation of the stellar distribution function as governed by the Vlasov

equation. By integrating orbits backward in time to an axisymmetric equilibrium state, I was

able to evaluate the four-dimensional phase-space stellar distribution function in the Galactic

plane, directly constrained by Gaia observations.

This allowed me to achieve the first direct fit to the median radial velocity field of the

disk as measured by Gaia, across a large portion of the Galactic plane. This is therefore the

most realistic non-axisymmetric dynamical model of the Milky Way to date, simultaneously

capturing the role of the bar and the spiral arms. The model reveals multiple spiral arm

components with distinct pattern speeds and, despite being purely dynamical, it recovers the

locations of several photometrically detected spiral over-densities. In particular, it identifies

the Scutum–Local–Outer arms as slowly rotating and the Sagittarius–Carina–Perseus arms as

having a somewhat higher pattern speed. It also naturally reproduces smaller-scale phase-space

structures, such as the moving groups observed in the extended Solar neighborhood.

I then generalized this model in three spatial dimensions with test-particle simulations,

making it possible for future investigations to explore vertical perturbations and to investigate

the link with the Galactic dark matter halo. These simulations provide a framework for studying

the connection between disk dynamics, vertical disequilibrium such as phase-space spirals,

and the long-term role of non-axisymmetric structures in galactic evolution. This approach

will eventually enable detailed star-by-star comparisons in the study of stellar populations,

representing a step toward a comprehensive dynamical model of the Milky Way that unifies its

structure, kinematics, and chemical evolution.
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Résumé

Cette thèse utilise les données de Gaia pour modéliser la dynamique de la Voie lactée, en

particulier la barre et les bras spiraux. La précision inédite des mesures astrométriques et

cinématiques de Gaia m’a permis de mettre en évidence en détail le champ de vitesses non

axisymétrique du disque galactique, base nécessaire à la construction de modèles dépassant le

cadre axisymétrique traditionnel. Un potentiel galactique paramétrique est ajusté aux données

à l’aide d’une méthode d’intégration rétrograde, fondée sur la conservation de la fonction de

distribution stellaire décrite par l’équation de Vlasov. En intégrant les orbites en arrière dans

le temps jusqu’à un état d’équilibre axisymétrique, j’ai pu évaluer la fonction de distribution

stellaire à quatre dimensions de l’espace des phases dans le plan galactique, directement con-

trainte par les observations de Gaia. Cela m’a conduit au premier ajustement direct du champ

de vitesses radiales médian du disque tel que mesuré par Gaia, sur une large portion du plan

galactique. Il s’agit du modèle dynamique non axisymétrique le plus réaliste de la Voie lac-

tée à ce jour, intégrant simultanément les effets de la barre et des bras spiraux. Le modèle

révèle plusieurs composantes spirales à vitesses de rotation distinctes et, bien qu’étant pure-

ment dynamique, retrouve les positions de surdensités spirales identifiées photométriquement.

En particulier, il associe les bras Scutum–Local–Outer à une rotation lente et les bras Sagit-

taire–Carina–Persée à une rotation légèrement plus rapide. Il reproduit aussi des structures

de plus petite échelle, comme les groupes en mouvement observés dans le voisinage solaire.

J’ai ensuite généralisé ce modèle en trois dimensions à l’aide de simulations de particules tests,

permettant d’étudier les perturbations verticales et leur lien avec le halo de matière noire galac-

tique. Ces simulations offrent un cadre pour relier la dynamique du disque, les déséquilibres

verticaux comme les spirales de l’espace des phases, et le rôle à long terme des structures non

axisymétriques dans l’évolution galactique. Cette approche ouvrira la voie à des comparaisons

étoile par étoile des populations stellaires et constitue une étape vers un modèle dynamique

global de la Voie lactée unifiant structure, cinématique et évolution chimique.
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Chapter 1

Introduction

1.1 Overview of the Milky Way Galaxy

1.1.1 Context

If we pause for a moment, in order to picture in our imagination where we are located, we can

quickly start imagining ourselves ‘as seen from above us’. As we move further and further away,

we imagine seeing the Earth, then the Earth-moon system, then the full Solar system, then

the Solar neighborhood with our nearest stars brightening the sight, until we reach a point far

enough to imagine seeing our whole Galactic disk: the Milky Way (MW) disk, with its 200

billion stars mostly following nearly-circular orbits around the Galactic center. If we keep this

exercise going, we would then picture the Local Group, with the MW and Andromeda galaxies

and their streams and satellites. Moving further away, we would then picture the Local (or

Virgo) Supercluster, which contains approximately 100 galaxy groups. Then we would start

seeing the full ‘cosmic web’, filling the whole observable Universe.

While it is fun to imagine observing the Universe in this manner, in practice, such a view

is only inferred from models, as our real view of the Universe is fundamentally different: we

actually detect light emitted by distant sources, collected by ground-based and space-based

telescopes, which allow us to observe extragalactic systems with an ever increasing depth and

resolution. Observations of these extragalactic systems reveal a remarkable diversity in the

morphological properties of galaxies, as illustrated in Fig. 1.1. Paradoxically, studying our

own MW galaxy, however, presents significant challenges precisely due to our position within

it. Therefore, unraveling the structure of the MW required a considerable time, careful in-

vestigations, and transformative insights to establish its nature as a barred spiral disk galaxy.
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However, even today, the detailed structure of the MW, particularly its bar and spiral arms,

remains remarkably poorly known. Nevertheless, the precision of the data that we can nowa-

days obtain in the MW is so exquisite that it allows us to model it with details that we cannot

hope to achieve in other galaxies. In particular, a better understanding of the secular evolution

of disk galaxies needs a better understanding of the origin and nature of spiral arms, as well

as their role in the evolution of galaxy disks. For this, the MW galaxy is a perfect laboratory,

and unraveling the detailed structure of its spiral arms from a dynamical point of view will

be the main topic of the present thesis. Another long term goal is to establish a full reference

Galactic gravitational potential for the MW, that could have a long-lasting impact on the com-

munity’s understanding of the Galactic disk dynamics, but also of all the Galactic components

and (sub)-structures (see Fig 1.2), including the mysterious halo of putative dark matter, the

nature of which remaining the most fundamental question in the context of Galactic dynamics.

Figure 1.1: Examples of observed galaxies and their respective morphology. Copyrights are
indicated below each image
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To leading order, the MW is composed of ∼ 2 × 1011 stars and interstellar gas, mostly

residing in a disk with a total baryonic mass of ∼ 6 × 1010 Solar masses. The stellar disk

can be decomposed into a thin and a thick component. In the central parts, there is a bulge

component, which is nowadays thought to be mostly related to the bar (a boxy-peanut “pseudo-

bulge”). Surrounding the disk is a spheroidal stellar halo, composed of rather old stars, mostly

irrelevant in terms of total mass but holding invaluable clues on the history of the Galaxy and

also containing excellent dynamical tracers such as stellar streams (see Fig 1.2). Much more

importantly in terms of mass, the disk is also surrounded by a putative massive dark matter

halo, whose mass is not very well determined but is typically estimated between a few times

1011 and 1012 Solar masses. Most available information on stellar populations of the Galaxy

were put together in a dynamically coherent model in a series of papers of the mid-1980s, by

astronomers from Besançon Observatory (Robin and Creze, 1986; Bienayme et al., 1987). This

model, known as the Besançon Galaxy Model (BGM) has been continuously updated since

then, and remains up to this day a reference model for the structure of the Galaxy (Robin

et al., 2003; Lagarde et al., 2017; Robin et al., 2022). Despite discussions of the MW disk

hosting spiral arms dating back to the earliest discussions on the nature of the MW as a galaxy,

it was only with the work of Morgan et al. (1952) that some of these arms were identified by

studying the distribution of HII regions. The existence of the MW bar on the other hand, was

originally hypothesized from the observations of gas kinematics (de Vaucouleurs, 1964; Peters,

1975; Gerhard and Vietri, 1986; Binney et al., 1991) and confirmed from (near-) infrared

observations (e.g., Blitz and Spergel, 1991; Sellwood, 1993; Weiland et al., 1994; Binney et al.,

1997) as well as bulge stellar kinematics (e.g., Zhao et al., 1994).

Recent advances in our understanding of the structure and dynamics of the MW have arisen

from major theoretical developments together with increasingly precise observations and nu-

merical computations. Space-based telescopes, in particular, inaugurated the era of precision

astrometry, playing a key role in refining our understanding of the MW. Building on these

advances, this thesis aims to construct and fit a reference non-axisymmetric gravitational po-

tential to the MW (including a detailed account of its bar and spiral arms), in particular to its

disk kinematics using the recent ESA Gaia mission’s most comprehensive and precise stellar

position and motion data. The next sections discuss the Hipparcos and Gaia space missions,

which form the observational foundations for this thesis work. Section 1.2 then introduces

essential concepts in Galactic dynamics, forming the basis for the modeling and subsequent

analysis in this thesis. Then, Section 1.3 focuses more in detail on the Galactic bar and spiral
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Figure 1.2: Illustration of some of the main Galactic components. The left panel depicts the
disk structure of the MW, indicating the presence of the bar in the central region and of the
spiral arms around. The right panel illustrates the Sun’s position, the disk, stellar bulge, and
stellar halo, as well as globular clusters. Copyright: Left: NASA/JPL-Caltech; right: ESA;
layout: ESA/ATG medialab

arms.

1.1.2 Astrometry

Astrometry is the part of astronomy that deals with precise measurements of the position and

motion of stars (and of other celestial bodies). It can be traced back to the work of Babylonian

astronomers (around 500 BC) and Hipparchus (around 190 BC) who actually discovered the

consequences of the precession of the Earth (although it was not interpreted in this way at

the time) with astrometry. Astrometry nowadays also yields the most precise measurements

of the distance of stars since when observing a star from two different points on the Earth’s

heliocentric orbit, its position appears to shift relative to much more distant background sources

on the sky, whose own positions are too far away for their changes to be perceivable. Measuring

this apparent shift yields the parallax angle p, which is related to the distance d by tan(p) =
1AU

d(AU) , where the Astronomical Unit (AU) is the distance from the Earth to the Sun (about

1.5 × 108 km). In practice, p is very small, typically less than one arcsecond, so the equation

is usually simplified to p ≃ 1AU
d(AU) (in radians). The distance corresponding to one arcsecond

is called a parsec, pc, which is about 206265 AU. If we measure the parallax in milliarcsecond

(mas), one has that d(kpc) = 1
p(mas) .
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Besides parallax, which is only an apparent stellar motion, observations of the same star

over a period of time make it possible to measure its proper motion, i.e., its actual angular

displacement on the sky, which, together with the distance, can be translated into the transverse

velocity. The remaining third component of a star’s velocity, the line-of-sight velocity, can be

obtained through spectroscopic measurements, where one looks for the Doppler effect, a shift

in frequency, on characteristic spectral lines — usually strong and sharp absorption lines.

1.1.3 The Hipparcos era: unraveling the dynamics of the Solar

neighborhood

In 1967, Pierre Lacroute, while at the Strasbourg astronomical Observatory, proposed to the

Centre national d’études spatiales (CNES) to build an astrometric space mission. This proposal

ultimately led to the advent of the first satellite designed for astrometry by the European

Space Agency (ESA): the HIgh Precision PARallax COllecting Satellite (Hipparcos, Clausen

and Perryman, 1990; Perryman, 1991), launched in 1989 and that has been actively observing

until 1993. One of its main scientific motivations was to investigate the structure and kinematics

of the Solar neighborhood in the MW, through unprecedented precision on stellar positions,

parallaxes, and two-dimensional on-sky velocities.

After the mission’s observational period, the final Hipparcos catalogue was published in

1997 (Perryman et al., 1997), featuring 118 218 sources with both astrometry and photome-

try, achieving an outstanding milliarcsecond (mas) precision in parallax and in proper motion.

Larger but less precise catalogues complemented the Hipparcos catalogue, first with Tycho (Høg

et al., 1997) and later with Tycho-2 (Høg et al., 2000), including about 2.5 million sources with

precision from tens to hundreds of mas in parallax and about 2.5 mas in proper motion. Note

that Hipparcos yielded only 5-dimensional phase-space information, lacking radial velocity for a

full 6-dimensional characterization of position and velocity. This led to multiple complementary

spectroscopic observations, in particular with the two photoelectric cross-correlation spectrom-

eters CORAVEL (Baranne et al., 1979; Mayor, 1985) operated at the Swiss 1-m telescope at

Observatoire de Haute-Provence (OHP, France) and at the Danish 1.5-m telescope at La Silla

(ESO, Chile), whose data were published in Nordström et al. (2004) and Famaey et al. (2005).

Building on the availability of these rich datasets, several remarkable scientific advances

followed. Most major contributions up to 2012 can be consulted in Perryman (2012). For

instance, in García-Sánchez et al. (1999), the Hipparcos data were combined with line-of-sight
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velocities to search for stars expected to come closest to the Sun, potentially affecting the small

bodies in the Solar System. Hipparcos also helped refining estimates of the Sun’s distance to

the Galactic center, with values ranging from 7.8 kpc to 9.3 kpc (see Table 9.1 in Perryman,

2012) and heights above the plane rangig from 9 pc (Pham, 1997) and 8 pc (Holmberg et al.,

1997) with F-stars and red giants, to 24 pc (Maíz-Apellániz, 2001) with younger O-B5 stars.

An important advance was the dynamical estimate of the local matter density (including

dark matter) at the Solar position. Crézé et al. (1998) and Holmberg and Flynn (2000) both

assumed that the vertical phase-space distribution only depends on the vertical energy and

could adjust the shape of the vertical potential and hence the local matter density, obtaining

values ranging from 0.076 to 0.1 M⊙pc−3 depending on the parametrization of the local vertical

potential. The value of Holmberg and Flynn (2000) was confirmed in Siebert et al. (2003)

and used in Famaey and Dejonghe (2003), where Stäckel potentials (the most general type of

potential for which stellar motion is fully separable with three exact analytic integrals of the

motion) for the MW with different forms and features were fitted, ensuring that they satisfy

various observational constraints, including the local matter density. These constraints on the

local matter density, especially those of Holmberg and Flynn (2000), have not really improved

since then, the main reason being that Gaia data have later revealed vertical disequilibria,

rendering the accuracy of the estimate less reliable despite the even better astrometric data

that we have today. With the local baryon budget accounting for about 0.085 M⊙pc−3, this

implies a local dark matter density of 0.015 M⊙pc−3 (see also de Salas and Widmark, 2021, for

more recent estimates), a value which is particularly important for dark matter direct detection

experiments, in combination with constraints on the possible dark matter velocity distribution

(e.g. Lacroix et al., 2018).

Of high relevance for the investigations in the present thesis were the first detailed de-

termination of the local velocity distribution of stars in the Solar neighborhood by Dehnen

(1998), as illustrated in Fig. 1.3. In Famaey et al. (2005), Hipparcos data were combined with

CORAVEL line-of-sight velocities to obtain full 6-dimensional information on nearly 7000 Giant

stars, which revealed that the overdensities in local velocity space known as moving groups (the

Hercules, Sirius and Hyades/Pleiades moving groups), spanned a large range of ages, demon-

strating their dynamical origin, which was confirmed by the detailed studies of Famaey et al.

(2007) and Famaey et al. (2008). This corroborated the hypothesis that these groups of stars

are in resonant orbits, affected by dynamical interactions with the bar, the spiral arms, or both,

as proposed for instance in the work of Dehnen (2000) linking the Hercules moving group to
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the outer Lindblad resonance of the Galactic bar, using the backward integration method of

Vauterin and Dejonghe (1997) which we will also use in our work, or in Quillen and Minchev

(2005) associating the Pleiades and Hyades moving groups with one class of orbits in resonance

with a spiral arm.

Figure 1.3: Figure extracted from Dehnen (1998). The figure illustrates the velocity distribution
of 6018 stars from the Solar neighborhood, using Hipparcos data. The (u, v) velocity plane
shown is defined such that the ‘Local Standard of Rest’ (supposedly corresponding to a frame
in circular motion) has 0 kms−1, with u being toward the Galactic center (hence with the
opposite sign to Galactocentric VR) and v in the direction of Galactic rotation (same direction
as Vφ). The solid and dashed eclipses represent, respectively, the regions where most stars are
early-type or late-type. The gray scale of the contour lines represents the percentage of stars,
ranging from 2% to 99.9%.

Other important studies of the Hipparcos era discussed the origin of the stellar halo of the

MW (e.g., Chiba and Yoshii, 1998), which represents only a small fraction of the total mass

of the Galaxy (less than 1%) but holds important clues about its formation. It was shown

that this component of the Galaxy may have formed in situ or may have been accreted, but

most probably results from both processes. On the other hand, a crucial advance on our

understanding of the so-called thick disk component of the MW was made by Reddy et al.
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Figure 1.4: Figure extracted from Siebert et al. (2011). Mean Galactocentric radial velocity ⟨VR⟩
on the Galactic plane within > 1 kpc from the Sun, with X axis positive in the direction of the
Galactic center, and Y positive towards the Galactic rotation. The sample of 213713 is from the
Radial Velocity Experiment (RAVE), with measured line-of-sight velocities complemented with
astrometric parameters from three catalogues: PPMX, UCAC2, and Tycho-2. The locations
of the nearest spiral arms are indicated from gas mapping of Englmaier et al. (2011), and the
open circle indicates the location of the Sun.
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(2006), who showed convincingly — thanks to high resolution spectroscopy complementary to

Hipparcos data — that this Galactic component, first put forward from star counts by Gilmore

and Reid (1983), was actually composed of stars with a clear enhancement of the ratio of α-

elements (O, Mg, Si, Ca and Ti) to iron compared to the thin disk. This led to an actual

re-definition of what the thick disk actually is, namely an old stellar population that can be

purely chemically characterized, and that happens to be thicker and hotter than the thin disk

populations. Questions about its connection with in situ halo stellar populations then emerged,

and are still alive up to this day.

1.1.4 The post-Hipparcos era: spectroscopic surveys and the Solar

suburbs

After ∼ 2005, drastic improvements in acquisition of massive amounts of spectroscopic data

outside of the close Solar neighborhood (hence moving away to the “suburbs”) have then been

made, through various large surveys such as SEGUE, SEGUE-2 and APOGEE, as part of

the Sloan Digital Sky Survey (SDSS, taking data since 2000, York et al., 2000), as well as

RAVE (Steinmetz et al., 2006) and the Gaia-ESO survey (Gilmore et al., 2012), whilst proper

motion catalogues such as PPMX (Röser et al., 2008) complemented the Hipparcos/Tycho-2

catalogues. Of high relevance for the investigations in the present thesis were the first-ever

maps of the non-axisymmetric Galactocentric radial velocity field of the MW by Siebert et al.

(2011) with RAVE data, as illustrated in Fig. 1.4. This allowed Siebert et al. (2012) to make

use of the density wave formalism to fit a 2-armed spiral model with a contrast surface density

of 14%, a pitch angle of 10 degrees and a pattern speed of 18.6 kms−1kpc−1, whilst Monari

et al. (2014) showed that the bar could also have a significant effect on this radial velocity

map. At the same time, observations from SDSS (Widrow et al., 2012) allowed to measure a

10% North-South asymmetry in the density of stars in a 1 kpc-wide cylinder around the Sun,

whilst complementary measurements of radial velocities with SEGUE revealed that the mean

vertical motion of stars could reach up to 10 km/s at heights of 1.5 kpc above the plane. It was

speculated that such vertical perturbations could be excited by the recent passage of a satellite

galaxy in the plane, such as the Sagittarius dwarf. Such non-zero mean vertical motions were

also detected with RAVE (Williams et al., 2013), which ultimately revealed that the Solar

neighborhood is apparently located in a transition zone between the inner disk affected mainly

(but not solely) by vertical “breathing modes” (with non-zero vertical velocities, but plane-
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symmetric), and the outer disk dominated by “bending modes” (where the whole disk tends

to oscillate). Exploring the effect of spiral arms in 3D, Faure et al. (2014) were able to show,

using test-particle simulations, and solving the linearized Jeans equations for a cold fluid, that

breathing modes could be explained by the gravitational effect of internal non-axisymmetries,

while only bending modes would need an external perturbation of the disk.

In parallel, a pioneering high-resolution spectroscopic study of nearby stars (Nissen and

Schuster, 2010) revealed clearly, for the first time, that halo stars definitely fall into two distinct

populations, clearly separated in [α/Fe]. The high-α halo stars were understood as an in situ

population, either from an ancient disk population heated to halo kinematics or as the first stars

formed during the collapse of a proto-Galactic gas cloud, whilst the kinematics of the low-α

halo stars suggested that they were ex situ accreted stars. This new picture of the stellar halo is

actually still well and alive today. While the thick disk-halo transition is still a matter of active

research today, it is also the case of the thin disk-thick disk transition. A founding study for

this connection was performed thanks to the high-resolution Gaia-ESO survey (Recio-Blanco

et al., 2014), where it became clear that the thick disc in the [α/Fe] vs. [Fe/H] plane smoothly

connects with the thin disk at high metallicities, hence that it lays in progressively thinner

and thinner layers as the metallicity increases and the [α/Fe] decreases with time, until it fully

merges with the thin disk. With APOGEE (Hayden et al., 2015), it was then shown that the

location of the high-α sequence in the [α/Fe] vs. [Fe/H] plane is nearly constant across the

disk and indeed smoothly connects with the low-α sequence at high metallicities, but that the

high-α stars completely disappear beyond distances of 11 kpc from the Galactic center, while

the morphology of the low-α sequence changes with the location in the Galactic disk. The

latter is therefore assumed to have been subject to inside-out formation while the former has

probably been formed faster before a quenching event occurred, possibly related to its heating

and thickening. The role of mergers, the connection with the dual sequence of halo stars, and

the role of non-axisymmetric structures of the disk such as the bar and spiral arms in this

complex history of the disk are not yet fully settled today. Indeed, following the seminal work

of Sellwood and Binney (2002), it became clear that spiral arms can actually play a crucial

role in the history of the disk by radially mixing it, i.e. exchanging angular momenta at the

spiral arms’ corotation radii while not excessively heating the disk. Such a radial migration

mechanism was later shown to be greatly enhanced in the joint presence of a bar and spiral

arms (Minchev and Famaey, 2010). Therefore, the high metallicity dispersion in the local

age-metallicity distribution has been understood as a consequence of this mechanism, meaning
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that stars that can be considered as truly resulting of the chemical evolution at the Solar circle

have a rather restricted metallicity range (Haywood, 2008). All these results argue for a better

understanding of the non-axisymmetries of the MW disk not only to decipher its present-day

structure but also to understand its secular evolution.

1.1.5 The Gaia era: dynamics of the whole Milky Way

As a follow-up to the immensely successful Hipparcos mission, ESA began developing the Gaia

astrometric mission in 2000 (Gaia Collaboration et al., 2016b). The mission includes on-

board spectroscopic determination of line-of-sight velocities and the ability to observe much

fainter stars than Hipparcos. Gaia’s core scientific goals are the structure, dynamics, formation,

and evolution of the MW. Launched on December 19, 2013, it entered a heliocentric orbit at

Lagrange point L2, and obtained full-sky astrometric, photometric, and spectroscopic data until

the conclusion of its science operations on January 15, 2025, before deactivation on March

27, 2025. Over its 11 years of operation, the Gaia spacecraft collected an impressive three

trillion observations—covering approximately 2 billion sources—and, producing the largest,

most complete, and homogeneous astrometric MW catalogue ever.

The final Gaia mission catalogue is expected to be released by the end of ∼2030. The

first Gaia Data Release (DR1, Gaia Collaboration et al., 2016a) was essentially only a more

precise upgrade of data for Hipparcos sources in terms of astrometric measurements—position,

parallax, and proper motion. Gaia Data Release 2 (DR2) was then released two years later

(Gaia Collaboration et al., 2018b) and was a true revolution for the field, with an impressive

1.3 billion sources having full astrometric measurements, together with seven million line-of-

sight velocities. The Early Third Data Release (EDR3), published another two years later

(Gaia Collaboration et al., 2021a), featured 1.4 billion sources with full astrometric measure-

ments, with improved calibration and precision as well as better completeness for faint sources.

The Data Release 3 (DR3), the latest Gaia catalogue, was then published another two years

later (Gaia Collaboration et al., 2023c). Introducing new data products such as distances,

metallicity, temperatures, gravities, and extinction for nearly 470 million sources, it also in-

cludes classifications for about 1.6 billion sources. Thirty-three million line-of-sight velocities

are provided, with average uncertainties around 1 kms−1. Uncertainties are as low as 0.01

mas for position and parallax and 0.01 masyr−1 for proper motion for most sources. The

sources with radial velocities reach beyond the Galactic center by a few kiloparsecs and climb

a dozen kiloparsecs in height in the inner halo. This gives the Gaia DR3 subsample with full
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6-dimensional phase-space information great value for Galactic dynamics and discoveries. In

addition, Gaia DR3 contains the largest chemical catalogue to date, with detailed abundances

for up to 13 chemical elements for over 5.6 million stars. These are derived from the General

Stellar Parametriser-Spectroscopy (GSP-Spec) module using Gaia RVS spectra (Recio-Blanco

et al., 2023). Another data release (DR4) is expected at the end of 2026, bringing anticipated

major improvements, particularly in source number and data product quality and diversity.

Gaia’s unprecedented high-precision parallaxes still require care in inferring stellar distances:

about 100 million sources have top-tier astrometry with very high SNR but selecting only these

high-SNR sources introduces a bias (Luri et al., 2018). To estimate distances using Gaia

parallaxes, several approaches have been developed. In Bailer-Jones et al. (2018a), a galaxy

model was used to infer the distances of Gaia DR2 sources from a probability distribution

fundamentally based only on parallax, position, and uncertainty—but not source astrophysical

parameters. Adding this and more information is possible, as done for Gaia EDR3 with color

and magnitude (Bailer-Jones et al., 2021), and Gaia DR3 with proper motion (Bailer-Jones,

2023), using a mock Gaia catalogue from Rybizki et al. (2020). Alternatively, some of the most

accurate distance estimates for Gaia DR2 (Anders et al., 2019) and EDR3 (Anders et al., 2022)

were inferred using Gaia parallaxes and multi-band photometry from other surveys, enabling

per-star estimation of age, mass, and extinction. This is the StarHorse catalogue that we will

use in this thesis.

The upcoming Gaia data releases (DR4 in mid-2026, DR5 hopefully in 2030) will provide

full 6-dimensional stellar phase-space information for an even larger MW volume and introduce

new data unlocking fresh research avenues. Other surveys strongly complement Gaia’s research

on Galactic dynamics. So far a dozen of photometric and spectroscopic ground-based surveys

mentioned are used in many works in combination with Gaia. Additional surveys, such as

WEAVE (Jin et al., 2024), 4MOST (de Jong et al., 2019), LSST (Ivezić et al., 2019), SDSS-

V MWM (Kollmeier et al., 2017), and MOONS (Cirasuolo et al., 2020), are anticipated to

nicely complement Gaia data.

The impact of the Gaia mission spans a wide range of topics, including stellar physics

and evolution, stellar variability, exoplanets, binaries, and the Solar System. But above all,

Gaia has enabled breakthroughs in refining our understanding of the structure, kinematics,

dynamics, and evolution of the MW. An example of a topic at the border between Galactic

dynamics and Solar System physics, following up on García-Sánchez et al. (1999), is the work

of Berski and Dybczyński (2016) predicting Gliese 710, a K-dwarf star, to pass 0.6 pc from
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us in 1.35 Myr, with the largest predicted impact on the Oort cloud. This is an active field,

with many examples, but so far, all using axisymmetric gravitational potentials for the MW,

including the systematic approach by Bailer-Jones et al. (2018b) on 7.2 million stars, finding

about 700 of them approaching the Sun in less than 5 pc within 15 Myr. Our present thesis

establishing a reference non-axisymmetric potential for the MW could therefore be immensely

useful for this field.

Regarding the history of the assembly of the MW, a milestone from Gaia has been the

confirmation of the picture already hinted at by Nissen and Schuster (2010), with the discovery

of the remnant of a major accretion event involving a massive dwarf galaxy, approximately 8 Gyr

to 11 Gyr ago, known as Gaia-Sausage-Enceladus (GSE), and making up most of the ex situ

stellar halo (Belokurov et al., 2018; Helmi et al., 2018; Haywood et al., 2018). The MW globular

clusters data from Gaia were investigated by Myeong et al. (2018) and Massari et al. (2019) to

identify some of them that were brought by GSE in the merger event, before a comprehensive

dynamical characterization of the Galactic halo in terms of stellar streams, globular clusters,

and satellite galaxies was performed in Malhan et al. (2022). In this work, membership in

different mergers was investigated, along with orbital and chemical characterizations, providing

an important reference for understanding the properties of our Galaxy in the context of studying

general galaxy evolution and formation. Among many other developments in this active field,

more recently, in Skúladóttir et al. (2025), chemo-kinematical observational evidence is shown

to support several passages of the then-merging dwarf galaxy. This investigation, in particular,

reveals that GSE stars with high kinematic energy are associated with earlier passages and

originate from the outer region of GSE, as they are found to be less chemically evolved. On the

other hand, stars with low kinematic energy are associated with later passages, and with the

inner and more chemically evolved region of the merging dwarf galaxy. These findings enhance

our understanding of galaxy mergers and position GSE as a key benchmark in hierarchical

galaxy formation. The role that the GSE merger might have played in the quenching and

heating event leading to the current kinematical structure of the thick disk is still actively

discussed.

The Gaia mission has also proven to be an extraordinary goldmine for the discovery of

new stellar streams, mostly originating from tidally disrupted golbular clusters, in the stel-

lar halo, with up to ∼ 90 thin stellar streams (Ibata et al., 2024) discovered thanks to the

STREAMFINDER algorithm (Malhan and Ibata, 2018) applied to Gaia data. Such streams

nearly trace orbits and are thus invaluable probes of the 3D potential of the Galaxy, for which
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they were used for instance in Malhan and Ibata (2019) and Ibata et al. (2024), providing

excellent constraints on the enclosed mass within 20 kpc. Interestingly, Gaia has also allowed

for the first time ever to detect streams of open clusters within the disk (Jerabkova et al., 2021),

which offers new sets of constraints on the structure and pattern speed of non-axisymmetric

structures such as the bar (Thomas et al., 2023). In the halo, the best constraints at very large

distances come from the Sagittarius stream (Ibata et al., 2001), the tidal stream of the Sagit-

tarius dwarf galaxy (Ibata et al., 1994), whose data have led to the current best time-dependent

MW gravitational potential (Vasiliev et al., 2021) in which an infalling massive Large Magel-

lanic Cloud (LMC), representing more than 10% of the mass of the MW, plays a crucial role.

The dynamical effects of this infalling massive LMC on the density and kinematics of the stellar

halo are also actively investigated (e.g., Rozier et al., 2022). However, the model of Vasiliev

et al. (2021) cannot by itself explain the presence of a bifurcation in the Sagittarius stream,

in the form of a faint branch running parallel to the main brighter branch. Such a bifurcation

could be understood as precession of the stream with successive wraps, but would impose a very

nearly spherical potential which would contradict the current best-fit time-dependent model.

A possible solution to this conundrum was however offered by Oria et al. (2022) who proposed

that the faint branch originates in a (now disappeared) disk component of the Sagittarius dwarf,

that was nearly perpendicular to both the MW disk and Sagittarius orbital plane.

The Sagittarius dwarf was already suspected (among other possible vertical perturbers) by

Widrow et al. (2012) to be responsible for the vertical waves discovered in the Galactic disk,

and this suspicion grew to another level with the staggering Gaia DR2 discovery of a one-armed

phase-spiral in the local z−Vz plane (Antoja et al., 2018), a signature of on-going phase-mixing

clearly indicating that the disk is in vertical disequilibrium, and thereby complicating the local

vertical force analyses based on the assumption of equilibrium (Haines et al., 2019; Salomon

et al., 2020). Simulations and dynamical models have shown how one could, indeed, relate the

local one-armed phase-spiral to the interaction of the Sagittarius dwarf with the MW disk (e.g.,

Binney and Schönrich, 2018; Laporte et al., 2019), but the discovery of a two-armed phase spiral

for stars with lower angular momenta (e.g., Li et al., 2023) has on the other hand reinforced

the idea that the Solar neighborhood could be located in a transition zone between the inner

disk affected mainly (but not solely) by plane-symmetric “breathing modes” (including the two-

armed phase-spiral) and the outer disk dominated by asymmetric “bending modes” (including

the one-armed phase-spiral). While it has been suggested that the two-armed phase spiral could

be related to internal non-axisymmetries, in particular to a decelerating bar (Li et al., 2023), the
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exact origins of both the one-armed and two-armed phase spirals are still under a heavy debate

(e.g., Khoperskov et al., 2019; Hunt et al., 2022; Grand et al., 2023; Widrow, 2023; Tremaine

et al., 2023; Frankel et al., 2024) and their relation with large-scale vertical wave patterns of

the disk is still unclear. Indeed, already with Gaia DR1, Schönrich and Dehnen (2018) and

Carrillo et al. (2018) confirmed that the outer disk is vertically warped and accompanied by

some sort of wave-like pattern in vertical velocities, a pattern which was further investigated

in Poggio et al. (2025), and whose exact dynamical origin is still a matter of ongoing research.

Furthermore, it was observed in Gaia Collaboration et al. (2023a), that the Galactic disk

exhibits an overall strong chemo-kinematical vertical symmetry and a pronounced flaring with

a higher scale height than previously measured. Compounding the disk flaring, the warping of

the Galactic disk beyond about 7 kpc was characterized kinematically in Schönrich and Dehnen

(2018). In Skowron et al. (2019), vertical velocities of the warp are quite significant, ranging

from 10 to 20 kms−1 with both extremities moving away from the disk in opposite directions.

The warp itself was confirmed as a dynamical precession structure in Poggio et al. (2020).

Perhaps related to these non-equilibrium features, one should note the current debates

about the outer rotation curve of the MW as deduced from Gaia data and its possible surprising

consequences for the dark matter content of the Galaxy. While the best models based on stellar

streams (e.g., Ibata et al., 2024), especially the one reproducing the Sagittarius stream in the

presence of a massive LMC (Vasiliev et al., 2021), as well as all estimates of the mass of the

MW based on the escape speed curve (Monari et al., 2018; Roche et al., 2024a) point to virial

masses between ∼ 7 × 1011 M⊙ and 1012 M⊙, the most recent estimates from the rotation curve

computed from Jeans modeling of the outer disk can be as low as <∼ 2 × 1011 M⊙ (Jiao et al.,

2023; Ou et al., 2024), which would make it only twice the mass of the LMC. In our work,

we will adopt a dark matter halo mass in between those values. It is, in any case, perhaps

more advisable to fit phase-space distribution functions (see next section) to Gaia data in order

to construct axisymmetric models of the MW, rather than using Jeans modeling in the outer

disk. Such a relevant axisymmetric self-consistent model for the MW using Gaia DR2 was

presented in Binney and Vasiliev (2023). With Gaia DR3, this model was extended in Binney

and Vasiliev (2024) to include chemical parameters, and a new parametrization of the Galactic

bulge.

Regarding non-axisymmetries, and in particular spiral arms, Gaia has allowed to trace

them in configuration space, from different stellar populations, both young stars (e.g., Gaia

Collaboration et al., 2023b; Poggio et al., 2021; Drimmel et al., 2024) and more evolved ones
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(e.g., Khanna et al., 2024). In Poggio et al. (2022), the Gaia chemical information was used

to distinguish different samples of young bright stars, allowing for a detailed mapping of the

chemical distribution of stars in a large part of the MW disk. This is found to be remarkably

correlated with the location of spiral arms, as traced by the over-densities of young stars in

Poggio et al. (2021). Barbillon et al. (2025) in turn investigated in detail the chemical radial

and azimuthal distribution of young and old stars. Notably, significant azimuthal variations in

metallicity were found, particularly for young stellar populations. These variations are smaller

for older stars, suggesting that spiral arms play a role in shaping the recent chemical structure

of the disk. In Gaia Collaboration et al. (2023a), the GSP-Spec parameters allowed a precise

sampling of the stellar population, enabling, in particular, to reveal very clearly, in stellar

density and in metallicity, the spiral arms segments nearest to the Sun with massive stars.

Another topic, related to the role played by spiral arms in the secular evolution of the disk, is

the measure of heating versus radial migration that was obtained by Frankel et al. (2020) from

Gaia-APOGEE data, namely that radial heating is an order of magnitude lower than angular

momentum diffusion. This led to some debate as to whether this is even possible with our

current understanding of radial migration from spiral arms (Hamilton et al., 2024b; Sellwood

and Binney, 2025), knowing that including the effect of the bar should make things worse, with

a general agreement that, in any case, this leaves zero room for any additional significant radial

heating from other external perturbers (which could have consequences for various dark matter

models). Finally, in Widmark and Naik (2024), a local dynamical (Jeans) analysis revealed that

the Orion (Local) arm is the most striking over-density in the vicinity of the Sun, while Palicio

et al. (2023) also identified spiral arm structures in the disk by considering the distribution of

actions as a function of position. More highlights are discussed in detail in the following section

1.3. Regarding the bar, several observations at the Solar radius (Monari et al., 2019a; Monari

et al., 2019b; Binney, 2020; D’Onghia and Aguerri, 2020; Lucchini et al., 2024), in the bulge

region from proper motion data from the VVV survey calibrated on Gaia (e.g., Clarke et al.,

2019; Sanders et al., 2019), in the stellar halo kinematics (Dillamore et al., 2024) and with

the chemistry of the disk (Haywood et al., 2024; Khoperskov et al., 2024) have all converged

on a pattern speed between ∼ 35-40 km s−1 kpc−1, although possible sudden variations of the

pattern speed are also possible (Hilmi et al., 2020). More highlights are discussed in detail in

the following section 1.3.

More generally, the exquisite data from Gaia DR2 and DR3 (e.g., Gaia Collaboration et al.,

2018a; Gaia Collaboration et al., 2023b) have revealed a particularly rich information contained
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solely within the in-plane motions of disk stars. In particular, the map of local velocity space

(Fig. 1.3) and the Galactocentric radial mean (or median) velocity field (Fig. 1.4) have been

staggeringly refined. The moving groups can now also be traced as a function of radius and

azimuth (e.g., Ramos et al., 2018; Bernet et al., 2022; Bernet et al., 2024). However, prior

to this thesis, no global model reproducing these features has been produced, meaning that

the rich information contained solely within the in-plane motions of stars had not been fully

exploited yet. This is the topic of the present thesis. But before getting into the construction

of such a model, we will first review below some basic notions of Galactic dynamics.

1.2 Galactic dynamics

Modeling the MW can be broadly categorized into two approaches: “top-down” and “bottom-

up” (Famaey, 2024). “Top-down” models simulate MW-like galaxies, typically with hydrody-

namical simulations, from cosmological initial conditions, and then compare these simulations

to observed data. Conversely, “bottom-up” models construct the Galaxy directly from Galactic

data. There are also many intermediate approaches, such as idealized simulations, that do not

directly fit the data but can be tailored to resemble them. While ‘top-down” models reveal

physical processes across scales, they struggle by design with actually observed fine details, es-

pecially with cutting-edge large catalogues, such as those provided by Gaia. Both approaches

are indeed complementary, and in particular, the “top-down” approach can help validate the

“bottom-up” results.

“Bottom-up” modeling consists in simultaneously adjusting the phase-space distribution

of stars, dark matter (and gas) as well as the gravitational potential to the data. We will

mainly be considering stellar dynamics hereafter, and ignore gas dynamics for the time be-

ing. Broadly speaking, any N -particle system (with N being, for us, the number of stars

— or even the number of stars and dark matter particles — in the MW) is described by a

probability distribution function (PDF) in a large phase space of 6N dimensions, PN . While

each individual particle moves according to Hamilton’s equations, the full phase-space PDF,

PN , is strictly conserved along trajectories, according to Liouville’s theorem. The Bogoli-

ubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy then allows us to provide a statistical

description of the system only via the one-particle distribution function (DF), which we will

simply denote as F . The equation obeyed by F in a system governed by a long-range force

such as gravity, in which the relaxation time is long, is the collisionless Boltzmann equation,
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or Vlasov equation, which together with the Poisson equation for the gravitational potential,

forms the fundamental equations of Galactic dynamics, at the core of “bottom-up” modeling

methods. We will now review these concepts more in depth.

1.2.1 Hamilton’s equations

In Hamiltonian dynamics, the evolution in time t, for each stellar particle from a system of

N particles, of index 0 ≤ i ≤ N , with masses µi, positions xi, and momenta µivi is fully

determined by the Hamilton’s equations:

µi
dxi

dt
= ∂H

∂vi

and µi
dvi

dt
= −∂H

∂xi

(1.1)

with H being the Hamiltonian, which can be interpreted for most applications as being the

total energy of the system, including kinetic and potential energy. The Hamiltonian can depend

on the full system positions and velocities at each time, H = H(x,v, t), with (x,v) denoting

all particles’ position x ≡ (x0, . . . ,xN), and all particles’ velocities v ≡ (v0, . . . ,vN).

In the case of an idealized gravitationally bound system of N identical particles of equal

mass µ, the Hamiltonian is explicitly given by:

H(x,v, t) = µ

2

N∑
i

v2
i + µ2

N∑
i<j

U(|xi − xj|) (1.2)

with U(r) = −G
r
. But since a galaxy like the MW has more than 1011 stars, such a “per

particle” approach is however impractical, and a statistical approach is better suited to such a

case.

1.2.2 From Liouville’s equation to Vlasov equation

In this context, it is useful to introduce the phase-space PDF of the system (e.g., Fouvry et al.,

2016), PN(Γi, . . . ,ΓN , t), with Γi ≡ (xi,vi) the phase-space position of each particle i. The

function PN describes the probability of finding, at time t, the N particles of the system in a

particular configuration Γ ≡ (x,v), where each particle of index i is located in phase-space at
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Γi. The function PN evolves in time according to the Liouville’s equation:

∂PN

∂t
+

N∑
i=1

[
vi · ∂PN

∂xi

+ µF tot
i · ∂PN

∂vi

]
= 0 (1.3)

where F tot
i = ∑N

j ̸=i F ij is the total force applied by the system particles j ̸= i on the particle

i. Variables of the F tot
i and PN functions are generally (Γi, . . . ,ΓN , t), but are omitted here for

readability, as in the following equations.

We can now also rewrite the Liouville’s equation as a chain of equations known as the

Bogoliubov – Born – Green – Kirkwood – Yvon (BBGKY) hierarchy. This will indeed allow

for a more adaptable framework. First, let us remind that, by definition, the total integration

of PN across the whole phase-space must result in unity:

∫
PN(Γ1, . . . ,ΓN , t)dΓ1 . . . dΓN = 1, (1.4)

then let us define the reduced PDF considering all subsystems of 1 to n particles, with n ≤ N :

Pn(Γ1, . . . ,Γn, t) ≡
∫
PN(Γ1, . . . ,ΓN , t)dΓn+1 . . . dΓN , (1.5)

and then define the associated reduced phase-space density DF

Fn(Γ1, . . . ,Γn, t) ≡ µn N !
(N − n)!Pn(Γ1, . . . ,Γn, t) (1.6)

with F1 denoting the single-particle n = 1 case, which we will simply denote F .

Integrating Liouville’s equation (1.3) on the variables (Γn+1,ΓN) leads to the BBGKY hi-

erarchy given by:

∂Fn

∂t
+

n∑
i=1

vi · ∂Fn

∂xi

+
n∑

i=1

n∑
k=1,k ̸=i

µF ik · ∂Fn

∂vi

+
n∑

i=1

∫
dΓn+1F i,n+1 · ∂Fn+1

∂vi

= 0 (1.7)

For each n, the corresponding equation in the hierarchy (1.7) depends on (Γ1, . . . ,Γn, t).

These N equations are hierarchical as they are coupled: the solution for n needs knowledge

of the n + 1 solution. Despite being quite complicated, only the rightmost term involves the

next order, n+ 1 in the hierarchy, which accounts for the collision terms of the up to n-particle

subsystems. In particular, the BBGKY hierarchy for the lowest order, n = 1, where F1(Γ1, t)
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is the one-particle phase-space density in terms of mass, writes as:

∂F1

∂t
+ v1 · ∂F1

∂x1
+
∫

F1,2 · ∂F2

∂v1
dΓ2 = 0 (1.8)

An approach to simplify these equations is to consider a simplification of the next order DF,

F2(Γ1,Γ2, t). This can be done using the definition of the 2-body correlation function g2(Γ1,Γ2),

such that:

F2(Γ1,Γ2, t) = F1(Γ1, t)F1(Γ2, t) + g2(Γ1,Γ2) (1.9)

with this definition, the BBGKY hierarchy for n = 1 can be rewritten as:

∂F1

∂t
+ v1 · ∂F1

∂x1
+
[∫

F1(Γ2, t)F12dΓ2

]
· ∂F1

∂v1
+
∫

F12 · ∂g2(Γ1,Γ2, t)
∂v1

dΓ2 = 0 (1.10)

From (1.4) and (1.6) it follows that, at any t:

∫
F1(Γ1, t)dΓ1 = µN ≡ M and

∫
g2(Γ1,Γ2, t)dΓ1dΓ2 = −µ2N ≡ −M2/N (1.11)

where M is the total mass of the system.

Importantly, we can immediately notice from equations (1.11), that the respective orders

of magnitude of the positive continuously differentiable functions F1 and g2, are related by

|g2| ∼ |F1|
N

. This scaling for g2 notably encompasses (but not only) the notion of “diluting

encounters”, where the impact of individual stellar encounters becomes increasingly negligible

compared to the single-particle DF as the system grows in number of particles N , ultimately

becoming effectively collisionless.

A way to check for this effective dilution of stellar encounters in the large N limit is to

compute the system’s relaxation time, τrelax, estimating how long it takes close stellar encounters

to change a star’s velocity by about an order of magnitude compared to the mean field. It can

be described by τrelax = nrelaxtcross, where tcross is the typical time for a star to cross the

Galaxy, and nrelax is the number of encounters needed to change a star’s velocity by an order

of magnitude. With simple assumptions, Binney and Tremaine (2008) find:

τrelax ≈ N

10 lnN tcross, (1.12)

which obviously goes to infinity in the infinite N limit. In the MW, we can estimate tcross ≈
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Rdisk/V , with Rdisk some characteristic radius of the disk, and V the velocity of a typical orbit.

Even when adopting a high value for the typical velocity, 300 kms−1, and a small characteristic

radius of 1 kpc for the MW stellar disk, we would need much less than 108 stars for the relaxation

time to fall below the age of the Universe. However, this sole notion of diluting encounters is

an oversimplification of what is really encapsulated in the g2 term, since individual orbits can

also resonantly interact from far away, and not only in close encounters. Considering these 1/N

resonant effects, we can actually use the BBGKY hierarchy (Heyvaerts, 2010) to derive what

is known as the Balescu–Lenard equation (see also, e.g., Fouvry et al., 2016), which does take

into account the secular evolution of the single-particle DF in the finite N case. However, going

back to equation (1.10), and strictly taking the limit N → ∞, we have

∫
dΓ2F12 · ∂g2(Γ1,Γ2)

∂v1
→ 0 (1.13)

enabling to further simplify the BBGKY hierarchy for n = 1 (1.10), in the limit N → ∞, to

∂F1

∂t
+ v1 · ∂F1

∂x1
+
[∫

dΓ2F1(Γ2, t)F12

]
· ∂F1

∂v1
= 0 (1.14)

which is, in fact, known as the collisionless Boltzmann equation, or Vlasov equation, as in

plasma physics. Stellar dynamics and plasma physics have a similar historical origin, namely

from classical kinetic theory and statistical mechanics. Nowadays, they are separate fields,

with different terminology, applications, and research interests, but that sometimes overlap,

and benefit each other mutually (e.g., Bois et al., 2020; Hamilton and Fouvry, 2024; Hamilton

et al., 2024a). The Vlasov equation fully describes the evolution of the single-particle DF for a

strictly collisionless (N → ∞) stellar system.

In (1.14), the fact that we can neglect stellar encounters means that we can also approximate

the gravitational field of the system with a mean smooth gravitational potential Φ(x, t) governed

by the Poisson equation, which, in the absence of gas, relates the potential to the DF

∇2Φ(x, t) = 4πG
∫
d3vF1(x,v, t), (1.15)

where
∫
d3vF1(x,v, t) ≡ ρ(x, t) is the density of the system. With this mean field hypothesis,

a star’s force is given by the gradient of a function, avoiding the need to know all particle

positions:

−∂Φ
∂x

=
∫
dΓ2F1(Γ2, t)F12. (1.16)
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By substituting equation (1.16) into equation (1.14) we obtain an equation that, together with

Poisson equation (1.15), forms the Vlasov-Poisson system for the gravitational potential Φ and

the DF F of the stellar system:


∂F
∂t

+ v · ∂F
∂x

− ∂Φ
∂x

· ∂F
∂v

= 0

∇2Φ = 4πG
∫
d3vF

(1.17)

with F = F (x,v, t), Φ = Φ(x, t), and we omit the index on F1, as from now on we only consider

the 1-particle 6-dimensional DF.

As a side note, taking the velocity moments of the Vlasov equation leads to the Jeans

equations, that we referred to a few times in the previous section on Gaia results. Unlike when

fully specifying the DF, Jeans’ modeling only describes velocity moments and may sometimes

result in an unphysical negative DF in certain parts of phase space.

1.2.3 Integrals of motion and action-angle variables

Each stellar orbit in the gravitational potential has at each time t a specific phase-space position,

Γ(t) = (x(t),v(t)). Some functions are known to be constant along the trajectories of orbits in

phase-space. For each orbit, it is known as a constant of motion, C(Γ(t1), t1) = C(Γ(t2), t2) for

any t1 and t2. A particularly important case is when the constant of motion does not explicitly

depend on time. Such a function I(Γ), which depends only on phase-space coordinates, is called

an integral of motion, I(Γ(t1)) = I(Γ(t2)) for any t1 and t2. The integral of motion satisfies by

definition:
dI

dt
= ∂I

∂x

∂x

∂t
+ ∂I

∂v

∂v

∂t
= 0. (1.18)

Hence, we immediately see that, if the DF does not explicitly depend on time, it is itself an

integral of motion, or said otherwise, depends on other integrals of the motion, which is known

as Jeans’ theorem. A gravitational potential can indeed have many integrals of motion, but

only 5 independent ones. To check for independence, we can test each pair, such as I1 and I2,

to see if they are in involution—meaning their Poisson brackets are zero:

{I1, I2} =
d∑

i=1

∂I1

∂xi

∂I2

∂vi

− ∂I1

∂vi

∂I2

∂xi

= 0 (1.19)

with d = 3, and x = (x1, x2, x3) and v = (v1, v2, v3). The maximum number of integrals of

motion is w = 2d− 1, which effectively confines the motion to 1 dimension in phase-space.
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From Noether’s theorem, each symmetry of the system is associated to an integral of the

motion: a time-independent gravitational potential is time-symmetric and leads to the con-

servation of energy (or of the Hamiltonian), while each component of angular momentum is

conserved in a spherical gravitational potential. In an axisymmetric time-independent poten-

tial, like the potential of the MW to leading order (before considering perturbations from the

bar and spiral arms), two obvious integrals of the motion are the energy per unit mass E and

the component of the angular momentum (per unit mass too) Lz along the symmetry axis.

Independent integrals of motion help to solve the equations of motion for an orbit. For a

system with w independent integrals of motion, the equations of motion are of dimension 2d−w.

When a system has w = d integrals of motion, it is referred to as integrable, namely the fact that

no orbits are chaotic (they are all regular). It turns out that typical axisymmetric gravitational

potential for galaxies are always close to integrable, meaning that we can numerically check

that most non-resonant orbits do have three independent integrals of the motion (Binney and

Tremaine, 2008). These integrals are E, Lz and a third integral which is numerical, and related

to the fact that typical galactic potentials are relatively close to Stäckel potentials (e.g., Famaey

and Dejonghe, 2003).

In the Vlasov-Poisson equations (1.17), the evolution in time of the DF is set by the time

derivative, and if the DF does not evolve in time, it satisfies ∂F/∂t = 0, meaning that F

represents a steady state stellar system, i.e, a system in equilibrium. For such systems, Jeans’

theorem states that the equilibrium DF solution to the collisionless Boltzmann equation depends

on the phase-space coordinates F = F (x,v) only through three independent integrals of motion

in the given integrable potential. Said otherwise, for a galaxy at equilibrium, having most of

its orbits as regular non-resonant orbits, the DF can always be written as F = F (I1, I2, I3).

Now, rather than using quantities with different dimensions such as energy and angular

momentum, it would be even more convenient if the integrals of the motion are chosen to be

phase-space coordinates themselves. Since each integral of the motion is associated to some

symmetry of the system (for instance, in axisymmetry the Hamiltonian does not depend on the

azimuthal angle of cylindrical coordinates), wisely choosing the phase-space coordinates should

allow for the Hamiltonian to not depend on any of those wisely chosen “positions”, meaning that

the associated momenta would themselves be integrals of the motion from Hamilton’s equations.

These generalized momenta are known as action coordinates J (with the same dimension as

angular momenta) and the generalized positions as (dimensionless) angle coordinates θ. Indeed,

while positions and velocities—such as in Galactocentric cartesian coordinates—are often prac-
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tical, for theoretical work, generalized phase-space coordinates (q,p) are more useful. These

can include the Cartesian coordinates with positions q = x and momenta p = µv, but these

coordinates can be canonically transformed to any other ones as long as Hamilton’s equations

stay invariant under the coordinate transformation. This requires canonical transformations.

After the transformation from positions and velocities to angles and actions, we have from

Hamilton’s equations: 
dJ

dt
= −∂H

∂θ
= 0

dθ

dt
= ∂H

∂J
= Ω(J)

(1.20)

where the fundamental frequencies Ω describe how quickly the angle variables change, as θ =

θ0 +Ω(J)t, with each angle periodically defined on [0, 2π] interval. Said otherwise, each triplet

of actions fully characterizes a regular orbit, both in terms of the 3-dimensional volume of

phase-space that it fills, that is an actual three-torus, and in terms of the frequencies with

which stars move on that torus. Angles are simply labeling where a given star is at a given

time on its torus. Each regular orbit therefore maps to a three-torus in phase-space, illustrated

in Fig. 1.5. The geometry of such three-tori enables a formula for the actions:

Ji = 1
2π

∮
Γi

p · dq (1.21)

with Γi a path along the tori in phase-space where the angle θi is constant.

To get physical intuition on the meaning of the action variables, we can consider the case of

quasi-circular orbits in an axisymmetric disk potential. These can be reasonably well approxi-

mated by the so-called epicyclic approximation, illustrated in Fig 1.6:

R(t) = Rg + Acos(κt + α)

φ(t) = φ0 + Ω(Rg)t− 2AΩ(Rg)
κRg

sin(κt + α) (1.22)

z(t) = Bcos(νt + β)

with (R,φ, z) as the Galactic cylindrical coordinates, A, B, α, β, φ0, as constants of each orbit,

and Rg, the guiding radius. The guiding radius is the radius of a circular orbit corresponding

to the orbit angular momentum Lz, which is conserved in the axisymmetric potential. The
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Figure 1.5: Figure extracted from (Masoliver and Ros, 2011). Illustration of a 2-dimensional
orbital torus in action-angle variables within 4-dimensional phase-space (for instance, within
a Galactic disk, neglecting the vertical direction). The nested torii represent different regular
orbits, distinguished by their actions. The stellar trajectory lies on the torus surface and is
mapped by the angles that evolve linearly in time.
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Figure 1.6: Illustration of the epicyclic approximation for orbits in an axisymmetric potential.
The orbit is approximated by a retrograde motion on an ellipse, whose guiding center is in
prograde motion along the guiding radius.

frequencies are evaluated at z = 0 and defined by:

Ω2 = 1
Rg

∂Φ
∂R

∣∣∣∣∣
R=Rg

κ2 = ∂2Φ
∂R2

∣∣∣∣∣
R=Rg ,z=0

+ 3
Rg

∂Φ
∂R

∣∣∣∣∣
R=Rg

(1.23)

ν2 = ∂2Φ
∂z2

∣∣∣∣∣
R=Rg

.

Clearly, the radial and vertical motions of such small perturbations around a circular orbit

are two separate harmonic oscillators, with radial energy ER = 1
2κ

2A2 and vertical energy

Ez = 1
2ν

2B2. Within this approximation, three actions can be defined as (Binney and Tremaine,

2008)

JR = 1
2κ(Rg)A2 = ER

κ

Jφ = Ω(Rg)R2
g = Lz (1.24)

Jz = 1
2ν(Rg)B2 = Ez

ν
,

which shows how the azimuthal action is just the vertical component of the angular momentum,

while the radial and vertical actions are directly related to the radial and vertical energies of

the stars.

Now to conclude the discussion on the action-angle formalism so far, it is essential to mention
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the analytical action-angle solution for the integrable Stäckel potentials (see, e.g., Famaey and

Dejonghe, 2003). The axisymmetric Stäckel potentials are expressed in a spheroidal coordinate

system, which is defined at any given position by a focal distance ∆2 (a geometric parameter

describing the shape of the ellipsoids):

∆2 = z2 −R2 + 3
[
3z ∂Φ
∂R

− 3R∂Φ
∂z

+Rz

(
∂2Φ
∂R2 − ∂2Φ

∂z2

)](
∂2Φ
∂R∂z

)−1

(1.25)

One can then use the actual Galactic potential at any given position, instead of the Stäckel

potential, to compute an equivalent focal distance as if the potential were locally of Stäckel form.

This focal distance enables calculation of the (quasi-)integrals of motion and corresponding

actions in the true potential. This approach is known as the “Stäckel fudge” (Binney, 2012;

Sanders and Binney, 2016) and gives an approximation for transforming stellar positions and

velocities into actions in the Galactic potential. A fast and accurate computation for ∆2 is

fully implemented in the Action-based Galaxy Modeling Architecture library (Vasiliev, 2018;

Vasiliev, 2019, AGAMA), which is used for evaluating the action-angle variables in the present

thesis. Action variables are especially suitable as arguments of equilibrium DFs because volume

is conserved under coordinate transformation. Since every triplet of actions simply labels a given

regular orbit in the Galaxy, devising an equilibrium DF that depends on actions corresponds

to filling the whole phase space with regular orbits, each with their own weight corresponding

to the value of the DF. Our focus will now shift to DFs based on actions for constructing

axisymmetric MW models.

1.2.4 Equilibrium axisymmetric distribution functions

The MW is not strictly integrable in principle, but a large portion of phase space is filled by

regular orbits. We can therefore apply the framework described so far to model the MW’s

stellar populations with action-based DFs, making use of the Stäckel fudge. Indeed, as we have

seen above, from Jeans theorem, for a galaxy at equilibrium, the DF can always be written as

F = F (J).

While the stellar DF parameters can, in principle, be constrained from direct astrometric

observations, the DF for the DM component cannot be constrained in this way, since there

is no direct tracer for the putative dark matter particles. Within the context of the Vlasov-

Poisson equations, the DF and gravitational potential solutions for all components are coupled.

Therefore, a good knowledge of the stellar DF and of the total gravitational potential can
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allow, with some underlying symmetry and/or isotropy assumptions, to constrain the DF of

the DM halo. Relevant axisymmetric self-consistent models for the MW using Gaia data were,

for instance, presented in Binney and Vasiliev (2023) and Binney and Vasiliev (2024).

In general such self-consistent axisymmetric models are built iteratively from inversion meth-

ods, such as the isotropic Eddington formula (see, e.g Lacroix et al., 2018; Lacroix et al., 2020),

where spherical symmetry and an isotropic velocity field are assumed, hence with a DF that

depends only on the relative energy. An extension to isotropic Eddington inversion is the ax-

isymmetric inversion method, tested in cosmological simulations of spiral galaxies (Petač et al.,

2021), which assumes axisymmetry and allows for anisotropic velocity structures.

In this thesis, the initial focus will be on the stellar Galactic disk and constraining its non-

axisymmetric structures (bar and spiral arms). No specific DF will be implemented for the DM

halo. However, this PhD thesis is only a first step towards building a full non-axisymmetric

self-consistent model of the MW, hence the non-axisymmetric potential developed hereafter

could later be used to develop a more holistic dynamical model of the Galaxy, ideally fully

self-consistent, including both stellar and DM components. This model could potentially be

applied in investigating astrophysical predictions for direct and indirect DM searches and Galac-

tic structures and substructures investigations (Lavalle and Magni, 2015; Stref et al., 2019).

Finally, having a reference non-axisymmetric potential for the MW could perhaps help in in-

vestigating further possible hypothetical DM non-axisymmetric structures, as a shadow bar

(Petersen et al., 2016) and DM spiral arms (Bernet et al., 2025).

Since our modeling approach hereafter will focus solely on the stellar disk, it is important

to choose an adequate equilibrium DF for the tracer stellar populations within the disk. The

quasi-isothermal disk DF is a suitable choice. Notably, to allow for a simple and tractable form

of the DF by a simple linear combination for the thin and thick disks:

Fdisk(JR, Jφ, Jz) = (1 − χ)Fthin + χFthick (1.26)

with a small value of χ. The quasi-isothermal disk DF has the particularity of depending

exponentially on radial action Jr and vertical action Jz. It is given (Binney, 2010; Binney and

McMillan, 2011) by

Fthick/thin = η
Ω(Jφ)ν(Jφ)

κ(Jφ)σ̃2
R(Jφ)σ̃2

z(Jφ)exp
(

−Rg(Jφ)
hR

)
exp

(
−JRκ(Jφ)
σ̃2

R(Jφ)

)
exp

(
−Jzν(Jφ)
σ̃2

z(Jφ)

)
, (1.27)
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where

σ̃R(Rg(Jφ)) = σ̃R(R0)exp
(

−Rg(Jϕ) −R0

hσ,R

)
σ̃z(Rg(Jφ)) = σ̃z(R0)exp

(
−Rg(Jϕ) −R0

hσ,z

)
,

(1.28)

with the same variables as defined in the epicyclic approximation, but evaluated more gener-

ically with the Stäckel fudge. Beyond the frequencies that are directly defined by the ax-

isymmetric background potential (including the potential of the DM halo), it has some other

parameters, such as R0, the Sun’s Galactocentric radius, hR, the disk population scale length,

η, the normalization factor (in units of surface density, or number of stars per length squared,

such that the DF has the units of a phase-space density) of the tracer population, and finally

all parameters defining the evolution of the radial and vertical velocity dispersion as a function

of the guiding radius, σ̃R(Rg(Jφ)) and σ̃z(Rg(Jφ)).

1.2.5 Instabilities and the growth of non-axisymmetric structures

As we have seen, from Jeans theorem, a DF written as F = F (J) for an axisymmetric galaxy

describes a time-independent equilibrium, and is automatically a solution of the Vlasov equa-

tion. However, there is absolutely no guarantee that such an axisymmetric equilibrium is

stable. Moreover, we know that the real MW disk does display prominent non-axisymmetric

structures, such as the bar and the spiral arms. Understanding what drives these perturbations

of the axisymmetric equilibrium remains today an area of active research.

The past history of the MW seems to have been relatively calm. The largest external

perturbation was probably the GSE merger, which occurred approximately 8 Gyr ago. Only now

are we starting to have a new similar major interaction with the LMC. Smaller perturbations

still happen, with an ongoing example being the Sagittarius dwarf interaction, which is definitely

a source of vertical perturbations of the MW disk, although probably not the only one. But, in

any case, even in the absence of such external perturbations, if the axisymmetric equilibrium is

unstable, even the tiniest internal kick, related to local perturbations (formation of star clusters,

etc.) can destabilize the axisymmetric equilibrium. Broadly speaking, if the equilbrium is

stable, the system will wobble but reach a final state with properties similar to its initial state,

while if unstable, it can respond by developing new features, like the bar and spiral arms,

that ultimately profoundly alter the system and its secular evolution (through heating, radial

mixing, etc.).

The Vlasov-Poisson system of equations can actually be used to study the linear response
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of an equilibrium system described by an equibilibrium DF, F (J), to a small perturbation

potential ψe. The response DF will be a small additive perturbation, f(θ,J), which itself leads

to a small potential perturbation ψs. This can be used in (1.17), with action-angle coordinates,

to linearize the collisionless Boltzmann equation (see, e.g., Rozier et al., 2022; Hamilton and

Fouvry, 2024; Famaey, 2024)

∂f

∂t
+ Ω(J) · ∂f

∂θ
− ∂(ψe + ψs)

∂θ
· ∂F
∂J

= 0

∇2ψs = 4πG
∫
d3vf.

(1.29)

Since any function of the angles is 2π-periodic, we can expand both the perturbing potential

ψ = ψe + ψs and the perturbed DF, f , as Fourier series on the angles θ:

ψ(θ,J, t) =
∑

n
ψn(J, t) ein·θ, f(θ,J, t) =

∑
n
fn(J, t) ein·θ (1.30)

The equation (1.29) can then be separated into equations for each Fourier coefficient of the

series, as
∂fn

∂t
+ i n · Ω fn − i n · ∂F

∂J
ψn = 0. (1.31)

One can now Fourier transform this equation in time, going from time t to complex frequency

ω, as

f̂n(J, ω) = n · ∂F/∂J
n · Ω − ω

ψ̂n(J, ω) (1.32)

where the hat denotes the temporal Fourier transform. From this form of the n-th Fourier

coefficient of the response DF, it is already clear that the values are going to explode for

certain orbits that have n · Ω − ω = 0, called resonances.

So far, this description focused on the linearized collisionless Boltzmann equation in (1.29).

The Poisson equation in (1.29), on the other hand, relates the DF perturbation f to the potential

perturbation ψs. To avoid having to go back and forth between cartesian coordinates, where

the Poisson equation is best treated, and the angle-action pahse-space coordinates, it is best to

decompose the problem into potential-density pairs that are known in advance, as in Kalnajs’

matrix method (Kalnajs, 1977). In this method, densities and potentials are projected on a

bi-orthogonal basis of functions, formed of potentials, ψ(p) and densities ρ(p) that are pairs of

solutions to the Poisson equation and obey a bi-orthogonality condition:

∇2ψ(p) = 4πGρ(p)
∫
dxψ(p)(x)ρ(q)∗(x) = −δq

p, (1.33)
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where δq
p is the Kronecker delta. Using these functions, we can write the perturbing potential

in vector form in the basis, namely

ψs(x, t) =
∑

p

ap(t)ψ(p)(x) ψe(x, t) =
∑

p

bp(t)ψ(p)(x), (1.34)

which we can simply summarize as two vectors a for the self-consistent response potential and

b for the initial perturbation. Making use of the bi-orthogonality condition, we can obtain the

vector decomposition of the self-gravitating response by simply taking the inner product of the

perturbed density and each of the basis elements, ap(t) = −
∫

dx
∫

dv f(x,v, t)ψ(p)∗(x), which

can be canonically transformed into an integral over actions and angles after making use of the

Fourier series of equation (1.30):

ap(t) = −(2π)3∑
n

∫
dJ fn(J, t)ψ(p)∗

n (J). (1.35)

Fourier transforming this, and making use of equation (1.32), we have:

âp(ω) =
∑

q

{
(2π)3∑

n

∫
dJ

n · ∂F/∂J
ω − n · Ω

ψ(p)∗
n (J)ψ(q)

n (J)
}

︸ ︷︷ ︸
M̂pq

(
âq(ω) + b̂q(ω)

)
. (1.36)

which can be understood as the application of a response matrix M̂pq(ω), corresponding to the

first bracket hereinabove, on the vector of the total perturbation a + b:

â = M̂ · (â + b̂) (1.37)

which can be further written as

â =
(
[I − M̂]−1 − I

)
· b̂. (1.38)

From there, the temporal evolution of the response vector a(t) can be obtained from the reverse

Fourier transform

a(t) = 1
2π

∫ +∞

−∞
dω ([I − M̂]−1 − I) · b̂(ω)e−iωt = −i

∑
k

ake
−iωkt, (1.39)

making use of the residue theorem, where the label k is labeling each pole of the integrand in

the upper half of the complex plane, and ak is the residue of the integrand at the complex pole
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ω = ωk. The poles correspond to where [I − M̂]−1 is singular, hence where

det(I − M̂(ω)) = 0, (1.40)

namely all the frequencies ωk such that M̂(ω) has an eigenvalue of 1, with the residue vector

ak being simply proportional to the corresponding eigenvector. This residue vector ak is then

defining the shape of the instability mode (a bar, a spiral arm, etc.), while the real part of the

pole defines the pattern speed or oscillation frequency Re(ωk) = ωp,k and its imaginary part

defines the growth rate. We do have an unstable mode that grows to form a bar or a spiral

arms, or any other instability, when Im(ωk) > 0. The fastest evolution will be associated with

the largest value of Im(ωk).

This matrix method provides an insightful and efficient framework for identifying global

instabilities and their growth rates only in the regimes of small perturbations. After forming,

for example, a bar or spiral arms, the final distribution could still not be predicted by this

method, especially because of the non-linear evolution of the DF driven by the resonances. It

was already clear from the equations above for the response matrix that resonances are crucial

features for the instability modes to appear, but they are also the main drivers of the evolution

of the system.

An orbit labelled by actions J in a given axisymmetric background potential is said to

be resonant with a perturbation mode of oscillation frequency ωp if n · Ω(J) − ωp = 0. Let

us now consider a bi-symmetric perturbation, such as a bar, that has developed within the

Galactic plane with oscillation frequency ωp = 2Ωp (where Ωp is the true pattern speed, taking

into account the bisymmetry of the perturbation), and let us consider only in-plane motions.

Considering the Fourier mode n = (l,m) with m = 2, the resonant condition becomes

lΩR +m(Ωφ − Ωp) = 0. (1.41)

The most notable resonances are the co-rotation (CR) for l = 0, where stars move at the same

angular speed as the rotating potential, the Outer Lindblad Resonance (OLR) for l = 1, where

stars’ orbital motion lags behind the rotating potential [(Ωφ −Ωp) < 0], and the Inner Lindblad

Resonance (ILR) for l = −1, where stars move ahead of the rotating potential [(Ωφ − Ωp) > 0].

If enough stars with orbits in resonance are observed, they may exhibit distinct features in the

data, making resonances a very insightful tool for studying Galactic structure and dynamics. In

particular, stars trapped in resonance can exchange angular momentum with the spiral or bar
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pattern. This process produces specific orbital configurations and also fuels the redistribution

of mass and angular momentum across the disk.

We have been working in the action-angle variables of the unperturbed axisymmetric sys-

tem, but such variables cannot, in principle, be used in resonant zones. Indeed, if the resonance

remains present for a very long time, the response grows towards infinity in the linear response

of the original action-angle coordinates (e.g. Monari et al., 2016a; Al Kazwini et al., 2022).

Therefore modeling the resonances with action-angle variables actually requires quite a sophis-

ticated treatment, as shown in, e.g., Monari et al. (2017a), Laporte et al. (2020), Binney (2020),

and Hamilton et al. (2023). For a bar in the Galactic disk, Monari et al. (2017a) for instance

introduced an approach to model orbits in a given resonant zone and construct a DF, Fb, per-

turbing an initial equilibrium disk DF, F . The idea is to perform two canonical transformations

in a row, in order to find the relevant action-angle variables to use in the resonant region, and

then to simply populate the new tori by phase-averaging the original unperturbed DF over the

new resonant tori. The first canonical transformation is going from actions (JR, Jφ) and angles

(θR, θφ) to the “slow” and “fast” variables:

θs = lθR +m(θφ − Ωpt) Jφ = mJs (1.42)

θf = θR JR = lJs + Jf (1.43)

with Ωp the pattern speed of the bar, (Js, θs) and (Jf , θf ), respectively the slow and fast action-

angles. Then, after averaging over the fast motion, the Hamiltonian near the resonances is

equivalent to that of a pendulum. In this analogy, the slow action acts like the pendulum’s

angular momentum. The slow angle represents then the pendulum’s position. The pendulum

energy defines whether the motion is resonant. It can be similar to a pendulum that swings back

and forth (librating, trapped around a fixed point). Alternatively, it can be non-resonant, such

as a pendulum that rotates freely (in circulating orbits). The second canonical transformation

then makes use of the actual action-angle variables of a pendulum. Once writing the original

equilibrium DF in the new action-angle variables, there is a dependency on the pendulum angles,

which we can average over to get the new equilibrium DF in the resonant zone. This approach

has given some excellent qualitative insights in understanding the nature of the Hercules moving

group (e.g., Monari et al., 2019a; Monari et al., 2019b; Laporte et al., 2020) and, far away

from the main resonances of another perturber, it could in principle be generalized to include

spiral arm modes through linear perturbation on top of this. However, with this method,
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each resonant zone needs the computation of its own action-angle variables, and this becomes

impossible when resonances of multiple modes do overlap. Such overlapping resonances regions

would trigger a chaotic behavior in stellar orbits, increasing the number of chaotic orbits. As a

result, modeling the system in a unified manner for the entire phase-space becomes even more

challenging.

1.2.6 Backward integration modeling

The lack of an analytical DF to model the response to bar and spiral arm modes of different

pattern speeds makes it hard to use Gaia data to fit a non-axisymmetric gravitational potential

for the MW disk. In contrast, for axisymmetric DFs and potentials, this fitting can be done self-

consistently, as in Binney and Vasiliev (2023). To address the challenge in the non-axisymmetric

case, backward integration modeling (Vauterin and Dejonghe, 1997) will help us circumvent

this issue. This approach is effective because DF values are conserved along orbits. This is

a crucial property encoded in the Vlasov equation. Indeed, this conservation property makes

the backward integration modeling possible. The key idea behind the method is to numerically

characterize the non-axisymmetric DF at each point in phase space by integrating an orbit

backward in time from each point. By doing so, we trace the MW’s evolution in reverse. We

integrate back to a time before the bar and spiral arms formed. At that earlier time, the Galaxy

could be modeled as an equilibrium axisymmetric system with a known analytical DF. We then

evaluate this DF to recover the value at the current time. Before explaining how this method

predicts observables for Gaia data, let us first recall some important features encoded in the

Vlasov equation (1.17). These features are important for justifying the method and are useful

for understanding its application and limitations.

Let us start with the remarkable property of the conservation of DF along the orbits. In

the current context of mean-field hypothesis and collisionless system, any point (x0,v0) in

phase-space, has a unique orbit passing by it, Γ(t) = (x(t),v(t)), with Γ(t0) = (x0,v0) for an

initial time t0. For each point in phase-space, the DF along the associated orbit is given at

time t by F (x(t),y(t), t). The first key feature encoded in the Vlasov equation is that the DF
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is conserved along orbits. Indeed:

d

dt
F (x(t),v(t), t) = ∂F

∂t
+ dx

dt
· ∂F
∂x

+ dv

dt
· ∂F
∂v

= ∂F

∂t
+ v · ∂F

∂x
− ∂Φ
∂x

· ∂F
∂v

= 0

(1.44)

The second key feature of the method is actually inherited from Hamiltonian dynamics itself.

It is the reversibility in time of the Vlasov equation. This means that the DF evolution is

reversible in time. We can evolve it one way or the other, equivalently. In the case of the MW,

we can model the DF as if it had evolved from an initial equilibrium, axisymmetric scenario in

the past, making the bar and spiral arms evolve slowly, or we can do it the other way around.

In practice, for each orbit, it means that if the DF F is a solution of Vlasov equations, then

the DF F̃ defined by F̃ (x(t),v(t), t) = F (x(−t),−v(−t),−t) is also a solution.

The third feature encoded in the Vlasov equation is the conservation of phase-space volume

during the evolution of a collisionless system. To understand it, we start from the Hamiltonian

flow, Ft, that maps each initial point in phase-space to its position on the space-space at time

t. We can write it as:

Ft : (x0,v0) 7→ Γ(t) = (x(t),v(t)) (1.45)

with Γ(t), the orbit that has (x0,v0) as initial condition. The Hamiltonian flow is differentiable.

It is also invertible, from the discussed time-reversibility, and bijective, as mentioned, orbits

are unique, and also the entire phase-space is mappable. Now, we can consider an arbitrary

volume in phase-space, V0. Each point in V0 can be seen as an initial condition that can be

mapped, at each time t, by the Hamiltonian flow Ft. We may follow the time evolution of this

volume by following the orbits of each point in V0 with the Hamiltonian flow. At each time t,

the volume is then Vt = Ft(V0). The phase-space volume is conserved:

∫
Vt

dpdq =
∫

V0
dpdq, for any t (1.46)

which is equivalent to stating that the Jacobian of the Hamiltonian flow in phase-space is uni-

tary. The volume V0 can undergo shape deformation during the system’s evolution, particularly

to form very fine-scale structures, such as filaments. However, its volume will be conserved. It

also means that the probability is conserved in these volumes, which ultimately implies that

the total number of particles is also conserved. However, as we discuss briefly below, this does
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not prevent some practical problems when dealing with real data. This feature of phase-space

volume conservation is related to the volume conservation of canonical transformations. Indeed,

let J be the Jacobian of the transformation between (J ,θ) and (x,v). Since detJ = 1 for

canonical variables (Binney and Tremaine, 2008), the transformation between a DF in (J ,θ),

F (J ,θ), and the corresponding distribution in (x,v), F ′(x,v), can be explicitly written as

follows:

F ′(x,v)dxdv = F (J(x,v),θ(x,v))dJdθ

= F (J(x,v),θ(x,v))dxdv |detJ |
(1.47)

which basically means that F ′ is just F with J and θ written as functions of x and v.

This backward integration method thus allows us, in principle, to give ourselves an equi-

librium axisymmetric DF, F (J) at some time in the past before the non-axisymmetric modes

have grown, and compute the present-day non-axisymmetric DF in the presence of such modes.

There are however a few drawbacks with this method. The first and most obvious one is that

the method, at least in the form that we will use in this PhD work, is not self-consistent.

Moreover, the observed stellar DF is always measured over finite phase-space volumes, so it is

in fact the so-called coarse-grained DF. Over time, phase-space elements of high density are

stretched out into infinitesimally thin ridges that get mixed with phase-space elements of lower

density, so that the “practical” coarse-grained DF does not obey Vlasov. Furthermore, the

Nyquist-Shannon sampling theorem imposes limits on the minimum size of thin structures in

phase space that can form for a fixed number of particles over time, and this limit is reached on

rather short time scales (Beraldo e Silva et al., 2019). Once this limit is reached, the physical

system with a finite number of particles cannot form thinner structures, despite the collisionless

Boltzmann equation predicting that these structures should form. In practice, this means that,

if our backward integration is carried out for too long, the DF tracked by our method will lead

to sharp and unsmoothed features in velocity space, where chaotic features will also appear

as sharper than in the real world. To circumvent this problem, the integration will have to

be carried out only for a relatively limited time, adjusted so that the sharpness of resonant

features in velocity space resembles what is observed.

Keeping this in mind, we will use the backward integration modeling to fit a realistic non-

axisymmetric potential for the MW disk, including a multi-modal bar and spiral arms of distinct

pattern speeds. In the next section, we provide the final introductory details on how the method

is applied in order to model the MW. Starting from the axisymmetric components, followed
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by the bar, and on the spiral arms. The literature on the axisymmetric gravitational potential

is fairly well explored. The weight of the challenge remains on the bar and spiral arms, which

are non-axisymmetric structures. We briefly revisit some important insights from the extensive

and lively investigations into non-axisymmetric structures, relying on observations, theory,

and numerical simulations. These will prove helpful in establishing the fitting procedure and

analyzing the results.

1.3 Modeling the Milky Way and its non-axisymmetries

We are now in a position to start our modeling of the MW disk. Our main goal will be to produce

the first-ever full direct parametric fit to both the local velocity distribution (see Fig. 1.3) and to

the map of the radial velocity field within the Galactic plane (see Fig. 1.4), as measured with the

latest data from Gaia DR3. Such a parametric non-axisymmetric potential will be a valuable

asset for the community. To build our non-axisymmetric model, described in Chapter 2, we must

start from an axisymmetric one, and subsequently add a bar and spiral arms as perturbations,

defined by several parameters. Within the then steady-state, axisymmetric potential, we use the

equilibrium phase-space DF of Eq. (1.27) to describe our tracer population. However, we will

make use of a 2D projected version of the DF. To compute the DF F (x,v, t), at current time, at

position (x,v) of phase-space, we will first backward integrate the orbit whose initial condition

is (x,v) back to a time t′ before the formation of bar and spiral arms. Then, we will compute

the DF value when there was no non-axisymmetric structure, and we will be left with only the

axisymmetric components of the model, for which we know the DF. Since the DF is conserved

along the orbit, by computing it at the time before the formation of the bar and spiral arms,

we will obtain the current value for the DF. In practice, assuming that the tracer population

is represented by the equilibrium DF, F (J), in the axisymmetric background potential at time

t′, we transform (x′,v′) to action-angle variables using the “Stäckel Fudge” method coded in

AGAMA, compute the value of the DF. In fact, the phase-space volume conservation properties of

the Vlasov equation and of canonical transformations, allow us to attribute the same value of

the DF to the phase-space position (x,v) at present time t = 0 in the presence of the bar and

spirals. In the fitting process, each set of parameters for the gravitational potential will lead

to a specific prediction on stellar densities and velocity distributions that can be compared to
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Gaia DR3 data. In principle, the observables are obtained from knowing the DF continuously:

ρ(x, t) =
∫
F (x,v, t)d3v

v(x, t) = ρ−1(x, t)
∫

vF (x,v, t)d3v
(1.48)

In practice, however, we need to coarse-grain the DF to compare its observables to binned data.

Therefore, we evaluate the DF on grid points. We assume that it is the average value for the

cell phase-space volume centered in the grid xi. So we can write for the model as well at each

cell position:

ρ(xi, t = 0) =
Nx∑
j=1

Ny∑
k=1

Nz∑
ℓ=1

F
(
J
(
Ft′(xi,vj,k,ℓ)

))
∆vx ∆vy ∆vz

v(x, t = 0) = ρ(xi, t = 0)−1
Nx∑
j=1

Ny∑
k=1

Nz∑
ℓ=1

vj,k,ℓF
(
J
(
Ft′(x, vr,j, vϕ,k, vz,ℓ)

))
∆vx ∆vy ∆vz.

(1.49)

As mentioned hereinabove, this poses a few practical problems, but these are not too severe as

long as the integration time does not become too long.

Our model predictions can be directly compared to data, both qualitatively and quan-

titatively. This comparison can be carried out by evaluating how the observed phase-space

distribution from Gaia matches the model prediction on different projection planes, such as

at the velocity distribution in the Solar neighborhood or at different positions across the disk,

or the median radial velocity as a function of position. These comparisons form the basis for

establishing the fitting procedure to assess data and models. Furthermore, we can compute the

distribution of axisymmetric actions using the same approach.

As a final introductory material before delving into our work, we will now review some

rather technical details on the properties of the MW bar and spiral arms. This information

will prove to be very helpful as a foundation for the underlying hypotheses in our work, for

tailoring the fitting procedure, and for the subsequent analysis, which will be explained in detail

in Chapter 2.

The Galactic bar

Strikingly, about two-thirds of spiral galaxies in the local Universe are barred (Sheth et al.,

2008; Euclid Collaboration et al., 2025). Bars are often associated with spiral arms and with

nuclear, inner, outer, or pseudo rings, they are quite often elongated, but do not extend across

the whole galaxy. Early-type galaxies tend to have strong bars with nearly constant surface
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brightness along their major axis. Late-type galaxies typically exhibit slightly shorter, weaker

bars, with brightness profiles that are closer to the exponential profile observed in the disk. In

barred galaxies, boxy-peanut-shaped bulges are seen as the inner, vertically thickened regions

of the bar. This links the typically observed bulge structure of most disk galaxies directly to

the dynamics of the bar. It is important to mention that the physics regulating bar formation

and evolution remains poorly understood from the perspective of numerical simulations in a

cosmological context. Such simulations indeed struggle to produce large enough bars for a given

pattern speed, or even to produce bars at all, a problem, shared by literally all simulations in

a cosmological context that have a spatial resolution below 100 pc (e.g., Reddish et al., 2022).

In our own Galaxy, the existence of the MW bar was originally hypothesized from the ob-

servations of gas kinematics (de Vaucouleurs, 1964; Peters, 1975; Gerhard and Vietri, 1986;

Binney et al., 1991) and confirmed from (near-)infrared observations (e.g., Blitz and Spergel,

1991; Sellwood, 1993; Weiland et al., 1994; Binney et al., 1997) as well as bulge stellar kine-

matics (e.g., Zhao et al., 1994). It is nowadays clear that a large fraction of stars in the bulge

region indeed follow a rotating, barred, boxy/peanut-shaped structure connected to an edge-on

bar (Bland-Hawthorn and Gerhard, 2016).

Slightly before the advent of Gaia DR2, Portail et al. (2017) produced benchmark models

of the Galactic bar, that were fitted to three-dimensional density maps of red clump giants, ob-

tained after extinction and completeness corrections from infrared photometry (VVV, UKIDSS,

2MASS), combined with stellar kinematics from spectroscopic surveys (BRAVA, ARGOS) and

astrometric measurements (OGLE) of stars in the bar region. They used a made-to-measure

(M2M) modeling method, which is a hybrid method between simulation and orbit-fitting, char-

acterizing the non-axisymmetric DF numerically through a self-consistent N -body simulation

(Syer and Tremaine, 1996). In this approach, the mass of particles in the simulation is grad-

ually fine-tuned throughout the system’s evolution, providing the advantage of reproducing

averaged observables non-parametrically. Although various bar pattern speeds were considered

without reaching a firm conclusion, the resulting best-fit mass distribution model of Portail

et al. (2017) can be taken as a benchmark model for the MW bar. It also reproduces the

disk and dark matter halo gravitational potentials remarkably well: perhaps surprisingly, their

best-fit dark matter halo presents a central constant density core, which might present a chal-

lenge to understand in a cosmological context. This model will be used as reference in this

thesis for the axisymmetric and bar gravitational potential (see also Thomas et al., 2023), as

described further in Chapter 2. The models of Portail et al. (2017) were also thoroughly tested
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in Clarke et al. (2019) against a comprehensive three-dimensional kinematic map of the bulge

and bar regions. These investigations used proper motions from the VVV Infrared Astromet-

ric Catalogue (VIRAC) calibrated on Gaia DR2. Later, Clarke and Gerhard (2022) further

showed that the models of Portail et al. (2017) reproduce observed features well, despite not

being fitted to them, supporting their robustness to overall characterization of the axisym-

metric and bar potential, with the limitation though on the exact bar pattern speed estimate.

Different models in Portail et al. (2017) also have different bar pattern speeds: models from

Ωb = 37.5 km s−1 kpc−1 to Ωb = 42.5 km s−1 kpc−1 all show good compatibility with the data.

Varying the pattern speed, Clarke et al. (2019) found the model with Ωb = 37.5 km s−1 kpc−1

to qualitatively best reproduce all observables from the combined VIRAC and Gaia DR2 data

for the bar and bulge regions. More recently, Clarke and Gerhard (2022) fitted to the same

dataset a lower quantitative estimate of Ωb = 33.29 ± 1.81 km s−1 kpc−1. This estimate is well

below the initial constraint on Ωb set by Portail et al. (2017). This discrepancy is partly due

to differences in data, the fitting methodology, and the error estimates for both the data and

the models. Such low pattern speeds have alos recently been reported in terms of signatures of

the bar in the stellar halo (Dillamore et al., 2025).

This highlights the sensitivity of pattern speed determinations to both the data and model-

ing approach. It illustrates the general challenge of measuring pattern speeds of non-axisymmetric

Galactic structures. The bar’s pattern speed remains a topic of debate until this day. Less

than three decades ago, a consensus emerged for a bar pattern speed in the range Ωb ∼ 50-

60 km s−1 kpc−1, based on various lines of evidence. These included hydrodynamical simulations

comparing the modeled gas flow to observed Galactic CO and HI longitude-velocity diagrams

(Fux, 1999; Englmaier and Gerhard, 1999; Bissantz et al., 2003), the so-called “Tremaine and

Weinberg (1984)” method applied to stars in the inner Galaxy (Debattista et al., 2002), or local

stellar kinematics (Dehnen, 1999b; Dehnen, 2000; Fux, 2001) positioning the Sun marginally

beyond the 2:1 OLR of the bar. The latter argument has been supported by numerous sub-

sequent analyses (e.g., Minchev et al., 2007; Quillen et al., 2011; Antoja et al., 2012; Antoja

et al., 2014; Fragkoudi et al., 2019). From 2015 on, however, rival research works presented a

revised pattern speed of Ωb ∼ 35-40 km s−1 kpc−1. This was based on analyses of the density

of red clump stars in the disk (Wegg et al., 2015), gas kinematics (Sormani et al., 2015; Li

et al., 2016), dynamical modeling of stellar kinematics in the inner Galaxy (Portail et al., 2017,

see hereinabove), and proper motion data from the VVV survey (e.g., Clarke et al., 2019, see

hereinabove too), including with the Tremaine-Weinberg method (Sanders et al., 2019). Pérez-

40



Villegas et al. (2017) and Monari et al. (2019a) subsequently demonstrated that the Galactic

model adjusted to bulge stellar kinematics by Portail et al. (2017) could effectively replicate

several observed features in local velocity space (see also Monari et al., 2019b; Binney, 2020;

D’Onghia and Aguerri, 2020; Lucchini et al., 2024). Such a lower bar pattern speed is also

consistent with observed overdensities in the stellar halo phase-space (Dillamore et al., 2024),

where the best fit can sometimes be even lower (Dillamore et al., 2025), and with the chemistry

of the disk (Haywood et al., 2024; Khoperskov et al., 2024). Other intermediate and even much

lower pattern speeds have been proposed (Hunt and Bovy, 2018; Horta Darrington et al., 2025).

Several studies concluded that stellar kinematics of the disk alone were not sufficient to break

the degeneracy (Trick et al., 2021; Trick, 2022; Bernet et al., 2024). On the other hand, today,

kinematics of stars in the bar region itself seem to have converged to Ωb ∼ 35-40 km s−1 kpc−1.

Possible sudden variations of the pattern speed are also possible (Hilmi et al., 2020). A steady

decrease of the pattern speed of the bar with time has been tentatively detected (Chiba et

al., 2021; Chiba and Schönrich, 2021), although degeneracies with spirals arms should still be

checked in detail. A decelerating bar may also explain some aspects of the vertical disequilib-

rium of the Galactic disk, such as the two-armed phase-spiral in the inner disk (Li et al., 2023),

and can partially contribute to the presence of metal-poor stars with prograde planar orbits in

the Solar vicinity (Li et al., 2024; Yuan et al., 2024).

The Galactic spiral arms

Spirals in external disk galaxies often display two-armed grand-design features. However, on

top of these clear grand-design spirals, there are also smaller numbers with threefold, fourfold,

and fivefold symmetries. In contrast, some spirals do not fit these clear patterns and appear

flocculent. Notably, depending on the observational tracer, the same galaxy might appear

as a grand design on one band and flocculent on another, or even featureless, highlighting a

contrast in appearance due to different stellar or interstellar medium tracers. For example, in

the near-infrared, arms trace the old stellar backbone of the disk, whereas optical and ultraviolet

bands emphasize young stars and H II regions along the arms, resulting in a sharper and more

fragmented appearance in gas-rich tracers. Spiral properties further contrast in length, strength,

and pitch angle depending on morphological type and bar presence. Additionally, some spiral

galaxies may exhibit rings in their inner, outer, or nuclear central regions, and these rings may

also be associated with the presence of a bar. Recent observations have added new contrasts

to our understanding of spiral properties—such as the possible evolution of pitch angles over
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time (about 1◦Gyr−1 (Yu and Ho, 2020; Reshetnikov et al., 2023)) and the apparent preference

of pitch angle values around 12◦ and 23◦ with a scatter of ∼ 4◦. While the pitch angle and

spiral amplitude do not appear to be correlated, there are however good theoretical reasons

to expect a three-fold correlation between the amplitude, pitch angle and pattern speed of the

spiral arms (Hamilton, 2024), which we will be using as a prior for our own modeling.

The specific location and dynamics of spiral arms in the MW present a less clear observa-

tional picture than even that of the bar. Although the idea that the MW could host spiral

arms dates back to as early as its classification as a disk galaxy, extinction long obscured clear

identification. It was not until the work of Morgan et al. (1952)—who identified these arms

through HII region distributions—and the subsequent kinematic analysis of the HI 21-cm line

by Oort et al. (1958), that their existence was observationally supported. Using distances to OB

associations and HII regions, Georgelin and Georgelin (1976) mapped a four-armed spiral pat-

tern. This view has been consistently confirmed with young or gaseous tracers (e.g. Urquhart

et al., 2014); in contrast, older/redder tracers—which should better reveal perturbations in

the Galactic potential—do not confirm this structure. Indeed, Drimmel (2000), Drimmel and

Spergel (2001), Benjamin et al. (2005), and Churchwell et al. (2009) found with near-infrared

and mid-infrared tracers that the MW seemingly hosts two main spiral arms.

Collecting data on HII regions and giant molecular clouds, Hou et al. (2009) showed that

models of three-armed and four-armed logarithmic spirals could connect those different spiral

tracers, as reviewed in Shen and Zheng (2020). In summary, it is no exaggeration to say that

different tracers and observations are far from converging on parameters describing the positions

of each spiral arm segment in the MW disk. The so-called Local arm, for example, has been

found by Gaia Collaboration et al. (2023b) and Poggio et al. (2021), tracing young stars, to be

more extended – and to have an intermediary pitch angle – compared to Vázquez et al. (2008)

where this arm rather heads outwards to the Perseus arm, or to Xu et al. (2021) where the

Local arm heads inwards to the Carina–Sagittarius arm. Similar debates exist regarding the

Perseus arm and the Outer arm with respect to their positions in the disk and pitch angles.

Perhaps most strikingly, the pitch angle of the Perseus arm has been found to be ∼ 24◦ in

Levine et al. (2006), compatible with results of Poggio et al. (2021) or Drimmel et al. (2024),

and ∼ 9◦ in Reid et al. (2019), meaning that the name does not actually always refer to the

same observed overdensities in the Galactic plane. The situation regarding the pattern speed of

spiral arms is even more confused, as its signature can also depend on their dynamical nature

and origin (see Sellwood and Masters, 2022, for a review).

42



Keeping in mind this range of observations and interpretations, several tentative measure-

ments of the amplitude and pattern speed of spiral arms have been made over time. Origi-

nally, Lin et al. (1969) proposed a 2-armed model with pitch angle of 6◦ and pattern speed

of Ωs,2 ∼ 13 km s−1 kpc−1 based on the systematic motion of gas and the displacement of

moderately young stars in their classical density wave model. A more recent estimate based

on the classical Lin and Shu (1964) density wave formalism has been made by Siebert et al.

(2012) fitting the mean radial velocity map from the RAVE survey and finding a best-fit 2-

armed spiral model with a contrast surface density of 14%, a pitch angle of 10◦ and a pattern

speed of Ωs,2 ∼ 18.6 km s−1 kpc−1. This model, however, neglected the effect of the bar (see,

e.g. Monari et al., 2014). On the other hand, Amaral and Lepine (1997) argued for a super-

position of a 2-armed and 4-armed spiral, both with a pattern speed of ∼ 20 km s−1 kpc−1

based on tracing back open clusters to their birth place. Such a procedure was recently car-

ried out by Castro-Ginard et al. (2021), finding a declining pattern speed with radius from

∼ 50 km s−1 kpc−1 for the Scutum arm segment to ∼ 17 km s−1 kpc−1 for the Perseus arm

segment. Modeling the gas flow in the inner Galaxy, Bissantz et al. (2003) obtained a joint

measurement of the bar and 4-armed spiral pattern speeds, with a very high pattern speed for

the bar, Ωb ∼ 60 km s−1 kpc−1, and a 4-armed spiral pattern speed of Ωs,4 ∼ 20 km s−1 kpc−1.

More recently, again neglecting the bar, Eilers et al. (2020) applied a toy model of a logarith-

mic spiral to Gaia DR2 mean Galactocenric radial velocity field to suggest a contrast surface

density of ∼ 10%, a pitch angle of 12◦ and a fixed pattern speed of Ωs,2 = 12 km s−1 kpc−1

for a 2-armed spiral corresponding to the Local and Outer arms. Such low pattern speeds had

also previously been suggested by, e.g., Sellwood (2010) based on the signature of a spiral ILR

in local stellar kinematics (∼ 8 km s−1 kpc−1 for a 2-armed spiral and ∼ 15 km s−1 kpc−1

for a 3-armed spiral). Regarding the amplitude, the most recent determination, based on the

vertical Jeans equation, has found the Local arm to be the strongest local overdensity, with a

contrast density of roughly 20% (Widmark and Naik, 2024).

Beyond observational approaches, numerical simulations of galactic disks offer multiple

perspectives on this topic, from transient corotating structures winding up and disappear-

ing quickly (e.g., Baba et al., 2013; Hunt et al., 2018; Hunt et al., 2019), to multiple modes

persisting over a few (or even many) galactic rotations, falsely appearing as very short-lived due

to superposition of modes (e.g., Sellwood and Carlberg, 2014). In the following, our modeling

procedure will follow two main guidelines.

The first guideline is the current consensus that, when spirals appear as modes in simula-

43



tions, these are not strictly static as in the classical density wave picture (Lin and Shu, 1964),

but are rather made of a recurrent cycle of groove modes (seeded by a depletion of circular orbits

in a narrow range of angular momenta, see, e.g. De Rijcke and Voulis, 2016; De Rijcke et al.,

2019) that live between their ILR and OLR, where they can create new grooves which set up the

recurrent cycle (Sellwood and Carlberg, 2014; Sellwood and Carlberg, 2019). They can also be

edge modes (Fiteni et al., 2024). The amplitudes of the individual modes grow and decay, but

they are nevertheless genuine standing wave oscillations with fixed shape and pattern speed,

detectable over a period of at least one rotation. Complementing this, Hamilton et al. (2024a)

presents an analytical framework for studying the dynamics of galactic disks. Building on that,

Hamilton et al. (2025) shows that groove modes naturally arise in their unified linear response

theory as the long-wavelength limit of the same mechanism that produces density waves and

swing amplification. In this picture, a depletion of near-circular orbits seeds a self-gravitating

mode confined between its ILR and OLR, capable of amplifying to the order of magnitude of

density contrasts observed in galactic disks. This places the recurrent groove modes seen in

N -body simulations within a broader, continuous framework of spiral instabilities.

The second guideline that we will follow is that spectrograms of N -body simulations dis-

playing joint bar and spiral perturbations tend to display spiral arms rotating more slowly than

the bar; moreover, spiral arms are never present within the CR radius of the bar. These spirals

live between their own ILR and OLR but are usually strongest between their ILR and CR

(Quillen et al., 2011). Our modeling approach will not account for the possibility of winding

spirals over time.

1.4 Outline

The DR3 of the Gaia mission now provides full six-dimensional phase-space information on the

MW disk for a larger number of stars and over a larger volume than ever before. However, the

rich information contained solely within the in-plane motions of stars (e.g., Gaia Collaboration

et al., 2018a; Gaia Collaboration et al., 2023b) has not been fully exploited yet. Indeed, these

in-plane motions should – in principle – allow us to get a detailed dynamical mapping of the

most important non-axisymmetric structures of the MW disk, namely the Galactic bar and the

spiral arms. However, such a detailed mapping is still lacking. This is the focus of this thesis.

We will attempt to fully exploit the rich information encoded within the in-plane stellar

motions in Gaia DR3 (Gaia Collaboration et al., 2023b) to constrain dynamically the non-
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axisymmetries of the Galaxy. Previous similar attempts include the more empirical approach

of Khoperskov et al. (2020) and Khoperskov and Gerhard (2022), as well as the recent works of

Hunter et al. (2024) and Vislosky et al. (2024), with the later comparing three hydrodynamical

simulations of galaxies to the velocity maps from Gaia in order to get insights on the bar-spiral

orientation. Our approach hereafter is complementary since, instead of qualitatively comparing

a self-consistent hydrodynamical simulation to the data, we attempt a more quantitative fit to

the stellar phase-space data from Gaia. For this, we will resort to backward integrations to

model the velocity field with a parametric form of the gravitational potential. Our approach is

also complementary to the modeling of Khoperskov et al. (2024) and Khoperskov et al. (2025),

who only considered the bar but not the effect of spiral arms.

In Chapter 2, we first briefly present the data extracted from the RVS sample of Gaia

DR3 that we use to constrain the potential from the MW disk kinematics in Section 2.1. The

modeling method and the parametrization of the potential are introduced in Section 2.2. The

fitting procedure and the fit results are presented in Section 2.3. Since the fit was done in 2D, the

three-dimensional extension of the non-axisymmetric potential is then explored in Chapter 3.

Chapter 4 explores predictions and applications of the model, including the mapping of spiral

arm locations, azimuthal and radial velocity fields, the chemo-dynamics of moving groups, and

implications for Solar and stellar orbits. Finally, Chapter 5 summarizes the main findings and

outlines some prospects for future work.
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Chapter 2

2D non-axisymmetric gravitational

potential for the Milky Way

2.1 Data

Since we are planning to use the in-plane motions of disk stars to constrain the non-axisymmetries

of the MW, we select a sample of stars with six-dimensional phase-space information from the

Gaia RVS close to the Galactic plane. We use data from Gaia DR3 (Gaia Collaboration et al.,

2023d) combined with the StarHorse (Anders et al., 2022) distances, and select 17 414 667 stars

within a height of 300 pc from the Galactic plane.

We adopt, for the Sun’s position x⊙ = (x⊙, y⊙, z⊙) and velocity v⊙ = (Vx⊙ , Vy⊙ , Vz⊙) in

Galactocentric Cartesian coordinates, x⊙ = (8275, 0, 15.29) pc and v⊙ = (−9.3, 251.5, 8.59) km s−1

(Gaia Collaboration et al., 2023b; Portail et al., 2017; Widmark and Monari, 2019), respec-

tively. We then transform the data from equatorial coordinates to Galactocentric coordinates

with the Astropy library (Astropy Collaboration et al., 2022) to compute the stars’ positions

in Galactocentric Cartesian coordinates, x = (x, y, z) and their in-plane velocities in Galac-

tocentric Cylindrical coordinates, v = (VR, Vφ), with the Galactocentric radius R =
√
x2 + y2

and azimuth φ = arctan(y/x), defined to be zero at the azimuth of the Sun and positive

in the direction of Galactic rotation. The stars are selected within 4 kpc < x < 12 kpc and

−4 kpc < y < 4 kpc.

Figure 2.1 shows the local stellar velocity distribution in a cylinder around the Sun, with

radius and half-height varying from 100 pc to 300 pc. The left panel, with a 100 pc radius

and 1.8 × 105 stars, already reveals some velocity-space ridges. Increasing the height to 200 pc

includes 9.1×105 stars and enhances these features. At 300 pc, the ridges become well populated
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Figure 2.1: 2-dimensional histogram of the number density of stars from the Gaia RVS disk
sample in the local (VR, Vφ) plane. For each panel, the stars were selected within cylinders of
hc pc radius and ±hc pc height around the Sun. From left to right, hc = 100, 200, 300 pc,
respectively, with N indicating the number of stars in the cylinder. The distribution is shown in
the (VR, Vφ) plane defined on a [−200, 200] kms−1×[0, 400] kms−1 grid, binned with (1 kms−1)2

bins.

Figure 2.2: Zoomed view of the last panel at right of Fig 2.1 with the locations of the different
moving groups. Note that VR is positive towards the outer Galaxy, hence in the opposite
direction from u in Fig. 1.3.
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Figure 2.3: Same distribution as in Fig 2.2 on the actions (Jφ, JR) plane (computed with
AGAMA in the axisymmetric potential of Table 2.1) defined on a [0, 600] kms−1 kpc−1 ×
[200, 3000] kms−1 kpc−1 grid, binned with (3 × 2 km2 s−2 kpc−2) bins.
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Figure 2.4: Median radial velocity ṼR (x, y) as a function of the position in the Galactic plane
for the full sample of 17 414 667 stars with |z| < 300 pc. The grid is defined as [4, 12] kpc ×
[−4, 4] kpc, binned with (125 pc)2 bins. The Galactic center is located at (x, y) = (0 kpc, 0 kpc),
the Sun at (x, y) = (8.275 kpc, 0 kpc) is represented with a cross, and the sense of rotation of
the Galaxy is anti-clockwise, hence in the opposite sense of rotation compared to Fig. 1.4.

Figure 2.5: Similar to Fig 2.4 for different Vz cutoffs. From left to right: sample without cutoff,
as in Fig 2.4, with 17 414 667 stars, followed by maps of samples with cutoffs |Vz| < 15 kms−1,
|Vz| < 10 kms−1 and |Vz| < 5 kms−1, respectively, with 11 427 688, 8 583 274 and 4 681 930 stars
each.
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and defined, as detailed in Fig. 2.2. This configuration, comprising 2.1×106 stars, serves as our

reference local 2-dimensional velocity distribution for the Gaia RVS disk sample on the local

(VR, Vφ) plane.

In Fig. 2.2, we also indicate the location of several of the well-known moving groups of

the Solar neighborhood (e.g., Dehnen, 1998; Famaey et al., 2005; Antoja et al., 2008; Ramos

et al., 2018; Bernet et al., 2022). The “Hat” can be seen as the downward concave arch at high

Vφ, from (VR, Vφ) ≈ (−100 kms−1, 270 kms−1) to (VR, Vφ) ≈ (120 kms−1, 260 kms−1); The

Sirius moving group (e.g., Famaey et al., 2008) is approximately straight at Vφ ≈ 255 kms−1,

located between VR ≈ −50 kms−1 and VR ≈ 0 kms−1, with a peak at VR ≈ −15 kms−1;

Coma is right below Sirius in azimuthal velocity, around (VR, Vφ) ≈ (0 kms−1, 245 kms−1);

The Hyades moving group (e.g., Famaey et al., 2007; Pompéia et al., 2011) can be seen as a

slightly curved downward arch from the over-density at (VR, Vφ) ≈ (20 kms−1, 230 kms−1);

The Horn is right next to the Hyades, on the other side in VR: it appears as an arch going

through (VR, Vφ) ≈ (−80 kms−1, 200 kms−1); finally, the major Hercules moving group is

perceived as a bimodality of the whole velocity-plane, with an under-density, just below the

Hyades in azimuthal velocity, separating it from the rest of the distribution. Its bimodality

appears clearly, with a second overdensity appearing at low Vφ.

Another way to visualize these arches, which, however, visually erases the asymmetries in

radial velocity, is to plot the distribution of stars in the local axisymmetric action space (e.g.

Trick et al., 2019; Trick et al., 2021). As a reminder from the previous Chapter, the azimuthal

action is simply Jφ = RVφ, whilst the radial action JR (computed with the Stäckel fudge within

the background axisymmetric potential defined in Sect. 2.2) encodes the (Galactocentric) radial

excursions of a given orbit. In Fig. 2.3, the arches in local velocity space are now seen as ridges

in local action space, characteristic of resonant features (e.g., Monari et al., 2017a; Binney,

2020).

These features of local velocity and action space, traced with exquisite precision, have,

however, been known for a long time (see Fig. 1.3). The most interesting added value of Gaia

data releases has been to expand the volume around the Sun where such dynamical features

can be studied (e.g., Ramos et al., 2018; Bernet et al., 2022). In order to adjust the non-

axisymmetric components of the Galactic potential in the present work, we will however refrain

from using the full phase-space distribution of disk stars, and will rather fit the measure of a

central tendency as a function of position in the disk, namely the median Galactocentric radial

velocity (Gaia Collaboration et al., 2023b). This map of median radial velocity is displayed in
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Fig. 2.4 and will be the main observable adjusted in the present work. We will check only a

posteriori the qualitative agreement with the full phase-space distribution of stars.

Since our modeling will be based on a projected 4D phase-space DF (marginalizing equa-

tion 1.27 over z and Vz) of the disk stellar populations – a DF that is supposed to take into

account stars with non-zero vertical velocities –, we do not make any additional cuts on the

vertical velocity in the data. However, while our DF is a projected one, our orbit integrations

will be performed only within the plane. Therefore, we also checked that selecting only stars

with vertical velocities below 15 km s−1, allowing to keep a reasonable number of 11 427 688

stars in the dataset, led to an almost identical median radial velocity map. The maps of median

radial velocity for different cutoffs in Vz are show in Fig 2.5. For the important points of the

fit, the typical differences are below 0.5 km/s, with a maximum difference of 1 km/s.

2.2 Modeling

To build our non-axisymmetric potential, we start from an axisymmetric one, and we will

subsequently add a bar and spiral arms, defined by several parameters as described in the

following subsections. Then, to evaluate the DF in this non-axisymmetric potential, we will

follow the backward integration modeling introduced in Section 1.2.6. In order to compute the

f(x,v, t), at current time t = 0, at the phase-space point (x,v), in the presence of the bar

and spiral arms, we will backward integrate the orbit for a fixed integration time to its phase-

space position (x′,v′) at time t′ < 0, before the actual appearance of the non-axisymmetric

perturbers. Assuming that the tracer population is represented by the equilibrium DF, F (J),

in the axisymmetric background potential at time t′, we transform (x′,v′) to action-angle

variables using the AGAMA Stäckel fudge, compute the value of the DF, and since this value in

an infinitesimal Lagrangian volume is conserved, we attribute the same value of the DF to the

phase-space position (x,v) at present time t = 0 in the presence of the bar and spirals.

In practice, the orbits are integrated within the plane only, by solving the initial value prob-

lem with the Runge-Kutta of order 5 method odeint solver from the very efficient torchdiffeq

library (Chen, 2018) in PyTorch (Paszke et al., 2019). Doing this at numerous phase-space lo-

cations allows us to compute the median radial velocity as a function of position in the disk,

and to adjust the parameters of the non-axisymmetric components in order to fit the observed

values. In practice, the median radial velocity at each grid position (sampled every 50 pc in

x and y) on the disk is computed after locally integrating the values of the DF in Vφ for a
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grid of velocities on which the backward integration is performed at each position. This grid

ranges from −79 kms−1 to 79 kms−1 with a step of 2 kms−1 in VR, and from 110 kms−1 to

330 kms−1 with a step of 4 kms−1 in Vφ. The potential is evaluated on a grid of radii that is

subsequently interpolated with a cubic spline in the torchcubicspline library in Pytorch to

improve computational time. Similarly, we also interpolate, with Scipy (Virtanen et al., 2020),

a cubic spline to the actions computed with AGAMA.

There are three caveats with the method, which are worth mentioning (re-mentioning),

even though addressing them in detail is far beyond the scope of our present first quantitative

approach to the problem. First, we are using the full disk sample described in the previous

section without taking into account a detailed selection function, assuming that the high number

of stars that we use allows for a good estimate of the true median velocity. This should be the

easiest caveat to address in our future invsetigations. The second caveat is that, as we already

mentioned, the observed stellar DF is always measured over finite phase-space volumes whilst

the backward integration method operates under the assumption that the mean value of the DF

within a given phase-space volume is equivalent to its value at the central point, irrespective of

how the volume deforms during the system’s orbital evolution. In other words, the backward

integration method yields the fine-grained DF, which will typically remain unsmoothed at

small scales, whilst the measurable DF within observations is the coarse-grained one, which

does not obey the collisionless Boltzmann equation (as this coarse-grained DF is smoothed by

phase-mixing within finite volumes). The Nyquist-Shannon sampling theorem imposes limits

on the minimum size of fine structures in phase space that can form for a fixed number of

particles over time, and this limit is reached on rather short time scales, shorter than collisional

relaxation (Beraldo e Silva et al., 2019). Once this limit is reached, the system cannot form

finer structures, despite the collisionless Boltzmann equation predicting that these structures

do form. In practice, this means that, if the integration is carried out for too long, the fine-

grained DF tracked by the backward integration method will lead to sharp and unsmoothed

features in velocity space, where chaotic features will also appear as sharper than in the real

world. To circumvent this problem, the integration must be carried out only for a relatively

limited time, adjusted so that the sharpness of resonant features in velocity space resembles

what is observed. Luckily, N -body simulations indicating the existence of recurrent cycles of

groove modes in galactic disks (Sellwood and Carlberg, 2014; Sellwood and Carlberg, 2019)

allow us to consider that current spiral arm modes of the Milky Way are rather recent. This

assumption is, of course, not ideal for the bar, but it is reasonable to assume that the location
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of the resonant features in local velocity space will not evolve with time, whilst their sharpness

will. Hence, we will only deal with the location of resonant features in local velocity space to

constrain the pattern speed of the bar, and rely on a parametric form of its potential adjusted

to the dynamics of the bulge region (Portail et al., 2017; Thomas et al., 2023) for its amplitude.

It would be too costly to resort to a forward integration method within the fitting scheme

that we set out to apply in the present Chapter, given the size of the parameter space to

explore, and given that each combination of parameters requires a full backward integration

of the whole Galactic plane. However, the results obtained in this Chapter will serve as a

basis for forward-in-time test-particle simulations, also expanded to three dimensions, that we

will present in the next Chapter. Finally, a third and last caveat is that our simulations are,

by design, not self-consistent. This simplification is much more efficient for exploring a vast

parameter space. However, future improvements of our method might rely on an adaptation

of the made-to-measure method (Syer and Tremaine, 1996; Portail et al., 2017) to account for

self-consistency, using the results presented hereafter as a basis.

2.2.1 Background axisymmetric potential

As outlined hereinabove, our method makes use of an axisymmetric background potential. In

practice, we assume a 3D axisymmetric density profile for this background, and the potential is

computed by solving Poisson’s equation with AGAMA. The density profile is the summed density

of each of the following components: stellar disk, gas disk, bulge, and dark matter halo. Then,

in the current Chapter, we will only make use of the potential within the Galactic disk when

adding on top of it the bar and the spirals.

The axisymmetric stellar and gas disk density profiles are parametrized in Galactocentric

cylindrical coordinates (R, z) as:

ρdisky(R, z) = Σ0

2hz

exp
(

−
∣∣∣∣ zhz

∣∣∣∣) exp
(

− R

hR

)
, (2.1)

with the central surface density Σ0, scale height hz (and hence central 3D density Σ0/2hz), and

scale length hR. The spherical density profile for the bulge and dark matter halo is given by:

ρspheroidal(R, z) = ρ0

(
r̃

a

)−γ (
1 + r̃

a

)γ−β

exp
[
−
(
r̃

rs

)α]
, (2.2)

with a density normalization ρ0, a scale radius a, an outer scale radius rs, and exponents α,
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Figure 2.6: The circular velocity curve of the background axisymmetric potential described
in Sec. 2.2.1. The scatter points are adapted from Eilers et al. (2019) to the value of the
Galactocentric Sun’s velocity and position used in this thesis.

β, γ. The ellipsoidal radius is defined as r̃ =
√
R2 +

(
z
q

)2
, with q the vertical axis ratio. All

parameters are given in Table 2.1. The baryonic mass of the model is 6 × 1010M⊙ and the

dark matter halo is relatively light, with a mass of 3.1 × 1011M⊙, in between the typical values

obtained from circular velocity curve analyses (e.g., Jiao et al., 2023; Ou et al., 2024) and those

obtained from escape speed curves, satellite dynamics or stream fitting (e.g., Monari et al.,

2018; Callingham et al., 2019; Roche et al., 2024b; Ibata et al., 2024). Only the mass in the

inner Galaxy, however, matters for our present modeling: the total enclosed mass (baryons and

dark matter) within 20 kpc is 2.2 × 1011M⊙, roughly in agreement with the Malhan and Ibata

(2019) constraint. The local dark matter density at the Sun’s position is 1.3 × 10−2M⊙ pc−3,

consistent with most estimates (de Salas and Widmark, 2021, and references therein). In the

center, the dark matter halo displays a constant density core (with a central power-law slope of

0) as well as a shallow power-law decline close to the center with a slope of -0.6 at R = 1 kpc

and of -1 at R = 3 kpc. All these background potential parameters could in principle be left

free in our fitting procedure hereafter, but to simplify the problem, they have all been fixed
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Figure 2.7: The number density ρN of stars in velocity space at the Sun’s position from the
equilibrium DF described in Sec. 2.2.2, for a normalization factor such that the total number
in the model at the Sun is the same as found in the data within the 300 pc cylinder around the
Sun (as in Fig 2.2).

to resemble closely the axisymmetric part of the model by Portail et al. (2017). The circular

velocity curve corresponding to this axisymmetric model is plotted in Fig. 2.2.1. The non-

axisymmetric modes that will be added on top of this axisymmetric background will all have

zero total mass, meaning that the total mass of the final non-axisymmetric model will be the

same as that of the axisymmetric one. Since our orbits will be computed strictly within the

plane, we only need hereafter the background potential within the plane, Φ0(R).

2.2.2 Axisymmetric equilibrium distribution function

The second step of our procedure consists of choosing an equilibrium DF for the tracer stellar

population within the plane. Since we are confined to the plane, we do not attempt here to

be fully self-consistent, in order to allow for a simple and tractable form of the DF, namely a

simple linear combination of two quasi-isothermal DFs F2D(JR, Jφ) = Fthin,2D + ζFthick,2D, that
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Table 2.1: Fixed parameters for the axisymmetric background density.
Disky density profiles

Component Σ0 (103M⊙ pc−2) hR (kpc) hz (kpc)
Stellar disk 1.19 2.4 0.30
Gas disk 0.07 4.8 0.13

Spheroidal density profiles
Component ρ0 (10−1M⊙ pc−3) a (kpc) rs (kpc) α β γ q

Bulge 1.08 8.16 0.83 2.0 2.9 1.3 1.0
DM halo 4.56 − 0.65 0.50 0.0 0.0 0.8

1

are two-dimensional in action space, and both adapted from Eq.(1.27) by projecting it onto the

plane:

F2D(JR, Jφ) = η
Ω(Jφ)

κ(Jφ)σ̃2
R(Jφ)exp

(
−Rg(Jφ)

hR

)
exp

(
−JRκ(Jφ)
σ̃2

R(Jφ)

)
, (2.3)

with ζ = 0.05, Rg the guiding radius, Ω, κ the circular and epicyclic frequencies, all three

depending on the azimuthal action Jφ, hR the disk scale length, η the normalization factor

(in units of inverse length squared) of the tracer population, and finally the radial velocity

dispersion σ̃R depending on the guiding radius and on hσ,R, the kinematic scale-length of the

tracer population as defined in Eq. 1.28. For Fthin,2D, we set the scale length to hR = 2.4 kpc

in accordance with the potential, the velocity dispersion at the Sun’s position to σ̃R,thin(R0) =

30 kms−1, and the kinematic scale length to hσR
= 10 kpc. For Fthick,2D, the only difference

is that we set σ̃R,thick(R0) = 55 kms−1. The latter parametrization is a very rough way of

taking into account the thick disk, and should definitely be improved within further works,

especially once tagging tracer populations chemically. It is nevertheless good enough for our

present, purely dynamical, investigation. Our DF corresponds to a projected four-dimensional

DF in phase-space, namely in units of inverse length-squared times inverse velocity-squared,

hence corresponding to the 6D DF of the modeled disk populations integrated over heights and

vertical velocities. The local velocity distribution at R = R0 corresponding to this axisymmetric

DF is displayed in Fig. 2.7. In practice, the normalization factor is adjusted such that the

number of stars in the model at the Sun is the same as found in the data within the cylinder

of 300 pc radius and ±300 pc height around the Sun.
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2.2.3 Non-axisymmetric potential

The third step of our procedure is to add non-axisymmetric modes on top of the axisymmetric

background potential Φ0. The total potential is obtained by adding to Φ0(R) the real part of

the following:

Φtot(R,φ, t) = Φ0(R) +
∑
m

ϕb,m(R, t) exp[im(φ− φb,0 − Ωbt)]

+
∑
m

ϕs,m(R, t) exp[im(φ− φs,m,0 − Ωs,mt)], (2.4)

where the current phase and the pattern speed of the bar are respectively φb,0 and Ωb, and

those of the spiral arms mode m respectively φs,m,0 (the present-day spiral phase at the Solar

position) and Ωs,m. The amplitude of each mode is given by ϕb,m and ϕs,m for the bar and

spirals, respectively. The time t is such that currently t = 0.

As outlined hereinabove, the amplitude of the modes of the bar potential is fixed to values

that fit well the dynamics of the bulge region. Namely, the bar potential is a superposition

of three Fourier modes, with the same parametric form as in Thomas et al. (2023), closely

resembling the first three even modes of the bar potential derived in Portail et al., 2017. From

this same potential, the bar angle phase is fixed to be φb,0 = 28◦. The amplitude of each bar

mode m is given by:

ϕb,m(R, t) = Gb(t)Ab,m(R) Φ0(R), (2.5)

where Gb(t) ≤ 1 is the growth function for the bar, and Ab,m is the relative amplitude of the

bar mode given by

Ab,m(R) = Kb,m (R/Rb,max)am−1(1 −R/Rb,max)bm−1, (2.6)

with Kb,m a global amplitude factor and Rb,max the radius at which the mode’s amplitude goes

to zero. Importantly, we consider that the amplitude has reached a plateau at the present time

Gb(t = 0) = 1. The values of Kb,m, am, and bm for each of the bar modes are presented in

Table 2.2. Only the pattern speed of the bar is adjusted to the location of resonant ridges in

local velocity space within our procedure (see the next Section).

The spiral arms potential that we propose is an adaptation of the analytical model of Cox
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and Gomez, 2002 described in Monari et al., 2016b, whose amplitude is given by

ϕs,m(R, t) = Gs,m(t)As,m(R) exp
[
im ln(R/R0)

tanps,m

]
Φ0(R), (2.7)

where Gs,m(t) is the growth function for the spiral arms mode m, set to Gs,m(t = 0) = 1, ps,m

is the pitch angle, and As,m is given by

As,m(R) = ξs,m(R)Hm(R) Φ0(R0)
Φ0(R) , (2.8)

where ξs,m is the amplitude factor of the mode, normalized to its value Ks,m at R = R0 with a

radial dependence as follows:

ξs,m(R) = Ks,m
(R2

0 sin2 ps,m +mhs,mR0 sin ps,m + 0.3m2h2
s,m) · (R3 sin ps,m + 0.3mhs,mR

2)
(R2 sin2 ps,m +mhs,mR sin ps,m + 0.3m2h2

s,m) · (R3
0 sin ps,m + 0.3mhs,mR2

0)
(2.9)

This adaptation of the Cox and Gomez, 2002 potential has the advantage of being easily

generalizable to 3D. Here, hs,m corresponds to the scale-height of the spiral potential, which we

fix to 130 pc. We have checked that our results are not very sensitive to this parameter and

are similar for any values between 100 pc and 300 pc. Finally, Hm is a radial cutoff function,

parametrized by an inner and an outer cutoff, respectively, Rs,m,min and Rs,m,max. The function

is simply:

Hm(R) =


1 if Rs,m,min ≤ R ≤ Rs,m,max,

0 otherwise.
(2.10)

This cutoff is chosen for simplicity, in a context where we do not aim for self-consistency.

However, in a context where the density-potential pair of a spiral mode is needed at the cut-

off, it is desirable to replace the step function by something like Hm ∼ 0.5(1 + tanh((R −

Rs,m,min)/∆cutoff)), where ∆cutoff → 0 corresponds to our present case. This will be further

explored in Chapter 3. The parameters of the spiral arms (for each mode: amplitude Ks,m,

pitch angle ps,m, present-day phase at the Solar position φs,m,0, and pattern speed Ωs,m) will be

adjusted to the data in the next Section, together with the bar pattern speed Ωb.
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Figure 2.8: 1-Dimensional distribution of the azimuthal velocity of stars in the Solar neigh-
borhood within 99 kms−1 < VR < 101 kms−1, a region of velocity space where the bar
impact dominates the distribution (over potential spiral arms signatures). In grey, the stellar
distribution from the Gaia RVS disk sample in the Solar neighborhood, smoothed with the
Savitzky-Golay filter from the SciPy library. Red line: the renormalized best bar-only model
at VR = 100 kms−1, with pattern speed Ωb = 37 kms−1kpc−1. For reference, we are provid-
ing the results for Ωb = 55 kms−1kpc−1 (green line), where only the 1:1 resonance leaves a
small signature at higher Vφ than the strong OLR peak. The approximate locations of the
different resonances evaluated with Eq. A.5 (described in the Appendix A) represented as red
(Ωb = 37 kms−1kpc−1) and green (Ωb = 55 kms−1kpc−1) dashes on top of the plot.
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2.3 Fitting procedure and results

2.3.1 Bar-only model

With all the parametric components of the potential defined above, we are now in a position to

launch our backward integrations to adjust the parameters to the data. As outlined here-above,

the amplitude of the modes and the phase of the bar potential are fixed to values that fit well

the dynamics of the bulge region. Only the pattern speed of the bar will now be adjusted to the

location of resonant ridges in local velocity space, excluding the spiral arms from the model.

Another hyperparameter to adjust and then fix is the (dummy) integration time, Tint, within

the backward integration context. This will not affect the location of ridges in local velocity

space, but will affect their apparent “sharpness”. As in Dehnen (2000), we separate the total

integration time into two equal-time phases of growth of the bar and plateau of its amplitude,

with the following growth function:

Gb(t) =


1 if − Tint

2 ≤ t ≤ 0,

3
16T 5 − 5

8T 3 + 15
16T + 1

2 if − Tint < t < −Tint
2 ,

(2.11)

where T ≡ (4t + 3Tint)/Tint. We choose to adjust those two parameters (pattern speed and

dummy integration time) to the 1-dimensional distribution of stars in the Solar neighborhood

for azimuthal velocities within 90 kms−1 < Vφ < 330 kms−1 at VR = 100 kms−1. This

distribution is shown in Fig. 2.8. The choice of analyzing the ridges at high VR prevents them

from being “contaminated” by the additional effect of spiral arms since, as we shall see in the

next subsection, these distort local velocity space mostly in the central regions of the velocity

ellipsoid. This adjustment of the bar pattern speed is made in the Solar neighborhood, which

is the most complete volume, so that peaks and valleys are not missing.

Quantitatively, we compare the sum of the squares of the differences of the 1-dimensional

distribution of azimuthal velocities in each bin of 2 kms−1 between the Gaia RVS disk sample

and the bar-only model. Only the location of the peaks matters here, so the DF renormalization

is applied only in the small VR range considered in Fig.2.8, instead of the DF normalization

applied within the whole local velocity space in all other instances. We find the best match at

Ωb = 37 kms−1kpc−1 for a total (dummy) integration time of 543 Myr, corresponding to 3.2

rotations of the bar. Note however that the velocity peak that can be attributed to Bobylev

moving group, or lower part of the Hercules bimodality (at Vφ ∼ 160 kms−1 in Fig. 2.8), is not
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recovered, and is never so by a bar-only model that also reproduces the hat at large Vφ. Our

best value of the pattern speed places the corotation radius of the bar at R = 6.6 kpc and its

OLR radius at R = 11 kpc.

In the first column of Fig. 2.10, we display the distribution of (VR, Vφ) velocities at the

Solar position (setting the value to zero in pixels with no stars in the data within 300 pc from

the Sun), of the local (Jφ, JR) action distribution, as well as the median Galactocentric radial

velocity ṼR as a function of position within the Galactic plane. Remarkably, the local kinematic

distribution corresponding to this bar-only model is already very similar to the observed one,

without any additional contribution from spiral arms (see also Monari et al., 2019a, for a less

quantitative but similar conclusion). The success of this bar model at producing so many

features resembling the observed local kinematic distribution comes from the signatures of the

Lindblad resonances of its multiple modes. We confirm this in the Appendix, where we provide

a simple formula based on constant energy lines within the improved epicyclic formalism of

Dehnen (1999a) in order to evaluate the approximate location of the signature of each bar

resonance in local velocity space. At VR = 100 kms−1, these approximate locations of the bar

resonances are also indicated as small dashes on top of Fig. 2.8. However, as it also appears

clearly in the third row of Fig. 2.10, the bar-only model produces a dipolar structure of median

radial velocities within the plane, far from the observed one. This implies that other dynamical

ingredients are required to reproduce this median velocity field, which will be the topic of the

following subsection. Another clear defect of the bar-only model, locally, is that the Sirius

moving group does not stand out in local velocity space. Quantitatively, if one considers the

density of stars within a strip of Vφ between 250 kms−1 and 260 kms−1 in local velocity space,

and compares the value at VR = −12 kms−1 to that at VR = 0 kms−1, one gets an increase of

∼25% in the data at VR = −12 kms−1 (the Sirius peak), while one gets a decrease of 11% in

the bar-only model (almost identical to the axisymmetric case). This indicates that Sirius is

likely caused by spiral arms.

2.3.2 Adding spiral arms

Given the failure of the bar-only model to reproduce the median radial velocity field, the next

step is to add non-axisymmetric modes corresponding to spiral arms.

We start by adding a single mode on top of the bar-only model (i.e., with now fixed Ωb =

37 kms−1kpc−1), with multiplicity m ∈ [1, 2, 3, 4]. We fix the scale height to be the same as

that of the gas component of the background potential, hs,m = 130 pc, the outer cut-off to be
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the OLR of the spiral, and the inner cut-off to be the larger between the corotation radius of

the bar and the ILR of the spiral (so that the spiral lives between its ILR and OLR but does

not penetrate within the corotation of the bar). The growth function Gs,m(t) has the same

form as the bar, and we fix the integration time to exactly one full rotation of the spiral arm

mode. In many other attempts, even allowing more than one rotation and a different growth

time, the best candidates in the method that follows tend to converge close to the preferred

values we found.

The exploration of the whole parameter space with the backward integration method over a

large portion of phase-space is computationally very costly, which led us to select the following

strategy to fit the Galaxy model to the Gaia data. The fit is realized with the differential

evolution method of Storn and Price (1997), a global genetic optimization method implemented

in the Python SciPy library. This algorithm minimizes an objective function, set to be a

weighted error function L = ∑
i(Ṽ model

R,i − Ṽ data
R,i )2/σ2

i , comparing median radial velocities from

model and data on a small selection of points (xi, yi) with weights 1/σi. The observed median

radial velocities Ṽ data
R,i are calculated within bins of size 250 pc around the selected point (xi, yi),

whilst the model median radial velocities are the median of the VR distribution at the selected

point, i.e. the model DF values in the (VR, Vφ) plane integrated over Vφ. The choice of the

selected points and their respective weights is a delicate one. The number of points must be

limited in order to limit the computation time, but this also means that they must be chosen

at ‘strategic’ positions and not simply on a uniform grid. Moreover, simply weighting them by

the number of stars in the data would give too much weight to the Solar vicinity over the entire

area of the fit. The first point to which we nevertheless still give the highest weight, 1/σ0, is the

Solar position (x0, y0). We then need to choose points which are representative of the variations

of the (positive and negative) values of the median radial velocity all over the plane. Adding

spiral arms invariably runs the risk of not preserving the roughly correct radial velocity gradient

from the bar in the region around (x1, y1) = (7.0 kpc, 3.5 kpc) and (x2, y2) = (7.0 kpc, 1.0 kpc),

but it is needed to change the sign of ṼR at (x3, y3) = (9.0 kpc, 0.0 kpc). These are our three

second-most important points, all with σi = 2σ0. We then choose two pairs of points along

constant y axes that encapsulate the positive-negative variations of the median radial velocity

field, (x4, y4) = (6.5 kpc, 0.0 kpc), (x5, y5) = (10.0 kpc, 0.0 kpc), (x6, y6) = (7.0 kpc,−3.0 kpc),

and (x7, y7) = (10.0 kpc,−3.0 kpc), with σi = 3σ0. In order to capture the clear spiral feature

at the bottom-left of the plane, we also add two points, (x8, y8) = (6.0 kpc,−2.5 kpc) and

(x9, y9) = (7.5 kpc,−2.5 kpc), with σi = 5σ0. We finally impose a constraint in the outer disk,
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(x10, y10) = (11.5 kpc, 1.0 kpc) and (x11, y11) = (12.0 kpc, 0.0 kpc), also with σi = 5σ0. These

are the essential points of our fit. We add on top of this a set of low-weight points that will

merely help guiding the fit, (x12, y12) = (9.0 kpc,−3.0 kpc), (x13, y13) = (9.0 kpc, 3.5 kpc),

(x14, y14) = (10.0 kpc, 3.5 kpc), and (x15, y15) = (12.0 kpc, 3.5 kpc), all with σi = 100σ0. All the

selected points are indicated as circles in the bottom-middle panel of Fig. 2.10. This selection of

points and their weights hereafter plays the role of a prior on what the most important regions

of configuration space are.

For our genetic algorithm, let us now define our population of candidate solutions in param-

eter space as ai,g, with 1 ≤ i ≤ n and 1 ≤ g ≤ N . This means we will consider n candidates

for each generation for N generations. In practice, a first generation of candidate solutions

is created by picking stochastically many candidate parameters across parameter space by a

Latin hypercube sampling, all while trying to cover most of the parameter space within the

bounds specified hereafter. This population is then mutated, candidate by candidate, iter-

atively, thereby establishing a new generation at each iteration. At each generation g, the

mutation of each candidate ai,g is applied according to the “best1bin" strategy with the follow-

ing steps:

• Select the best parameters candidate (the one minimizing the weighted error function at

current generation), abest,g.

• To mutate each candidate ai,g, randomly select two other parameters vector candidates,

aj,g and ak,g.

• Take a fixed multiplication factor (mutation factor M) of their difference in parameters,

M (aj,g − ak,g) to get a vector vi = abest,g + M (aj,g − ak,g)

• The new trial vector ai,g+1 is then built component by component by assigning the value

of each parameter either from vi or from ai,g according to if a realization of the binomial

function between 0 and 1 is smaller or greater than a chosen recombination value C,

respectively.

• Compute the weighted error function for the trial vector ai,g+1: if it performs better in

terms of the objective function, it replaces the original candidate in the next generation,

otherwise the initial candidate ai,g remains the same at generation g + 1.

• The convergence criteria are met when the standard deviation of the population objective

function values at a given generation is smaller than 1% of the mean objective function
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value of all candidates in the population in that generation. The final abest,g=N candidate

is kept.

We kept the standard values of the algorithm hyperparameters, notably population size

n (15 times the number of parameters), the recombination value C = 0.7, and the mutation

factor M, a random variable with values between 0.5 and 1. This method was chosen since it

is extremely efficient at converging efficiently over a large parameter space. The selection of

points and their weights plays the role of a prior in determining the most important regions of

configuration space. However, contrary to a classical Bayesian method, no posterior or well-

defined error bars can be given. Therefore, we are not in a position to provide error bars,

and we cannot exclude that our best candidate models found hereafter may be local minima

in parameter space. Further improvements of the present work should address this question

together with taking into account a Gaia selection function (e.g., Castro-Ginard et al., 2023).

We first attempted to fit only one spiral arms mode, allowing pitch angles to vary between

6◦ and 30◦, the phase to vary all over 360◦, the potential amplitude to vary from zero up to

0.2%, and the pattern speed from 10 kms−1kpc−1 up to the pattern speed of the bar: the mode

m = 2 performed the best in terms of the objective function among m ∈ [1, 2, 3, 4], with a

pattern speed of 13 kms−1kpc−1. This is the main result of our search, which we will now seek

to refine. Indeed, this preferred single mode model clearly produces a distorted local velocity

space, especially a very distorted Sirius-like moving group compared to observations. This is not

entirely surprising, as local velocity space has not been used to constrain the fit. We then modify

the objective function L with a local constraint, as follows: L′ = L+∑i=2
i=1(∆model

i −∆data
i )2/σ2

∆,

where ∆i is the location of the 1-dimensional VR distribution peak at Vφ = 250 kms−1 (i = 1)

and at Vφ = 260 kms−1 (i = 2) at the Sun, and σ∆ = 3σ0 in both cases. Using L′, however,

still leads to a best candidate with a distorted Sirius moving group in local velocity space when

considering a single m = 2 mode, as we illustrate in Fig. 2.9.

Then, in order to possibly improve over this model, we attempt a new fit that adds a

second spiral mode with multiplicity m = 3 or m = 4, together with the first one and the

bar. We assume the m = 2 spiral to have a range of pattern speeds 10 kms−1kpc−1 < Ωs,2 <

14 kms−1kpc−1, close to the value found for the single mode fit, which we aim to improve upon.

To reduce the parameter space, the amplitude of the second higher mode – whose pattern

speed and pitch angle are allowed to vary from 10 kms−1kpc−1 up to the pattern speed of the

bar and from 6◦ to 30◦ respectively – is fixed with the equation proposed by Hamilton (2024),

relating the respective amplitude of both modes to their pattern speed and pitch angle, namely
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Figure 2.9: Properties of a single m = 2 spiral arm added to the bar-only model. In the left
panel the distribution the 2-dimensional histogram of stars in the local (VR, Vφ) plane defined
on [−120, 120] kms−1×[90, 330] kms−1, binned with bins of size (2 kms−1)2. In the right panel
row, the median ṼR (x, y) is shown in the (x, y) plane defined on [4, 12] kpc × [−4, 4] kpc, and
binned with bins of size (125 pc)2.

as being inversely proportional to the product of their pattern speed squared with the tangent

of their pitch angle (hence a higher amplitude for lower pattern speed and lower pitch angle).

To further reduce parameter space, we impose that the sum of the local density contrasts for

both spiral modes is smaller than 35%, checking a posteriori that this limit will not be reached

by our best candidate. To compute the surface density contrast of each mode, we take the ratio

between the integrated surface density at the Sun of the axisymmetric baryonic component

and the spiral arms surface density corresponding to the Cox and Gomez (2002) potential (see

also Monari et al., 2016b). In our analysis we found that the secondary m = 3 spiral mode

does complement the stronger mode better than the m = 4 one in terms of the objective

function. Adding this second m = 3 mode allowed us to taper and regularize the signature

of the Sirius moving group in local velocity space while improving slightly the median radial

velocity map. To further polish the parameters of this best candidate found with our global

optimization method, we then perform a fine search with a gradient descent in a narrow range

of parameter space (1 kms−1kpc−1 wide in pattern speed, 6◦ wide in phase, 2◦ wide in pitch

angle and 0.04% wide in potential amplitude Ks,2) around our best candidate solution, with

the Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS-B) algorithm implemented

in Scipy. The solution thus found constitutes our fiducial model.
1The parameters are used to compute the background potential, following the definitions in Eq. 2.1 and

Eq. 2.2.
2The parameters are defined in Eqs (2.6) and (2.8). The surface density contrasts at the Solar radius, Σs, are

computed from the integrated 3D density equation for spiral arms in Cox and Gomez (2002) over the baryonic

65



Table 2.2: Parameters of the planar fiducial non-axisymmetric potential fitted in Sect. 2.3.
Bar

Ωb φb,0 Rb,max Kb,2 Kb,4 Kb,6 a2 a4 a6 b2 b4 b6
37 kms−1kpc−1 28◦ 12 kpc 0.25 8.4 210.41 1.8 4.08 5.96 5.08 10.7 16.06

m=2 spiral
Ωs,2 Ks,2 φs,2 ps,2 Rs,2,min Rs,2,max hs,2 Σs,2 ILR CR

13.1 kms−1kpc−1 0.15 % 47.8 ◦ 8.1 ◦ 6.6 kpc 26.4 kpc 0.13 kpc 24.9 % 4.1 kpc 17.6 kpc

m=3 spiral
Ωs,3 Ks,3 φs,3 ps,3 Rs,3,min Rs,3,max hs,3 Σs,3 ILR CR

16.4 kms−1kpc−1 0.06 % 81.7 ◦ 13.7 ◦ 8.0 kpc 19.6 kpc 0.13 kpc 9.3 % 8.0 kpc 14.4 kpc
2

The final parameters of this fiducial model are presented in Table 2.2, while its local velocity

and action space distribution, and median radial velocity map, are presented in the third column

of Fig. 2.10. The improvement of the median radial velocity map compared to the bar-only

model is striking, but there are also subtle improvements in local velocity space, in particular,

a better representation of moving groups close to the center of the velocity ellipsoid. For Sirius,

if one reconsiders the density of stars within a strip of Vφ between 250 kms−1 and 260 kms−1,

one now gets an increase of 5% at VR = −12 kms−1 compared to VR = 0 kms−1 in the model.

This is still a significantly smaller peak than in the data (∼25%), which will require further

investigations, but it is a significant improvement upon the decrease of 11% in the bar-only

model. In Chapter 4, we will qualitatively compare the predictions of this fiducial model to

those of other observables.

2.4 Alternative fitting strategies

In this section, we mention some alternative tools and considerations that could perhaps inspire

alternative strategies to improve the fit. Examples include developing fitting strategies that

incorporate all axisymmetric parameters and their uncertainties, likely needing to use artificial

intelligence techniques, or distinguishing between different chemically-defined stellar popula-

tions, or adding constraints from stellar streams on the shape and profile of the dark matter

halo. With data from Gaia DR4, as well as from other surveys in the years to come, there will

be lots of new opportunities to test the model fitted in this thesis, and also more importantly

to enhance it. Hereafter, we mention three alternative tools — two of which we already tested

quantitatively on the data, which gave reassuring results compared to the fitted parameters

hereinabove.
surface density of the background.
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Figure 2.10: From left to right, the columns correspond to the bar-only model, the Gaia RVS
disk sample, and our fiducial non-axisymmetric model, respectively. Top row: the 2-dimensional
histogram of stars in the local (VR, Vφ) plane defined on [−120, 120] kms−1×[90, 330] kms−1,
binned with bins of size (1 kms−1)2. Middle row: the 2-dimensional histogram of the number
density of stars in the (JR, Jφ) plane defined on [0, 400] kms−1kpc−1×[800, 2600] kms−1kpc−1,
binned with bins of size (3 × 2 km2 s−2kpc−2). For this, the velocities (VR, Vφ) have been
transformed to actions (JR, Jφ) with AGAMA. Bottom row: the median ṼR (x, y) is shown in
the (x, y) plane defined on [4, 12] kpc × [−4, 4] kpc, and binned with bins of size (250 pc)2

for the data and (50 pc)2 for the models. The cross locates the Sun and circles (with sizes
proportional to the weights, the lowest weights being dots) in the middle panel (data) indicate
the selected points where the fit has been performed. All panels were smoothed with a bi-linear
interpolation.
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2.4.1 Markov chain Monte Carlo

An obvious future improvement of our fitting procedure will be to take into account the selection

function, for which Bayesian methods are particularly appropriate. As a first exploratory

attempt without using any selection function, we performed a Markov Chain Monte Carlo

(MCMC) analysis using the emcee library (Foreman-Mackey et al., 2013). The fitted non-

axisymmetric parameters from Table 2.2 were used as the initial guess, generating a random

7-dimensional box of starting values by perturbing each parameter by a random amount of

order 10−3 of its fitted value. For the sampling, we employed 14 walkers with a combination

of steps, including the “DEMove” differential evolution step algorithm for MCMC proposed

by Nelson et al. (2014) and implemented in emcee. The error function was reframed as a log-

likelihood, and uniform priors were adopted with the same ranges as in the differential evolution

fit described in Section 2.3. The resulting posterior distributions, shown in Fig. 2.11, are broadly

consistent with the best-fit values from the differential evolution optimization, providing an

independent check on the results. However, this procedure is computationally expensive: each

iteration is approximately three times more costly than the differential evolution algorithm and

requires significantly more iterations to converge. Moreover, the presented corner plot is not

long enough, and the chain should be at least four times longer to reach minimum suggested

autocorrelation time, which would require an enormous computation time (of much more than

100 000 CPU hours) of computation. So the inferred parameter uncertainties represented in the

plot do not necessarily correspond to true physical uncertainties. Such analyses should therefore

be interpreted with caution and applied only with careful consideration of their assumptions

and limitations. They are however a promising avenue for the future, both in terms of taking

a selection function into account and in terms of obtaining reliable error bars on the fitted

parameters.

2.4.2 2D measure for the local velocity distribution

We fitted the bar pattern speed on the 1-dimensional distribution of the azimuthal velocity of

stars in the Solar neighborhood within 99 kms−1 < VR < 101 kms−1. To use the whole two-

dimensional distribution of velocities in the Solar neighborhood, we could use a two-dimensional

measure to make an error function, and fit the best parameters by minimizing it non-linearly

with a differential evolution algorithm, for example. A suitable choice is the generalized Kull-
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Figure 2.11: Corner plot showing the posterior probability distributions described in Subsec-
tion 2.4.1. The diagonal panels display the marginalized distributions, while the off-diagonal
panels show covariances between parameters, with contours corresponding to the smoothed 1σ,
2σ, and 3σ credible regions. The one-dimensional histograms have also been smoothed as the
chain is not long enough.
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back–Leibler divergence (Boyd and Vandenberghe, 2004):

KLD(x, y) =



x log
(

x
y

)
− x+ y, x > 0, y > 0,

y, x = 0, y ≥ 0,

∞, otherwise.

(2.12)

This measure does not require the data and model to share the same normalization, so the

model DF can be given as a probability distribution and compared directly to the observed

number density. In practice, the divergence must be symmetrized and bins with zero counts

masked, otherwise it returns infinite values. The generalized KL divergence is widely used

in information theory, statistics, and optimization, and is implemented in SciPy, making it

straightforward to apply. Instead of x and y, we use the DF value of the model for each bin or

respectively the data number density in each bin, and sum over all bins in the (Vr, Vφ) plane.

Surprisingly a quick test returns Ωb = 37.39 kms−1kpc−1 as the best fit value for a specific region

of the (Vr, Vφ) plane, namely for 50 kms−1 ≤ Vr ≤120 kms−1 and 150 kms−1≤ Vφ ≤ 300 kms−1,

though this should be treated as exploratory since spiral arms are not included in the model and

this value changes dramatically if we change the range of the (Vr, Vφ) grid. The approach can

be extended to three dimensions and, in principle, to the Milky Way as a whole, potentially in

combination with artificial intelligence methods. However, several drawbacks limit its broader

applicability: it is derived under the assumption of Poisson-distributed data (not strictly valid

here), it is dominated by high-density regions and thus less sensitive to large-scale gradients,

and it is not a true metric, even when symmetrized, it fails the triangle inequality.

2.4.3 Machine Learning methods

Machine Learning methods hold some promises for developing new efficient fitting techniques

for the non-axisymmetric gravitational potential of the MW, but balancing computational

efficiency and accuracy remains a challenge. In our initial tests, Convolutional Neural Networks

(CNNs) have demonstrated some ability to recover the number density distribution function on

the (VR, Vφ) plane, but at significant computational cost. To address this, combining a CNN for

fine details with a Transformer for global distribution features, potentially accelerated by GPUs,

could be an alternative to improve effectiveness. Additionally, we explored a simple algorithm

for Bayesian Optimization approach, using a Gaussian Process surrogate and Probability of

Improvement to efficiently navigate parameter space based on a logarithmic Mean Squared
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Error objective. While this approach is computationally lighter and more adaptive compared

to exhaustive searches, current results have yet to yield accurate parameters recovery, despite

requiring longer computation times than differential evolution methods. Nevertheless, Bayesian

optimization remains an interesting technique due to its capacity for simultaneous exploration

of multiple regions and provision of uncertainty estimates, warranting further investigation.
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Chapter 3

3D non-axisymmetric gravitational

potential for the Milky Way

In this chapter, we explore 3-dimensional extensions to the 2-dimensional non-axisymmetric

gravitational potential fitted in Chapter 2. The axisymmetric potential was already set from

the start in three dimensions, while the bar and spiral arm potentials can also easily be extended

to three dimensions. This will be the initial discussion of this chapter. We will then focus on

a test-particle forward integration approach, to compare to the backward integration method.

Such a test-particle approach, while still not being self-consistent, does not suffer from the

coarse-grained vs. fine-grained DF problem of the backward integration for long integration

times. Here, the test-particles representing pseudo-stars (if going to 2 × 1011 test-particles,

which is feasible in principle, they could even represent stars per se) are integrated forward in

time, following the evolution of the gravitational potential from its axisymmetric initial state to

the final non-axisymmetric state. These stars are sampled in 6-dimensional phase-space from

the 3-dimensional DF (Eq. 1.27), keeping the planar parameters of the 2D DF (Eq. 2.3) used

in Chapter 2, and setting the remaining parameters for the vertical dimension. Although still

not self-consistent, this is an important step, as it marks the first steps in adapting the findings

of Chapter 2 to more realistic setups, opening new lines of investigation.

3.1 3D extension of the non-axisymmetric potential

We had previously restrained the DF in Eq. (1.27) to the plane to build the planar DF in

Eq. (2.3), as used in Chapter 2. To transition back to the 6D phase-space formulation in this

chapter, we now apply the full DF with the same parameters as those of the projected DF.
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For this, we need to fix the remaining parameters, namely the vertical velocity dispersion at

the Sun σ̃z(R0) and the vertical kinematical scale-length hσ,z (Eq. 1.28). For the latter we set

hσ,z = 10 kpc for both disk components. As for the first, we set σ̃z,thick(R0) = 40 kms−1 for

Fthick, and σ̃z,thin(R0) = 20 kms−1 for Fthin.

Previously, we had also restricted the full potential to the plane in Eq (2.4). Now, in order

to generalize it to three dimensions, the 3-dimensional potential can be written as the real part

of:

Φ3D
tot(R,φ, z, t) = Φ3D

0 (R, z) +
∑
m

ϕ3D
b,m(R, z, t) exp[im(φ− φb,0 − Ωbt)]

+
∑
m

ϕ3D
s,m(R, z, t) exp[im(φ− φs,m,0 − Ωs,mt)], (3.1)

The axisymmetric potential is already in 3D, following the definitions of the disky and

spheroidal densities in Eq. (2.1) and (2.2), respectively. The axisymmetric parameters are

defined in Table 2.1. Continuing the extension, the non-axisymmetric potential parameters

fitted in Chapter 2, presented in Table 2.2, will remain the same. For the bar, the parametric

form in Thomas et al. (2023) adopted in our work also already includes the vertical dimension.

Previously, we had taken its z = 0 values. The bar amplitude in 3D is simply the bar amplitude

in the plane, ϕb,m(R, t) as in Eq. (2.6), multiplied by a factor depending on z

ϕ3D
b,m(R, z, t) = ϕb,m(R, t)

1 +
(

z

zm,h(R)

)2
−1

(3.2)

with zm,h(R) = 0.45R + Υm, and Υm = 0.05 kpc for m = 2, 6 and Υm = 0.025 kpc for m = 4.

We notice that, in this formula, the background potential is always evaluated at z = 0.

Similarly, the amplitude for the spiral arms, projected on the plane as ϕs,m(R, t) in Eq. (2.7),

can also be extended in z by a multiplicative factor. We adapt the version of Monari et al.

(2016b) from the solution described in Cox and Gomez (2002).

ϕ3D
s,m(R, z, t) = ϕs,m(R, t)

[
sech

(
Ks,mz

βs,m

)]βs,m

(3.3)

with K and β defined as

Ws,m = m

R sin(ps,m) (3.4)

βs,m = Ws,mhs,m (1 + 0.4Ws,mhs,m) (3.5)
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Figure 3.1: Vertical profiles of the bar and spiral arms potentials, as in Eq (3.2) and Eq. (3.3),
respectively.

The vertical profile of the bar and spiral arms potential is illustrated in Fig 3.1.

The forward integrations described next are performed entirely with AGAMA. The density

profiles for the axisymmetric components are described in Chapter 2. These profiles are used

by AGAMA to solve Poisson’s equation to determine the potential by using spherical-harmonic

expansion (Multipole) for the bulge and dark matter halo, and azimuthal-harmonic expansion

(CylSpline) for the disk components. We also implement the non-axisymmetric components as

densities, analytically computing the density expressions corresponding to our bar and spiral

potentials with SAGE (The Sage Developers, 2025).

We also introduce an additional cutoff to confine the spiral-arm density vertically. For the

spiral arms, the density (not the potential) will be limited in z between −1 kpc and 1 kpc

using a Heaviside function. We additionally choose a different form than Heaviside (Eq. 2.10

in Section 2.2) for the cutoff in radius. This is important if we want to manipulate the spiral

arm densities as well as the spiral potentials, since the density is obviously not defined at the

cut-off for the Heaviside case. The cutoff is given by:

H ′
m(R) = 2−2

[
1 + tanh

(
R −Rs,m,min)

∆m,min

)][
1 + tanh

(
Rs,m,max −R)

∆m,max

)]
(3.6)

the transition scale is ∆m,min and ∆m,max around the inner, and outer cutoff radii Rs,m,min and

Rs,m,max, respectively. A radial cutoff in density, as for the vertical cut-off, would be even

more realistic from a physical point of view, but would be further off from our 2D modeling

assumptions. Now, to set this new cutoff H ′
m, we compare the median radial velocity maps

obtained from in-plane (z = 0) backward integrations for different transition scales. We set
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equal inner and outer scales (∆m), and keep the cutoff radii as in Table 2.2. For these analyses,

we compare Galactocentric radial velocities maps, on a 33 × 33 (x, y) grid. The goal is to find

proper scales that maintain the results close to those in Fig. 2.10 for the Heaviside cutoff. The

quantitative comparison is performed with a mean squared error (MSE) function. With this

function we build an objective function to fit the best scales minimizing this function with

L-BFGS-B optimization. We let scales ranges from 0.01 kpc to 2.00 kpc. Different MSE are

available, we test four MSE definitions: (1) the mean squared difference, (2) a structural simi-

larity–based (SSIM) metric from scikit-image, (3) squared differences of spatial gradients, and

(4) squared deviation from the correlation coefficient. The correlation-based metric (illustrated

in Fig. 3.2) best captured the overall spatial similarity. We found in this case ∆m=2 = 0.3 kpc

and ∆m=3 = 1.16 kpc.

3.2 Test-particle simulations: the forward integration

framework

We sample Np pseudo-stars in three dimensions from the DF extended to Jz, and integrate their

orbits in the axisymmetric potential for 300 Myr to ensure the equilibrium state of these initial

conditions. The sampling and the forward integration are fully performed using AGAMA. We

now aim to integrate for much longer than in the backward integration, since the computation

of moments will automatically give the moments of the coarse-grained DF. For the bar growth,

we use an interval of 1 Gyr, and for the spiral arms growth, we keep it at one full rotation. The

modulation of the amplitude is then similar to Eq. (2.11). The difference is that in formulation

of Chapter 2 we considered the current time to be tnow = 0, while here we start the evolution

of the dynamical potential at tstart = 0, shifting tnow for a positive time to be determined in

the following analysis. We write it for the bar and spiral arms as:

G(t) =


3
16X 5 − 5

8X 3 + 15
16X + 1

2 if t1 < t < t2,

1 if t2 ≤ t ≤ Tint

(3.7)

where X ≡ 2 t−t1
t2−t1

− 1, with t1 being the time where the amplitude start to grow until t2 after

which it stays stable at unitary value. The characteristic times, t1 and t2 will be different

for each non-axisymmetric structure. The total integration time is Tint, and for each test-

particle setup, we will also save positions and velocities of all particles every few periods of
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Figure 3.2: In the left panels, results for the backward integration with hyperbolic tangent
radius cutoff for spiral arms. In the right panels, the results from Fig. 2.10 for the Heaviside
cutoff. Upper panels: the 2-dimensional histogram of stars in the local (VR, Vφ) plane defined
on [−120, 120] kms−1×[90, 330] kms−1, binned with bins of size (1 kms−1)2. Bottom panels: the
median ṼR (x, y) is shown in the (x, y) plane defined on [4, 12] kpc × [−4, 4] kpc, and binned
with bins of size (250 pc)2.
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time, resulting in a total of Nf frames.

Moreover, as the integrations are longer, it will be interesting to explore a generalization

of the bar pattern speed evolution, from constant to decelerating with time. For this, we will

have one case of a decelerating bar, where the pattern speed follows the formula adapted from

Chiba et al. (2021), used for instance in Dillamore et al. (2024) and Zhang et al. (2025):

Ωb(t) =



Ωb,0, td0 ≤ t < td1,

Ωb,0

[
1 + 1

2εΩb,0
(t− td1)2

td2 − td1

]−1

, td1 ≤ t < td2,

Ωb,2
[
1 + εΩb,2(t− td2)

]−1
, td2 ≤ t < td3,

Ωb,4

[
1 + 1

2εΩb,4
(t− td4)2

td3 − td4

]−1

, td3 ≤ t < td4,

Ωb,4, t ≥ td4.

(3.8)

with Ωb,0 and Ωb,4 the initial and final pattern speed, respectively. The slowdown rate is

ε = −Ω̇Ω−2, and td0, t
d
1, t

d
2, t

d
4 are free parameters characterizing different deceleration regimes.

This function is illustrated in Fig 3.3. Furthermore, the pattern speed Ωb,2 and the characteristic

time td2 are intermediate. They are defined by:

Ωb,2, = Ωb,0
[
1 + 1

2εΩb,0(td2 − td1)
]−1

(3.9)

td3 = 2
εΩb,4,

− 2
εΩb,2,

+ 2td2 − td4 (3.10)

In the case of a decelerating bar, we also re-scale the bar profile radially to ϕ3D
b,m(R, z, t) with

R, we do it with the following equation:

R = RCR(Ωb)
RCR(37) (3.11)

with RCR the co-rotation radius satisfying Eq. (1.41) for l = 0, numerically solved by finding

the scalar root with Scipy. Now that we have all elements in place, we will start the next

section by finding a correspondence in time between a snapshot of the forward integration and

the results of our backward integrations.

77



3.3 Results

3.3.1 Bar and spiral arms simulated separately

Our main goal here is to find a snapshot in the test-particle simulations that reproduces the

results from the backward integrations. The first step for this is to check for the correspondence

for each non-axisymmetric component considered individually. For this we setup test-particle

simulations for 108 particles as described in Table 3.1. In Fig 3.4 we show the median Galacto-

centric radial velocity maps from the backward integration and forward integration for 3 cases

where the potential is solely the axisymmetric potential of Table 2.1 plus one of each non-

axisymmetric potential of Table 2.2. For the spiral arms, we use the hyperbolic tangent cutoff

of Fig. 3.2. To determine the time at which both results match the best for each structure,

we again use the MSE built on the correlation coefficient. We further need to pre-process the

frames to follow the rotation of the bar and of each spiral arm, in order to compare backward

and forward integration results with the same phase.

We then find that the times when both integration approaches match the best are, respec-

tively, t = 1210 Myr for the bar, t = 850 Myr for the m = 2 spiral mode, t = 800 Myr for

the m = 3 spiral mode. As a reminder, we have started in all three cases the growth of the

non-axisymmetric mode at t = 300 Myr. The bar ends its growth at t = 1300 Myr, hence the

best-match is towards the end of the growth of the bar. For these isolated cases, the m = 2

spiral mode ends its growth at t = 780 Myr (for a 480 Myr growth time) and the m = 3

spiral mode ends its growth at t = 690 Myr (for a 390 Myr growth time). Hence the best

correspondence with the backward integration results would, not very suprisingly, correspond

to a young bar and two relatively young spiral modes.

Description t1 (Gyr) t2 (Gyr) Np Tint (Gyr)
Spiral arms m = 2 0.3 0.78 108 9.3
Spiral arms m = 3 0.3 0.68 108 9.3
Bar-only: constant 0.3 1.30 108 9.3
Bar-only: decelerating 0.3 1.30 107 9.3

Table 3.1: Test-particle simulation parameters for isolated bar and spiral arms.

3.3.2 Behavior for long integration times

It is however interesting to note that these patterns remain particularly stable along the test-

particle simulation evolution for the bar case. In Fig. 3.5, we indeed show different snapshots
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Figure 3.3: The pattern speed deceleration Eq. (3.8) for the parameters used in decelerating
bar test-particle setups (see Table 3.1).
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Figure 3.4: Correspondence of backward and forward integration for each non-axisymmetric
component on the Galactocentric radial velocity map. The results from forward integrations
of 100 million particles are shown in the left column. The results from backward integration
are shown in the right column. From top to bottom, we have the spiral arms m = 2 mode,
followed by m = 3 mode, and the bar-only model. The median ṼR (x, y) is shown in the (x, y)
plane defined on [4, 12] kpc × [−4, 4] kpc, and binned with bins of size (250 pc)2.
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Figure 3.5: Bar-only model test-particle snapshots for constant pattern speed: frames from ṼR

(x, y) shown in the (x, y) plane defined on [4, 12] kpc × [−4, 4] kpc, and binned with bins of
size (250 pc)2, always with the same orientation of the bar, at different snapshots. The radial
velocity field generated by a constant pattern-speed bar is remarkably stable with time.

of the bar-only model with a constant pattern speed. Overall, the map remains stable. This

is re-assuring as it means that the integration time for the backward integration modeling in

Chapter 2 was well-chosen for a stable bar. One can however notice some small changes in

the amplitude of the median radial velocity for certain regions, notably around x = 7 kpc and

y = −1 kpc. Even the last frame, at 7.8 Gyr, is quite similar to the best frame found previously

(see last row in Fig 3.4). Listing the MSE values for all frames, the best match after 7 Gyr is

found at 7.5 Gyr, which we will use as the initial time for the first spiral arm to grow in the

constant pattern-speed scenario.

As far as a decelerating bar is concerned, the parameters found in, e.g., Dillamore et al.

(2024) and Zhang et al. (2025) are for a slightly different evolution periods and not strictly the

same axisymmetric and bar-model as used in our work. After exploring some of the parameters

for the deceleration, we chose to keep ε = 0.003 as constrained in Chiba et al. (2021). Further,

we set the initial pattern speed to be Ωb,0 = 80.0 km s−1 kpc−1 and the final pattern speed

as fit in Chapter 2, Ωb,4 = 37.0 km s−1 kpc−1. The characteristic times defining the different

evolutions are td0 = 0 Gyr, td1 = 0.6 Gyr, td1 = 0.9 Gyr, td4 = 7.0 Gyr, with the pattern speed

evolution for these parameters shown in Fig 3.3. The test-particle setup for this case is shown
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Figure 3.6: Test particle simulation of the bar-only model with decelerating pattern speed of
the bar, following Eq (3.8) ṼR (x, y) shown in the (x, y) plane defined on [4, 12] kpc×[−4, 4] kpc,
and binned with bins of size (250 pc)2.

in the last line of Table 3.1. In Fig. 3.6, we show the results for such a decelerating bar model

for different snapshots in time. Listing the MSE values for all frames, we find that the best

match with the backward integration for a constant pattern speed after 7 Gyr (once the pattern

speed is stabilized to its present-day value) is at 7.57 Gyr, which will serve as the reference

initial time for the first spiral arm to grow in the decelerating bar scenario.

3.3.3 Forward-backward correspondence

We now shift the focus to recovering the backward integration radial velocity map in the

forward integration approach, for long integration times of the bar (the spiral arms, on the

other hand, are considered to be young dynamical features). This time, we increase the number

of particles in the sample to 2 × 108 to better populate regions with large Galactocentric radii.

We explore four different setups described in Table 3.2, three with constant pattern speed, one

with decelerating pattern speed. These setups are simple in the sense that we initially let the

bar evolve alone, respectively until 7 500 Myr and 7 570 Myr for the constant pattern speed and

decelerating cases. Then we let both spiral arms grow with the same characteristic growth time

as in the backward integration modeling of Chapter 2. The mode m = 3 is expected to reach
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its full amplitude at 7 880 Myr (7 950 Myr in the decelerating scenario), while the stronger

m = 2 mode is expected to reach its full amplitude at 7 980 Myr (8 050 Myr in the decelerating

scenario). These different setups are also a good opportunity to gain a better understanding of

the role of the cutoff in the density of the spiral arms.

Spiral arms cutoff Ωb Np Tint (Gyr)
Heaviside Constant 2 × 108 9.3
None Constant 2 × 108 9.3
Hyperbolic tangent Constant 2 × 108 9.3
Hyperbolic tangent Decelerating 2 × 108 9.3

Table 3.2: Test-particle simulation parameters for joint old bar and spiral arms.

The frames of test particles simulation for constant bar’s pattern speed, described in Ta-

ble 3.2, are shown in Fig 3.7 for t = 7.98 Gyr. This is the time at which both spirals have

attained maximum amplitude, and by construction, it is the time when the respective phase of

both spiral modes and the bar are exactly the same as in our t = now backward integration

scheme. Notably, the result for the Heaviside cutoff is quite similar to the radial median ve-

locity map from the backward integration with Heaviside cutoff. While the amplitudes of the

positive median radial velocities appear overall stronger, the negative radial velocity remains

stable. On the other hand, the no cutoff case reveals that the Heaviside cutoff introduces a

strong negative feature at x = 6 kpc and 4 = −4 kpc, while the hyperbolic tangent nearly blurs

it completely, as already seen in the backward integration case. Overall, the three test-particle

simulations with constant pattern speed recover fairly well a good portion of the results from

backward integration, each with their own limitations. Broadly, it could be said that the hy-

perbolic tangent cutoff enhances features in at least three regions (upper-left, bottom-middle,

bottom-right) while worsening the negative feature between the left and middle region of the

bottom part of the plane selection.

In the decelerating bar test-particle simulation, the snapshot for which the respective posi-

tion of the bar and the two spiral modes is the same as in our t = now backward integration

scheme is at 8050 Myr. We show it in Fig 3.8. As this figure illustrates, there are at least cases,

such as the one considered here, where the presence of a pattern speed decrease with time for

the bar does not change much the present-day radial velocity field of the Galaxy.
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Figure 3.7: Test-particle snapshot at t = 7.98 Gyr corresponding to the backward integration
median radial velocity map. From left to right, panels of Heaviside, no cutoff, and hyperbolic
tangent radial cutoffs for the spiral arms density. Test-particle setups are further described in
Table 3.2. ṼR (x, y) shown in the (x, y) plane defined on [4, 12] kpc × [−4, 4] kpc, and binned
with bins of size (250 pc)2.

Figure 3.8: Left panel: Snapshot of the decelerating bar test-particle simulation at the time
corresponding to the respective phase of the bar and spirals being identical to our fiducial
model. Right panel: the constant pattern speed bar simulation is shown also at the snapshot
corresponding to the respective phase of the bar and spirals being identical to our fiducial
model. The differences are minor. Both simulations are with a tanh cutoff. ṼR (x, y) shown in
the (x, y) plane defined on [4, 12] kpc × [−4, 4] kpc, and binned with bins of size (250 pc)2.
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Chapter 4

Predictions and applications of the

models

The work presented in this chapter is mainly based on Khalil et al. (2025a).

In this Chapter, we go back to the 2D fiducial model presented in Table 2.2, which had been

adjusted to data with zero prior on the spiral arms locations. We will now check how well the

model performs in recovering the position of known spiral arms of the Galaxy, as well as how

it fares in reproducing other observables, such as the azimuthal velocity field or the detailed

locations of moving groups across the disk.

4.1 Location of spiral arms

In Fig. 4.1, we present the global radial velocity map predicted by our 2D fiducial backward

integration model, together with the location of the bar and of the maximum density of the

two dynamically-fitted spiral arm modes. The continuous line for each spiral mode in Fig. 4.1

corresponds to the minimum of the spiral potential, and hence to the maximum spiral density,

down to the cut-off radius. The correspondence between density and potential is not well defined

on the circle corresponding to the cut-off radius, but choosing a smooth function ∼ (1+tanh)/2

(Eq. 3.6) instead of a step function (Eq. 2.10) indeed does lead to a sharp density contrast on

this circle until the point where the spiral potential reaches zero. This sharp density contrast

is marked by the dotted lines in Fig. 4.1.

We also compare the location of those arms to the overdensities of young upper main
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Figure 4.1: Left panel: Median radial velocity ṼR for the fiducial non-axisymmetric model
in the disk plane (x, y) defined on [−13, 13] kpc × [−13, 13] kpc binned with (250 pc)2 bins.
Right panel: Adaptation of panel B in figure 1 of Poggio et al., 2021 with over-densities of
young upper main sequence stars in red tracing the position of the arms segments. Both panels
display the bar position of our fiducial model with dashed black lines, the major m = 2 (black)
and minor m = 3 (grey) spiral locations of our fiducial model as continuous and dotted black
and gray lines, respectively. The continuous lines indicate the maximum overdensity of the
model spirals as a function of radius from their (negative) potential minimum, down to the
cutoff radius. The dotted line then traces an arc of a circle at each cutoff radius, until the
point where the spiral potential reaches zero. In both panels, the cross represents the Sun’s
position. The overdensity maps of young stars following Poggio et al. (2021) are generated from
https://github.com/epoggio/Spiral_arms_EDR3.git.

Figure 4.2: The median JR as a function of position in the data of the extended Solar neigh-
borhood (left panel) and in the model (right panel). The lines indicate the location of spiral
arm segments in the model, and the red cross indicates the Sun’s position.
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sequence stars identified in Poggio et al. (2021). As it appears clearly in the figure, the strongest

m = 2 mode nicely matches the location of the Crux-Scutum arm close to the Galactic bar

(although this arm location is also often labeled as a continuation of the Carina-Sagittarius

arm), of the Local arm close to the Sun, and of the Outer arm. However, the distribution of

young stars is a consequence of the distribution of the gas, while what we trace is the potential.

Therefore, it is most useful to note that our results also appear in line with the findings of

Widmark and Naik (2024), who found the Local arm to be a strong local over-density, with

a contrast density of roughly 20%, close to the local over-density of 24.9% within our model.

Since the pattern speed of the m = 2 spiral is smaller than that of the bar, this could be

interpreted as a recent disconnection (52.5 Myr ago) from the bar in the Crux-Scutum region,

in accordance with the findings of Vislosky et al. (2024). On the other hand, the weaker m = 3

spiral nicely matches the location of the Carina-Sagittarius and Perseus arms. It is remarkable

that a purely dynamical fit mostly recovers the location of known spiral arm over-densities

within the disk.

Another interesting quantity to compare our model predictions with is the median JR as a

function of position in the disk. Indeed, Palicio et al. (2023) identified spiral arm structures in

the disk from the median J̃R values as a function of position. We reproduce such a map from the

Gaia RVS data within the extended Solar neighborhood, in Fig. 4.2, and overlay the location of

the spiral arms from our fiducial model. We also compute the median axisymmetric J̃R values

from our model, starting from the same grid of velocities as before at each location in the plane,

then computing the corresponding radial actions with AGAMA (in the axisymmetric background

potential), and computing the median from the DF values. Again, the a posteriori qualitative

agreement with the data is remarkable. Note that the increase in median axisymmetric J̃R

is positively associated with the presence of spiral arms in our model, in accordance with the

findings of Debattista et al. (2025) when considering instantaneous axisymmetric actions. In

N -body simulations, one typically needs to average actions over a long-enough timescale to even

better track the spirals for low values (Debattista et al., 2025) of the median time-averaged

radial action. In our case, the important takeaway is the a posteriori qualitative agreement

between the data and model for the instantaneous J̃R, without having used this quantity in the

fitting procedure.
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Figure 4.3: Left panel: difference of the median azimuthal velocity compared to its average
value at fixed R in the Gaia RVS data, ∆Ṽφ ≡ Ṽφ(x, y) − Ṽφ(R), in the (x, y) plane defined
on [4, 12] kpc × [−4, 4] kpc, binned with (125 pc)2 bins. Right panel: difference between the
median azimuthal velocity of the fiducial model and that of the background axisymmetric DF.
In both panels, the black cross indicates the Sun’s position.

4.2 Azimuthal velocity field

An interesting quantity to look at in principle is the variation of the median azimuthal velocity

at fixed Galactocentric radius, as this is also a clear signature of the non-axisymmetry of the

potential. To avoid being dominated by the background DF and axisymmetric potential, one

can plot from the data the value

∆Ṽφ ≡ Ṽφ(x, y) − Ṽφ(R) (4.1)

in the (x, y) plane. This is shown in the left panel of Fig. 4.3. One drawback of showing this

quantity is that the azimuthal concatenation at fixed R can only be done in the region where

data are available, which is why it was not obvious how to implement such a quantity as a

target for the fit itself. From our fiducial model, on the other hand, one can directly subtract

from the median radial velocity at each position the median radial velocity obtained from the

background DF at the same location. Similar trends to the data can be seen in the model,

although the two quantities are not straightforward to compare quantitatively.
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Figure 4.4: Median radial velocity in the (φ, Jφ) plane defined on [−0.78, 0.78] rad ×
[1000, 3000] kms−1kpc−1, binned with bins of size (0.005 × 2.5 rad × kms−1kpc−1). Left
panel: the Gaia RVS disk sample. Right: the fiducial non-axisymmetric model. Points outside
5 kpc < x < 12 kpc and −4 kpc < y < 4 kpc are excluded in both the data and model.

4.3 Median radial velocity in the azimuth-angular mo-

mentum plane

An interesting projection of Gaia data (see, e.g., Friske and Schönrich, 2019; Monari et al.,

2019b; Trick et al., 2021; Chiba et al., 2021) is the structure of median (or mean) radial

velocity in the azimuth-angular momentum plane. In Fig. 4.4, we display the median radial

velocity in the (Jφ, φ) plane for stars within a box [1300, 3000] kms−1 kpc × [−0.67, 0.67] rad,

within 5 kpc < x < 12 kpc and within −4 kpc < y < 4 kpc. To compute the median values in

the model, we first fix an azimuth φi every 0.01 rad, then consider radii Rj spaced 10 pc from

one another. Next, for each point we compute the DF with the backward integration method

for different velocities VR and Vφ,n = Jφ,n

Rj
. We then fix Jφ,n and sum the values of the DF for

all radii Rj, and we compute the median radial velocity for each (φi, Jφ,n). The qualitative

agreement with the data is acceptable, although one can note that the signatures become weak

at low Jφ in the model. This can be related to the fact that our non-self-consistent procedure

is not particularly reliable in the very inner disk close to the bar region. It could also reveal

that our constant pattern speed bar is not enough to explain the richness of the data within

this plane (Chiba et al., 2021), that we are missing the effect of vertical perturbations (e.g.

Laporte et al., 2019; Laporte et al., 2020), as well as accreted prograde structures, although all
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this would require further investigations.

4.4 Moving groups across the disk

In Bernet et al. (2022) and Bernet et al. (2024), a methodology was developed to perform a

blind search for moving groups in Gaia data across the whole disk, based on the execution of a

Wavelet Transform in independent small volumes of the disk followed by a grouping into global

structures with the Breadth-first search algorithm from Graph Theory. Fixing a given VR, one

can then, for instance, look at the evolution of the location of moving groups in the (R, Vφ)

plane at the azimuth of the Sun, or in the (φ, Vφ) plane at the radius of the Sun. In Fig. 4.6, we

overlay the structures found in Gaia DR3 on top of the density from our model. The azimuthal

distribution of moving groups (right panels of Fig. 4.6) is well in line with the slopes from our

model at the Solar radius, while the radial distribution at the Solar azimuth (left panels of

Fig. 4.6) also appears globally in line with the data apart from the low Vφ ≤ 200 kms−1 region

for small R ≤ 6.5 kpc (the ridges of the model having a much too high slope in that region of

phase-space), where the bar self-gravity is probably having a non-negligible effect on the data.

Interestingly, in the model, the Hercules moving group at the Solar radius appears to result

from the merging of two ridges at smaller radii, seen as dark regions in Fig. 4.6 in the underlying

density of the model, one with a slope compatible with the observed radial gradient of the

Hercules moving group, essentially caused by the bar, and another one with a larger slope,

mostly due to spiral arms. This is especially clear at positive VR, where the two ridges are

clearly separated at R < 7 kpc in the model, while this separation appears to leave a similar

signature within the data, too. At VR = 0, the split can also be seen, although it also merges

with the inner continuation of the Hyades moving group. At negative VR, the agreement is less

good, though in the region where Hercules is expected to dominate less: the second ridge of

Hercules overlaps with the Hyades ridge at R ∼ 7 kpc in the model, whilst in the data this is

only seen as a small upward bend in the Hyades ridge, corresponding to the merging of the

ridges in the model. This second Hercules ridge is clearly an effect of spiral arms, while the

major Hercules one is produced by the bar alone. The joint effect of the multiple bar modes in

the present model, together with the axisymmetric background potential used, might explain

the differences with Bernet et al. (2024).

Conversely, we apply the method of Bernet et al. (2022) and Bernet et al. (2024) on the

model and overlay in Fig. 4.7 the detected groups on top of Gaia data at different radii at the
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Figure 4.5: In the left panel, the number density of stars in the Solar neighborhood is shown,
as described in Fig. 2.1. The lines indicate the positions of the Hyades and Hercules moving
groups. In green points selection of two (VR, Vφ) pairs at same Vφ and opposite sign VR. At
each Vφ, the point of positive VR is on top of the observed moving group. In the right panels,
the orbits from these points are backward integrated using the 2D bar-only model for the
strong lines and the axisymmetric model for the lighter lines. The potentials are described in
Chapter 2. This indicates interesting features of the moving groups’ stellar orbits, and could
be used to understand their chemo-dynamical evolution.

azimuth of the Sun, and at different azimuths at the Solar radius. Visually, some features are

strikingly similar in the model and data. An interesting point to note is that, even though

not clearly visible by eye, the model does seem to recover an overdensity at the Sun’s position

(bottom-right feature in the second panels from the left in Fig. 4.7) that can be identified with

the location of the Bobylev/Hercules-2 bimodality of Hercules, although much less strongly

than in the data. We have also started a collaboration with colleagues from the IAC (Rivero

et al., 2025), to study the relation between the dynamics of different moving groups and their

age-metallicity distribution (work in progress). For this, we compared, in our fiducial model,

the orbits of stars found at different locations in the local (VR, Vφ) plane, as illustrated in

Fig. 4.5.
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Figure 4.6: At fixed VR for each row (VR = 56 kms−1, VR = 0 kms−1 and VR = −56 kms−1, the
white (and green) lines display the main ridges identified in Gaia DR3 data with the Wavelet
Transform method developed in Bernet et al., 2022; Bernet et al., 2024. Below these lines,
we underlay the 2-D histogram distribution of the normalized fiducial model. Left: at fixed
azimuth φ = 0◦. Right: at fixed radius R = R0. A thicker green line denotes the Hercules
ridge.
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Figure 4.7: 2-D histogram distribution of the Gaia RVS disk sample in the (VR, Vφ) plane for
stars within |φ| < 2.4◦ and |R − Ri| < 300 pc at different radii Ri ∈ [7.3, 8.3, 9.3, 11.3] kpc
(top row), and for stars within an annulus |R − R0| < 300 pc and |φ − φj| < arctan

(
300
8275

)
at different azimuthal angles φj ∈ [−10◦, 0◦, 5◦, 10◦] (bottom row). The colored lines show the
peaks identified in our model with the method of Bernet et al. (2022) and Bernet et al. (2024).

4.5 Orbit of the Sun

As an example of application of our model, we propose to compare the in-plane orbit of the Sun

in the background axisymmetric model to that in our fiducial non-axisymmetric one. The result

is displayed in Fig. 4.8. It is mostly illustrative, and should not be over-interpreted given that

the vertical motions are neglected. In the axisymmetric case, the radial period is 161.5 Myr,

and the Sun is now close to reaching its pericenter. The time between the last pericentric

passage and the one that we are about to reach is a bit smaller in the non-axisymmetric model,

namely 154.5 Myr. The previous pericentric passage, which happened a bit later in the non-

axisymmetric model, was also closer to the Galactic center than in the axisymmetric case.

The last apocenter was very similar in both models, but the next-to-last one was further away

in the outer Galaxy in the non-axisymmetric case, for which radial amplitudes are typically

larger. If we look at the evolution of the surface density at the Sun’s position with time, the

picture becomes more complicated. The time between the last surface density maximum and

the one that we are about to reach (i.e., still 161.5 Myr in the axisymmetric case) is a bit

larger in the non-axisymmetric case, namely 185 Myr, because we will be temporarily following

the Local arm overdensity on our journey back to the outer disk. Also, when looking back
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at t ∼ −250 Myr, the apocenter that corresponds to a minimum in the surface density of the

axisymmetric model does actually correspond to a local maximum in the non-axisymmetric

case, because the Sun was also following a spiral arm at that time. This could have interesting

consequences in studying cyclic sedimentation on Earth on long timescales (e.g., Boulila et al.,

2018). Since spiral arms are generally expected to arise from a recurrent cycle of groove or edge

modes, it is, however, difficult to trace back the Sun’s orbit on longer timescales than a few

100 Myr, at least without resorting to detailed (chemo)dynamical modeling of the evolution of

the whole Galactic disk. We have started a collaboration on this topic, in particular on the

effect of the Galactic potential on the dynamics of the outer Solar system, with colleagues from

Paris Observatory (Bougakov et al., 2025, work in progress).

4.6 Orbits of young associations

Young (∼ 50 Myr) stellar associations can typically be traced back to their original position by

integrating their orbits backward in a given Galactic potential. To illustrate the importance of

taking into account the non-axisymmetries of the potential for such a procedure, we integrate

forward in time for 50 Myr four archetypal young stellar associations at different positions in

the Galactic disk within our fiducial non-axisymmetric model. Each association is represented

by 20 stars that are dispersed in velocity and space with Gaussians of standard deviation of

1 kms−1 in VR and Vφ around the circular velocity, and of 2 pc around the positions (x, y) =

(10.6 kpc,−2.4 kpc), (8.7 kpc,−0.3 kpc), (7.1 kpc, 0.4 kpc), (6.0 kpc,−0.5 kpc). We then

integrate them backward in time, both in the fiducial non-axisymmetric model and in the

background axisymmetric model. The associations typically go back to a position that can be

erroneous by more than 150 pc in the axisymmetric case, with an elongated shape very different

from the true original configuration (Fig. 4.9). This, as well as the previous example on the

orbit of the Sun, is just one instance out of the many possible applications of our model to

various questions needing an accurate gravitational potential for the Milky Way.
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Figure 4.8: Top panel: Galactocentric radius of the Sun as a function of time in the background
axisymmetric (orange) and fiducial non-axisymmetric (blue) models. Bottom panel: Evolution
of the surface density at the Sun’s position with time.
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Figure 4.9: The implication of the non-axisymmetries on the orbits of young associations is
illustrated by integrating four young associations for 50 Myr forward in the fiducial potential
and then backward in time with both the erroneous axisymmetric model (red) and the fiducial
one (black). The insets show zoom-ins around the regions of the associations.
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Chapter 5

Conclusion and perspectives

In this thesis, I used the in-plane velocities of a large sample of MW disk stars with six-

dimensional phase-space information from Gaia-StarHorse in order to fit a Galactic potential

model that includes a detailed parametric shape for the bar and spiral arms, using the back-

ward integration method. The adjusted observable quantities were the median Galactocentric

radial velocity, for a selection of points within the Galactic plane, complemented by additional

constraints from local velocity space at the Sun’s position. This is, to the best of our knowledge,

the only such detailed fit of the non-axisymmetric velocity field of the MW that has ever been

published in the literature up to now.

All the parameters of the fiducial 2D non-axisymmetric potential are summarized in Ta-

ble 2.2, within the background axisymmetric potential fixed in Table 2.1. It is remarkable that

such a purely dynamical fit recovers many of the known locations of spiral arm over-densities

detected from photometry within the disk (Fig. 4.1). These spiral arms can be interpreted as

groove or edge modes such as those found in N -body simulations. In the Solar vicinity, I identify

the Local arm as a strong gravitational perturbation, in accordance with independent probes

of the local non-axisymmetric potential by Widmark and Naik (2024) and by Barbillon et al.

(in preparation)1. I also recover the observed map of median radial actions in the extended

Solar vicinity (Fig. 4.2), as well as a good qualitative agreement with the detailed variation

with radius and azimuth of moving groups identified in Gaia data (Fig. 4.6). The latter is truly

remarkable since the model was not directly fit to these phase-space features. The only (locally)

fitted moving group was Sirius, entirely absent from the bar-only model: one can note that it is

nevertheless still characterized by a weaker peak in the fiducial model than in the data. While

1Preliminary results were presented at the European Astronomical Society Annual Meeting. The talk’s slides
is available on https://great.ast.cam.ac.uk/Greatwiki/GreatMeet-PM18
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my fiducial model may well be a local minimum in parameter space, the latter being particu-

larly vast, especially if letting the parameters of the background axisymmetric density and DF

vary too, I nevertheless argued that alternative methods for the fit seem to yield similar fitted

parameters and that it can therefore, for the time being, be used as a fiducial non-axisymmetric

potential for the Galaxy, for instance in order to confidently integrate in-plane orbits. It can be

compared to other recent Galactic potentials such as that of Hunter et al. (2024). The SPIral

arms & Bar bACKward integrations SPIBACK (Khalil et al., 2025b) tool that I developed in the

course of this work to generate local velocity space distributions as well as radial velocity maps

is progressively made public. A minimal version is already accesible from my GitHub. A fuller,

3D version of the potential, is available directly within the AGAMA library.

The biggest drawback of my analysis has been to neglect the detailed selection function in

the fitting procedure, and, partly related to this, the absence of error bars in my computed

parameters. In view of this, I have started exploring (Section 2.4.1) how MCMC methods

could help one retrieve the fitted parameters. The results are encouraging, but at this stage,

they would need much longer computation times to ensure proper error estimates on the fitted

parameters. Once this will be fully under control, a proper inclusion of the selection function

could then be applied (e.g., Castro-Ginard et al., 2023; Khanna et al., 2024), in order to obtain

a proper posterior (and error bars) on the best-fit parameters, while perhaps attempting to

separate the stellar populations into distinct DFs.

Another major drawback of the backward integration modeling is that the real observed

stellar DF is always measured over finite phase-space volumes, so that it is, in fact, the coarse-

grained DF that one measures with data. Over time, phase-space elements of high density

are stretched out into infinitesimally thin ridges that get mixed with phase-space elements of

lower density, so that the “practical” coarse-grained DF does not actually obey the Vlasov

equation. In practice, this means that, if the backward integration is carried out for too long,

the fine grained DF tracked by this method would lead to sharp and unsmoothed features in

velocity space. To circumvent this problem, the integration was carried out only for a limited

time adjusted so that the sharpness of resonant features in velocity space resembles what is

observed. Luckily, N -body simulations indicating the existence of recurrent cycles of groove

modes in galactic disks allow one to consider that current spiral arm modes of the MW are

rather recent. On the other hand, as far as the bar is concerned, I carried out forward-in-time

test-particle simulations, also expanded to 3D, that allowed to show how stable the velocity

field is with time for a bar with constant pattern speed. This allowed me to show how it is
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possible to recover velocity fields such as those fitted with the backward integration method

in forward-integrated, finite N , test-particle simulations running over several Gyr with a long-

lasting bar and recently grown spiral modes. I also showed that, as far as the median radial

velocity field is concerned, a decelerating bar with time does not necessarily change the picture,

as illustrated with a model of a decelerating bar in Chapter 3.

From initial estimates, aiming to soon integrate 200 billion test-particles within my 3D

non-axisymmetric MW potential seems realistic, which would be, to the best of our knowledge,

an unprecedented achievement as this would be the first-ever “star-by-star” dynamical repre-

sentation of the MW (although not self-consistent). This avenue to enlarge the present PhD

work in the coming months will enable a one-to-one comparison of stars with full phase-space

information; it will also allow me to devise a detailed study of the different stellar populations,

considering measurements such as stellar mass, position in the color-magnitude diagram, age,

metallicity, etc. Such a modeling approach would highly benefit from inputs from stellar pop-

ulation synthesis models of the Galaxy such as the BGM (Lagarde et al., 2017; Robin et al.,

2022), and would even be perfectly suited for a direct integration within the dynamical part of

the BGM itself.

As thoroughly discussed in the introduction of the thesis, Gaia data have demonstrated

beyond reasonable doubt that the disk of the MW is also vertically perturbed. Test-particle

simulations such as those mentioned herinabove are a good tool to make first quick investiga-

tions of different possible causes of the perturbations, before moving to self-consistent methods.

With a L3 student (Clément Salhi) who I co-supervised, we started exploring the effect on the

z − Vz phase-spiral of a vertical kick of the disk, as in Li et al. (2023), within a test-particle

simulation including my bar and spiral arms. This is illustrated in Fig. 5.1 for a simple mod-

eling representing the impact on the MW of perturber passage as a Gaussian kick in height

and vertical velocity for the whole disk. The phase-space spiral is well visible in vertical mo-

tion on the (z, Vz) projection around a more extended neighborhood of the Sun. Scenarios

with the non-axisymmetric model and kick were explored, proving to be harder to investigate

and interpret, meriting more attention, even with simplification brought by the forward inte-

gration. However, such test-particle simulations are not sufficient for studying this problem,

as the effect of self-gravity must play a central role (Widrow, 2023) in the development and

sustainment of the phase-spiral. I therefore plan to explore this problem numerically and ana-

lytically, relying on the action-angle formalism (Binney and Schönrich, 2018) and considering

self-gravity. One possibility I envisage would be to use the matrix formalism of linear per-
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Figure 5.1: Phase-space spirals from a gaussian kick on the disk. Panels show different cutoffs in
angular momentum for stars in a perturbed disk. Initially particles were sampled with AGAMA for
the axisymmetric potential of Table 2.1 and with the DF of Eq. 1.27 and parameters described
in Chapter 3. The vertical kick is a Gaussian shift in height, with a Gaussian centered on
400 pc with standard deviation of 150 pc, plus a shift in vertical velocity centered at 5 kms−1

with standard deviation of 2 kms−1. The stars are forward integrated within the axisymmetric
potential. The kick is done at the time step corresponding to 200 Myr, and the panels are from
the 600 Myr snapshot. The observed one arm snail at what correspond to the outer part of the
disk is compatible with observations.

turbation theory (see Section 1.2.5) as developed by Simon Rozier and collaborators in the

LiRGHaM code (https://github.com/simrozier/LiRGHaM), adapted to thickened disk config-

urations. More generally, I plan to develop an analytic understanding of different phenomena in

non-axisymmetric and vertically perturbed potentials. For instance, relying on the formalism

of action-angle variables defined in a resonant zone (see Section 1.2.5, Monari et al., 2017b) of

the bar, I am planning to compute analytically the perturbed DF in such a resonant zone when

the additional effect of a spiral arm (without first order resonance overlap) is considered, to

understand how moving groups generated by bar resonances can be deformed in phase-space

in the presence of additional perturbations.

Let us also note that one assumption of the fiducial model was that the spiral arms cannot

live inside the corotation resonance of the bar (R = 6.6 kpc in the fiducial model), an assumption

that could potentially be partially lifted: I already checked that it does not affect much my

best candidate model. However, a proper fit of these inner regions of the Galactic disk would

require us to make the model self-consistent. The absence of self-consistency can indeed become

a serious issue in the innermost parts of the Galaxy, where the bar perturbation is itself the

tracer. Some deficiencies of the fiducial model at low radii and low angular momenta have

indeed already been identified in Fig. 4.4 and Fig. 4.6. As a first step towards self-consistency,

I aim to analyze N -body (or hydro+N -body) simulations of MW-like galaxies, either in an

idealized set-up or in a cosmological context (zoom-in) with the same method as in the present
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Figure 5.2: Snapshots for stellar particles from a N-body simulation initialized with our ax-
isymmetric potential Table 2.1. The sampling of 835 million particles was done with AGAMA.
The disk DFs are the same as in Eq. 1.27 with parameters described in Chapter 3. The DF
for the bulge and dark matter halo were obtained using Eddington inversion implemented in
AGAMA. For the gas particles we don’t determine the DF, instead we sample the positions from
density and assign velocities following the axisymmetric Jeans equation. The top panels show
the median radial velocity. Bottom panels show the number density. The non-axisymmetric
structures are visible in different snapshots from earlier (left panels) to later frames (right pan-
els). Preliminary analysis shows that the bar formed in this self-consistent simulation has a
similar length to the bar model presented in this thesis. The stellar disk, bulge, dark matter
halo and gas disk has respectively, 150.3, 16.7, 626.25, 41.75 millions of particles,

work. Such simulations could come from the community/literature, and I have initiated a

discussion with Pedro Palicio on this topic with focus on testing the backwards method and

action computations, but I am also interested in running my own (idealized) self-consistent

simulations. I recently used the axisymmetric potential from Table 2.1 within the AGAMA library

and assigned each component its own DF, which I sampled with a total of 835 millions of

particles. I then integrated these initial conditions in an N -body run — using the SPH-EXA

library, designed for large-scale astrophysical simulations — with Ryoanji, a GPU-accelerated

module for N -body simulations. It employs the cornerstone octree framework for efficient tree

construction, EXAFMM multipole kernels for accurate gravitational interactions, and warp-

aware tree traversal inspired by the Bonsai GPU tree code. The density of median radial

velocity maps of this simulation are displayed in Fig. 5.2. Using the same simulation code, I

could soon relatively easily reach one billion particles within self-consistent tailored simulations

similar to those of Naidu et al. (2021), where they explored the merger of GSE with the MW.

This could be helpful to characterize and date merger events in the halo and thick disk, as

thoroughly discussed in the introduction of the present thesis.
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Although definitely beyond the scope of this thesis, future improvements of my modeling

methods might rely on an adaptation of the self-consistent made-to-measure method in order

to account for self-consistency. This was the method used by Portail et al. (2017) to devise

a fiducial model of the Galactic bar, but the methods has never been used for spiral modes.

One should also point out that the background model (axisymmetric potential and DF) has

not been fitted in this thesis work, and that it could of course in principle also be adjusted

to the data. This would vastly increase the parameter space and might require us to use

machine learning methods to efficiently explore the full parameter space, using all available

information beyond the dynamics of the disk. One obvious such information that would be

extremely complementary to the disk velocity field constraints I have used up to now in my

Galactic dynamical model would be to include information from stellar streams. These are

indeed particularly powerful probes of the gravitational potential far away from the disk (Ibata

et al., 2024), but they could also bring complementary information on the non-axisymmetric

structures of the disk and their time-evolution. Stellar streams that pass through the disk

plane with pericenters smaller than ∼ 15 kpc can indeed be significantly affected by the bar

and spirals arms, that can lead to resonant confinement of a stream, cause rapid diffusion of

a stream as well as the truncation of its length on the leading or trailing side, or can create

kinks that make a stream deviate strongly from the orbits of its progenitor. The effect is even

stronger for the recently discovered open cluster stellar streams within the disk (Thomas et

al., 2023). Halo streams that might already be exhibiting potential signatures of interactions

with non-axisymmetric structures of the disk include M92, Ophiuchus, Palomar 5, and Jhelum.

Obviously, external perturbations, such as that of the LMC, will also have to be carefully taken

into account when considering streams with large apocenters. Another interesting key insight

of lumping all these constraints together is that the deceleration of the bar seems to be strongly

dependent on the Galactic properties (and consequently on the nature) of the dark matter halo,

making it important to explore all these together when fitting a full non-axisymmetric Galactic

potential. As a first approach to stellar streams, I have used the spray-particle algorithm of the

AGAMA library in order to model the tidal stream of Palomar 5 in the presence of my MW bar

model, with a L3 student who I co-supervised (Romain Krieger). The developed framework

proved to be interesting in understanding the advantages and limitations of the method itself,

and also showed great potential and flexibility in testing different scenarios of evolution and

parameters for the non-axisymmetric components. The long term goal would be to adjust all

these constraints (disk, halo, streams) altogether. As previously noted, the model of Portail et
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Figure 5.3: Palomar 5 stream modeled with the particle-spray method Fardal et al., 2015
and integrated within the non-axisymmetric bar-only potential described in Table 2.2. The
dashed line indicates the future positions and the solid line the past position of the central
point of the stream. The stars are colored by their Galactocentric radius. The progenitor is
modeled as having 2.5 × 104M⊙ of mass, 4 pc of radius and 10 000 particles. The method
generates pairs of stars around the progenitor along its past trajectory over 2 Gyr until its
current position. The current position is taken to be (x, y, z) = (8.2, 0.2, 16.6) kpc, and the
velocities (Vx, Vy, Vz) = (−40.7,−89.3,−21.0) kms−1.
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al. (2017) seems to favor a cored dark matter halo for the MW, and this surprising result would

definitely need confirmation with more modern data, as it would have important consequences

for the indirect detection of dark matter in the high energy sky towards the Galactic center,

and could even bring constraints on the nature of dark matter itself (together with the possible

slowing down of the bar).

Finally, as briefly discussed in Section 2.4.3, I am currently examining the conception of

new Machine Learning tools for fitting the Galactic potential. It is clear that deep numerical

advances are necessary for approaching Galactic Dynamics problems with Artificial intelligence

(AI) methods. One frequent barrier I aim to address is a tool to compute actions and angles

while satisfying conditions for Automatic Differentiation. Another important barrier is the

scale of orbits to be integrated to explore the full parameter space. Recent developments

such as SympNets (Jin et al., 2020) and Symplectic Graph Neural Networks (Varghese et al.,

2024) designed to learn symplectic maps (mappings that preserve the Hamiltonian structure of

dynamical systems) could potentially alleviate this. Indeed, they can potentially be extended

to integrate orbits in a known gravitational potential or density distribution efficiently in a

larger scale. It could be interesting to advance such research in adequate time and parallel

to all the projects mentioned above, as I am persuaded that a full adjustment of the gigantic

parameter space to all available data – or even moving towards a full non-parametric inference

– will ultimately need to rely on efficient AI methods applied to multi-survey data.

In summary, the main result of this thesis, namely the fiducial model presented in Chap-

ter 2, reproducing a larger amount of observables than ever before, does represent a significant

advance in our understanding of the non-axisymmetric structure of the MW disk. However,

it is important to recognize its limitations and to continue improving it in order to obtain an

even more accurate representation of our Galaxy.
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Appendix A

Locating bar resonances in velocity

space

The work presented here is from the appendix of Khalil et al. (2025a).

A.1 A simple formula for approximately locating bar

resonances in velocity space

In order to evaluate analytically the location of the phase-space resonant zones due to a constant

pattern speed bar perturbation, one should define those zones in terms of librating versus

circulating orbits after canonically transforming to slow and fast action and angle variables

(see Section 1.2.5 and, e.g., Monari et al., 2017a; Binney, 2020). This is a relatively arduous

task, and we propose here a less precise but much faster way to roughly estimate the location

of resonant ridges in local velocity space, or more accurately, the surfaces of phase-space where

the resonant condition is fulfilled. This simple formula will be, by construction, axisymmetric,

which means that one cannot use it to model the changes in the morphology of the resonant

surfaces with azimuth. The formula relies on locally drawing constant energy lines in the VR-Vφ

plane within the improved epicyclic formalism presented in Dehnen (1999a). For convenience,

we reproduce here their equations 28 and 29 for the radial evolution of an orbit:

R(η) = RE [1 − e cos(η)]
γ
2 , (A.1)

e =

√√√√1 −
(
Jφ

Jcirc
φ

)2

, (A.2)
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where Jcirc
φ and RE are, respectively, the angular momentum and radius of a circular orbit of

the same energy, γ = γ(RE) = 2Ω(RE)/κ(RE) is the ratio of the circular frequency Ω over the

radial epicyclic frequency κ as usual, and e is the eccentricity of the orbit. The phase in radius

evolving with time t, namely η(t), is the parameter that represents the position along the path

of the orbit, and is defined as a function of the eccentricity and the radial epicyclic frequency

(see Eq. 28d of Dehnen, 1999a). For simplicity, we consider that η ∼ κt, which in turn means

that the radial velocity can be calculated as:

VR = dR

dη

dη

dt
∼ κ

γ

2R(η) e sin(η)
1 − e cos(η) = Vc(RE) R

RE

e sin(η)
1 − e cos(η) . (A.3)

The azimuthal velocity, on the other hand, can be written as a function of R simply by the

conservation of angular momentum: Vφ = Jφ/R(η). Using Eq. A.1 and Eq. A.2, one then gets

a closed form equation that relates the changes of VR along the orbit to those of R, Vφ, and the

circular velocity curve:

VR = Vc(RE)
(
R

RE

) γ−2
γ

√√√√2
(
R

RE

) 2
γ

−
(
R

RE

) 4
γ

−
(
RVφ

Jcirc
φ

)2

. (A.4)

All that is left is to impose the constraint that stars be on a surface where the resonant condition

is met. Under the assumption that frequencies are functions solely of the energy, the resonant

condition is preserved as long as stars share the same Jcirc
φ and RE, and as longs as these are

equal to the radius and angular momentum where the circular orbit is l : m resonant. We

refer to these as Rres, such that l κ(Rres) + m [Ω(Rres) − Ωb] = 0, and as J res
φ ≡ RresVc(Rres),

respectively. The final equation for the surfaces of the resonant condition is then:

V res
φ (R, VR) =

J res
φ

R

√√√√√2
(
R

Rres

) 2
γ

−
(
R

Rres

) 4
γ

1 +
(
Rres

R

VR

Vc(Rres)

)2
. (A.5)

where we reordered the terms to express Vφ as a function of the other phase-space variables.

The application of Eq. A.5 to the VR-Vφ velocity plane produces for each resonance a curve

that is almost identical to Eq. 9 from Dehnen (2000), and is equivalent to drawing lines of

constant energy at a given configuration space point, because it is written under the assumption

that the orbital frequencies are pure functions of the orbital energy. As can be seen in Fig. A.1,

in our best bar model, this formula identifies extremely well the peak of the overdensities

produced at R = R0 by the 6 : 1, 4 : 1, and 2 : 1 outer resonances of the bar. For the (l,m) =
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(0, 2) corotation resonance, the formula fails, probably because the eccentricity becomes too

large, and it rather approximately identifies the lower bound of the resonant zone.

Figure A.1: Resonant lines V res
φ as a function of VR from Eq. A.5 at R = R0, computed with

the potential of Table 2.1, for a bar pattern speed of 37 km s−1 kpc−1. The lines are overlaid on
top of the local velocity space density produced by our preferred bar-only model at the Sun’s
position.
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Appendix B

Un modèle non-axisymétrique pour la

Voie Lactée (version française)

B.1 Introduction

La mission Gaia fournit désormais une infor-
mation complète à 6 dimensions dans l’espace
des phases pour le disque de la Voie lactée
(VL), concernant un nombre d’étoiles bien plus
grand et sur un volume plus étendu que ja-
mais auparavant. Les deuxième (Gaia Collab-
oration et al., 2018c), début de la troisième
(Gaia Collaboration et al., 2021b), et troisième
(DR3, Gaia Collaboration et al., 2023d) pub-
lications de données de Gaia ont représenté
des jalons importants à cet égard (Hunt and
Vasiliev, 2025). Alors que les mouvements ver-
ticaux des étoiles ont révélé un déséquilibre du
disque galactique (Antoja et al., 2018), pos-
siblement lié à une subtile interaction entre
perturbations externes et non-axi-symétries in-
ternes (e.g., Binney and Schönrich, 2018; La-
porte et al., 2019; Li et al., 2023; Tremaine
et al., 2023; Frankel et al., 2024), la richesse
d’information contenue uniquement dans les
mouvements stellaires dans le plan (e.g., Gaia
Collaboration et al., 2018a; Gaia Collabora-
tion et al., 2023b) n’a pas encore été pleine-
ment exploitée. En effet, ces mouvements dans
le plan devraient — en principe — permettre
d’obtenir une cartographie dynamique détail-
lée des structures non-axi-symétriques les plus
importantes du disque de la VL, à savoir la
barre galactique et les bras spiraux (Lynden-
Bell and Kalnajs, 1972). Cependant, une telle
cartographie détaillée fait encore défaut. C’est

l’objet de la présente étude.

L’existence de la barre galactique a été ini-
tialement supposée à partir d’observations de
la cinématique du gaz (de Vaucouleurs, 1964;
Peters, 1975; Gerhard and Vietri, 1986; Binney
et al., 1991) et confirmée par des observations
(proche-)infrarouges (e.g., Blitz and Spergel,
1991; Sellwood, 1993; Weiland et al., 1994;
Binney et al., 1997), ainsi que par la ciné-
matique stellaire du bulbe (e.g., Zhao et al.,
1994). Il est désormais clair qu’une large frac-
tion des étoiles de la région du bulbe suivent
effectivement une structure en rotation, bar-
rée, de forme boxy/peanut, connectée à une
barre vue par la tranche (Bland-Hawthorn and
Gerhard, 2016), dont le « pattern speed »,
Ωb, fait néanmoins encore l’objet de débats.
Il y a moins de trois décennies, un consen-
sus s’est établi pour une vitesse de rotation
dans la plage Ωb ∼ 50-60kms−1 kpc−1, à partir
de divers indices, tels que des simulations hy-
drodynamiques comparant l’écoulement du gaz
modélisé aux diagrammes longitude-vitesse ob-
servés en CO et HI (Fux, 1999; Englmaier
and Gerhard, 1999; Bissantz et al., 2003), la
méthode de Tremaine and Weinberg (1984) ap-
pliquée aux étoiles de la Galaxie interne (De-
battista et al., 2002), ou la cinématique stel-
laire locale (Dehnen, 1999b; Dehnen, 2000;
Fux, 2001), positionnant le Soleil juste au-
delà de la résonance externe 2:1 de Lind-
blad (OLR) de la barre. Ce dernier argu-
ment a été soutenu par de nombreuses analyses
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ultérieures (e.g., Minchev et al., 2007; Quillen
et al., 2011; Antoja et al., 2012; Antoja et al.,
2014; Fragkoudi et al., 2019). À l’inverse, des
recherches parallèles sur la densité des étoiles
de la branche horizontale rouge dans le disque
(Wegg et al., 2015), la cinématique du gaz
(Sormani et al., 2015; Li et al., 2016), la mod-
élisation dynamique de la cinématique stellaire
dans la Galaxie interne (Portail et al., 2017),
et les données de mouvements propres issues
du relevé VVV (e.g., Clarke et al., 2019), y
compris via la méthode de Tremaine-Weinberg
(Sanders et al., 2019), ont collectivement sug-
géré une vitesse de rotation révisée de Ωb ∼ 35-
40kms−1 kpc−1. Pérez-Villegas et al. (2017) et
Monari et al. (2019a) ont ensuite démontré que
le modèle galactique ajusté à la cinématique
stellaire du bulbe par Portail et al. (2017) pou-
vait effectivement reproduire plusieurs carac-
téristiques observées dans l’espace des vitesses
locales (voir aussi Monari et al., 2019b; Binney,
2020; D’Onghia and Aguerri, 2020; Lucchini et
al., 2024). Une telle vitesse de rotation plus
faible est également cohérente avec des sur-
densités observées dans l’espace des phases du
halo stellaire (Dillamore et al., 2024) et avec
la chimie du disque (Haywood et al., 2024;
Khoperskov et al., 2024). D’autres vitesses
de rotation intermédiaires ont également été
proposées (Hunt and Bovy, 2018), de même
que des valeurs beaucoup plus faibles (Horta
Darrington et al., 2025), tandis que plusieurs
études ont conclu que la cinématique stellaire
du disque seule n’était pas suffisante pour lever
la dégénérescence (Trick et al., 2021; Trick,
2022; Bernet et al., 2024). Toutefois, la ciné-
matique des étoiles dans la région de la barre
elle-même semble avoir convergé vers Ωb ∼ 35-
40kms−1 kpc−1, bien que d’éventuelles varia-
tions soudaines du « pattern speed » restent
possibles (Hilmi et al., 2020). Enfin, une baisse
régulière du « pattern speed » de la barre
au cours du temps a été tentativement détec-
tée (Chiba et al., 2021; Chiba and Schönrich,
2021), et pourrait expliquer certains aspects
du déséquilibre vertical du disque galactique
(Li et al., 2023), ainsi que contribuer partielle-
ment à expliquer la présence d’étoiles pauvres
en métaux avec des orbites planaires en rota-
tion prograde dans le voisinage solaire (Li et
al., 2023; Yuan et al., 2024).

Concernant la localisation et la dynamique
des bras spiraux de la VL, la situation obser-
vationnelle actuelle est encore moins claire que

pour la barre. L’hypothèse que la VL puisse
héberger des bras spiraux est aussi ancienne
que la reconnaissance de son appartenance à
la classe des galaxies à disque, mais, en rai-
son de l’extinction, ce n’est qu’avec le travail
de Morgan et al. (1952) que ces bras ont été
identifiés, sur la base de la distribution des ré-
gions HII, rapidement suivie par l’analyse ciné-
matique de la raie HI à 21 cm par Oort et al.
(1958). En se basant sur les distances aux asso-
ciations OB et aux régions HII, Georgelin and
Georgelin (1976) a cartographié un motif spi-
ral à quatre bras, qui a été confirmé à plusieurs
reprises par des traceurs jeunes ou gazeux
(e.g., Urquhart et al., 2014), mais pas par des
traceurs plus anciens et plus rouges, qui de-
vraient mieux révéler les perturbations dans le
potentiel galactique. En effet, Drimmel (2000),
Drimmel and Spergel (2001), Benjamin et al.
(2005) et Churchwell et al. (2009) ont trouvé,
grâce à des traceurs en proche infrarouge et en
moyen infrarouge, que la VL semblait héberger
deux bras spiraux principaux. En collectant
des données sur les régions HII et les nuages
moléculaires géants, Hou et al. (2009) a mon-
tré que des modèles de spirales logarithmiques
à trois ou quatre bras pouvaient connecter ces
différents traceurs spiraux, comme cela a été
passé en revue par Shen and Zheng (2020).
En résumé, il n’est pas exagéré de dire que les
différents traceurs et observations sont loin de
converger sur les paramètres décrivant la po-
sition de chaque segment de bras spiral dans
le disque de la VL. Le bras dit « Local », par
exemple, a été trouvé par Gaia Collaboration
et al. (2023b) et Poggio et al. (2021), en re-
traçant les jeunes étoiles, comme étant plus
étendu — et ayant un angle de pitch inter-
médiaire — comparé à Vázquez et al. (2008),
où ce bras se dirige plutôt vers l’extérieur en
direction du bras de « Perseus », ou à Xu
et al. (2021), où le bras « Local » se dirige
vers l’intérieur en direction du bras « Carina-
Sagittarius ». Des débats similaires existent à
propos du bras de « Perseus » et du bras Ex-
terne, concernant leur position dans le disque
et leur angle de pitch. Peut-être plus frappant
encore, l’angle de pitch du bras de « Perseus »
a été trouvé à ∼ 24◦ dans Levine et al. (2006),
compatible avec les résultats de Poggio et al.
(2021) ou de Drimmel et al. (2024), et à ∼ 9◦

dans Reid et al. (2019), ce qui signifie que ce
nom ne fait en réalité pas toujours référence
aux mêmes surdensités observées dans le plan
galactique. La situation concernant le « pat-
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tern speed » des bras spiraux est encore plus
confuse, car sa signature peut aussi dépendre
de leur nature dynamique et de leur origine
(voir Sellwood and Masters, 2022, pour une
revue). En effet, les simulations numériques
de disques galactiques offrent de multiples per-
spectives sur ce sujet, allant de structures
corotatives transitoires qui s’enroulent et dis-
paraissent rapidement (e.g., Baba et al., 2013;
Hunt et al., 2018; Hunt et al., 2019), à de
multiples modes persistant sur quelques (voire
plusieurs) rotations galactiques, apparaissant
à tort comme très éphémères en raison de la
superposition de modes (e.g., Sellwood and
Carlberg, 2014). Dans la suite, notre procé-
dure de modélisation suivra deux lignes direc-
trices principales. La première est le consen-
sus actuel selon lequel, lorsque les spirales ap-
paraissent comme des modes dans les simula-
tions, celles-ci ne sont pas strictement statiques
comme dans le schéma classique des ondes de
densité (Lin and Shu, 1964), mais sont plutôt
constituées d’un cycle récurrent de modes de
sillon (semés par un déficit d’orbites circulaires
dans une plage étroite de moments angulaires,
voir, e.g., De Rijcke and Voulis, 2016; De Ri-
jcke et al., 2019) qui vivent entre leur résonance
interne de Lindblad (ILR) et leur OLR, où elles
peuvent créer de nouveaux sillons établissant le
cycle récurrent (Sellwood and Carlberg, 2014;
Sellwood and Carlberg, 2019). Elles peuvent
aussi être des modes de bord (Fiteni et al.,
2024). Les amplitudes des modes individu-
els croissent et décroissent, mais ce sont néan-
moins de véritables oscillations d’ondes sta-
tionnaires avec une forme fixe et une vitesse
de rotation fixe, détectables sur une période
d’au moins une rotation. La seconde ligne di-
rectrice est que les spectrogrammes de simula-
tions N -corps montrant des perturbations con-
jointes de barre et de spirale tendent à afficher
des bras spiraux qui tournent plus lentement
que la barre ; de plus, les bras spiraux ne sont
jamais présents à l’intérieur du rayon de coro-
tation de la barre. Ces spirales vivent entre
leur propre ILR et OLR, mais sont générale-
ment les plus fortes entre leur ILR et leur coro-
tation (Quillen et al., 2011). Notre approche
de modélisation ne prend pas en compte la pos-
sibilité de spirales s’enroulant avec le temps.

En gardant à l’esprit toutes les réserves
mentionnées ci-dessus, plusieurs mesures pro-
visoires de l’amplitude et du « pattern speed
» des bras spiraux ont été effectuées au fil

du temps. À l’origine, Lin et al. (1969) a
proposé un modèle à deux bras avec un an-
gle de pitch de 6◦ et une vitesse de rotation
de Ωs,2 ∼ 13kms−1 kpc−1, basé sur le mou-
vement systématique du gaz et le déplace-
ment d’étoiles modérément jeunes dans leur
modèle classique d’onde de densité. Une es-
timation plus récente, fondée sur le formal-
isme classique des ondes de densité de Lin and
Shu (1964), a été réalisée par Siebert et al.
(2012), en ajustant la carte des vitesses radi-
ales moyennes de l’enquête RAVE, et a abouti
à un modèle spiral à deux bras avec une den-
sité de contraste surfacique de 14%, un angle
de pitch de 10◦, et une vitesse de rotation de
Ωs,2 ∼ 18.6kms−1 kpc−1. Ce modèle, toute-
fois, négligeait l’effet de la barre (voir, e.g.,
Monari et al., 2014). En revanche, Amaral
and Lepine (1997) a plaidé pour une superpo-
sition d’une spirale à deux bras et d’une spi-
rale à quatre bras, toutes deux avec une vitesse
de rotation d’environ ∼ 20kms−1 kpc−1, sur
la base du retraçage des amas ouverts jusqu’à
leur lieu de naissance. Une telle procédure
a récemment été réalisée par Castro-Ginard
et al. (2021), qui a trouvé une vitesse de ro-
tation décroissante avec le rayon, passant de
∼ 50kms−1 kpc−1 pour le segment du bras
du Bouclier à ∼ 17kms−1 kpc−1 pour le seg-
ment du bras de « Perseus ». En modélisant
l’écoulement du gaz dans la Galaxie interne,
Bissantz et al. (2003) ont obtenu une mesure
conjointe des vitesses de rotation de la barre
et d’une spirale à quatre bras, avec une vitesse
de rotation très élevée pour la barre, Ωb ∼
60kms−1 kpc−1, et une vitesse de rotation de
Ωs,4 ∼ 20kms−1 kpc−1 pour la spirale à qua-
tre bras. Plus récemment, en négligeant de
nouveau la barre, Eilers et al. (2020) ont ap-
pliqué un modèle simplifié de spirale logarith-
mique au champ de vitesses radiales galacto-
centriques moyennes de Gaia DR2, suggérant
une densité de contraste surfacique d’environ
∼ 10%, un angle de pitch de 12◦, et une vitesse
de rotation fixe de Ωs,2 = 12kms−1 kpc−1 pour
une spirale à deux bras correspondant aux bras
« Local » et Externe. De telles vitesses de rota-
tion faibles avaient également été suggérées au-
paravant, par exemple par Sellwood (2010), sur
la base de la signature d’une résonance interne
de Lindblad (ILR) spirale dans la cinématique
stellaire locale (∼ 8kms−1 kpc−1 pour une spi-
rale à deux bras et ∼ 15kms−1 kpc−1 pour une
spirale à trois bras). Concernant l’amplitude,
la détermination la plus récente, basée sur
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l’équation de Jeans verticale, a trouvé que le
bras « Local » constitue la surdensité locale
la plus marquée, avec une densité de contraste
d’environ 20% (Widmark and Naik, 2024).

Ici, nous tentons d’exploiter pleinement la
richesse d’information encodée dans les mouve-
ments stellaires dans le plan, issus de Gaia DR3
(Gaia Collaboration et al., 2023b), afin de con-
traindre dynamiquement les non-axi-symétries
de la Galaxie. Des tentatives similaires précé-
dentes incluent l’approche plus empirique de
Khoperskov et al. (2020) and Khoperskov and
Gerhard (2022), ainsi que le travail récent de
Vislosky et al. (2024) comparant trois simula-
tions hydrodynamiques de galaxies aux cartes
de vitesses de Gaia, afin d’obtenir des indi-
cations sur l’orientation barre-spirale. Notre
approche est ici complémentaire puisque, au
lieu de comparer qualitativement une simula-
tion hydrodynamique auto-cohérente aux don-
nées, nous tentons un ajustement plus quanti-
tatif aux données de l’espace des phases stel-
laires de Gaia. Pour cela, nous recourons à des
intégrations rétrogrades afin de modéliser le
champ de vitesses avec une forme paramétrique
du potentiel gravitationnel. Notre solution
privilégiée pourrait servir de nouveau potentiel
paramétrique non-axi-symétrique de référence
pour le disque de la VL.

Dans la Section B.2, nous présen-
tons brièvement les données extraites de
l’échantillon RVS de Gaia DR3 que nous util-
isons pour contraindre le potentiel à partir de
la cinématique du disque de la VL. La méth-
ode de modélisation et la paramétrisation du
potentiel sont introduites dans la Section B.3,
tandis que les résultats sont présentés dans la
Section B.4. Des comparaisons a posteriori
avec des observables auxquelles le modèle n’a
pas été ajusté, ainsi que quelques exemples
d’applications de notre potentiel de référence,
sont données dans la Section B.5, avant nos
conclusions en Section B.6.

B.2 Données
Puisque nous prévoyions d’utiliser les mouve-
ments stellaires dans le plan du disque afin
de contraindre les non-axi-symétries de la VL,
nous avons sélectionné un échantillon d’étoiles
disposant d’une information complète à 6 di-
mensions dans l’espace des phases, issue du
RVS de Gaia, proche du plan galactique. Nous
avons utilisé les données de Gaia DR3 (Gaia

Collaboration et al., 2023d) combinées aux dis-
tances de StarHorse (Anders et al., 2022), et
sélectionné 17 414 667 étoiles situées à une hau-
teur inférieure à 300 pc du plan galactique.

Nous avons adopté, pour la position du
Soleil, x⊙, et sa vitesse, v⊙, en coordon-
nées cartésiennes galactocentriques : x⊙ =
(x⊙, y⊙, z⊙) = (8275, 0, 15.29) pc et v⊙ =
(Vx⊙ , Vy⊙ , Vz⊙) = (−9.3, 251.5, 8.59), km, s−1

(Gaia Collaboration et al., 2023b; Portail et
al., 2017; Widmark and Monari, 2019), re-
spectivement. Nous avons ensuite transformé
les données des coordonnées équatoriales vers
les coordonnées galactocentriques à l’aide de
la bibliothèque Astropy (Astropy Collabora-
tion et al., 2022), afin de calculer les posi-
tions des étoiles en coordonnées cartésiennes
galactocentriques, x = (x, y, z), ainsi que leurs
vitesses dans le plan en coordonnées cylin-
driques galactocentriques, v = (VR, Vφ), avec
le rayon galactocentrique R =

√
x2 + y2 et

l’azimut φ = arctan(y/x), défini comme nul à
l’azimut du Soleil et positif dans la direction de
la rotation galactique. Les étoiles ont été sélec-
tionnées dans la plage 4, kpc < x < 12, kpc et
−4, kpc < y < 4, kpc.

Dans la Fig.2.2, nous présentons la dis-
tribution des vitesses stellaires locales pour
un peu plus de 2 millions d’étoiles situées
dans un cylindre de rayon 300 pc autour du
Soleil, toujours à une hauteur de 300 pc.
Dans cette figure, plusieurs des groupes en
mouvement bien connus du voisinage solaire
(e.g., Dehnen, 1998; Famaey et al., 2005; An-
toja et al., 2008; Ramos et al., 2018; Ber-
net et al., 2022) sont immédiatement vis-
ibles. Le « Hat » peut être vu comme
l’arche concave vers le bas à grand Vφ, al-
lant de (VR, Vφ) ≈ (−100 km s−1, 270 km s−1)
à (VR, Vφ) ≈ (120 km s−1, 260 km s−1). Le
groupe en mouvement de « Sirius » (e.g.,
Famaey et al., 2008) apparaît approximative-
ment droit à Vφ ≈ 255 km s−1, situé en-
tre VR ≈ −50 km s−1 et VR ≈ 0 km s−1,
avec un pic à VR ≈ −15 km s−1. « Coma
» se trouve juste en dessous de « Sirius »
en vitesse azimutale, autour de (VR, Vφ) ≈
(0 km s−1, 245 km s−1). Le groupe en mou-
vement des « Hyades » (e.g., Famaey et al.,
2007; Pompéia et al., 2011) peut être vu
comme une arche légèrement incurvée vers le
bas, partant de la surdensité en (VR, Vφ) ≈
(20 km s−1, 230 km s−1). Le « Horn » se trouve
juste à côté des « Hyades », de l’autre côté
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en VR : il apparaît comme une arche passant
par (VR, Vφ) ≈ (−80 km s−1, 200 km s−1). En-
fin, le groupe majeur d’« Hercule » se perçoit
comme une bimodalité de tout le plan des
vitesses, avec une sous-densité juste en dessous
des « Hyades » en vitesse azimutale, le sé-
parant du reste de la distribution. Sa bimodal-
ité apparaît clairement, avec une seconde sur-
densité apparaissant à faible Vφ.

Une autre façon de visualiser ces
arches, qui, toutefois, efface visuellement les
asymétries en vitesse radiale, est de représen-
ter la distribution des étoiles dans l’espace
des actions axisymétriques locales (e.g., Trick
et al., 2019; Trick et al., 2021). En effet,
la Galaxie est, à premier ordre, un système
quasi-intégrable axisymétrique, et les vari-
ables action-angle (J ,θ) sont les variables
canoniques de l’espace des phases adaptées
à l’étude et à la perturbation des systèmes
intégrables. Dans ces coordonnées, le Hamil-
tonien ne dépend que des actions, J , qui sont
des intégrales du mouvement. Chaque triplet
d’actions caractérise alors entièrement une or-
bite intégrable, tandis que les angles indiquent
où se trouve une étoile donnée sur cette orbite
particulière. L’action azimutale est simple-
ment Jφ = R, Vφ, tandis que l’action radiale,
JR (calculée dans le potentiel axisymétrique
de fond défini dans la Sect.3), encode les ex-
cursions radiales (galactocentriques) d’une or-
bite donnée. Dans la Fig.2.3, les arches dans
l’espace des vitesses locales apparaissent dé-
sormais comme des crêtes dans l’espace des
actions locales, caractéristiques de structures
résonantes (e.g., Monari et al., 2017a; Binney,
2020).

Ces caractéristiques de l’espace des vitesses
locales et de l’espace des actions, tracées avec
une précision remarquable, sont toutefois con-
nues depuis longtemps. La valeur ajoutée
la plus intéressante des publications de don-
nées de Gaia a été d’élargir le volume autour
du Soleil dans lequel de telles structures dy-
namiques peuvent être étudiées (e.g., Ramos
et al., 2018; Bernet et al., 2022). Afin d’ajuster
les composantes non axisymétriques du poten-
tiel galactique, nous nous abstenons cepen-
dant, dans ce travail, d’utiliser la distribution
complète des étoiles du disque dans l’espace
des phases, et choisissons plutôt d’ajuster une
mesure de tendance centrale en fonction de la
position dans le disque, à savoir la vitesse ra-
diale galactocentrique médiane (Gaia Collabo-
ration et al., 2023b). Cette carte de la vitesse

radiale médiane est présentée dans la Fig.2.4 et
constitue l’observable principale ajustée dans
ce travail. Nous ne vérifions qu’a posteri-
ori la concordance qualitative avec la distri-
bution complète des étoiles dans l’espace des
phases. Comme notre modélisation repose sur
une fonction de distribution (DF) projetée en
4D dans l’espace des phases des populations
stellaires du disque — une DF censée tenir
compte des étoiles ayant des vitesses verti-
cales non nulles — nous n’appliquons aucune
coupure supplémentaire sur la vitesse verti-
cale dans les données. Cependant, bien que
notre DF soit une projection, nos intégrations
d’orbites sont effectuées uniquement dans le
plan. Nous avons donc également vérifié que
le fait de ne sélectionner que les étoiles dont la
vitesse verticale est inférieure à 15, km, s−1, ce
qui permet de conserver un nombre raisonnable
de 11427 688 étoiles dans l’échantillon, con-
duit à une carte de la vitesse radiale médiane
presque identique. Pour les points importants
de l’ajustement, les différences typiques sont
inférieures à 0.5 km/s, avec une différence max-
imale de 1 km/s.

B.3 Modélisation
Pour construire notre potentiel non-axi-
symétrique, nous sommes partis d’un poten-
tiel axi-symétrique, auquel nous avons en-
suite ajouté une barre et des bras spiraux,
définis par plusieurs paramètres décrits dans
les sous-sections suivantes. À l’intérieur du
potentiel axi-symétrique, nous avons utilisé
une fonction de distribution dans l’espace des
phases, f(x,v), pour décrire notre population
traceuse. Cette fonction de distribution à une
particule est la fonction de densité de proba-
bilité de trouver une étoile au point (x,v) de
l’espace des phases et, pour un système sans
collisions, elle obéit à l’équation de Boltzmann
sans collisions (ou de Vlasov). Une telle fonc-
tion de distribution, pour tout système stellaire
intégrable à l’état stationnaire, devrait unique-
ment dépendre d’intégrales isolantes du mou-
vement selon le théorème de Jeans (Binney and
Tremaine, 2008). Nous considérons ces inté-
grales comme étant les actions, J . Afin de
transformer les positions et vitesses stellaires
en actions, on peut utiliser une approximation
basée sur les potentiels de Stäckel (voir, e.g.,
Famaey and Dejonghe, 2003). Les potentiels
axi-symétriques de Stäckel sont exprimés dans
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un système de coordonnées sphéroïdales, défini
par une distance focale, qui est toujours reliée
aux dérivées première et seconde du potentiel
en une position donnée. Ainsi, en utilisant le
potentiel galactique réel en une position don-
née, on peut calculer une distance focale équiv-
alente comme si le potentiel était localement de
forme de Stäckel, permettant le calcul des in-
tégrales (quasi-)du mouvement et des actions
correspondantes. Ce « Stäckel fudge » (Bin-
ney, 2012; Sanders and Binney, 2016) est en-
tièrement implémenté dans le code de modéli-
sation galactique basé sur les actions (Vasiliev,
2018; Vasiliev, 2019, AGAMA) que nous avons
utilisé dans la présente étude.

Nous sommes partis d’une fonction de
distribution à l’équilibre, f(J), pour la
population traceuse définie dans un poten-
tiel axi-symétrique. La première approche
pour inclure l’effet de composantes non-axi-
symétriques est de les traiter via la théorie des
perturbations (e.g., Monari et al., 2016a; Al
Kazwini et al., 2022), ce qui, afin d’être véri-
tablement quantitatif, nécessite un traitement
particulier des zones résonantes pour une per-
turbation à vitesse de rotation constante (e.g.,
Monari et al., 2017a; Laporte et al., 2020; Bin-
ney, 2020; Hamilton et al., 2023). Cela de-
vient toutefois pratiquement très compliqué en
présence de multiples perturbateurs ayant des
vitesses de rotation différentes, dont les réso-
nances se chevauchent. Pour contourner ce
problème, on peut heureusement s’appuyer sur
la propriété encodée dans l’équation de Boltz-
mann sans collisions, à savoir que la valeur de
la fonction de distribution dans un volume la-
grangien infinitésimal est conservée le long de
la trajectoire. Cela nous permet d’utiliser la
méthode classique des intégrations rétrogrades
(Vauterin and Dejonghe, 1997), employée par
exemple dans Dehnen (2000), Hunt and Bovy
(2018), Hunt et al. (2018), Hunt et al. (2019),
Monari et al. (2019a), and Bernet et al. (2024),
afin d’explorer la forme de la fonction de dis-
tribution.

Afin de calculer f(x,v, t), à l’instant actuel
t = 0, au point (x,v) de l’espace des phases, en
présence de la barre et des bras spiraux, nous
avons intégré rétrospectivement l’orbite pour
un temps d’intégration fixé jusqu’à sa position

(x′,v′) dans l’espace des phases à un instant
t′ < 0, avant l’apparition effective des per-
turbateurs non-axi-symétriques. En supposant
que la population traceuse soit représentée
par la fonction de distribution à l’équilibre,
f(J), dans le potentiel axisymétrique de fond
à l’instant t′, nous avons transformé (x′,v′)
en variables action-angle en utilisant AGAMA,
calculé la valeur de la DF1, et, puisque cette
valeur dans un volume lagrangien infinitésimal
est conservée, nous avons attribué la même
valeur de la DF à la position (x,v) de l’espace
des phases à l’instant présent t = 0 en présence
de la barre et des spirales. En pratique,
les orbites ont été intégrées uniquement dans
le plan, en résolvant le problème de Cauchy
avec la méthode de Runge-Kutta d’ordre cinq
via le solveur odeint de la bibliothèque très
performante torchdiffeq (Chen, 2018) dans
PyTorch (Paszke et al., 2019). Faire cela en de
nombreux points de l’espace des phases nous
permet de calculer la vitesse radiale médiane
en fonction de la position dans le disque, et
d’ajuster les paramètres des composantes non-
axi-symétriques afin de reproduire les valeurs
observées. En pratique, la vitesse radiale mé-
diane à chaque position de grille (échantillon-
née tous les 50pc en x et y) sur le disque a
été calculée après intégration locale des valeurs
de la DF en Vφ pour une grille de vitesses sur
laquelle l’intégration rétrograde a été effectuée
en chaque position. Cette grille s’étend de
−79 km s−1 à 79 km s−1 avec un pas de 2 km s−1

en VR, et de 110 km s−1 à 330 km s−1 avec un
pas de 4 km s−1 en Vφ. Le potentiel a été
évalué sur une grille de rayons, ensuite in-
terpolée par une spline cubique dans la bib-
liothèque torchcubicspline de PyTorch afin
d’améliorer le temps de calcul. De même, nous
avons également interpolé, avec Scipy (Virta-
nen et al., 2020), une spline cubique appliquée
aux actions calculées avec AGAMA.

Il existe trois limites à la méthode, qui
méritent d’être mentionnées même si les traiter
en détail dépasse largement le cadre de cette
première approche quantitative du problème.
Premièrement, nous utilisons l’échantillon
complet du disque décrit dans la section précé-
dente sans tenir compte d’une fonction de
sélection détaillée, en supposant que le grand

1Soit J le jacobien de la transformation entre (J , θ) et (x, v). Puisque detJ = 1 pour des variables canon-
iques (Binney and Tremaine, 2008), la transformation entre une DF dans (J , θ), f(J , θ), et celle dans (x, v),
f ′(x, v), est donnée par f ′(x, v) = f(J(x, v), θ(x, v))detJ = f(J(x, v), θ(x, v)), c.-à-d. que f ′ est simplement
f avec J et θ écrits comme fonctions de x et v.
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nombre d’étoiles utilisé permet une bonne es-
timation de la véritable vitesse médiane. La
deuxième limite est que, dans la pratique,
la fonction de distribution stellaire observée
est toujours mesurée sur des volumes finis de
l’espace des phases, tandis que la méthode
d’intégration rétrograde repose sur l’hypothèse
que la valeur moyenne de la DF dans un vol-
ume donné de l’espace des phases est équiva-
lente à sa valeur au point central, indépendam-
ment de la manière dont le volume se déforme
au cours de l’évolution orbitale du système.
En d’autres termes, la méthode d’intégration
rétrograde fournit la DF fine (fine-grained), qui
reste généralement non lissée à petite échelle,
tandis que la DF mesurable dans les obser-
vations est la DF grossière (coarse-grained),
qui n’obéit pas à l’équation de Boltzmann
sans collisions (car cette DF grossière est lis-
sée par le mélange de phases dans des vol-
umes finis). Le théorème d’échantillonnage de
Nyquist-Shannon impose des limites à la taille
minimale des structures fines pouvant se for-
mer dans l’espace des phases pour un nombre
fixe de particules au cours du temps, et cette
limite est atteinte sur des échelles de temps as-
sez courtes, plus courtes que la relaxation col-
lisionnelle (Beraldo e Silva et al., 2019). Une
fois cette limite atteinte, le système ne peut
pas former de structures plus fines, bien que
l’équation de Boltzmann sans collisions prévoie
leur formation. En pratique, cela signifie que
si l’intégration est effectuée trop longtemps, la
DF fine suivie par la méthode d’intégration
rétrograde donnera lieu à des structures nettes
et non lissées dans l’espace des vitesses, où des
caractéristiques chaotiques apparaîtront égale-
ment plus tranchées que dans la réalité. Pour
contourner ce problème, l’intégration doit être
effectuée uniquement sur un temps relative-
ment limité, ajusté de manière à ce que la
netteté des structures résonantes dans l’espace
des vitesses ressemble à ce qui est observé.
Heureusement, les simulations N -corps indi-
quant l’existence de cycles récurrents de modes
de sillon dans les disques galactiques (Sell-
wood and Carlberg, 2014; Sellwood and Carl-
berg, 2019) nous permettent de considérer que
les modes de bras spiraux actuels de la VL
sont relativement récents. Cette hypothèse
n’est bien sûr pas idéale pour la barre, mais
il est raisonnable de supposer que la localisa-
tion des structures résonantes dans l’espace des
vitesses locales n’évolue pas avec le temps, tan-
dis que leur netteté, elle, évolue. Nous nous

concentrerons donc uniquement sur la locali-
sation des structures résonantes dans l’espace
des vitesses locales pour contraindre le « pat-
tern speed » de la barre, et nous nous ap-
puierons sur une forme paramétrique de son
potentiel ajustée à la dynamique de la région
du bulbe (Portail et al., 2017; Thomas et al.,
2023) pour son amplitude. Il serait trop coû-
teux de recourir à une méthode d’intégration
vers l’avant dans le schéma d’ajustement que
nous mettons en œuvre dans cette thèse, étant
donné la taille de l’espace des paramètres à
explorer, et étant donné que chaque combi-
naison de paramètres nécessite une intégration
rétrograde complète de tout le plan galactique.
Cependant, les résultats obtenus ci-après pour-
raient servir de base à des simulations de par-
ticules tests vers l’avant dans le temps, égale-
ment étendues à trois dimensions, que nous
prévoyons de présenter dans un prochain arti-
cle. Enfin, une troisième et dernière limite est
que nos simulations ne sont pas, par concep-
tion, auto-cohérentes. Cette simplification est
bien plus efficace pour explorer un vaste espace
de paramètres. Cependant, de futures amélio-
rations de notre méthode pourraient s’appuyer
sur une adaptation de la méthode made-to-
measure (Syer and Tremaine, 1996; Portail
et al., 2017) afin de tenir compte de l’auto-
cohérence, en utilisant les résultats présentés
ci-après comme base.

Potentiel axisymétrique de fond

Comme indiqué plus haut, la méthode utilise
un potentiel de fond axisymétrique. En pra-
tique, nous avons supposé un profil de densité
axisymétrique 3D, et le potentiel a été calculé
en résolvant l’équation de Poisson avec AGAMA.
Le profil de densité est la somme des den-
sités de chacune des composantes suivantes :
disque stellaire, disque de gaz, bulbe et halo
de matière noire.

Les profils de densité du disque stellaire
et du disque de gaz sont paramétrés en coor-
données cylindriques galactocentriques (R, z)
dans l’équation 2.1 avec la densité de sur-
face centrale, Σ0, l’échelle de hauteur, hz (et
donc la densité centrale Σ0/2hz), et l’échelle
de longueur, hR. Le profil de densité sphérique
pour le bulbe et le halo de matière noire est
donné par l’équation 2.2 avec une normalisa-
tion de densité, ρ0, un rayon d’échelle, a, un
rayon d’échelle externe, rs, et des exposants
α, β et γ. Le rayon ellipsoïdal est défini
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comme r̃ =
√
R2 +

(
z
q

)2
, avec q le rapport

d’axe vertical. Tous les paramètres sont don-
nés dans le Tableau 2.1. La masse baryonique
du modèle est de 6 × 1010M⊙ et le halo de
matière noire est relativement léger, avec une
masse de 3.1 × 1011M⊙, entre les valeurs typ-
iques obtenues à partir d’analyses de courbes
de vitesses circulaires (e.g., Jiao et al., 2023;
Ou et al., 2024) et celles obtenues à partir des
courbes de vitesse d’échappement, de la dy-
namique des satellites ou de l’ajustement des
courants stellaires (e.g., Monari et al., 2018;
Callingham et al., 2019; Roche et al., 2024b;
Ibata et al., 2024). Seule la masse dans la
Galaxie interne, toutefois, importe pour notre
modélisation actuelle : la masse totale enfer-
mée (baryons et matière noire) à l’intérieur de
20 kpc est de 2.2 × 1011M⊙, en accord approx-
imatif avec la contrainte de Malhan and Ibata
(2019). La densité locale de matière noire à la
position du Soleil est de 1.3 × 10−2M⊙ pc−3,
cohérente avec la plupart des estimations (de
Salas and Widmark, 2021, et références in-
cluses). Au centre, le halo de matière noire
présente un cœur de densité constante (avec
une pente de loi de puissance centrale de 0)
ainsi qu’un déclin peu marqué en loi de puis-
sance près du centre, avec une pente de -0.6
à R = 1 kpc et de -1 à R = 3kpc. Tous ces
paramètres du potentiel de fond pourraient en
principe être laissés libres dans notre procédure
d’ajustement ci-après, mais afin de simplifier
le problème, ils ont tous été fixés pour ressem-
bler étroitement à la partie axisymétrique du
modèle de Portail et al. (2017). La courbe
de vitesse circulaire correspondant à ce mod-
èle axisymétrique est tracée dans la Fig.2.2.1.
Tous les modes non-axi-symétriques qui ont été
ensuite ajoutés à ce fond axisymétrique ont une
masse totale nulle, ce qui signifie que la masse
totale du modèle final non-axi-symétrique est
la même que celle du modèle axisymétrique.
Comme nos orbites ont été calculées stricte-
ment dans le plan, nous n’avions besoin que
du potentiel de fond dans le plan, Φ0(R).

Fonction de distribution d’équilibre ax-
isymétrique

La deuxième étape de notre procédure consis-
tait à choisir une fonction de distribution à
l’équilibre pour la population stellaire traceuse
dans le plan. Puisque nous nous limitons au
plan, nous n’avons pas tenté ici d’être en-

tièrement auto-cohérents (voir, e.g., Binney
and Vasiliev, 2023), afin de permettre une
forme simple et traitable de la fonction de
distribution, à savoir une simple combinai-
son linéaire de deux fonctions de distribution
quasi-isothermales, f(JR, Jφ) = Fthin + ζFthick,
avec ζ = 0.05, qui sont 2D dans l’espace
des actions, et qui ont toutes deux la forme
de l’équation 2.3 (Binney, 2010; Binney and
McMillan, 2011), avec Rg, le rayon de guidage,
et Ω, κ, les fréquences circulaire et épicyclique,
toutes trois dépendant de l’action azimutale
Jφ, hR, l’échelle de longueur du disque, η, le
facteur de normalisation (en unités d’inverse de
longueur au carré) de la population traceuse,
et enfin la dispersion de vitesse radiale, σ̃R,
dépendant du rayon de guidage. En plus,
hσ,R c’est l’échelle cinématique de la popu-
lation traceuse. Pour Fthin, nous avons fixé
l’échelle de longueur à hR = 2.4 kpc conformé-
ment au potentiel, la dispersion de vitesse à la
position du Soleil à σ̃R, thin(R0) = 30 kms−1,
et l’échelle cinématique à hσR = 10kpc. Pour
Fthick, la seule différence est que nous avons
fixé σ̃R,thick(R0) = 55kms−1. Notre fonction
de distribution correspond à une DF projetée
en 4D dans l’espace des phases, c’est-à-dire en
unités d’inverse de longueur au carré multiplié
par l’inverse de la vitesse au carré, correspon-
dant donc à la DF 6D des populations stel-
laires du disque modélisées et intégrée sur les
hauteurs et les vitesses verticales. La distribu-
tion locale des vitesses à R = R0 correspon-
dant à cette DF axisymétrique est représentée
dans la Fig.2.7. En pratique, le facteur de nor-
malisation a été ajusté de sorte que le nombre
d’étoiles dans le modèle à la position du Soleil
soit le même que celui trouvé dans les données
à l’intérieur du cylindre de 300pc de rayon et
de hauteur ±300 pc autour du Soleil.

Potentiel non-axisymétrique

La troisième étape de notre procédure a con-
sisté à ajouter des modes non-axi-symétriques
au potentiel de fond axisymétrique Φ0. Le po-
tentiel total a été obtenu en ajoutant à Φ0(R)
la partie réelle de l’équation 2.4 où la phase
actuelle et le « pattern speed » de la barre
sont respectivement φb,0 et Ωb, et celles du
mode de bras spiraux, m, sont respectivement
φs,m,0 (la phase spirale actuelle à la position
solaire) et Ωs,m. L’amplitude de chaque mode
est donnée par ϕb,m et ϕs,m pour la barre et les
spirales, respectivement. Le temps, t, est tel
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qu’actuellement t = 0.
Comme indiqué plus haut, l’amplitude des

modes du potentiel de la barre est fixée à des
valeurs qui reproduisent bien la dynamique
de la région du bulbe. Plus précisément,
le potentiel de la barre est une superposi-
tion de trois modes de Fourier, avec la même
forme paramétrique que dans Thomas et al.
(2023), ressemblant étroitement aux trois pre-
miers modes pairs du potentiel de la barre
dérivés dans Portail et al., 2017. À partir de
ce même potentiel, la phase angulaire de la
barre a été fixée à φb,0 = 28◦. L’amplitude
de chaque mode de la barre, m, est donnée
par l’équation 2.5 où Gb(t) ≤ 1 est la fonc-
tion de croissance de la barre, et Ab,m est
l’amplitude relative du mode de barre don-
née par l’équation 2.6 avec Kb,m un facteur
d’amplitude globale et Rb,max le rayon auquel
l’amplitude du mode s’annule. Il est impor-
tant de noter que nous avons considéré que
l’amplitude avait atteint un plateau au temps
présent, Gb(t = 0) = 1. Les valeurs de
Kb,m, am, et bm pour chacun des modes de la
barre sont présentées dans le Tableau2.2. Seule
le « pattern speed » de la barre est ajustée à
la localisation des structures résonantes dans
l’espace des vitesses locales dans le cadre de
notre procédure (voir la section suivante).

Le potentiel des bras spiraux que nous pro-
posons est une adaptation du modèle analy-
tique de Cox and Gomez, 2002 décrit dans
Monari et al., 2016b, dont l’amplitude est don-
née par l’équation 2.7 où Gs,m(t) est la fonction
de croissance pour le mode de bras spiraux, m,
fixée à Gs,m(t = 0) = 1, ps,m est l’angle de
pitch, et As,m est donné par l’équation 2.8 où
ξs,m est le facteur d’amplitude du mode, nor-
malisé à sa valeur Ks,m en R = R0, avec une
dépendance radiale donnée par l’équation 2.9.

Cette adaptation du potentiel de Cox and
Gomez, 2002 a l’avantage d’être facilement
généralisable en 3D. Ici, hs,m correspond à
l’échelle de hauteur du potentiel spiral, que
nous avons fixée à 130pc. Nous avons véri-
fié que nos résultats ne sont pas très sensi-
bles à ce paramètre et restent similaires pour
toute valeur comprise entre 100pc et 300 pc.
Enfin, Hm est une fonction de coupure radi-
ale, paramétrée par une coupure interne et
une coupure externe, respectivement Rs,m,min
et Rs,m,max. La fonction est présenté dans
l’équation 2.10. Cette coupure est choisie par
simplicité, dans un contexte où nous ne vi-

sons pas l’auto-cohérence. Cependant, dans
un contexte où le couple densité-potentiel d’un
mode spiral est nécessaire à la coupure, il
est souhaitable de remplacer la fonction éch-
elon par quelque chose comme Hm ∼ 0.5(1 +
tanh((R − Rs,m,min)/∆cutoff)), où ∆cutoff → 0
correspond à notre cas présent.

Ces coupures sont déterminées à partir
des vitesses de rotation de la barre et des
modes spiraux dans la section suivante. Les
paramètres des bras spiraux (pour chaque
mode : amplitude, Ks,m, angle de pitch, ps,m,
phase actuelle à la position solaire, φs,m,0, et
vitesse de rotation, Ωs,m) sont ajustés aux don-
nées dans la section suivante, en même temps
que le « pattern speed » de la barre, Ωb.

B.4 Résultats
Modèle avec barre seule

Avec toutes les composantes paramétriques du
potentiel définies ci-dessus, nous étions alors
en mesure de lancer nos intégrations rétro-
grades afin d’ajuster les paramètres aux don-
nées. Comme indiqué plus haut, l’amplitude
des modes et la phase du potentiel de la barre
sont fixées à des valeurs qui reproduisent bien
la dynamique de la région du bulbe. Seule le «
pattern speed » de la barre a ensuite été ajustée
à la localisation des structures résonantes dans
l’espace des vitesses locales, en excluant les
bras spiraux du modèle.

Un autre hyperparamètre à ajuster puis
à fixer est le temps d’intégration (fictif),
Tint, dans le cadre de l’intégration rétrograde.
Celui-ci n’affectera pas la position des crêtes
dans l’espace des vitesses locales, mais influ-
encera leur « netteté » apparente. Comme
dans Dehnen (2000), nous avons séparé le
temps d’intégration total en deux phases de
durée égale : la croissance de la barre et
le plateau de son amplitude, avec la fonc-
tion de croissance suivante : où T ≡ (4t +
3Tint)/Tint. Nous avons choisi d’ajuster ces
deux paramètres (le « pattern speed » et
le temps d’intégration fictif) à la distribu-
tion 1D des étoiles dans le voisinage solaire
pour des vitesses azimutales comprises entre
90, km s−1 < Vφ < 330, km s−1 à VR =
100, km s−1. Cette distribution est présentée
dans la Fig. 2.8. Le choix d’analyser les crêtes
à grand VR permet d’éviter qu’elles soient «
contaminées » par l’effet additionnel des bras
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spiraux puisque, comme nous le verrons dans la
sous-section suivante, ceux-ci déforment prin-
cipalement l’espace des vitesses locales dans
les régions centrales de l’ellipsoïde de vitesses.
Cet ajustement du « pattern speed » de la
barre a été réalisé dans le voisinage solaire, qui
constitue le volume le plus complet, de sorte
qu’aucun pic ni vallée n’y soit manquant.

D’un point de vue quantitatif, nous avons
comparé la somme des carrés des différences de
la distribution 1D des vitesses azimutales dans
chaque bin de 2, km s−1 entre l’échantillon
Gaia RVS du disque et le modèle à barre
seule. Seule la position des pics importe ici,
c’est pourquoi la renormalisation de la fonc-
tion de distribution (DF) n’a été appliquée
que dans le petit domaine en VR considéré
dans la Fig.2.8, au lieu de la normalisation de
la DF appliquée à l’ensemble de l’espace des
vitesses locales dans tous les autres cas. Nous
trouvons la meilleure concordance pour Ωb =
37, km s−1kpc−1, pour un temps d’intégration
total (fictif) de 543Myr, correspondant à 3,2
rotations de la barre. Notons toutefois que le
pic de vitesse attribuable au groupe en mouve-
ment de Bobylev, ou à la partie inférieure de la
bimodalité d’« Hercule » (à Vφ ∼ 160 km s−1

dans la Fig. 2.8), n’est pas reproduit, et ne l’est
jamais par un modèle à barre seule qui repro-
duit également le chapeau à grand Vφ. Notre
meilleure valeur du « pattern speed » place le
rayon de corotation de la barre à R = 6.6 kpc
et son rayon d’OLR à R = 11 kpc.

Dans la première colonne de la Fig.2.10,
nous présentons la distribution des vitesses
(VR, Vφ) à la position solaire (en fixant la
valeur à zéro dans les pixels sans étoiles dans
les données à moins de 300pc du Soleil), la
distribution locale des actions (Jφ, JR), ainsi
que la vitesse radiale galactocentrique médi-
ane Ṽ R en fonction de la position dans le
plan galactique. De manière remarquable, la
distribution cinématique locale correspondant
à ce modèle avec barre seule est déjà très
similaire à celle observée, sans aucune contri-
bution supplémentaire des bras spiraux (voir
aussi Monari et al., 2019a, pour une conclu-
sion similaire mais moins quantitative). Le
succès de ce modèle de barre à reproduire au-
tant de structures ressemblant à la distribu-
tion cinématique locale observée provient des
signatures des résonances de Lindblad de ses
multiples modes. Nous le confirmons dans
l’Annexe, où nous fournissons une formule sim-
ple basée sur les lignes d’énergie constante dans

le formalisme épicyclique amélioré de Dehnen
(1999a) afin d’évaluer la localisation approx-
imative de la signature de chaque résonance
de la barre dans l’espace des vitesses locales.
À VR = 100, km s−1, ces localisations approxi-
matives des résonances de la barre sont égale-
ment indiquées par de petits tirets au-dessus
de la Fig.2.8. Cependant, comme cela appa-
raît clairement dans la troisième ligne de la
Fig.2.10, le modèle avec barre seule produit
une structure dipolaire des vitesses radiales
médianes dans le plan, très différente de celle
observée. Cela implique que d’autres ingrédi-
ents dynamiques sont nécessaires pour repro-
duire ce champ de vitesses médian, ce qui est
le sujet de la sous-section suivante. Un autre
défaut manifeste du modèle avec barre seule,
localement, est que le groupe en mouvement
de « Sirius » ne se distingue pas dans l’espace
des vitesses locales. Quantitativement, si l’on
considère la densité d’étoiles dans une bande
de V φ comprise entre 250 km s−1 et 260 km s−1

dans l’espace des vitesses locales, et que l’on
compare la valeur en VR = −12 km s−1 à celle
en VR = 0 km s−1, on obtient une augmenta-
tion d’environ 25% dans les données à VR =
−12 km s−1 (le pic de « Sirius »), tandis que
l’on obtient une diminution de 11% dans le
modèle avec barre seule (presque identique au
cas axisymétrique). Cela indique que « Sirius
» est probablement causé par les bras spiraux.

Ajout des bras spiraux

Étant donné l’échec du modèle à barre seule à
reproduire le champ de vitesse radiale médian,
l’étape suivante a consisté à ajouter des modes
non axisymétriques correspondant aux bras
spiraux. Nous avons commencé par ajouter
un seul mode au modèle à barre seule (c’est-à-
dire avec Ωb = 37, km s−1kpc−1 fixé), avec une
multiplicité m ∈ [1, 2, 3, 4]. Nous avons fixé la
hauteur d’échelle à la même valeur que celle
du composant gazeux du potentiel de fond,
hs,m = 130 pc, la coupure externe étant l’OLR
de la spirale, et la coupure interne correspon-
dant à la plus grande valeur entre le rayon de
corotation de la barre et l’ILR de la spirale (de
sorte que la spirale s’étende entre son ILR et
son OLR mais ne pénètre pas à l’intérieur de la
corotation de la barre). La fonction de crois-
sance Gs,m(t) a la même forme que celle de la
barre, et nous avons fixé le temps d’intégration
à exactement une rotation complète du mode
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de bras spiral. Dans de nombreuses autres
tentatives, même en permettant plus d’une
rotation et un temps de croissance différent,
les meilleurs candidats de la méthode décrite
ci-après tendent à converger vers des valeurs
proches de celles que nous avons retenues.

L’exploration de l’ensemble de l’espace
des paramètres avec la méthode d’intégration
rétrograde sur une large portion de l’espace
des phases est extrêmement coûteuse en calcul,
ce qui nous a conduits à adopter la stratégie
suivante pour ajuster le modèle galactique
aux données de Gaia. L’ajustement a été
réalisé avec la méthode d’évolution différen-
tielle de Storn and Price (1997), une méth-
ode d’optimisation génétique globale implé-
mentée dans la bibliothèque Python SciPy.
Cet algorithme minimise une fonction objectif,
définie comme une fonction d’erreur pondérée
L = ∑

i(Ṽ modelR, i−Ṽ dataR, i)2/σ2
i , comparant

les vitesses radiales médianes issues du mod-
èle et des données sur une petite sélection
de points (xi, yi) avec des poids 1/σi. Les
vitesses radiales médianes observées Ṽ dataR, i
ont été calculées dans des cases de 250 pc au-
tour du point sélectionné (xi, yi), tandis que les
vitesses radiales médianes du modèle sont la
médiane calculée de la distribution de V R au
point sélectionné, c’est-à-dire les valeurs de la
DF du modèle dans le plan (VR, Vφ) intégrées
sur Vφ.L’exploration de l’ensemble de l’espace
des paramètres avec la méthode d’intégration
rétrograde sur une large portion de l’espace
des phases est extrêmement coûteuse en calcul,
ce qui nous a conduits à adopter la stratégie
suivante pour ajuster le modèle galactique
aux données de Gaia. L’ajustement a été
réalisé avec la méthode d’évolution différen-
tielle de Storn and Price (1997), une méth-
ode d’optimisation génétique globale implé-
mentée dans la bibliothèque Python SciPy.
Cet algorithme minimise une fonction objectif,
définie comme une fonction d’erreur pondérée
L =∑i(Ṽ modelR, i− Ṽ dataR, i)2/σ2

i , comparant
les vitesses radiales médianes issues du mod-
èle et des données sur une petite sélection
de points (xi, yi) avec des poids 1/σi. Les
vitesses radiales médianes observées Ṽ dataR, i
ont été calculées dans des cases de 250 pc au-
tour du point sélectionné (xi, yi), tandis que
les vitesses radiales médianes du modèle sont
la médiane calculée de la distribution de V R
au point sélectionné, c’est-à-dire les valeurs de
la DF du modèle dans le plan (VR, Vφ) inté-

grées sur Vφ. Le choix des points sélectionnés
et de leurs poids respectifs a été une étape
délicate. Le nombre de points doit être lim-
ité afin de réduire le temps de calcul, mais
cela implique aussi qu’ils doivent être choisis à
des positions « stratégiques » et non pas sim-
plement sur une grille uniforme. De plus, les
pondérer simplement par le nombre d’étoiles
dans les données donnerait trop de poids au
voisinage solaire par rapport à l’ensemble de
la zone de l’ajustement. Le premier point
auquel nous avons néanmoins attribué le poids
le plus élevé, 1/σ0, est la position solaire
(x0, y0). Nous devions ensuite choisir des
points représentatifs des variations des valeurs
(positives et négatives) de la vitesse radiale
médiane sur tout le plan. L’ajout de bras spi-
raux comporte invariablement le risque de ne
pas préserver le gradient de vitesse radiale à
peu près correct provenant de la barre dans la
région autour de (x1, y1) = (7.0 kpc, 3.5 kpc) et
(x2, y2) = (7.0 kpc, 1.0 kpc), mais il est néces-
saire pour inverser le signe de ṼR en (x3, y3) =
(9.0 kpc, 0.0 kpc). Ces trois points constitu-
aient nos seconds points les plus importants,
tous avec σi = 2σ0. Nous avons ensuite choisi
deux paires de points le long d’axes de y con-
stant qui encapsulent les variations positives-
négatives dans le champ de vitesses radi-
ales médianes : (x4, y4) = (6.5 kpc, 0.0 kpc),
(x5, y5) = (10.0 kpc, 0.0 kpc), (x6, y6) =
(7.0 kpc,−3.0 kpc) et (x7, y7) =(10.0 kpc,−3.0 kpc),
avec σi = 3σ0. Afin de capturer la structure
spiralée marquée en bas à gauche du plan,
nous avons également ajouté deux points,
(x8, y8) = (6.0 kpc,−2.5 kpc) et (x9, y9) =
(7.5 kpc,−2.5 kpc), avec σi = 5σ0. Nous
avons enfin imposé une contrainte dans le
disque externe, (x10, y10) = (11.5 kpc, 1.0 kpc)
et (x11, y11) = (12.0 kpc, 0.0 kpc), égale-
ment avec σi = 5σ0. Ceux-ci constitu-
aient les points essentiels de notre ajuste-
ment. Nous avons ajouté par-dessus un
ensemble de points à faible poids dont
la seule fonction était d’aider à guider
l’ajustement : (x12, y12) = (9.0 kpc,−3.0 kpc),
(x13, y13) = (9.0 kpc, 3.5 kpc), (x14, y14) =
(10.0 kpc, 3.5 kpc) et (x15, y15)= (12.0 kpc, 3.5 kpc),
tous avec σi = 100σ0. Tous les points sélec-
tionnés sont indiqués par des cercles dans le
panneau central inférieur de la Fig. 2.10. Cette
sélection de points et leurs poids jouent ici le
rôle d’un a priori sur les régions les plus im-
portantes de l’espace des configurations.

118



Pour notre algorithme génétique, définis-
sons maintenant notre population de solu-
tions candidates dans l’espace des paramètres
comme ai, g, avec 1 ≤ i ≤ n et 1 ≤ g ≤ N .
Cela signifie que nous considérons n candidats
pour chaque génération, pendant N généra-
tions. En pratique, une première génération de
solutions candidates est créée en choisissant de
manière stochastique de nombreux paramètres
candidats dans l’espace des paramètres grâce
à un échantillonnage en hypercube latin, tout
en essayant de couvrir la majeure partie de
l’espace des paramètres dans les bornes spé-
cifiées ci-après. Cette population est ensuite
mutée, candidat par candidat, de manière
itérative, établissant ainsi une nouvelle généra-
tion à chaque itération. À chaque génération
g, la mutation de chaque candidat ai, g est ap-
pliquée selon la stratégie « best1bin », avec les
étapes suivantes :

• Sélectionner le meilleur candidat de
paramètres (celui qui minimise la fonc-
tion d’erreur pondérée à la génération
courante), abest,g.

• Pour muter chaque candidat ai,g,
sélectionner aléatoirement deux autres
vecteurs de paramètres candidats, aj,g et
ak,g.

• Prendre un facteur de multiplication fixe
(facteur de mutation M) de leur dif-
férence en paramètres, M (aj,g − ak,g),
pour obtenir un vecteur vi = abest,g +
M (aj,g − ak,g).

• Le nouveau vecteur d’essai ai,g+1 est
alors construit composante par com-
posante, en attribuant la valeur de
chaque paramètre soit depuis vi, soit
depuis ai,g selon qu’une réalisation de la
fonction binomiale entre 0 et 1 est in-
férieure ou supérieure à une valeur de re-
combinaison choisie C, respectivement.

• Calculer la fonction d’erreur pondérée
pour le vecteur d’essai ai,g+1 : si ses per-
formances sont meilleures en termes de
fonction objectif, il remplace le candidat
initial dans la génération suivante, sinon
le candidat initial ai,g reste inchangé à la
génération g + 1.

• Les critères de convergence sont atteints
lorsque l’écart-type des valeurs de la

fonction objectif de la population à une
génération donnée est inférieur à 1% de
la valeur moyenne de la fonction objec-
tif de tous les candidats de la popula-
tion à cette génération. Le candidat final
abest,g=N est conservé.

Nous avons conservé les valeurs standard
des hyperparamètres de l’algorithme, notam-
ment la taille de la population n (15 fois le
nombre de paramètres), la valeur de recom-
binaison C = 0.7, et le facteur de muta-
tion M, une variable aléatoire comprise en-
tre 0.5 et 1. Cette méthode a été choisie car
elle est extrêmement efficace pour converger
rapidement dans un espace de paramètres de
grande dimension. La sélection des points et
de leurs poids joue le rôle d’un a priori dans
la détermination des régions les plus impor-
tantes de l’espace des configurations. Cepen-
dant, contrairement à une méthode bayésienne
classique, aucun postérieur ni barres d’erreur
bien définies ne peuvent être fournis. Nous
ne sommes donc pas en mesure de donner des
barres d’erreur, et nous ne pouvons exclure
que nos meilleurs modèles candidats trouvés ci-
après correspondent à des minima locaux dans
l’espace des paramètres. De futures améliora-
tions de ce travail devraient aborder cette ques-
tion, ainsi que prendre en compte une fonction
de sélection de Gaia (e.g., Castro-Ginard et al.,
2023).

Nous avons d’abord tenté d’ajuster un seul
mode de bras spiraux, en permettant aux an-
gles de pitch de varier entre 6◦ et 30◦, à la phase
de varier sur l’ensemble des 360◦, à l’amplitude
du potentiel de varier de zéro jusqu’à 0.2%, et à
le « pattern speed » de varier de 10, km s−1kpc
jusqu’à le « pattern speed » de la barre :
le mode m = 2 a donné les meilleurs ré-
sultats en termes de fonction objectif parmi
m ∈ [1, 2, 3, 4], avec une vitesse de rotation
de 13, km s−1kpc. Il s’agit du principal résul-
tat de notre recherche, que nous allons main-
tenant chercher à affiner. En effet, ce modèle
préféré à un seul mode produit clairement un
espace des vitesses locales déformé, en partic-
ulier un groupe en mouvement de type « Sir-
ius » très déformé par rapport aux observa-
tions. Cela n’est pas entièrement surprenant,
puisque l’espace des vitesses locales n’a pas été
utilisé pour contraindre l’ajustement. Nous
avons ensuite modifié la fonction objectif L
avec une contrainte locale, comme suit : L′ =
L + ∑i=2

i=1(∆model
i − ∆data

i )2/σ2
∆, où ∆i est la
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position du pic de la distribution 1D de VR à
Vφ,=, 250, kms−1 (i = 1) et à Vφ,=, 260, kms−1

(i = 2) au Soleil, et σ∆ = 3σ0 dans les deux
cas. L’utilisation de L′, cependant, conduit
encore à un meilleur candidat présentant un
groupe mobile de type « Sirius » déformé dans
l’espace des vitesses locales lorsqu’on considère
un seul mode m = 2.

Ensuite, afin de possiblement améliorer ce
modèle, nous avons tenté un nouvel ajuste-
ment en ajoutant un second mode spiral de
multiplicité m = 3 ou m = 4, en plus du
premier et de la barre. Nous avons supposé
que le bras spiral m = 2 possède une plage
de vitesses de rotation 10 km s−1kpc < Ωs,2 <
14 km s−1kpc, proche de la valeur trouvée pour
l’ajustement à mode unique, que nous cher-
chons à améliorer. Ensuite, afin de possible-
ment améliorer ce modèle, nous avons tenté
un nouvel ajustement en ajoutant un second
mode spiral de multiplicité m = 3 ou m = 4,
en plus du premier et de la barre. Nous avons
supposé que le bras spiral m = 2 possède une
plage de vitesses de rotation 10 km s−1kpc <
Ωs,2 < 14 km s−1kpc, proche de la valeur trou-
vée pour l’ajustement à mode unique, que nous
cherchons à améliorer. Pour réduire l’espace
des paramètres, l’amplitude du second mode
d’ordre supérieur — dont le « pattern speed
» et l’angle de pitch sont autorisés à varier
respectivement de 10, km s−1kpc jusqu’à le «
pattern speed » de la barre et de 6◦ à 30◦ —
a été fixée avec l’équation proposée par Hamil-
ton (2024), reliant l’amplitude respective des
deux modes à leur vitesse de rotation et à leur
angle de pitch, à savoir comme étant inverse-
ment proportionnelle au produit du carré de
leur vitesse de rotation par la tangente de leur
angle de pitch (d’où une amplitude plus élevée
pour une vitesse de rotation plus faible et un
angle de pitch plus petit). Pour réduire da-
vantage l’espace des paramètres, nous avons
imposé que la somme des contrastes de den-
sité locale pour les deux modes spiraux soit
inférieure à 35%, en vérifiant a posteriori que
cette limite ne serait pas atteinte par notre
meilleur candidat. Pour calculer le contraste
de densité de surface de chaque mode, nous
avons pris le rapport entre la densité de surface
intégrée au Soleil de la composante baryonique
axisymétrique et la densité de surface des bras
spiraux correspondant au potentiel de Cox and
Gomez (2002) (voir aussi Monari et al., 2016b).

L’ajout de ce second mode m = 3 a per-
mis d’atténuer et de régulariser la signature

du groupe en mouvement de « Sirius » dans
l’espace des vitesses locales, tout en améliorant
légèrement la carte de la vitesse radiale médi-
ane. Afin d’affiner davantage les paramètres
de ce meilleur candidat trouvé grâce à notre
méthode d’optimisation globale, nous avons
ensuite effectué une recherche fine par descente
de gradient dans un domaine restreint de
l’espace des paramètres (large de 1 km s−1kpc
en vitesse de rotation, 6◦ en phase, 2◦ en an-
gle de pitch, et 0.04% en amplitude poten-
tielle, Ks,2) autour de notre meilleure solution
candidate, à l’aide de l’algorithme Limited-
memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS-B) implémenté dans Scipy. La so-
lution ainsi obtenue constitue notre modèle de
référence.

Les paramètres finaux de ce modèle de
référence sont présentés dans le Tableau 2.2,
tandis que sa distribution locale dans l’espace
des vitesses et des actions, ainsi que la carte
de vitesses radiales médianes, sont présen-
tées dans la troisième colonne de la Fig. 2.10.
L’amélioration de la carte des vitesses radi-
ales médianes par rapport au modèle avec
barre seule est frappante, mais il existe égale-
ment des améliorations plus subtiles dans
l’espace des vitesses locales, en particulier une
meilleure représentation des groupes en mou-
vement proches du centre de l’ellipsoïde de
vitesses. Pour « Sirius », si l’on reconsidère la
densité d’étoiles dans une bande de Vφ com-
prise entre 250 km s−1 et 260 km s−1, on ob-
tient désormais une augmentation de 5% en
VR = −12 km s−1 par rapport à VR = 0 km s−1

dans le modèle. Cela reste un pic nettement
plus faible que dans les données (∼25%), ce
qui nécessitera des investigations supplémen-
taires, mais constitue une amélioration signi-
ficative par rapport à la diminution de 11%
dans le modèle avec barre seule. Dans la sec-
tion suivante, nous comparons qualitativement
les prédictions de ce modèle de référence à
celles d’autres observables.

B.5 Discussions
Le modèle de référence présenté dans le
Tableau 2.2 a été ajusté aux données sans a pri-
ori sur la position des bras spiraux. Il est main-
tenant possible de vérifier dans quelle mesure
le modèle parvient à retrouver la position des
bras spiraux connus de la Galaxie, ainsi que
d’évaluer ses performances dans la reproduc-
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tion d’autres observables, tels que le champ de
vitesses azimutales ou les positions détaillées
des groupes en mouvement à travers le disque.

Positions des bras spiraux

Dans la Fig. 4.1, nous présentons la carte glob-
ale des vitesses radiales prédite par notre mod-
èle de référence, ainsi que la position de la
barre et de la densité maximale des deux modes
de bras spiraux ajustés dynamiquement. La
ligne continue pour chaque mode spiral dans
la Fig. 4.1 correspond au minimum du po-
tentiel spiral, et donc à la densité maximale
du bras, jusqu’au rayon de coupure. La cor-
respondance entre densité et potentiel n’est
pas bien définie sur le cercle correspondant au
rayon de coupure, mais choisir une fonction
lisse ∼ (1+tanh)/2 au lieu d’une fonction éch-
elon pour Hm(R) dans l’équation 2.10 conduit
effectivement à un contraste de densité marqué
sur ce cercle jusqu’au point où le potentiel spi-
ral s’annule. Ce contraste de densité marqué
est représenté par les lignes pointillées dans la
Fig. 4.1. Nous comparons également la posi-
tion de ces bras aux surdensités d’étoiles je-
unes de la séquence principale supérieure iden-
tifiées dans Poggio et al. (2021). Comme cela
apparaît clairement dans cette figure, le mode
m = 2 le plus fort correspond bien à la posi-
tion du bras de la « Crux-Scutum » près de
la barre galactique (bien que cette localisation
soit aussi souvent considérée comme une con-
tinuation du bras du « Carina-Sagittarius »),
du bras « Local » près du Soleil, et du bras Ex-
térieur. Cependant, la distribution des étoiles
jeunes est une conséquence de la distribution
du gaz, tandis que ce que nous retraçons ici
est le potentiel. Il est donc particulièrement
utile de noter que nos résultats semblent égale-
ment cohérents avec ceux de Widmark and
Naik (2024), qui a trouvé que le bras « Local
» constitue une forte surdensité locale, avec un
contraste de densité d’environ 20%, proche de
la surdensité locale de 24,9% dans notre mod-
èle.

Étant donné que le « pattern speed » du
bras spiral m = 2 est plus faible que celle de
la barre, cela pourrait être interprété comme
une déconnexion récente (il y a 52,5 Myr) de
la barre dans la région de la « Crux-Scutum
», en accord avec les résultats de Vislosky et
al. (2024). En revanche, le bras spiral plus
faible m = 3 correspond bien à la localisa-
tion des bras du « Carina-Sagittarius » et de

« Perseus ». Il est remarquable qu’un ajuste-
ment purement dynamique permette de retrou-
ver en grande partie la position des surdensités
de bras spiraux connues dans le disque.

Une autre quantité intéressante à comparer
avec les prédictions de notre modèle est la
valeur médiane de JR en fonction de la posi-
tion dans le disque. En effet, Palicio et al.
(2023) ont identifié des structures de bras spi-
raux dans le disque à partir des valeurs médi-
anes de J̃R en fonction de la position. Nous
reproduisons une telle carte à partir des don-
nées Gaia RVS dans le voisinage solaire étendu,
dans la Fig. 4.2, et superposons la position des
bras spiraux issus de notre modèle de référence.
Nous calculons également les valeurs médianes
axisymétriques de J̃R à partir de notre mod-
èle, en partant de la même grille de vitesses
qu’auparavant à chaque position dans le plan,
puis en calculant les actions radiales corre-
spondantes avec AGAMA (dans le potentiel ax-
isymétrique de fond), et en prenant la médi-
ane à partir des valeurs de la fonction de dis-
tribution. Là encore, l’accord qualitatif a pos-
teriori avec les données est remarquable. No-
tons que l’augmentation de J̃R axisymétrique
médian est positivement associée à la présence
de bras spiraux dans notre modèle, conformé-
ment aux résultats de Debattista et al. (2025)
lorsqu’on considère les actions axisymétriques
instantanées. Dans les simulations N -corps,
il est généralement nécessaire de moyenner les
actions sur une échelle de temps suffisamment
longue afin de mieux suivre les spirales pour
de faibles valeurs (Debattista et al., 2025) de
l’action radiale moyenne dans le temps. Dans
notre cas, l’essentiel à retenir est l’accord qual-
itatif a posteriori entre les données et le modèle
pour le J̃R instantané, sans avoir utilisé cette
quantité dans la procédure d’ajustement.

Champ de vitesses azimutales

Une quantité intéressante à examiner, en
principe, est la variation de la vitesse az-
imutale médiane à un rayon galactocentrique
fixé, car il s’agit également d’une signature
claire de la non-axisymétrie du potentiel. Pour
éviter d’être dominé par la fonction de distri-
bution de fond et le potentiel axisymétrique,
on peut tracer à partir des données la valeur
∆Ṽφ ≡ Ṽφ(x, y) − Ṽφ(R), dans le plan (x, y).
Cette quantité est présentée dans le panneau
de gauche de la Fig. 4.3. Un inconvénient
de cette représentation est que la concaténa-
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tion azimutale à rayon fixé ne peut être ef-
fectuée que dans la région où des données
sont disponibles, ce qui explique pourquoi il
n’était pas évident d’utiliser une telle quantité
comme objectif de l’ajustement lui-même. En
revanche, à partir de notre modèle de référence,
on peut directement soustraire de la vitesse ra-
diale médiane à chaque position la vitesse radi-
ale médiane obtenue à partir de la fonction de
distribution de fond au même endroit. On ob-
serve dans le modèle des tendances similaires à
celles des données, bien que les deux quantités
ne soient pas aisément comparables de manière
quantitative.

Vitesse radiale médiane dans le plan az-
imut–moment angulaire

Une projection intéressante des données de
Gaia (voir, par exemple, Friske and Schönrich,
2019; Monari et al., 2019b; Trick et al., 2021;
Chiba et al., 2021) est la structure de la vitesse
radiale médiane (ou moyenne) dans le plan
azimut–moment angulaire. Dans la Fig. 4.4,
nous représentons la vitesse radiale médiane
dans le plan (Jφ, φ) pour les étoiles situées
dans une boîte [1300, 3000] km s−1 kpc ×
[−0.67, 0.67] rad, avec 5 kpc < x < 12 kpc et
−4 kpc < y < 4 kpc. Pour calculer les valeurs
médianes dans le modèle, nous fixons d’abord
un azimut φi tous les 0.01 rad, puis consid-
érons des rayons Rj espacés de 10 pc. En-
suite, pour chaque point, nous calculons la
fonction de distribution (DF) avec la méth-
ode de l’intégration à rebours pour différentes
vitesses VR et Vφ,n = Jφ,n

Rj
. Nous fixons en-

suite Jφ,n et additionnons les valeurs de la DF
pour tous les rayons Rj, puis nous calculons la
vitesse radiale médiane pour chaque (φi, Jφ,n).
L’accord qualitatif avec les données est accept-
able, bien que l’on puisse noter que les sig-
natures deviennent faibles à faible Jφ dans le
modèle. Cela peut être lié au fait que notre
procédure non auto-cohérente n’est pas partic-
ulièrement fiable dans la partie très interne du
disque proche de la barre. Cela pourrait égale-
ment révéler que notre barre à vitesse de rota-
tion constante ne suffit pas à expliquer toute
la richesse des données dans ce plan (Chiba
et al., 2021), et que nous manquons l’effet des
perturbations verticales (par ex. Laporte et al.,
2019; Laporte et al., 2020), ainsi que des struc-
tures accrétées en rotation progrgrade, bien
que tout cela nécessite des investigations sup-

plémentaires.

Groupes en mouvement à travers le
disque

Dans Bernet et al. (2022) and Bernet et
al. (2024), une méthodologie a été dévelop-
pée pour effectuer une recherche à l’aveugle
de groupes en mouvement dans les don-
nées de Gaia à travers l’ensemble du disque,
basée sur l’exécution d’une transformée en on-
delettes dans de petits volumes indépendants
du disque, suivie d’un regroupement en struc-
tures globales grâce à l’algorithme de recherche
en largeur (Breadth-first search) issu de la
théorie des graphes. En fixant une valeur don-
née de VR, on peut alors, par exemple, ob-
server l’évolution de la localisation des groupes
en mouvement dans le plan (R, Vφ) à l’azimut
du Soleil, ou dans le plan (φ, Vφ) au rayon
du Soleil. Dans la Fig. 4.6, nous superposons
les structures identifiées dans Gaia DR3 sur
la densité issue de notre modèle. La distri-
bution azimutale des groupes en mouvement
(panneaux de droite de la Fig. 4.6) est glob-
alement en accord avec les pentes prédites par
notre modèle au rayon solaire, tandis que la
distribution radiale à l’azimut solaire (pan-
neaux de gauche de la Fig. 4.6) apparaît égale-
ment globalement cohérente avec les données,
à l’exception de la région à faible Vφ ≤
200 km s−1 pour de petits rayons R ≤ 6.5 kpc
(les crêtes du modèle ayant une pente beau-
coup trop élevée dans cette zone de l’espace
des phases), où l’auto-gravité de la barre ex-
erce probablement un effet non négligeable sur
les données.

Fait intéressant, dans le modèle, le groupe
en mouvement d’« Hercule » au rayon solaire
semble résulter de la fusion de deux crêtes
à plus petits rayons, visibles comme des ré-
gions sombres dans la Fig. 4.6 dans la den-
sité sous-jacente du modèle : l’une avec une
pente compatible avec le gradient radial ob-
servé du groupe d’« Hercule », essentiellement
causé par la barre, et une autre avec une pente
plus forte, due principalement aux bras spi-
raux. Cela est particulièrement net pour VR

positif, où les deux crêtes sont clairement sé-
parées pour R < 7 kpc dans le modèle, tandis
que cette séparation semble également laisser
une signature similaire dans les données. Pour
VR = 0, la séparation est aussi visible, bien
qu’elle fusionne avec la continuation interne du
groupe en mouvement des « Hyades ». Pour
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VR négatif, l’accord est moins bon, mais dans
une région où l’on s’attend à ce qu’« Hercule
» domine moins : la seconde crête d’« Her-
cule » se superpose à celle des « Hyades » à
R ∼ 7 kpc dans le modèle, tandis que dans les
données cela n’apparaît que comme une légère
courbure vers le haut de la crête des « Hyades
», correspondant à la fusion des crêtes dans le
modèle. Cette seconde crête d’« Hercule » est
clairement un effet des bras spiraux, tandis que
la crête principale d’« Hercule » est produite
par la barre seule. L’effet conjoint des multi-
ples modes de la barre dans le présent mod-
èle, associé au potentiel axisymétrique de fond
utilisé, pourrait expliquer les différences avec
Bernet et al. (2024).

Inversement, nous avons appliqué la méth-
ode de Bernet et al. (2022) and Bernet et
al. (2024) au modèle et superposé, dans la
Fig. 4.7, les groupes détectés sur les don-
nées de Gaia à différents rayons à l’azimut du
Soleil, ainsi qu’à différents azimuts au rayon
solaire. Visuellement, certaines structures ap-
paraissent remarquablement similaires entre le
modèle et les données. Un point intéressant à
noter est que, bien que non clairement visible à
l’œil, le modèle semble bien retrouver une sur-
densité à la position du Soleil (structure en bas
à droite dans le deuxième panneau en partant
de la gauche dans la Fig. 4.7), que l’on peut
identifier avec l’emplacement de la bimodalité
« Bobylev–Hercule-2 » d’« Hercule », bien que
beaucoup moins prononcée que dans les don-
nées.

Orbites du Soleil

À titre d’exemple d’application de notre mod-
èle, nous proposons de comparer l’orbite
planaire du Soleil dans le modèle ax-
isymétrique de fond à celle obtenue dans notre
modèle de référence non-axisymétrique. Le
résultat est présenté dans la Fig. 4.8. Il
est surtout illustratif et ne doit pas être
sur-interprété, étant donné que les mouve-
ments verticaux sont négligés. Dans le
cas axisymétrique, la période radiale est de
161,5 Myr, et le Soleil est actuellement proche
d’atteindre son péri-centre. Le temps écoulé
entre le dernier passage au péri-centre et celui
que nous sommes sur le point d’atteindre est
légèrement plus court dans le modèle non-
axisymétrique, à savoir 154,5 Myr. Le précé-
dent passage au péri-centre, qui s’est pro-
duit un peu plus tard dans le modèle non-

axisymétrique, s’est également effectué plus
près du centre galactique que dans le cas ax-
isymétrique. Le dernier apo-centre était très
similaire dans les deux modèles, mais l’avant-
dernier était plus éloigné dans la Galaxie ex-
terne dans le cas non-axisymétrique, pour
lequel les amplitudes radiales sont typiquement
plus grandes. Si l’on examine l’évolution de la
densité de surface à la position du Soleil en
fonction du temps, l’image devient plus com-
plexe. Le temps entre le dernier maximum de
densité de surface et celui que nous sommes
sur le point d’atteindre (soit encore 161,5 Myr
dans le cas axisymétrique) est un peu plus
long dans le cas non-axisymétrique, à savoir
185 Myr, car nous suivrons temporairement la
surdensité du bras « Local » sur notre trajet
de retour vers le disque externe. De plus, en
remontant à t ∼ −250 Myr, l’apo-centre qui
correspond à un minimum de densité de sur-
face dans le modèle axisymétrique correspond
en réalité à un maximum local dans le cas non-
axisymétrique, car le Soleil suivait alors égale-
ment un bras spiral à ce moment-là. Cela pour-
rait avoir des conséquences intéressantes dans
l’étude des phénomènes de sédimentation cy-
clique sur Terre à longues échelles de temps
(par ex. Boulila et al., 2018). Étant donné que
l’on s’attend généralement à ce que les bras spi-
raux résultent d’un cycle récurrent de modes
de rainures (« groove modes ») ou de modes
de bord (« edge modes »), il est cependant
impossible de remonter l’orbite du Soleil sur
des échelles de temps supérieures à quelques
centaines de Myr, du moins sans recourir à
une modélisation chimio-dynamique détaillée
de l’évolution de l’ensemble du disque galac-
tique.

Orbites des associations jeunes

Les associations stellaires jeunes (∼ 50 Myr)
peuvent généralement être retracées jusqu’à
leur position d’origine en intégrant leurs or-
bites en arrière dans un potentiel galactique
donné. Pour illustrer l’importance de pren-
dre en compte les non-axisymétries du poten-
tiel dans une telle procédure, nous intégrons
vers l’avant dans le temps, pendant 50 Myr,
quatre associations stellaires jeunes archéty-
pales situées à différentes positions dans le
disque galactique au sein de notre modèle
de référence non-axisymétrique. Chaque as-
sociation est représentée par 20 étoiles dis«
Perseus »s en vitesse et en espace selon des
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lois gaussiennes de déviation standard 1 km s−1

en VR et Vφ autour de la vitesse circulaire,
et de 2 pc autour des positions (x, y) =
(10.6 kpc,−2.4 kpc), (8.7 kpc,−0.3 kpc),
(7.1 kpc, 0.4 kpc), (6.0 kpc,−0.5 kpc). Nous
les intégrons ensuite en arrière dans le temps,
à la fois dans le modèle de référence non-
axisymétrique et dans le modèle de fond
axisymétrique. Les associations reviennent
généralement à une position qui peut être
erronée de plus de 150 pc dans le cas ax-
isymétrique, avec une forme allongée très
différente de la configuration originale réelle
(Fig. 4.9).

B.6 Conclusions
Nous avons utilisé les vitesses planaires
d’un échantillon d’étoiles du disque avec
une information de phase à 6D provenant
de Gaia–StarHorse afin d’ajuster un modèle
de potentiel galactique incluant une forme
paramétrique détaillée pour la barre et les
bras spiraux, en utilisant la méthode de
l’intégration à rebours. Les observables
ajustées étaient la vitesse radiale galactocen-
trique médiane, pour une sélection de points
dans le plan galactique, complétée par des con-
traintes additionnelles issues de l’espace des
vitesses locales à la position du Soleil. Tous
les paramètres du potentiel non-axisymétrique
de référence sont résumés dans le Tableau 2.2,
au sein du potentiel de fond axisymétrique fixé
dans le Tableau 2.1.

Il est remarquable qu’un tel ajustement
purement dynamique retrouve de nombreuses
localisations connues de surdensités de bras
spiraux détectées en photométrie dans le
disque (Fig. 4.1). Ces bras spiraux peuvent
être interprétés comme des modes de rainure
(« groove modes ») ou des modes de bord
(« edge modes ») tels que ceux observés dans
les simulations N -corps. Dans le voisinage so-
laire, nous identifions le bras « Local » comme
une forte perturbation gravitationnelle, en ac-
cord avec les sondes indépendantes du poten-
tiel non-axisymétrique local de Widmark and
Naik (2024). Nous retrouvons également la
carte observée des actions radiales médianes
dans le voisinage solaire étendu (Fig. 4.2), ainsi
qu’un bon accord qualitatif avec la variation
détaillée en rayon et en azimut des groupes
en mouvement identifiés dans les données de
Gaia (Fig. 4.6). Ce dernier point est partic-

ulièrement remarquable, puisque le modèle n’a
pas été directement ajusté à ces structures de
l’espace des phases. Le seul groupe en mou-
vement ajusté localement était « Sirius », qui
est totalement absent du modèle « barre seule
» : nous notons néanmoins qu’il reste car-
actérisé par un pic plus faible dans le mod-
èle de référence que dans les données. Bien
que notre meilleur modèle candidat puisse cor-
respondre à un minimum local dans l’espace
des paramètres — ce dernier étant particulière-
ment vaste, surtout si l’on autorise la variation
des paramètres de la densité axisymétrique
de fond et de la fonction de distribution —,
nous soutenons néanmoins qu’il peut, pour
l’instant, être utilisé comme un potentiel non-
axisymétrique de référence pour la Galaxie, par
exemple afin d’intégrer avec fiabilité les orbites
planaires. Il peut être comparé à d’autres po-
tentiels galactiques récents tels que celui de
Hunter et al. (2024). Le code permettant
de générer des distributions de l’espace des
vitesses locales ainsi que des cartes de vitesses
radiales est rendu public.

Les avancées presentés dans cette annexe
ne représente qu’une première étape quantita-
tive dans la direction de l’établissement d’un
potentiel non-axisymétrique 3D détaillé pour
la Voie Lactée. Les améliorations futures de
nos investigations consisteront à explorer ses
conséquences tridimensionnelles, d’abord dans
le cadre d’intégrations directes de particules
tests (voir, par ex., Faure et al., 2014; Monari
et al., 2016b), puisque les potentiels de barre
(Thomas et al., 2023) et de spirales (Cox and
Gomez, 2002) peuvent aisément être général-
isés en trois dimensions. Notons également
que nous avons fait l’hypothèse que les bras
spiraux ne peuvent pas exister à l’intérieur de
la résonance de corotation de la barre (R =
6.6 kpc dans notre modèle de référence), une
hypothèse qui pourrait potentiellement être en
partie levée : nous avons déjà vérifié que cela
n’affecte pas beaucoup notre meilleur mod-
èle candidat. Toutefois, un ajustement cor-
rect de ces régions internes du disque galac-
tique nécessiterait de rendre le modèle auto-
cohérent. L’absence d’auto-cohérence peut
en effet devenir un problème sérieux dans les
parties les plus internes de la Galaxie, où
la perturbation de la barre est elle-même le
traceur. Certaines déficiences de notre mod-
èle à faibles rayons et faibles moments angu-
laires ont d’ailleurs déjà été identifiées dans
la Fig. 4.4 et la Fig. 4.6. Bien que cela dé-
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passe le cadre du présent travail, des amélio-
rations futures de notre modèle pourraient
s’appuyer sur une adaptation de la méth-
ode auto-cohérente dite « made-to-measure »
afin de prendre en compte l’auto-cohérence.
Il convient aussi de souligner que le mod-
èle de fond (potentiel axisymétrique et fonc-
tion de distribution) n’a pas été ajusté ici, et
pourrait en principe également être contraint
par les données. Cela augmenterait l’espace
des paramètres et pourrait nous amener à
utiliser des méthodes d’apprentissage automa-
tique pour explorer efficacement l’ensemble
de l’espace des paramètres. Une améliora-
tion parallèle consistera à incorporer une fonc-
tion de sélection détaillée dans la procédure
d’ajustement (par ex., Castro-Ginard et al.,
2023; Khanna et al., 2024), et à calculer un
véritable postérieur (avec barres d’erreur) sur
les paramètres du meilleur ajustement, tout

en tentant peut-être de séparer les popula-
tions stellaires en fonctions de distribution dis-
tinctes. Enfin, en passant à trois dimensions,
il est évident que les perturbations verticales
du disque, par exemple celles dues à la galaxie
naine du Sagittaire, devront également être
prises en compte, de même qu’une éventuelle
variation temporelle du « pattern speed » de
la barre.

En résumé, le modèle de référence présenté
ici, reproduisant un plus grand nombre
d’observables que jamais auparavant, constitue
une avancée significative dans notre com-
préhension de la structure non-axisymétrique
du disque de la Voie Lactée. Cependant, il
est important d’en reconnaître les limites et
de continuer à l’améliorer afin d’obtenir une
représentation encore plus précise de notre
Galaxie.
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Yassin Rany KHALIL

Déchiffrer la dynamique de la barre et des bras spiraux de
la Voie lactée avec Gaia

Résumé

Cette thèse utilise les données de la mission Gaia pour modéliser la dynamique de la Voie lactée,

incluant la barre et les bras spiraux. Un potentiel Galactique paramétrique est ajusté aux données

via une méthode d’intégration rétrograde pour évaluer la fonction de distribution stellaire à quatre

dimensions d’espace des phases dans le plan Galactique. Nous avons ainsi été les premiers (et les

seuls à ce jour) à réaliser un ajustement direct au champ de vitesses radiales médianes du disque tel

que mesuré par Gaia. Il s’agit du modèle dynamique non-axisymétrique le plus réaliste à ce jour pour

la Voie Lactée. Ce modèle est ensuite généralisé en trois dimensions spatiales avec des simulations

particules tests, ce qui permettra d’étudier les perturbations verticales et le halo de matière noire.

Cette approche permettra, à terme, une comparaison étoile par étoile dans l’étude des populations

stellaires de la Voie Lactée.

Mots-clés: Galaxie : généralités - Galaxie : cinématique et dynamique - Galaxie : structure - Galaxie

: évolution - Galaxie : disque

Deciphering the dynamics of the Milky Way bar and spiral
arms with Gaia

Abstract

This thesis uses Gaia data to model the dynamics of the Milky Way, including the bar and spiral

arms. A parametric Galactic potential is fitted to the data via a backward integration method to

evaluate the four-dimensional phase-space stellar distribution function in the Galactic plane. This

allowed me to be the first (and only to date) to achieve a direct fit to the median radial velocity field

of the disk as measured by Gaia. This is therefore the most realistic non-axisymmetric dynamical

model of the Milky Way to date. This model is then generalized in three spatial dimensions with test

particle simulations, which should enable us to study vertical perturbations or the dark matter halo.

This approach will eventually enable star-by-star comparisons in the study of stellar populations.

Keywords: Galaxy: general – Galaxy: kinematics and dynamics – Galaxy: structure – Galaxy:

evolution – Galaxy: disk
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