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1. Résumé en français 

1.1 Introduction 

 

La technologie des chimiothèques codées par l'ADN1 (DNA-Encoded Libraries, 

DELs) est l'une des méthodes de criblage récentes utilisées dans la découverte de 

médicaments. Elle permet de découvrir des molécules organiques qui se lient de manière 

non covalente à une cible biologique particulière et donc présentent un effet biologique 

souhaité. La DEL est une collection combinatoire pouvant aller jusqu’à 1012 de 

composés2. Chaque composé dans cette chimiothèque est attaché de manière covalente à 

une étiquette d'ADN. Cette dernière encode des informations sur les éléments constitutifs 

à partir desquels la molécule a été synthétisée. D'une certaine manière, l'étiquette d'ADN 

joue le rôle d'un « code-barres » qui permet d'encoder des informations structurelles sur 

la molécule.  

 

Le criblage des composés encodés par ADN est effectué par la sélection par 

affinité contre une cible biologique donnée pour identifier les composés prometteurs. Ce 

processus diffère considérablement du criblage à haut débit (High Throughput Screening, 

HTS3) conventionnel des chimiothèques. Les composés DEL sont mélangés avec la 

protéine cible immobilisée sur un support solide dans un seul récipient où tous les 

composés sont en compétition pour se lier à la cible biologique. Les molécules qui ne 

parviennent pas à se lier à la protéine cible sont éliminées tandis que les ligands à haute 

affinité sont séparés de la protéine. Les étiquettes d’ADN qui encodent les ligands à haute 

affinité sont ensuite amplifiées en utilisant la technologie PCR et décodées par 

séquençage ADN ce qui permet d’identifier les structures des composés prometteurs4.  

 

La technologie DEL présente de nombreux avantages, tant pour l'industrie que 

pour les laboratoires universitaires. Comme les DELs sont synthétisées en utilisant une 

approche combinatoire de division et de regroupement (Split and Pool), cette technologie 

permet de produire plusieurs chimiothèques de taille énorme4. Les composés DEL sont 

criblés tous à la fois dans un seul récipient permettant d’explorer en une fois des larges 

régions de l’espace chimique5. La configuration expérimentale simple de la sélection par 
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affinité, accessible tant dans les laboratoires industriels qu'universitaires permet une 

identification rapide et peu coûteuse des composés prometteurs4. De nombreuses histoires 

de succès de l'utilisation de cette technologie ont été publiées, y compris des composés 

dérivés des DEL qui ont progressé jusqu'aux essais cliniques4. La technologie de la DEL 

représente donc un outil précieux pour les projets de découverte de médicaments.  

 

Jusqu'à présent, la plupart des efforts de recherche computationnelle dans le 

domaine de la DEL se sont concentrés sur l'analyse des résultats du criblage par affinité6,7, 

à savoir sur l’analyse des ligands de la protéine en question, alors que la préparation 

initiale de la DEL est très peu discutée.  Pourtant, l'analyse chémoinformatique de la 

collection initiale de composés DEL pourrait fournir des informations utiles sur l'espace 

chimique couvert par une DEL particulière, sa diversité et son taux de réussite pour la 

découverte des molécules-candidates de futurs médicaments. Par conséquent, cette thèse 

de doctorat est axée sur la génération par ordinateur de milliers de DELs et sur l'analyse 

de leur espace chimique à l'aide de la Cartographie Topographique Générative8 

(Generative Topographic Mapping, GTM).  

 

L'idée de la GTM consiste à insérer une hypersurface rectangulaire (appelé manifold) 

dans l'espace multidimensionnel défini par les descripteurs moléculaires, où le manifold 

passe aussi près que possible des zones les plus denses du nuage de données. Après avoir 

trouvé la forme optimale qui décrit les données, les molécules (représentées par des points 

dans cet espace) sont projetées sur le manifold. Puis ce dernier se déplie vers la forme 

plane ce qui résulte en une carte 2D visualisant l’espace chimique en question.  

 

La carte GTM peut ensuite être colorée par différentes propriétés moléculaires, ce qui 

donne lieu à différents types de cartes. Par exemple, la carte peut être colorée par les 

valeurs de logP des molécules dans l'espace chimique (voir Figure 1). Dans cette thèse la 

GTM est utilisée pour la visualisation de l’espace chimique des DELs en raison de sa 

haute performance pour l’analyse de grands volumes de données9.  





 6 

 

1.2 Résultats et discussions 

1.2.1 Exploration de l’espace chimique de DELs et sélection d’une chimiothèque 

optimale pour le criblage primaire 

Ce projet est consacré à la génération des DELs virtuelles et à l’estimation de leur 

pertinence pour le criblage biologique primaire lorsque peu ou pas d'informations sur une 

cible biologique et ses ligands sont disponibles10. 2.5K DELs contenant environ 2.5×109 

composés ont été conçues en utilisant eDesigner11, qui est un outil librement disponible 

pour la génération de DELs. Les DELs résultantes ont été analysées et comparées à la 

base de données ChEMBL12 de molécules biologiquement testées (voir Figure 2 pour le 

schéma détaillant le processus de génération et de comparaison). Cette dernière a été 

choisie comme chimiothèque de référence pour identifier la DEL optimale pour le 

criblage primaire en raison de sa diversité chimique et fonctionnelle – elle contient 

presque deux millions de composés testés contre plus de 15 000 cibles biologiques 

(version de ChEMBL28).  

 

La comparaison des espaces chimiques des DELs à celui de ChEMBL a été 

effectuée à l’aide des cartes GTM visualisant l’espace chimique pour chaque 

chimiothèque. Par contre, étant donnée la subjectivité de la comparaison visuelle des 

cartes et le grand nombre de DELs, une métrique qui exprime l’intersection des espaces 

chimiques des deux chimiothèques sur les cartes GTM a été dérivée. De cette manière, 

l’ensemble des DELs a été classé en fonction de leur similarité structurale par rapport à 

la ChEMBL, en identifiant la DEL optimale contenant le pourcentage maximal possible 

de chémotypes biologiquement pertinents pour le criblage primaire. Des ensembles de 

trois et cinq DELs qui permettent d’atteindre une similarité encore plus haute par rapport 

à ChEMBL ont été identifiées et également proposées pour le criblage primaire. 
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A l’aide de la GTM, nous avons calculé la similarité des 2.5K DELs à la 

chimiothèque ChEMBL. Cela a permis de ranger de manière exhaustive les DEL en 

fonction de leur similarité structurelle et par propriétés (telles que logP, nombre de 

donneurs de liaisons hydrogène, etc.) avec ChEMBL et de prouver ainsi l'utilité de 

chacune des représentations vectorielles pour la comparaison des chimiothèques.  

 

Du côté des applications, ces représentations peuvent être utilisées par les 

chimistes médicinaux pour choisir rapidement des chimiothèques pour la synthèse et les 

tests biologiques pour des projets spécifiques de découverte de médicaments, pour la 

diversification ou encore pour trouver des chimiothèques analogues, étant donnée la base 

de données de référence pertinente.  
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1.2.3 Meta-GTM : visualisation de l’ensemble des chimiothèques 

Dans ce projet, nous proposons une visualisation de l'espace des chimiothèques 

en utilisant la meta-GTM ou μGTM14,15. Dans le contexte d'un large ensemble de 2.5K 

DELs virtuelles et de la base de données ChEMBL (utilisée comme référence), la 

visualisation de l’espace des chimiothèques (défini par les vecteurs des motifs 

cartographiques) est une manière intuitive d'obtenir une vue globale d'ensemble des 

chimiothèques diverses et de leur similarité. Cette vue d'ensemble peut également être 

étendue pour inclure toute autre chimiothèque, combinatoire ou non, afin de les localiser 

sur les cartes existantes.  

 

Plusieurs μGTMs ont été créées, utilisant une optimisation paramétrique évolutive 

de la carte visant à préserver les distances inter-chimiothèques provenant de l’espace de 

chimiothèques initial sur la carte μGTM (voir Figure 4). Ces cartes ont fourni un 

positionnement judicieux des DELs par rapport à la ChEMBL et les unes par rapport aux 

autres sur la carte, correspondant à leur similarité observée dans l’espace des 

chimiothèques initial défini par les différentes représentations vectorielles introduites 

précédemment.  

 

La μGTM représente donc un outil efficace et utile pour : 

(1) Fournir une vue globale de l’espace des chimiothèques et simplifier l'analyse 

des relations entre elles ;  

(2) L'analyse de cet espace sous différents angles, positionnant les chimiothèques 

soit par similarité d'espace chimique soit par similarité de distribution de 

propriétés ;  

(3)  La sélection d'une chimiothèque de composés couvrant l'espace chimique et 

l’espace des propriétés désirées parmi des milliers de possibilités, en utilisant 

la base de données de référence appropriée. 
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1.2.4 Analyse de la DEL ciblée contre la protéine BRD4 

 

Dans ce projet, l’analyse de la DEL ciblée contre la protéine BRD4 a été réalisé 

en collaboration avec la société Novalix. Etant données les structures des réactifs à partir 

desquels la DEL a été synthétisée et les labels exprimant le rendement de la réaction 

(valide/invalide), des modèles de classification prédisant ce label ont été entraînés. Plus 

précisément, cela a été fait avec 153 différents ensembles de descripteurs structuraux 

ISIDA16 en utilisant la méthode SVM (Support Vector Machine), soit linéaire, soit avec 

le noyau radial. Cela a donné lieu à 306 combinaisons descripteurs/noyaux. Ensuite, pour 

chaque combinaison, une validation croisée 5-fold a été effectuée, résultant ainsi en un 

total de 1530 modèles individuels. Parmi eux, les modèles ayant atteint une précision 

équilibrée (Balanced Accuracy, BA) supérieure ou égale à 0,9 lors de la validation croisée 

sur l'ensemble de test ont été sélectionnés pour constituer le modèle de consensus.  

 

Par la suite, l’analyse de l’espace de cette DEL à l’aide de la GTM a été faite et la 

comparaison de son espace chimique à l’espace des inhibiteurs de BRD4 provenant de la 

base de données publique ChEMBL28 a été réalisée. Cela a permis de voir la 

superposition entre plusieurs régions de l’espace des inhibiteurs déjà existants provenant 

de ChEMBL.  

 

Finalement, les modèles de classification et de régression ont été entraînés en 

utilisant les données publiques sur l'activité biologique contre la protéine BRD4, 

disponibles dans la base ChEMBL, afin de prédire l’affinité des molécules présentes dans 

cette DEL. Ces modèles en combinaison avec les prédictions de l’activité faites par GTM 

ont permis de prioriser les molécules avec l’activité biologique la plus optimale pour la 

resynthèse hors ADN.  
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1.2.5 Visualisation de l’espace d’une chimiothèque combinatoire sur GTM sans 

énumération explicite des structures à l’aide de l’apprentissage profond 

En règle générale, pour la visualisation de l’espace chimique d’une chimiothèque 

combinatoire (la génération de son « motif cartographique ») il faut : 

(1) Enumérer les composés ;  

(2) Effectuer leur standardisation ;  

(3) Calculer les descripteurs pertinents pour la tâche en question ; 

(4) Utiliser une méthode de réduction de dimensionalité (par exemple, la GTM).  

Cependant, pour les chimiothèques combinatoires comme les DELs dont la taille 

peut aller jusqu’à 1012 molécules, ces calculs peuvent durer plusieurs jours. À titre 

d'exemple, le processus de génération de 10 cartes GTM pour 10 DELs, chacune 

contenant 106 molécules, dure 1 jour 10 minutes en utilisant la machine à 48 cœurs CPU 

(en cas de descripteurs structuraux ISIDA).  

Afin de dépasser ces étapes longues, nous avons développé un réseau de neurones 

à convolution de graphe CoLiNN (Combinatorial Library Neural Network). Il permet de 

prédire la projection des composés combinatoires sur une carte GTM à partir des réactifs 

des composés en question ainsi que les indices des réactions nécessaires pour les 

énumérer (voir schéma sur Figure 5). Cela permet de considérablement réduire le temps 

des calculs ainsi qu’éviter le stockage des représentations de structures énumérées, 

descripteurs, et les projections. Le modèle CoLiNN a été entraîné sur 388 DELs basées 

sur des schémas de réactions différents. Ce modèle a pu prédire avec une haute précision 

les cartes GTM des DELs non présentes dans l’ensemble de données d’entraînement.  
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1.3  Conclusion générale 

 

Dans cette thèse, 2.5K de chimiothèques à codage ADN (DELs) ont été énumérées 

et analysées de manière exhaustive par leur composition structurelle ainsi que par 

distribution des propriétés moléculaires et physico-chimiques. Des nouveaux concepts et 

méthodes d’analyse et de comparaison par similarité des espaces chimiques 

combinatoires ultra-larges basés sur la GTM ont été développées en tenant compte des 

exigences particulières de ce type de chimiothèques (taille ultra-large, impossibilité de 

séparer les composés, grand nombre de DELs pouvant être conçues).  

Parmi elles :  

(1) Des métriques permettant la comparaison rapide et facile par structure des 

espaces chimiques ont été développées (en utilisant les informations provenant 

des cartes GTM) ;  

(2) Le concept de l’espace de chimiothèques a été introduit et plusieurs 

représentations vectorielles (« motifs cartographiques ») des chimiothèques 

ont été proposées. Les métriques de similarité basées sur ces 

représentations ont été proposées pour comparer rapidement les milliers de 

chimiothèques par structure et propriétés;  

(3)  La méthode de visualisation de l’espace de chimiothèques (μGTM) où 

chacune d’elle est représentée comme un objet individuel sur la carte a été 

développée, ce qui facilite l’analyse de milliers de chimiothèques en une seule 

fois ;  

(4)  Des modèles d’apprentissage automatique ont été développés qui permettent 

de prédire :  

- L’optimalité des réactifs pour la synthèse de DEL en terme de rendement 

chimique ; 

- L’activité biologique contre une protéine spécifique. 
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(5)  Un réseau de neurones à convolution de graphes (CoLiNN) a été créé pour la 

visualisation plus rapide et efficace de l’espace des chimiothèques 

combinatoires ultra-larges. CoLiNN évite l’énumération explicite des 

composés, standardisation, et calcul des déscripteurs moléculaires pour les 

composés d’une chimiothèque combinatoire en accélérant le processus 

d’analyse de son espace chimique. 
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2. Introduction 

2.1 Need for Alternative Compound Screening Technologies 

Despite the continuous progress in disease characterization, target validation, and 

medicinal chemistry, drug discovery remains a challenging endeavor. The scope of 

biological targets investigated in pharmaceutical research is expanding and many of them 

are classified as “undruggable” due to the disadvantageous screening metrics17. Drug 

resistance continues to be the obstacle for curing many patients from infectious diseases18, 

cancer19, chronic diseases such as epilepsy20, inflammatory bowel diseases21, etc. 

Optimization of drug properties such as safety, ADME-Tox profile, and selectivity is 

necessary since they drive the final clinical success of a drug-candidate22. This demands 

to search for more, better, and safer drugs4,5. 

High-Throughput Screening3 (HTS) technology quickly became a primary 

method of identification of new chemical matter through screening of large compound 

libraries against targets of interest. The screening of HTS collections is based on a one 

compound-one well approach necessitating considerable investments in appropriate 

robotic equipment, material, and human resources. HTS compound libraries do not 

usually exceed the size of 106 compounds, limiting it to sampling only a small fraction of 

the theoretically available chemical space that is estimated to contain 1033 compounds23. 

HTS campaigns are based on biochemical/biophysical screening where a compound is 

screened in excess relative to the protein leading to challenges such as interferences due 

to compound aggregation and problems with analytical readout4. While in many cases 

HTS is fruitful, the associated challenges can sometimes lead to unproductive screening 

campaigns. Hence, there is a constant need for alternative technologies to address them. 

DNA-Encoded Library (DEL) Technology1,2 represents a complementary 

approach for hit identification offering many advantages compared to conventional 

screening methods. DEL technology consists in the creation of a usually ultra-large 

library of DNA-encoded compounds using water-based combinatorial chemistry and their 

simultaneous screening against a soluble biological target using binding affinity selection. 

DNA-encoded compounds are molecules labeled with single or double-stranded DNA. 

The latter plays the role of a “barcode” that encodes information about the building blocks 

(BBs) from which the compounds were synthesized4. This DNA barcode allows to easily 
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identify successful ligands bound to the protein after affinity selection via sequencing. 

DELs are usually synthesized using a combinatorial split-and-pool approach allowing the 

production of chemically diverse libraries of tens of millions to trillions of molecules24. 

DEL compounds are screened all at once in a single Eppendorf tube in contrast to 

individual compound screening in HTS. A simple experimental setup of affinity selection 

accessible both in industry and university laboratories allows cheap and fast hit 

identification.4  

 Despite DEL technology being here around for over 30 years now1,4, the field of 

drug development has only just begun to give it the recognition it deserves. 

Pharmaceutical and biotech companies including GSK4,25,  X-Chem4,26,27, WuXi 

AppTec28, Amgen4,29,30 (acquired Nuevolution), Eli Lilly11, DyNabind4,31–34, 

Vipergen4,32–34, Google Research Applied Science27, etc., are making noteworthy 

advancements in DNA-Encoded Chemistry for drug discovery as well as developing 

chemoinformatics platforms for DEL analysis4,26,27. Many success stories of employing 

this technology have been published, including DEL-derived hits that progressed to the 

clinic. According to Gironda-Martínez et al.35, DEL-derived inhibitors of autotaxin 

(ENPP2) from X-Chem and of receptor-interacting protein 1 (RIP1) kinase and soluble 

epoxide hydrolase (sEH), both found by GSK, were in phase 1 and phase 2A of clinical 

trials, respectively, in 2021. 
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2.2 DNA-Encoded Library (DEL) Technology  

DELs are usually prepared using split-and-pool combinatorial synthesis36. It consists of 

several steps, each followed by DNA enzymatic ligation reaction4 (see Figure 6). First, a 

short piece of DNA (oligonucleotide of 7-15 base pairs long37) is covalently attached to a 

small molecule with an open functional group such as amino group38. This produces a so-

called headpiece (see Figure 6), which can be chemically modified at the amine end and 

extended with the DNA tags via ligation at the oligonucleotide end4. The first 

oligonucleotide to ligate to the DNA of the headpiece is usually a primer which is a piece 

of DNA essential to initiate polymerase chain reaction (PCR). PCR is used in the 

compound identification step which is discussed at the end of this section. Once the 

primer was ligated, the solution containing the headpiece is split between different wells 

(Figure 6, a). Then, the first chemical building block (BB1) is added to each of the wells, 

where it undergoes a chemical reaction with the organic functional group of the headpiece 

(Figure 6, b, top). This is followed by the addition of the DNA tag encoding the first BB 

to the primer (Figure 6, b, bottom). The contents of all the wells are then pooled together 

(Figure 6, c) and the same procedure is repeated with the second BB (Figure 6, d, e, f). 

When the final synthesis cycle is finished, a closing primer is attached to the DNA tag of 

the last BB (not shown here for clarity). In the same way as the first primer, the closing 

primer is used in PCR initiation. The whole DEL is then stored in the Eppendorf tube. 
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2.3 DEL chemoinformatics and its gaps 

Over the past decade, the DNA-encoded library technology providing access to enormous 

chemical space became very popular both in academia and in the pharmaceutical 

industry4. However, early days of combinatorial and DEL chemistry proved that screening 

for affinity of large-sized DELs does not necessarily ensure success40,41. Without a proper 

design and analysis compound library’s fate is predefined to failure – many such 

collections either did not improve the hit rate or displayed poor properties not sufficient 

for further medicinal chemistry follow-up42. Methods and tools for the design, 

enumeration, and analysis of ultra-large combinatorial compound libraries proved 

essential. This led to DEL chemoinformatics “gaining momentum” in the last decade with 

the development of DEL-adapted computational approaches of pre- and post-processing 

of DEL data4,27,39. 

2.3.1 Building Block selection 

The first step in DEL design is the selection of suitable reagents for the library synthesis. 

Usually, either in-house BBs available in the pharmaceutical company are used or ordered 

from commercial suppliers. The reagents can be filtered by the BB class, number and 

nature of reactive sites, occurrence of structural alerts, DEL-compatibility (no DNA-

intercalators, stable in water), presence of features important for binding (e.g. 

pharmacophoric), reagent price, etc. In addition, specific design guidelines to select novel 

reagents for drug-discovery purposes that were empirically verified can be followed. For 

example, the Rule of two (Ro2) filtering developed by Goldberg et al.43 in AstraZeneca 

proved to be a success-driving way of BB prioritization for different drug discovery 

projects. However, it is useful not to include all available BBs in the production of DEL 

– clustering is commonly employed to remove BBs that are already abundantly 

represented4. Then, the actual acquisition of BBs for synthesis is carried out through 

careful selection of those with appropriate reactivity. This is usually performed 

experimentally by validating each reagent in a test reaction with the functionalized DNA 

conjugate 4. Leveraging these guidelines can already provide a refined and high-quality 

list of BBs for DEL synthesis.  

However, a closer look at the chemical space provided by a particular BB set 

would be particularly useful. It would allow to use only those BB combinations that help 

to advance to specific and/or novel chemical space regions. In a recent study by Paegel et 
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al.44, the impact of different BB sets on the property distribution was shown by chemical 

space visualization using the UMAP dimensionality reduction method.  

Therefore, in this thesis, the DEL space provided by commercially available BBs 

was investigated. A deep learning-based method allowing to take a look at the chemical 

space as a function of the BB set without explicit compound enumeration was developed 

and will be discussed in the following sections. Practical BB questions were addressed as 

well – reactivity label prediction QSPR models were developed, providing yet another 

way of BB filtering.   

2.3.2 Enumeration 

The combinatorial enumeration of compounds, using predefined reactions and available 

BBs, is a brute force approach allowing to fully explore the space of a combinatorial 

library. However, practically, compound enumeration is limited to the size of around 1012 

compounds4. This limit is determined both by the efficiency of current enumeration 

algorithms and storage requirements. According to Goodnow and So’s4 estimation, for a 

library of 1012 compounds the storage space elevates already to 20 terabytes (if only 25 

bytes per structure are taken). If enumeration is followed by a detailed chemical space or 

property distribution analysis, then, calculated descriptors and properties need to be 

stored additionally, increasing storage space requirements. The issue known as 

"combinatorial explosion" in combinatorial chemistry arises when the library size 

becomes so vast that it is no longer enumerable. 

 To address the combinatorial explosion problem, an eDesigner tool for efficient 

DEL design and enumeration was developed by Martin et al.11 It does so by employing a 

structured and iterative approach to library generation, incorporating BB compatibility 

checks, representative sampling of the library, and efficient data handling. This ensures 

that only feasible and chemically relevant combinations are considered, significantly 

reducing the computational resources needed and allowing for the practical evaluation of 

vast DEL chemical spaces. Reactions encoded in eDesigner were experimentally 

validated by medicinal chemists from Eli Lilly making eDesigner a trustable tool that can 

be used in real DEL design tasks. In more detail, eDesigner relies on the following stages:  

1. Building Block Categorization: 

• Identify and annotate functional groups in input building blocks. 

• Group building blocks into types based on functional group combinations. 
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• Eliminate incompatible combinations, which might lead to unwanted 

reactions or instability (e.g. strong electrophiles and nucleophiles are 

considered incompatible). 

2. Generation of Preliminary Compound Plans: 

• Start with the functionalized headpiece and grow structures iteratively by 

adding compatible building blocks and reactions. 

3. Formation of Potential Libraries: 

• Group compatible structures (which use the same reactions) into larger library 

designs. 

• Filter libraries based on the heavy atom count criteria in potential molecules 

selected by the user. In this step, molecules are not enumerated; the heavy 

atom count is estimated from its distribution in BBs and the average count of 

atoms gained or lost from a particular reaction. 

4. Enumeration: 

• Generate a set of instructions for library enumeration that will be passed to 

LillyMol enumeration software. 

• Randomly sample a representative subset of the full library. Martin et al. 

reported that randomly sampled 10 000 compounds proved to be an optimal 

size allowing to achieve virtually indistinguishable property distributions 

from larger sizes during profiling experiments. 

In such a way, eDesigner partially avoids the “combinatorial explosion” problem by 

generating only feasible library designs and sampling representative subsets instead of 

the full collection. Practically, however, when enumerating beyond 10M compounds in 

this thesis, eDesigner exhibited a significant slowdown, particularly towards the end of 

the process when nearly all library members had been enumerated. This presents a notable 

drawback from the user perspective, as the enumeration of larger libraries is not 

optimized, performed on a single CPU without parallelization, and can take days for tens 

of millions of compounds. Also, sometimes, it is worth analyzing the full library, 

especially if it is highly structurally diverse. These issues can be addressed either by 

optimizing the eDesigner software or by bypassing compound enumeration altogether.  

eDesigner is the first and only DEL design software that is publicly available. Hence, 

in this thesis, eDesigner was used to create a DEL space containing 2.5K libraries using 
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commercially available BBs and encoded reactions inside the tool. Per each library, a 1M 

representative subset was enumerated resulting in 2.5B compound space overall. The 

actual full library sizes spanned from 1M to 7B compounds. 

2.3.3 DEL chemical space analysis and comparison 

The concept of the “chemical space” can be seen as either the discrete collection of all 

conceivable molecules or the multi-dimensional descriptor space that contains all 

potential molecules45. Its “exploration” or “navigation” can lead to discoveries of novel 

compounds with properties interesting for drug design. Therefore, advanced techniques 

for its analysis and visualization are essential to comprehensively understand its scope. 

Map-based methods are among the most popular visualization approaches, where the 

multi-dimensional descriptor space is mapped into a 2D plot, essentially, performing 

dimensionality reduction. Examples of such methods include Principal Component 

Analysis (PCA), t-distributed Stochastic Neighbor Embedding (t-SNE), Self-Organizing 

Map (SOM), and Generative Topographic Mapping (GTM), among others. 

Chemical space comparison has been an active area of research in chemoinformatics 

since one of the ways to assess and further improve the quality/diversity of the compound 

library is to compare it with a reference dataset that possesses desired properties or 

characteristics. Library comparison is important in the context of compound acquisition, 

e.g. for diversification of in-house collections46 or in the case of focused screening. 

Comparison of virtual compound libraries can lead to the identification of the optimal 

collection based on a variety of criteria, e.g. high structural diversity, property profile, 

ease of synthesis of molecules, etc.  

To analyze and compare ultra-large compound libraries like DELs, strategies for 

efficient analysis and comparison of chemical spaces are needed. Despite the relevance 

of DEL compound space exploration and comparison, there was only one published work 

that discussed its analysis. In this study, Kontijevskis et al.30 suggested Reduced 

Complexity Molecular Frameworks (RCMF) as molecular descriptors. They performed a 

diversity analysis of the DEL space by analyzing different combinations of RCMFs of the 

BBs using a heatmap. Overall, in that study, the RCMF and Bemis-Murcko scaffold 

analysis was performed for four DELs of size 107-151M compounds. However, the 

analysis of only four DELs is not enough to make any conclusions about the relevance of 

the whole DEL technology for drug discovery. Moreover, RCMF encodes information 
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about the molecular framework, such as the types and sizes of rings, the lengths of linkers, 

and the angle information. This representation is therefore too general and might overlook 

critical details about the chemical structures, potentially missing important nuances in the 

chemical and biological properties of the compounds. This can influence the precision of 

DEL space diversity analysis and comparison, particularly in the context of drug 

discovery, where detailed structural information is imperative for understanding 

molecular behavior and interactions.  

Consequently, this thesis is dedicated to the generation of the ultra-large DEL space, 

its detailed analysis using a robust and confirmed chemical space visualization method - 

GTM9,47–52, along with the development of library comparison methods adapted to handle 

thousands of DELs.  

2.3.4 Property analysis 

Usually, property distribution analysis of a compound library is done by means of 

histograms or descriptive statistics. However, for ultra-large libraries, theoretical 

calculation of properties can be time-consuming. Hence, Goodnow and So4, verified 

whether a random sampling of a small portion of the library will be representative enough 

of the whole collection and thus provide the same property distribution histogram. This 

study demonstrated that a randomly selected 0.001% sample of a 1.6 billion compound 

DEL yields a property histogram identical to that of the entire library. However, 

histograms plotted for many compound libraries are difficult to comprehensively compare 

and interpret. This is especially critical for DELs – comparison of the property span of 

thousands of virtual DELs is not trivial with common statistics-based methods. In 

addition, histograms do not provide any information about structural diversity inside the 

property bar, although molecules with similar properties can be structurally highly 

different. Hence, in this thesis, cartography-based property distribution comparison53,54 

will be used to be able to account both for structural and property space overlap between 

libraries. 

2.3.5 DEL hit analysis 

After DEL affinity selection, DNA-tag counts are used to calculate the enrichment and 

thus determine whether the molecule should be synthesized on- or off-DNA and tested in 

a separate binding assay. However, DEL counts are noisy, meaning that molecules with 

the highest enrichment values are not necessarily the best binders. Focus on only high-
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enrichment molecules can thus lead to missing out on interesting compounds and helpful 

structure-activity relationship (SAR) information39. Moreover, it may happen that the 

selected hit list compounds may be difficult to synthesize and/or have poor solubility to 

carry out a binding assay39. To overcome this, Quantitative Structure Property/Activity 

Relationship (QSPR/QSAR) models can be trained on DEL selection data to predict the 

enrichment. McCloskey et al.27 trained a classification model on DEL selection data and 

showed that the learned SAR from the DEL screen allows to select potentially active 

compounds from commercially available low-cost libraries. Lim et al.39 extended this 

approach by training a regression model on count data to predict the enrichment.  

Nevertheless, not only the enrichment should influence the prioritization of DEL hits. 

In fact, a low correlation between DNA sequence counts and dissociation constant Kd 

values of small molecules was found by Mannocci et al4,55. A half-maximal inhibitory 

concentration predicted by machine learning models can be a relevant filter to consider. 

For example, publicly available biologically tested molecules with IC50 values can be 

used for training. Learned from the available ligands’ SAR, the model can be further used 

to prioritize hits after the DEL selection experiment or even before selection. Hence, in 

this thesis, a QSPR model for hit prioritization by pIC50 prediction was created and 

evaluated on experimental data from the focused DEL tested by Novalix. 

2.3.6 Overview of the gaps in DEL chemoinformatics 

The complex and massive data associated with DELs created a unique demand for 

DEL-compatible chemoinformatics methods. Even though DEL chemoinformatics only 

started to emerge in the last decade, it is steadily evolving to address the requirements of 

DEL data analysis. However, until now most efforts were focused on the analysis of the 

libraries of BBs or identified active compounds38,40,56–58 . The chemical space covered by 

DELs remains underexplored due to its extreme vastness and the necessity to enumerate 

it for a full investigation. Only one paper reported the analysis of DEL space using 

Reduced Complexity Molecular Frameworks (RCMF) methodology30. However, this 

analysis was limited to only four DELs (>5 × 108 compounds).  

Generating and analyzing a larger virtual chemical space of DELs is necessary to fully 

explore their novelty and drug discovery relevance. Hence, in this thesis, an ultra-large 

DEL space of 2.5K libraries containing in total 2.5B compounds was enumerated and 

analyzed. Multiple DEL-adapted chemoinformatic methods for the analysis and 
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comparison of such a high number of large-sized libraries were developed. For the 

implementation of chemoinformatic methods for DEL chemical space analysis in this 

thesis, several important factors differentiating DELs from other compound libraries were 

taken into account:  

1) A DEL is synthesized and tested as a whole, meaning it cannot be cherry-picked 

and thus needs to be treated as a separate chemoinformatic object.  

2) DELs can be extremely vast and different library designs can be created, requiring 

‘big data’ compatible and robust computational methods allowing to process many 

libraries at a time.  

3) The size of the DEL does not guarantee the drug discovery program’s success, a 

directed library design should be adapted instead.  

4) DEL analysis needs time- and resource-consuming compound enumeration and 

methods of avoiding it are of high interest. 
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2.4 Methods of comparison/analysis of chemical libraries 

To analyze 2.5K DELs, overall containing 2.5B compounds, powerful and efficient ‘big 

data’ compatible methods of chemical library analysis and comparison are needed. There 

are many types of chemical library comparison methods: graph-based, map-based, vector-

based, fingerprint-based, and fragment-based. A summary of such methods is given in 

Table 1, with one example per type. These methods were selected since they all provide 

a metric to quantify the similarity between a pair of libraries, which can significantly 

accelerate the analysis of thousands of compound collections.  

In a graph-based method, proposed by Fourches et al.59, an entire dataset of 

compounds is represented as a Dataset Graph (DG), also known as a Chemical Space 

Network (CSN). In this graph, each point represents a molecule, with its position defined 

in a molecular descriptor space. Points within a certain distance range are connected by 

edges, thus giving a graph structure. Such DGs can be compared by structural similarity 

to each other by calculating graph index, e.g. average vertex degree or Randic 

connectivity index59. However, the Randic index does not account for the specific 

structural properties of the molecules, only the degrees of the vertices. Two graphs with 

very different molecular structures could have similar Randic indices if their degree 

distributions are similar, making this method unreliable for accurate chemical library 

comparison by chemotypes. 

Miranda-Quintana et al.60 introduced an extended version of fingerprint-based 

similarity metrics for the comparison of multiple compounds simultaneously. Instead of 

pairwise comparisons, the proposed extended similarity indices allow to compare sets of 

compounds (fingerprints) simultaneously. The extended similarity metrics are designed 

to be computationally efficient, scaling linearly with the number of compounds O(N). 

However, this method is limited by the fingerprint size, the longer ones being logically 

more informative and less prone to bit collisions. 

SpaceCompare introduced by Bellmann et al.61 is a fingerprint-based method of 

chemical space comparison. However, it calculates fingerprints not for full molecules but 

for fragments, thus allowing to avoid compound enumeration. SpaceCompare calculates 

the overlap between a pair of combinatorial spaces by using Connected Subgraph 

Fingerprints62 (fCSFP) to represent and compare chemical substructures. In 

SpaceCompare, the overlap calculation works by first eliminating fragments that cannot 
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contribute to the overlap (covering step), thereby reducing the number of candidate 

products. Then the overlap calculation is performed on this smaller set of products 

(combination step), with the success of this process depending on how well the fragments 

match between the two spaces. Once the fragments that are covered in both spaces are 

identified, SpaceCompare enumerates candidate products and determines the overlap in 

counts by comparing their unique SMILES representations. However, when the overlap 

between two spaces is too high so that it is nonenumerable with available resources, 

SpaceCompare will not be able to operate. As the authors note themselves, if, for example, 

Enamine REAL Space had 50% of common products with a hypothetical chemical space 

of comparable size, SpaceCompare would not be able to calculate the overlap. In their 

work, Enamine REAL63, CHEMriya64, and other combinatorial spaces were successfully 

compared using SpaceCompare because they do not have a lot of overlapping products. 

The lowest and the highest overlap counts were 2867 (between REAL, Knowledge65, and 

GalaXi66 spaces) and 38M (between REAL and GalaXi spaces)61. Such compound 

numbers are easily enumerable; therefore, their approach did not fail to calculate the 

overlap. In addition, SpaceCompare does not provide explainable visualizations or 

indicate which specific regions of the chemical space overlap. In their work, only one 

molecule was shown as an example compound from the overlap. 

Unlike previously mentioned approaches, map-based methods of chemical space 

visualization not only provide intuitive chemical space maps but also allow for accurate 

comparison of libraries by their structural and property similarities. GTM8 is a powerful 

and comprehensible dimensionality reduction method whose ability to accurately 

visualize various chemical spaces was extensively tested9,46,47,49,50,67–69. Its idea consists 

in inserting a 2D hyperplane (manifold) into the multidimensional descriptor space where 

it adapts to the data cloud formed by molecules of the dataset. When the optimal form is 

found, data points are projected to the manifold with node-specific probabilities, and then 

it is folded back to the 2D form. The latter represents a chemical space map that can be 

colored either by the quantitative distribution of compounds across the chemical space, 

by class of compounds, or by properties, giving rise to different GTM landscapes. Using 

GTM, a library can be described as either a map or a vector. The latter, proposed by 

Gaspar et al.50, is a cumulative projection vector that indicates the likelihood of 

compounds from the library to be projected into specific nodes on the map. A pair of 
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libraries can be quickly and elegantly compared by calculating any similarity metric 

between their cumulative projection vectors, for example, widely used in 

chemoinformatics Tanimoto coefficient. GTM, thus, allows to quickly quantify similarity 

between entire libraries offering explainability at the same time. In fact, comparison by 

cumulative vectors can be imagined by simple map overlap of two libraries. Therefore, 

low or high similarity is directly explainable by investigating the maps of the 

corresponding libraries. If needed, compounds from map zones can be also extracted for 

even more detailed structural analysis.  

Another map-based method for chemical space analysis and visualization that is 

particularly interesting to investigate here is Multi-dimensional Scaling (MDS). The 

interest lies in the successful attempt by Agrafiotis and Lobanov70 to use the MDS for 

visualizing a chemical library without compound enumeration. In their work, they trained 

a fully connected Multi-Layer Perceptron (MLP) to predict the coordinates of 

combinatorial products on the MDS map using only the descriptors of the respective 

building blocks (BBs) they are composed of. This approach allowed them to accurately 

predict the map for a 2-BB combinatorial library of 90,000 compounds. However, the 

MLP developed in their study was not given any information on the reactions used to 

obtain the products. However, omitting reaction information can potentially distort the 

predicted position on the chemical space map of a product synthesized using various 

reactions. 

There are many methods of chemical space analysis and comparison, and all of them 

are generally applicable but the choice can vary depending on the expected quality of 

library comparison and its interpretability. In this thesis, the goal was to analyze and 

compare 2.5K DELs demanding both ‘big data’ compatibility, comparison accuracy, and 

interpretability – to be able to explain the similarity between libraries. GTM is an intuitive 

method of chemical space visualization that results in easily interpretable 2D maps 

allowing to analyze different aspects of the complex chemical space. It has been widely 

used in chemoinformatics for chemical library comparison46,67 and property prediction48. 

Hence, herein GTM was selected as one of the best methods to explore the DEL space 

from different perspectives, both from a structural and property point of view. This thesis 

also tackles the challenge of bypassing the compound enumeration step by developing an 
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enumeration-free approach to GTM visualization, extending its use for even 

nonenumerable chemical space analysis.
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Table 1. Summary of methods used to analyze and compare compound libraries. 
 

Type Method Library representation Metric for library 

comparison 

Pros Cons Ref. 

1 Graph-
based 

Chemical 
Space 
Networks 
(CSN) 

A library is represented 
by a CSN where two 
nodes - individual 
compounds - are 
connected if the similarity 
between them is higher 
than a given threshold. 

Connectivity index. - Supports comparison 
and visualization 

- Not “Big Data” 
compatible 
- Enumeration of 
compounds 
required 

Fourches 
et al.59 

2 Map-based, 
Vector-
based 

Generative 
Topographic 
Mapping 
(GTM) 

A library is described by a 
cumulative vector of 
probabilities of 
compounds to fall into 
particular nodes of the 
map created by the GTM 
algorithm. 

Any similarity 
metric. 

- “Big data” compatible 
- Interpretable 
- Supports comparison 
and visualization 

- Training is 
limited by a 
frame set size 
- Enumeration of 
compounds 
required 

Gaspar et 
al.15 

3 Fingerprint-
based 

Extended 
Similarity 
Indices 

A compound library is 
represented as a 
collection of binary 
fingerprints. 

Extended similarity 
index, such as an 
extended Jaccard-
Tanimoto index. 
This index sums the 
bit coincidences 
and normalizes 
them to reflect the 
overall similarity 

- “Big Data” compatible - The level of 
detail in the 
fingerprint 
depends on its 
length 
- Enumeration of 
compounds 
required 

Miranda-
Quintana 
et al.60 
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Type Method Library representation Metric for library 

comparison 

Pros Cons Ref. 

between the 
libraries. 

- No 
visualization of 
the compound 
space 

4 Fragments’ 
fingerprint-
based 

SpaceCompare A topology graph 
represents the overall 
structure of the 
compound space. Nodes 
in this graph represent 
pools of reactants 
described by fragment-
based Connected 
Subgraph Fingerprint 
(fCSFP), while edges 
represent the chemical 
bonds formed during 
reactions. 

Overlap is 
calculated using 
fCSFPs of 
fragments and is 
expressed in 
product counts. 

- Ultra “Big Data” 
compatible 
- Enumeration of the 
whole product space is 
not required 

- If the actual 
overlap between 
the two spaces is 
too large 
(nonenumerable 
with available 
resources), 
SpaceCompare 
will not be able 
to operate 
- Overlap 
expressed in 
counts does not 
inform about 
intersected 
chemotypes 
- No 
visualization of 
the compound 
space 

Bellmann 
et al.61 
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2.5.2 Universal GTM 

In this thesis, to visualize the chemical space of all compound libraries a ‘universal’ GTM, 

or UGTM47, was used. UGTMs are maps trained to be poly-pharmacologically 

competent, namely, to be able to visualize a space of compounds that can be structurally 

and functionally diverse. In the study of Casciuc et al.47, eight UGTMs were trained on 

ChEMBL23 data to be used as predictive models for the biological activity of molecules 

against 236 biological targets. In all research works presented in this thesis, apart from a 

focused DEL project, a UGTM1 built on ISIDA fragment descriptors (atom sequence 

counts with the length of 2−3 atoms labeled by CVFF force field types and formal charge 

status) was used.  

2.5.3 Chemical Space (CS) and Chemical Library Space (CLS) 

The conventional way of chemical library analysis consists in the investigation of its 

Compound Space (CS). The latter can be represented using molecular descriptors and 

visualized using GTM, resulting in a comprehensible 2D map. However, when 

combinatorial libraries like DELs are analyzed, an approach scalable to the analysis and 

comparison of thousands of libraries is needed. Moreover, a DEL is synthesized and tested 

as a whole, which makes cherry-picking impossible, meaning that it should be treated as 

a separate chemoinformatic object as well. Hence, in this thesis, a concept of Chemical 

Library Space (CLS) was introduced, where a compound library is represented as a 

numerical vector that encodes its structural information (see Figure 9).  

Since GTM-produced maps of the chemical space are considered to preserve the 

topology of the initial multidimensional descriptor space, it is assumed that for a 

compound library: 

1) Zones of the map are associated with its predominant chemotypes. 

2) Cumulated responsibility (density) inside each node of the map reflects the 

chemotype distribution there. 

Hence, in this thesis, several methods of vectorial compound library representation based 

on its GTM-produced map were proposed: different variations of Cumulated 

Responsibility Vectors or CRVs (Φ, Λ, and Ω) as well as Responsibility Pattern (RP) 

fingerprints (Γ) and RP count vectors (Γw). Regardless of the CRV type, it can generally 

be referred to as a CLS vector. 
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resulting normalized CRV or +	 = (-&, . . . , -") encodes the compound distribution over 

the chemical space of the library irrespective of its size.  

 1# =	
%#
2

 (2) 

 

Library-modulated CRV (Λ)  

The CRV and Φ treat all nodes of the chemical space map as equally important in 

describing the library. However, some nodes, particularly those highly populated by 

reference library compounds, may be more significant. To account for this, the CRV of 

the analyzed library (a) can be adjusted based on the compound distribution of a reference 

collection (r). This adjustment results in the library-modulated CRV or Λ=(l1, .., lk), 

which is calculated from the Φ of both collections by determining the fraction of 

compounds from the analyzed library in the total population of each node, as shown in 

Equation (3). In this Λ vector, 3# value of 0 is assigned to empty nodes that are not 

populated by any of the libraries. All others are assigned a value between 1 ≤ 3# ≤ 2 

that varies as a function of the fraction of compounds of the library a in the given node. 

Nodes populated exclusively by compounds from either a or r have values of 3# of either 

2 or 1, respectively. The fraction can be also rendered by a color code on the map showing 

zones populated by both libraries or predominantly by one of them. Such visualization is 

called a class or comparative landscape (see Figure 10). It allows one to spot unique and 

overlapping areas of the chemical space for a pair of libraries.  

 

 
3# = 7 +	

+#(9)
+#(9) + +#(()

	

	

(3) 

 

3# is the fraction of compounds of the analyzed library a in the total population of each 

node k 

+#(9)	and	+#(() are normalized cumulated responsibilities in the node k of the libraries 

a and r. 
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Property-modulated CRV (W) 

A library can be also analyzed in terms of its compounds’ property distribution on a map. 

In this case, a mean property value per node (=#) can be calculated according to 

Equation (4). =# can be rendered by a color code on the map showing zones populated 

by compounds in a particular property range giving rise to a property landscape as shown 

in Figure 10. A property-modulated CRV or W = (s1, …, sk) can be calculated and used 

to compare compound libraries both by structural and property similarity simultaneously.  

 
=# =

∑ ?$ ∙ ($#%

$'(

%#
 

(4) 

Ωk is the mean property value in the node k and Pi is the property value for the compound 

i  

Library similarity score 

To estimate the similarity between a pair of libraries, a pairwise Tanimoto coefficient can 

be calculated using their respective vectorial representations (Φ, Λ, or Ω): 

 
A%(9, () =

∑ B#(9)B#(())

#

∑ B#*(9) +)

#
∑ B#*(() − ∑ B#(9) ∙ B#(())

#

)

#

 

 

(5) 

 

Here, B	 is a chosen vectorial representation (B	 = Φ, Λ, Ω), and C is the total number 

of nodes. 
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To encode a compound library using RP, a library RP fingerprint (Γ) and RP count 

vector (Γw) were proposed in this thesis. Γ is a binary fingerprint encoding the presence 

or absence of a particular reference RP in the analyzed library, and Γw is a numerical 

vector with its values corresponding to the number of reference library compounds 

associated with a common RP present in both libraries. A scheme detailing the calculation 

of the Γ and Γw is given in Figure 13.  

 

Figure 13. Scheme of the calculation of the Γ fingerprint and Γw vector for a 

compound library. 

To compare two libraries by their RPs, coverage scores based on Γ fingerprint and Γw 

vector can be calculated. Coverage of a reference library (r) by a candidate library (a) can 

be defined in terms of Γ fingerprint overlap. For this, the fraction of RPs of a reference 

library also present in the analyzed library is calculated. In other words, in this case, the 

coverage score is the number of on-bits common for two libraries divided by the total 

number of on-bits in the reference library fingerprint, see Equation (7). 

 
JKBL(9ML(9, 	() =

∑ N$(9)N$(()	

$

∑ N$(()	

$

 
(7) 

 

where the denominator is the total number of RPs encountered in the reference library 

and Γ!(P) is a value (1 or 0) in the Γ of the analyzed library corresponding to the i-th RP. 

Nevertheless, the Γ fingerprint accounts only for the presence or absence of a 

particular RP, not for the number of compounds associated with it. Since different RPs 

can be populated differently, high RP coverage does not imply high compound coverage. 
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To account for the number of compounds, a weighted RP coverage score can be 

calculated, see Equation (8). It is defined as the fraction of compounds of a reference 

library that correspond to the common RPs (present in both analyzed and reference 

libraries).  

 
QJKBL(9ML(9, 	() =

∑ Γ,$(()Γ$(9)	

$

2-

 
(8) 

 

 

where Γ.!(") is the number of compounds from the reference library " corresponding 

to i-th RP and R/ is the total number of compounds in the reference library ". 

2.5.6 Meta-GTM 

CLS vectors are used to compare a pair of compound libraries. However, in some cases, 

it may be necessary to look at the relationship of three or more libraries at once to have a 

bird’s eye view of the whole CLS. Therefore, in this thesis a meta-GTM approach50, 

allowing to visualize the CLS composed of thousands of libraries from different 

perspectives was used to analyze the 2.5K DEL space. The main idea of the meta-GTM 

is to reduce the dimensionality of the high-dimensional CLS to give a 2D map where 

entire libraries are mapped objects. The meta prefix here is used to highlight the fact that 

the GTM is applied for the second time.  

In this thesis, to create optimal meta-GTMs to visualize the DEL space relative to the 

ChEMBL reference database, map parameters were optimized using a Genetic Algorithm 

(GA). GAs is a class of optimization algorithms inspired by the principles of natural 

selection and genetics. They operate through the iterative process of selection, crossover, 

and mutation, which allow candidate solutions to evolve towards an optimal solution. In 

the case of map parameter optimization, the GA begins with the random generation of an 

initial population of map parameter combinations (number of map nodes, number of 

RBFs, RBF width, regularization coefficient value, preprocessing option of CLS). Each 

parameter combination is evaluated using a fitness function that quantifies the map 

visualization performance.  

Meta-GTM fitness was defined by the quality of the preservation of interlibrary 

distances on it as calculated in the initial CLS descriptor space. The goal was to select a 

meta-map where the top 100 closest DELs to a reference dataset (ChEMBL) in the CLS 
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will stay in the top 100 closest neighbors of ChEMBL on the meta-map. For this, the list 

of the top 100 libraries was established by ranking 2.5K DELs by their Tc similarity to 

ChEMBL in the corresponding CLS. The Tc was calculated as shown in Equation (5). 

Any DELs immediately beyond the 100th position but having the same Tc value as the 

100th-ranked DEL were also included in the list, for consistency reasons.  

After the manifold - defined using the current parameter set - is trained, ChEMBL and 

DELs are projected on it. The latent space coordinates (x, y) for each library are calculated 

as the geometric center of their responsibility clouds. Then, the Euclidean distance of each 

DEL relative to ChEMBL is calculated according to Equation (9). Based on the ranking 

according to Euclidean distances and considering the 100 top DELs as “positives” and all 

other libraries as “negatives”, a Receiver Operating Characteristic (ROC) can be 

calculated and plotted. The ROC Area Under the Curve (ROC AUC) is then calculated 

and used as a fitness function. If the top 100 DELs remain the closest 100 neighbors of 

ChEMBL on the meta-map, this will result in a high ROC AUC value and thus high 

performance of the map. The details of GA optimization duration and training are given 

in Chapter 6 (Meta-GTM: a tool for Chemical Library Space visualization). 

 S(STU, JVTWXU) 	= 	Y(Z012345 	− 	Z625)* 	+ ([012345 	− 	[625)*	 (9) 

 

 Different library descriptor vectors were used to represent DELs and ChEMBL 

resulting in Φ, Λ, or Ω-based CLS. Accordingly, for each CLS a meta-GTM was created. 

Meta-maps built on Φ and Λ library descriptors were used to analyze the CLS from a 

structural similarity point of view. Whereas Ω-based meta-maps allowed to analyze the 

CLS both from structural and property similarity perspectives. Five properties were 

selected for the CLS analysis: molecular weight (MW), logP, number of H-bond donors, 

number of H-bond acceptors, and quantitative estimate of drug-likeness (QED).  

Meta-GTM landscapes allowing to color the CLS according to either the density of 

libraries (measure of how much the CLS zones are crowded) or any intrinsic library 

characteristic can be created. Libraries can be assigned a class, for example, as in the case 

of DELs, they can be either included or not in the top 100 neighbors of ChEMBL. The 

class of the library can be rendered using a color code on the meta-GTM landscape, 

facilitating the CLS navigation. Landscapes colored by library characteristics can be as 
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well useful. For example, they can be colored by the estimated price to synthesize the 

library, the reaction type, the number of BBs engaged in the library, library size, etc. This 

can significantly simplify the comparison of thousands of libraries based on custom 

criteria. 
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2.6 ML modeling for DEL hit prioritization and BB reactivity prediction 

The two major steps involved in DEL technology – BB reactivity validation and hit 

prioritization are among the most challenging.  

First, before purchasing BBs for DEL synthesis, their reactivity should be 

carefully validated experimentally. For this, each BB is combined with an appropriately 

functionalized BB partner attached to the DNA headpiece4. However, when multiple 

large-sized DELs need to be synthesized and if BBs are completely novel, such reactivity 

tests can require a lot of investment and time. Hence, in this thesis, to rationalize the 

validation process of reagents, the BB reactivity prediction problem using machine 

learning (ML) models was addressed.  

Second, the identification of promising hit series can be difficult due to the noisy 

affinity selection results. Consequently, ML models that either denoise these data or guide 

the selection of the most promising compound series from the typically extensive hit list 

are highly preferred. This thesis investigates the latter - hit prioritization using ML model 

predictions of activity.  

The Support Vector Machine (SVM) method was employed for this purpose, since 

itself and its extension – Support Vector Regression (SVR) are capable of resolving 

nonlinear Structure-Activity/Reactivity Relationships in the original descriptor space 

through the use of kernel functions, otherwise called “kernel trick”72.  

2.6.1 SVM and SVR 

SVM is a robust supervised ML method used for compound classification tasks and its 

extension, SVR, is used for property prediction problems 72,73. The idea of SVM is given 

the training data points, defined by a descriptor vector x ∈ ℝ7 and their class labels y ∈ 

{−1, 1}, find a decision boundary the best separating two classes from each other (see the 

left side of Figure 14). This is done by projecting the data points into the descriptor space 

where SVM constructs a hyperplane that optimally separates the two classes. A 

hyperplane in an SVM is defined by Equation (10).  

`:	〈c, d〉 	+ 	f	 = 	0 (10) 

x - represents a point in the feature space (a molecular descriptor vector). 

w - is a weight vector perpendicular to the hyperplane. 

〈c, d〉 	−	denotes the dot product between w and x. 
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b - is the bias term that shifts the hyperplane. 

Data points of one class that are the closest to the samples of another class are 

called support vectors (black overlined circles in Figure 14). They form positive and 

negative class hyperplanes H+ and H- that define the margin of the hyperplane 72,73. Other 

SVM parameters include gamma γ and C parameters. The former controls the influence 

of individual data points: a low gamma value results in a smooth, generalized decision 

boundary by giving each point a large influence range, while a high gamma value creates 

a more complex, wavy boundary by giving each point a small influence range. 

The C parameter balances the trade-off between maximizing the margin and minimizing 

classification errors, with high C values focusing on correctly classifying all training data 

points (which can lead to overfitting) and low C values allowing some misclassifications 

to achieve a wider margin for better generalization. During the optimization process, the 

SVM algorithm adjusts the position and orientation of the hyperplane to maximize the 

margin between the classes while ensuring the best classification performance. This 

involves finding the optimal values for the parameters w and b that define the 

hyperplane H. In the same way, the parameters γ and C are selected so that there is a 

balance between margin maximization and classification accuracy.  Once the optimal 

hyperplane is defined, test data are projected into the descriptor space and classified based 

on the side of the plane they fall on. In more detail, each data point xi is classified by 

calculating the value of the decision function f(xi) = w ∙ xi + b; if f(xi) > 0, the point is 

classified as positive (+1), otherwise as negative (-1).  

In SVR, training data points are defined by a descriptor vector x ∈ ℝ7 and their 

numerical target values y ∈ 	ℝ. SVR tries to find a function f(x) = ⟨w,x⟩	+ b that best 

approximates the relationship between input features x and the target value y 72,73 (see 

right side of Figure 14). Small deviations between observed and predicted y values are 

allowed within the ϵ-insensitive tube (a margin), while errors greater than ϵ are 

penalized.  
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3. Thesis outline 

DEL technology has emerged as a powerful method of hit identification due to its 

ability to access the ultra-large chemical space while using a comparably simple 

experimental setup. Compared to conventional HTS screening, the hit identification 

process using DELs imposes unique demands on chemoinformatic methods. First, the 

screening for affinity of multi-billion-sized DELs did not prove to result in higher hit 

rates. It soon became clear that the design of the library, rather than its size, is the crucial 

factor. Consequently, there arose a demand for chemoinformatic approaches to facilitate 

intelligent library design through thorough building block analysis, chemical space 

exploration, and property distribution investigation. The practical challenges, such as the 

low interpretability of noisy affinity selection results hindering straightforward hit series 

identification, necessitate the use of machine learning models to denoise these data or 

guide hit prioritization. While DELs offer the advantage of exploring ultra-large chemical 

spaces, they also face the challenge of combinatorial explosion. The compound 

enumeration procedure limits the analysis to around 1012 compounds4 and slows down 

the overall library analysis. Hence, approaches that skip compound enumeration are 

required. 

Therefore, the main goal of this thesis was to develop efficient methodologies for the 

design and analysis of thousands of ultra-large DELs. The contributions and novelty of 

this thesis can be described as follows: 

• Generation of the ultra-large DEL space: For the first time, a virtual space of 

2.5K DELs was generated from commercially available building blocks using 

eDesigner, 1M molecules per DEL were enumerated resulting in 2.5B 

compounds. 

• Visualization of DEL space using GTM: Each DEL’s space was analyzed using 

GTM, providing a multi-perspective view of each library – its space was 

investigated both by structural diversity, overlap with publicly available 

databases, and property distribution. 

• Development of approaches for directed DEL selection: A GTM-based 

approach for library selection based on the expected chemical space coverage 



 56 

was proposed. This allowed to select an optimal structurally diverse DEL for 

primary screening. 

• Development of efficient chemical library comparison approaches: Methods 

of efficient and quick pairwise comparison of DELs with a reference database 

were developed by introducing the Chemical Library Space (CLS) concept 

and library descriptors. Conventional similarity metrics calculated using such 

vectors showed to quickly and accurately rank DELs by their structural and 

property similarity to a reference database. 

• Application of the meta-GTM approach to Chemical Library Space 

visualization: For the simultaneous analysis of 2.5K DELs by structure and 

property a meta-GTM approach was used15. It allowed to obtain a “bird’s eye” 

view of the DEL space on one map. 

• Prediction of BB reactivity and hit prioritization for BRD4 focused DEL: 

Affinity selection results of the focused DEL against BRD4 protein provided 

by Novalix were thoroughly analyzed. Both GTM- and QSAR-based 

approaches were applied for the analysis and prioritization of DEL hits. 

Furthermore, building block reactivity prediction models were developed 

offering a complementing rational way of their validation for synthesis. 

• Visualization of the DEL space without compound enumeration: A highly 

performant deep learning model for the prediction of DEL compound position 

on the GTM without the need for compound enumeration was developed.  This 

model will significantly reduce the time and resource consumption for the 

chemical space analysis of ultra-large combinatorial libraries. 
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4. Exploration of the chemical space of DNA-Encoded 

Libraries 

Introduction 

To systematically explore and understand the 

drug discovery potential of DELs, their 

chemical space should be comprehensively 

analyzed. However, most of the DEL-related 

information stays undisclosed inside 

pharmaceutical companies4. To our best 

knowledge, there was only one article 

analyzing DELs coming from Nuevolution 

company30 (now Amgen). Nonetheless, in 

that study, the analysis was limited to only 

four libraries, and no structures were given.  

Hence, in this work, an ultra-large space of 

2.5K DELs was designed using commercially 

available BBs, and 1M compounds per DEL 

were enumerated using the eDesigner tool 

resulting in 2.5B molecules in total (without 

DNA tags). Selecting a DEL suitable for a 

particular drug discovery project from such a 

large pool via exhaustive affinity screening is 

impractical. Therefore, here, we propose to 

use a GTM-based analysis of the chemical 

spaces of virtually generated DELs to select 

an optimal one for the drug discovery task in 

question.  

The GTM-based approach of library selection was applied to identify an optimal 

DEL for primary screening – when there is no or very little information about the 

biological target and its ligands. Such a library should be structurally and functionally 

diverse and contain biologically relevant chemotypes. ChEMBL is a publicly available 

Glossary 

DEL – DNA-Encoded compound 
Library, which is usually an ultra-large 
combinatorial compound collection. 
The DEL compound is covalently 
attached to a DNA tag that encodes 
information about its building blocks. 
The whole DEL is screened 
simultaneously against a biological 
target in a test tube allowing to explore 
large chemical space regions at once. 
DNA tag is used for the identification 
of successful binders after DEL affinity 
screening. 
eDesigner – A freely available tool for 
DEL design and enumeration. It is 
optimized to generate only feasible 
library designs and supports sampling 
of representative subsets instead of the 
full collection.  
GTM – An efficient probabilistic 
dimensionality reduction method, 
compatible with “big data” analysis. 
UGTM – A GTM that was trained to 
be “poly-pharmacologically 
competent” allowing it to 
accommodate ligands of different 
biological targets. Thus, it can be used 
to visualize structurally diverse 
chemical space containing biologically 
relevant chemotypes.  
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database of biologically tested compounds against >15 000 targets that displays such 

characteristics, thus being an optimal reference library. Therefore, each of the 2.5K DELs 

was compared to ChEMBL using UGTM. The comparison was accelerated by deriving a 

GTM-based chemotype coverage metric measuring how well a particular DEL covers the 

chemical space of ChEMBL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





chemical space covered by DELs because it is extremely

vast. To our best knowledge, only one paper reported the

analysis of DEL space using Reduced Complexity Molecular

Frameworks (RCMF) methodology.[11] However, in that work,

the analysis was limited to only four DELs (>5×108

compounds). Since DEL technology is actively being

developed and new methodologies for DEL synthesis were

being elaborated, the aforementioned pioneering work no

longer reflects the status quo.

This work is focused on the generation of possible DELs

from commercially available BBs using a tool for DELs

generation called eDesigner.[12] Since screening thousands

of DELs containing billions of compounds is unfeasible, we

suggest choosing the so-called “golden” DEL(s) that covers

the chemical space of biologically tested compounds to the

highest extent. Such a library would have high structural

diversity and contain the majority of biologically relevant

chemotypes, which is critical for the success of the primary

screening against novel biological targets. It was identified

by comparing the generated DEL space to the chemical

space of biologically relevant ChEMBL[13] compounds using

Generative Topographic Mapping (GTM) – an efficient

dimensionality reduction method.[14] GTM has proved to be

a powerful tool for “Big Data” analysis and visualization (up

to 1B compounds).[15] Notably, the prior development of

quantitatively validated, polypharmacologically competent

Universal Maps (uMaps) allowed us to propose a chemically

meaningful representation of the to-date explored drug-like

chemical space.[16] Only one of the several uMaps (uMap1,

see the corresponding article) was used in this study for

simplicity, but the study could be extended to consensus

mapping on several uMaps.

2 Methods

2.1 General Workflow

The workflow consists of seven parts, as shown in Figure 1.

First, DEL-compatible building blocks (BBs) were selected

from the eMolecules and Enamine in-stock BB libraries

described in the Data section. It was done on the basis of

the Goldberg rule of two (Ro2)[17] and eDesigner built-in

filters for selecting DNA-compatible BBs. Using these BBs,

thousands of DELs were designed and generated with the

help of eDesigner. The size of each DEL varied from 1 M to

1B but for easier and quicker analysis, only a representative

subset of 1 M compounds per DEL was enumerated using

the random sampling approach. In the third step, generated

compounds were standardized according to the protocol

explained in the Data section. ISIDA descriptors[18] were

used to represent molecular structures in a machine-read-

able form of numerical N-dimensional vectors. They were

then projected onto uMap1. Comparative landscapes were

created and visualized to compare DEL compounds to

biologically relevant molecules from the ChEMBL database.

Then a so-called “golden” DEL that provides the highest

coverage of ChEMBL chemical space was identified using

responsibility patterns (RPs).[19] To achieve even better

coverage, complementary DELs were added to the “golden”

one to give a “platinum” pool of DELs.

2.2 Selection of Building Blocks

Before DEL design and generation, input BBs were filtered

according to Ro2 with the help of SynthI.[20] Ro2 is a

guideline to choose high-quality BBs that can give access to

drug-like molecules.[17] According to it, BBs should contrib-

ute to the final molecule only structural fragments that

satisfy the following rules: MW<200 Da, clogP<2, number

of H-bond donors 2, and number of H-bond acceptors

4. This filtration allows to limit the size of DEL compounds

shifting corresponding libraries towards drug-like subspace

of the chemical space. In addition to physicochemical

properties, eDesigner built-in DNA-compatibility filters were

also applied. The selection of building blocks by eDesigner

is made by excluding compounds with unwanted function-

alities that can lead to the reaction with water such as

imines, benzyl halides, etc.

Figure 1.Workflow of the project. The rectangles represent separate DELs.
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2.3 DEL Generation with eDesigner

For the generation of chemical space of DELs, the

eDesigner[12] tool was used (see Figure S5 in SI). At first,

based on the list of the most efficient DNA-compatible

reactions encoded in the tool (see Supporting Information

of respective article[12]) and a user-provided list of BBs, it

generates a special set of instructions for DEL compound

enumeration called libDESIGNs. Each libDESIGN contains

information about the starting headpiece (the whole DNA

part for computational convenience is formally represented

as a 13C atom), the reaction types, and BBs which will be

used in them, as well as deprotection reactions for the final

stage of DEL generation. There are also several restrictions

that can be applied to control some of the properties of the

resulting DEL. They include, for example, the maximum and

the median value of heavy atom count in the generated

molecules, minimum library size, etc. Once the libDESIGNs

are created, the representative DELs subsets of the selected

size can be enumerated by the LillyMol tool.[21] An example

of such enumeration is shown in Figure 2. The isotopic

mark on the carbon atom specifies the place of attachment

of the DNA tag. For clarity reasons, before physicochemical

properties calculation and GTM analysis, the 13C atom is

removed, therewith obtaining the compound that would

have been resynthesized off-DNA for validation in case of

being selected during a real screening campaign.

2.4 Generative Topographic Mapping (GTM)

In the chemical space molecules are represented as data

points, with their position being defined by a vector of

numerical values called descriptors. The main idea of

GTM[14] consists in inserting a flexible hypersurface called

manifold into the high dimensional descriptor space with a

subsequent projection of these data points into a 2D latent

space grid.

The manifold is defined by a grid of Radial Basis

Functions (RBFs, represented by Gaussian functions). It

generates a probability distribution and is fitted to max-

imize the likelihood of the training set. The probability

distribution generated by the GTM is evaluated over

another grid of predefined locations, termed nodes. The

number of RBFs is the key user-defined operational

parameters; the number of nodes controls the map‘s

resolution: it impacts the rendering but not the model itself.

The GTM algorithm “bends” the manifold to pass through

the densest areas of the data cloud formed by the points

representing molecules of the input dataset. Then, the

molecules are projected from the high-dimensional space

onto the 2D map by associating each molecule to the

several closest grid nodes. The degrees of association of

each molecule to each node of the grid are called

“responsibilities”. The responsibility of a node for a com-

pound is the contribution of this node to the likelihood of

this compound. Therefore responsibilities are real number

vectors summing up to 1 over all nodes. Finally, the

Figure 2. Example of DEL compound generation by eDesigner. The user should provide the headpiece and the list of BBs; an appropriate list

of reactions will be selected automatically by eDesigner, and respective compounds will be generated. The isotopic mark is placed by

eDesigner in order to know the position of DNA attachment and is removed prior to GTM analysis and physicochemical properties

calculation.
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manifold is flattened out to obtain a 2D representation of

the map with compounds projected onto it.

Based on the responsibility vectors, different types of

landscapes can be created, where each node is colored

using the weighted average of the properties of the

compounds projected there. Properties assigned to each

node are calculated as a weighted average of the properties

of all residents, where weights are compound responsibil-

ities to reside in this node. Depending on the information

used for its coloration, there are two types of landscapes:

class and property. The class landscape is used to analyze

the distribution of the molecules of two classes in the

chemical space. In this work, the class landscapes are used

to visualize and analyze the distribution of the molecules of

two classes – DEL (library 1) and ChEMBL (library 2)

compounds. Property landscapes represent the distribution

of molecular property or activity values. Using these land-

scapes, GTM can be applied for chemical space analysis,

library comparison, or even virtual screening.[22]

2.5 Universal GTM

The concept of Universal GTM (UGTM) was introduced by

Sidorov et al.[23] and further developed by Casciuc et al.[16] as

a general-purpose map that can accommodate ligands of

diverse biological targets on the same GTM manifold. A

genetic algorithm was used to choose the best descriptors

set and GTM operational parameters (number of nodes and

RBFs, manifold flexibility controls, etc.) so as to maximize

the mean predictive performance over hundreds of bio-

logical activities from ChEMBL. The resulting best uMap1

allowed to separate molecules by their activity class (active/

inactive) against 618 (later extended to 749) biological

targets, which makes it “polypharmacologically competent”.

This map was built based on ISIDA atom sequence counts

with a length of 2–3 atoms labeled by CVFF force field types

and formal charge status.[18a] The size of the map was

chosen to be 41×41 nodes and the number of RBFs – 18×

18.

Since the ChEMBL database is the most reliable source

of the compounds with experimentally measured biological

activity,[13] the universal maps trained on the ChEMBL data

series are highly oriented towards biologically relevant

compounds. Apart from predicting biological activity, these

maps can also be used as frameworks for analyzing large

chemical libraries in medicinal chemistry and drug design

context. The uMap1 was used in this project to compare

biologically relevant compounds from ChEMBL with the

DNA-encoded compounds. This choice was motivated by

previous results in identifying biologically relevant mole-

cules missing from the chemical market, as well as untested

commercially available compounds when comparing

ChEMBL and ZINC.[15]

2.6 Responsibility Patterns

As mentioned previously, compounds are mapped on the

GTM with certain responsibilities – probabilities of these

compounds to populate a specific node of the map. Since

these values are real numbers, finding two molecules with

identical responsibility vectors is highly improbable. This

makes it challenging to identify structurally similar com-

pounds by their responsibility vectors – they may be slightly

different even for very similar compounds. To solve this

problem, it was suggested by Klimenko et al.[19] to discretize

the vector, with all responsibility values less than 0,01 being

reassigned to zero and all others – to a number from 1 to

10. This discretized vector is referred to as Responsibility

Pattern (RP) and is calculated for each compound according

to the formula in Figure 3.

Molecules whose R vectors round up to the same RP are

considered to be grouped in the same cell of the chemical

space and thus to form a cluster of similar structures.[22] For

example, in Figure 3, a GTM density landscape, featuring

compound sets associated with two different RPs is shown.

Colors encode the cumulative sum of responsibilities of all

compounds residing in the particular node (grey regions

are moderately populated, while colored ones contain a

higher number of compounds). RP1 corresponds to the 221

indoles that contain additional amino and/or guanidino

functional groups. These compounds occupy a small

compact area of the chemical space distanced from the

island of RP vector 2, populated by 173 naphthols,

polyphenols, and their methyl ethers. In this work, RPs were

used to compare each separate DEL to ChEMBL, i. e. to

evaluate the proportion of ChEMBL RPs (“structural motifs”)

also covered by a given DEL.

2.7 ChEMBL Coverage Estimation

First, RPs for all compounds are calculated as described

above. Then the pairwise overlap between each DEL and

ChEMBL (Ch RPs cov %) is determined by dividing the

number of common RPs for both libraries

NcommonÖ ÖCh RPs \ DEL RPsÜ) by the total number of

ChEMBL RPs (NtotalÖCh RPsÜ):

Ch RPs cov % à
NcommonÖCh RPs \ DEL RPsÜ

NtotalÖCh RPsÜ

However, the analysis of the percentage of covered

ChEMBL RPs does not consider the number of compounds

corresponding to each RP, although different RPs can be

populated differently – from 1 to ⇡12 000 compounds. As

a result, increasing RP coverage does not necessarily mean

significantly increasing the compound coverage. Thus, the

ChEMBL RPs coverage (W Ch RPs cov %), weighted by RP

population (the number of ChEMBL compounds per RP –P
PopÖCh RPsÜ and

P
PopÖCh RPs \ DEL RPsÜ), is also
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used – where Pop(RP) stands for the number of ChEMBL

compounds featuring that RP:

W Ch RPs cov % à

P
PopÖCh RPs \ DEL RPsÜ
P

PopÖCh RPsÜ

3 Data

3.1 Commercially Available BBs

A set of 450 K commercially available BBs was provided by

eMolecules Inc.[24] They were complemented by an “orthog-

onal” (i. e. containing completely different BBs) dataset of

10 K Enamine[25] in-stock BBs. Among them, only 79 141 BBs

that satisfy Ro2 and eDesigner built-in DNA-compatibility

filters were selected.

3.2 ChEMBL (Biologically Tested Compounds)

ChEMBL is a database containing >2 M diverse and bio-

logically relevant compounds against >14 K biological

targets.[13] The major goal of this project was to find

structurally diverse DELs suitable for primary screening.

Since similar structures tend to have similar properties,

finding a DEL containing compounds structurally similar to

molecules from ChEMBL means finding a DEL that contains

biologically relevant molecules. Such DEL will have a high

potential to contain hit compounds. Hence, ChEMBL

(version 28) was used as a reference library that guides our

choice of the best DEL for primary screening. First, 2 086

898 molecules were downloaded from ChEMBL. After stand-

ardization, 1 853 565 unique compounds with known

biological activities remained. The standardization of chem-

ical structures was done using ChemAxon Standardizer[26]

according to the procedure implemented on the Virtual

Screening Web Server of the Laboratory of Chemoinfor-

matics in the University of Strasbourg.[27] It included

dearomatization and final aromatization (heterocycles like

pyridone are not aromatized), dealkalization, conversion to

canonical SMILES, removal of salts and mixtures, neutraliza-

tion of all species, except nitrogen(IV), generation of the

major tautomer according to ChemAxon. After the stand-

ardization, the ISIDA fragment descriptors used to construct

the first universal map (described in Experimental section 4)

were calculated for all molecules. The same procedure was

also applied to generated in this work DEL compounds.

4 Results and Discussion

4.1 DNA-compatible BBs and Reactions for DEL

Generation

The scope of synthetic procedures used in DEL chemistry is

limited to high-yielding DEL-compatible reactions. Synthetic

efforts to adapt reactions for use in DEL technology have

been underway for several years, but the number of

optimized for DEL chemistries is still rather restricted.[28] For

example, only a few heterocyclisations optimized for DEL

synthesis were described, such as benzimidazole, imidazoli-

dinone, thiazole synthesis, and some others.[29] Nevertheless,

even a few reactions can give rise to structurally diverse

DELs if abundant building blocks (BBs) sets are employed

for their generation.

Figure 3. Left: formula for responsibility pattern (RP) calculation. Right: example of compounds sharing the same RPs and their position on

the density landscape – a map colored by the local density of compounds. Highly populated zones are colored in red, underpopulated ones

– in grey.

Research Article www.molinf.com

© 2022 The Authors. Molecular Informatics published by Wiley-VCH GmbH Mol. Inf. 2022, 41, 2100289 (5 of 15) 2100289

 1
8

6
8

1
7

5
1

, 2
0

2
2

, 6
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/m

in
f.2

0
2

1
0

0
2

8
9

 b
y

 C
o

ch
ran

e F
ran

ce, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [2
9

/0
1

/2
0

2
4

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o
m

m
o

n
s L

icen
se

www.molinf.com


In this work, 79 141 mono-, bi-, and trifunctional BBs

were used for DEL generation. They were obtained by

applying the Goldberg rule of two and built-in eDesigner

DEL-compatibility filters to the combined in-stock library

provided by eMolecules and Enamine. Prevalent monofunc-

tional BB classes in the resulting dataset are secondary and

primary amines, aryl halides, and carboxylic acids (Figure 4

and Table S1 in Supporting Information). Due to their

participation in common DNA-compatible combinatorial

reactions (such as condensation of carboxylic acids with

amines, aldehyde reductive amination, bromo-Sonogashira

coupling, etc.), there is an active development of such BBs,

making these four classes more structurally rich and widely

available commercially. Note that in this work, all structures

were stereochemistry-depleted (a unique skeleton graph is

used to represent all stereoisomers). Therefore, the actual

number of different BBs is higher.

In the case of bifunctional BBs (Figure 5 and Table S2 in

SI), protected amino acids (AA) (such as amino esters, N-

Boc-AA, N-Fmoc-AA, etc.) represent the most abundant

class (3 796). The reason for such abundance is the

popularity of peptide bond formation for DEL compounds’

synthesis that requires this type of reagents. However, the

number of actual AA fragments available from BBs with

multiple protective groups is slightly smaller (2 885). It

appears that the majority of AA fragments (2 173) occur in

only one protected form, and 712 AA were found in the

library more than once with different protecting groups.

Figure 6 (I) shows an example of AAs that occur in the

maximum number of protected variations in the BB library.

A similar tendency is also observed for protected

diamines that occupy third place in the bar chart in Figure 5

after BBs containing both aryl halide and carboxylic acid

functionality (2 359). A total of 737 protected diamines are

equivalent to only 632 unique diamine fragments. Among

them, 510 are represented by only one protected variant,

while the other 122 occur in several differently protected

copies. Four diamines, each occurring in the highest

number of protected variations, are shown in Figure 6 (II).

The number of trifunctional BBs is significantly lower

than other reagents due to higher structural complexity

(Figure 7 and Table S3 in SI). The most highly populated

class of trifunctional BBs is haloaryl nitrocarboxylic acids

containing 110 members. In DEL technology nitro group

usually pose as a latent amino group that can be obtained

upon reduction.

Using these BBs and user-defined library limitations in

eDesigner, 2 497 DELs were designed. The details about

these DELs can be found in the Supporting Information

(Table S4). The maximal number of heavy atoms in DEL

compounds was set to be 45, and at least half of all

compounds in the library needed to have less than 35 non-

hydrogen atoms. The frequency of the use of a particular

reaction to generate all DELs is shown in Figure 8.

Figure 4. Monofunctional DNA-compatible commercially available BBs.
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The most frequently used reactions, each being ex-

ploited in more than 500 libraries, were: condensation of

carboxylic acids with amines (R1), aldehyde reductive

amination (R2), 1,2,3-triazole synthesis (R3), guanidinylation

of amines (R4), Migita thioether synthesis (R5), and bromo-

Sonogashira coupling with TMS acetylene (R6). The high

frequency of reaction usage is mainly caused by the

prevalence of the respective BB classes in the input library

(B1, B2, B3, B4 in Figure 4). Indeed, the amines are coupling

partners in three reactions mentioned above (R1, R2, and

Figure 5. Bifunctional DNA-compatible commercially available BBs.

Figure 6. AA (I) and diamines (II), represented in the commercially available libraries of DNA-compatible BBs with the highest number of

protected variations (N-Boc, N-Fmoc, various esters, etc.).
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R4), aryl halides – in two (R5 and R6), and carboxylic acids in

R1.

Not all compounds were enumerated for every DEL, but

random sets of 1 M representative compounds were

produced by eDesigner. In order to verify that such a library

core is indeed representative, the whole library of 88 M was

enumerated for one of the DELs, and density landscapes

were built for the whole library and 1 M dataset on the

same density scale. As one can see in Figure 9, each region

of the map, occupied by the members of the whole library,

also has representatives in the 1 M randomly generated

dataset – colored regions coincide on both maps, and only

Figure 7. Trifunctional DNA-compatible commercially available BBs.

Figure 8. Frequency of the use of a particular reaction in DELs generation.
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the density of residents differs. Therefore, 1 M randomly

enumerated compounds will be considered in this work as

a sufficient representation of the whole DEL for GTM-based

analysis.

4.2 Physicochemical Properties of Generated Libraries

Out of a total of 2 497 generated DELs, 77 are produced by

a single coupling reaction of 2 BBs (hence the label “2BB

libraries”). The remaining 2 420 DELs are “3BB libraries”. The

physicochemical properties were calculated using RDKit.[30]

Drug-like[31] (MW500; LogP5; the number of H-bond

donors5; the number of H-bond acceptors10; ring

counts10) and lead-like[32] (MW400; �3.5LogP4;

the number of H-bond donors5; the number of H-bond

acceptors8; ring counts4; rotatable bonds10) filters

were applied. Figure 10 depicts how many of 2BB and 3BB

libraries (in percentage) contain a specified portion of drug-

like (Figure 10 (I)) and lead-like (Figure 10 (II)) compounds.

As expected, 2BB libraries contain smaller compounds,

and thus the portion of drug- and lead-like compounds for

them is higher than for 3BB DELs. For almost a half of 2BB

libraries, all generated compounds fall into the category of

drug-like, while in the case of 3BB DELs, only 2% of libraries

are fully drug-like. However, the content of such com-

pounds in 3BB libraries is still relatively high – the majority

of DELs (68%) contain at least 50% of drug-like compounds.

At the same time, the number of lead-like compounds is

significantly lower for both categories of DELs. Almost a

quarter of all 2BB libraries do not contain them, and

another quarter is less than 50% lead-like. In the case of

3BB libraries, the lead-like compounds are almost entirely

absent – 70% of DELs do not contain such molecules at all,

and the remaining 30% of libraries have only up to 30% of

lead-like molecules.

Figure 9. Comparison of the density distribution for the 1 M randomly generated compounds and the whole DEL (88 M). The color scale

encodes the corresponding number of compounds residing in each colored node of the map.

Figure 10. Comparison of (I) drug- and (II) lead-likeness of 2BB and 3BB libraries: percentage of 2BB and 3BB libraries having a particular

portion of compounds satisfying respective filters is given.
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4.3 Search for the “Golden” DEL

The “golden” DEL can be defined as a library that is diverse

enough to cover the highest possible proportion of bio-

logically relevant compounds from ChEMBL. This coverage

was calculated in terms of common responsibility patterns

(RPs) explained in the Methods section. In Figure 11 (a) one

can see the number of libraries with particular coverage of

ChEMBL RPs. The majority of libraries cover 10–20% of

ChEMBL chemical space in terms of unweighted RPs cover-

age score. 64 DELs showed the highest coverage of ChEMBL

RPs – 30–33%. Figure 11 (b) depicts the coverage of the

ChEMBL RPs weighted by the number of compounds that

correspond to each RP. This time, 90 DELs showed high

coverage of ChEMBL chemical space, ranging from 50 to

60%. Five most similar to ChEMBL libraries are shown in

Figure S1 in SI.

Figure 12 displays three comparative landscapes:

DEL1857 with 13%, DEL167 with 27%, and DEL3589 with

57% coverage of ChEMBL (here, weighted coverage is

considered). Dark grey zones are populated exclusively by

ChEMBL molecules, while all other colors indicate areas also

containing DEL compounds in a different ratio. Below each

landscape, the IDs of reactions used for the corresponding

library generation are given (see Figure 8 for reaction IDs).

From the landscape of DEL1857, it is apparent that this

library does not cover many areas of ChEMBL chemical

space – there are few multi-colored spots on the landscape.

It is an indicator that DEL1857 is not chemically diverse

enough, and there are plenty of biologically relevant

chemotypes absent from this library. DEL167, in its turn,

allows achieving higher coverage of ChEMBL. DEL3589, on

the other hand, is one of the leaders among all 2,5 K DELs –

multi-colored areas are not focused in one place of the

Figure 11. (a) Number of DELs with different coverage of ChEMBL responsibility patterns (RPs) (b) Number of DELs with different

percentages of ChEMBL RPs coverage weighted by the RPs population (number of ChEMBL compounds per RP).

Figure 12. Class landscapes comparing a particular DEL with ChEMBL. From left to right: comparison of ChEMBL to DEL1857, DEL167, and

DEL3589. Dark grey zones are populated exclusively by ChEMBL compounds, while all other colors indicate areas also containing DEL

compounds in a different ratio. White regions correspond to the empty areas of the chemical space. Below each landscape, a library ID and

IDs for corresponding reaction types are given.
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map, but rather distributed on different islands that

correspond to different chemotypes, and dark grey areas

are less present.

There are 90 libraries with similar chemical space

coverage and diversity, but here, we will limit the discussion

to the DEL3589 as an example of a “golden” DEL. The 84 M

compounds of this DEL can be obtained by a succession of

three reactions: two aldehyde reductive amination steps

followed by Ullmann-type N-aryl coupling (see Figure S6 in

SI). BBs used are 3 138 aldehydes, 275 bromoarylaldehydes,

and 97 amines. As was discussed earlier, the latter is the

class with the highest number of diverse BBs (Figure 4).

Therefore, a random selection of BBs for DEL generation

from such various and numerous collection results in higher

coverage of ChEMBL chemical space.

4.4 Search for the “Platinum” set of DELs

As shown on the class landscape for DEL3589 in Figure 12,

there are still some dark-grey zones left that are not

covered even by this “golden” DEL, which means there is

space for improvement. To fill uncovered parts of the

chemical space, the approach of library pools[33] was

considered. According to it, several distinct DELs may be

combined to create a more complex mixture, called “library

pool”, which can then be screened all at once. In order to

obtain the highest coverage of ChEMBL, composing DELs

for constructing such library pools should be complemen-

tary to each other, and each new DEL should cover

previously unrepresented areas of the biologically relevant

space.

The 90 DELs with the highest weighted coverage of

ChEMBL RPs were chosen as possible “root” libraries. Each

of these was then iteratively completed with up to 14 other

libraries. Every complementary DEL was chosen in a way to

cover the maximal portion of the ChEMBL chemical space

that was not covered in the previous steps. Each time a

complementary DEL was added to the pool, the weighted

ChEMBL coverage was calculated. The line chart in Fig-

ure 13 was used to identify a pool of DELs that can enhance

ChEMBL coverage to the highest possible extent. It shows

how the weighted ChEMBL coverage increases over the

addition of complementary libraries. According to this chart,

after the fifth DEL, each complementary library provides

less than 1% of additional weighted ChEMBL coverage –

irrespectively of the chosen root DEL. Considering that the

size of each DEL can vary from 1 M to 1B compounds,

adding a library of such large size to the pool only to

increase ChEMBL coverage by 1% is not justified. Therefore,

it is irrational to use a pool of DELs composed of more than

five libraries.

If above-described DEL3589 is used as a root DEL, the

“platinum” pool of five DELs will be composed of such

libraries: DEL3589, DEL1613, DEL159, DEL1161, and DEL845.

Overall, they contain around 776 M compounds. Reactions

used for the generation of these five DELs are shown in

Figure 14: aldehyde reductive amination (R2), Ullmann type

N-aryl coupling (R7), condensation of carboxylic acids with

amines (R1), guanidinylation of amines (R4), and SnAr ether

synthesis (R11). Almost all of them are among the most

frequently used reactions for DEL generation (Figure 8) that

employ BBs from highly represented classes (Figure 4). On

the other hand, a pool of three DELs (DEL3589, DEL1613,

DEL159) can be even more convenient since it contains

Figure 13. The percentage of the ChEMBL coverage, weighted by the number of compounds sharing common RPs, as a function of the

number of libraries in the set. Green and blue dashed lines highlight the points for three and five DELs.
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fewer compounds (around 487 M) and yet still allows to

cover a large portion of ChEMBL (77%).

The physicochemical properties of the selected libraries

were calculated and analyzed (Table 1). The proportion of

drug-like and lead-like compounds varies for all DELs. The

2BB DEL159 shows the highest percentage of drug-like and

lead-like molecules, 98% and 78%, respectively. This result

is not surprising due to the lower molecular weight of

compounds from 2BB libraries. Regarding 3BB libraries, it

appears that the golden DEL3589 possesses higher drug-

likeness (80% of such compounds) and lead-likeness (12%

of such compounds) than the 3BB complementary DELs.

Indeed, 52% of molecules from DEL1613 are drug-like while

for DEL1161 the proportion of such compounds is only

30%. The portion of lead-like molecules for these libraries is

negligible. The data on physicochemical properties of

compounds from the golden DEL and platinum pools of

three and five DELs are available in Figures S2–S4 in SI.

To better illustrate how ChEMBL coverage increases

when a pool of DELs is used instead of a single DEL, four

comparative landscapes – featuring the “golden” DEL, the

Figure 14. Reactions and BBs required for the synthesis of the “golden” DEL and libraries composing “platinum” pools.

Table 1. The percentage of drug-like and lead-like compounds in

the selected DELs that form “platinum” pools of three and five

DELs. All DELs are 3BB libraries except DEL159 which is a 2BB

library.

% drug-like compounds % lead-like compounds

DEL3589 80% 12%

DEL1613 52% 5%

DEL159 98% 78%

DEL1161 31% 1%

DEL845 71% 6%
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“platinum” pools of three and five DELs, and ⇡2,5 K DELs

against ChEMBL were created (Figure 15). Structural analysis

of underrepresented in DELs zones was carried out (Fig-

ure 16). The obtained landscapes show that as we go from

one (Figure 15 (I)) to three DELs (Figure 15 (II)), the ChEMBL

coverage increases drastically. On the landscape of the

“platinum” pool of three DELs, the ChEMBL areas from A1

to A6 became a lot more populated. However, the addition

of the following two libraries does not have the same

impact. There are almost no new previously uncovered

areas, only the increase in the population of previously

occupied areas is observed (Figure 15 (III)). However, neither

three nor five libraries succeeded in covering areas A7 and

A8 completely. To see whether it is even possible to do so,

a comparative landscape for all DELs versus ChEMBL was

created (Figure 15 (IV)). It appears that neither of the DELs

can cover these regions of the chemical space – areas A7

and A8 remained dark-grey. This result is not surprising

because they contain natural products (NP) and NP-like

compounds such as cardiac glycosides, steroids, and

steroid-like compounds, saccharides, nucleotides, oligopep-

tides, coumarins, macrolides, chalcones, etc., which are

indeed inaccessible by DEL technology as employed in this

analysis.

5 Conclusions

In this work, for the first time, the ultra-large chemical space

of DNA-encoded libraries (DELs) containing 2,5B com-

pounds in total (2.5 K libraries 1 M each) was designed and

generated using eDesigner and analyzed with the help of

GTM. Owing to the probabilistic nature of GTM and

efficiency of the libraries analysis and comparison based on

the responsibility patterns, it was possible to develop a

GTM-based approach for quick selection of DELs occupying

Figure 15. Comparison of ChEMBL and I) “golden” DEL, II) a pool of three DELs, III) a pool of five DELs, and IV) all 2,5 K DELs. Multicolored

zones are populated by both ChEMBL and DEL compounds, dark grey zones – only by ChEMBL compounds. White regions correspond to

the empty areas of the chemical space. Examples of compounds populating highlighted areas A1-A8 are provided in Figure 16.
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the same areas of the chemical space as the reference

library. In this work, the goal was to detect the “golden”

DEL or “platinum” pool of DELs for primary screening – the

libraries containing the highest portion of biologically

relevant chemotypes. Therefore, ChEMBL, as the largest

database of dose-response activity tests and thus an

optimal representation of biologically relevant space, was

used as a reference. However, the approach described

herein could be applied to any reference library, e.g.,

actives of a particular biological target.

This approach allowed to identify so-called “platinum”

pools of five and three DELs providing the highest coverage

of ChEMBL chemical space – 81% and 77%, respectively.

Our results suggest that an optimal set for primary screen-

ing is the one encompassing three DELs, which, even

though containing fewer compounds than in five DELs, still

succeeds in covering a large portion of ChEMBL chemical

space.

In this project, only a brief structural analysis of DEL

chemical space was performed. Without a doubt, a more

detailed GTM-based analysis of chemical structures compos-

ing DELs and their comparison to ChEMBL and commer-

cially available HTS libraries will improve our understanding

of the chemical space accessible via this technology.

Further GTM analysis and comparison of generated DELs

can be helpful for the enhancement of available BBs

libraries and prioritizing some promising synthetic proce-

dures in order to improve the biological relevance of DEL

chemical space.

Figure 16. Examples of ChEMBL compounds populating areas from A1 to A8 highlighted in landscapes in Figure 15.
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Summary 

In this work, 2.5K virtual DELs were generated, and their chemical spaces were analyzed 

to identify an optimal library for primary screening. The GTM-based approach for quick 

comparison of libraries to a reference ChEMBL28 database was developed. As an optimal 

representation of the reference library for primary screening, the ChEMBL28 database, 

the largest repository of dose-response activity assays, was selected for its diversity and 

biological relevance. The proposed GTM-based coverage scores allowed to measure the 

chemotype similarity between DELs and ChEMBL, speeding up the process of library 

comparison. This approach allowed to identify a DEL covering 57% of ChEMBL 

chemical space. However, such coverage is still quite low. Consequently, the strategy was 

to select a set of complementary DELs to cover different regions of ChEMBL, thus 

achieving higher overall coverage. DELs to include in the optimal set were identified 

iteratively – each DEL was selected in a way so that it covers ChEMBL zones that were 

not covered in the previous steps. In this way, sets of five and three DELs were selected 

that together provide the highest coverage of ChEMBL chemical space, covering it by 

81% and 77%, respectively.  

The analysis of the comparative landscape of ChEMBL vs 2.5K DELs allowed to 

conclude that even all DELs together cannot cover 100% of ChEMBL space. The 

uncovered areas were investigated and found to contain natural products (NPs) or NP-

like compounds, such as steroids, macrolides, and nucleotides. Such compounds are 

expectedly not covered by herein-generated DELs, since the design of NP-like DELs was 

not the goal of the study. In addition, drug- and lead-likeness of generated DELs were 

estimated according to the theoretically calculated physicochemical properties of their 

compounds. As anticipated, 2BB libraries contain smaller compounds, resulting in a 

higher proportion of drug-like and lead-like molecules compared to 3BB DELs – only 

3% of them are fully drug-like. 

 This work represents a pioneering study on the exploration and structural analysis 

of the space of DELs at such a scale. Findings from this study and the space itself can be 

useful for medicinal chemists working with DEL chemistry. 
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5. Chemical Library Space (CLS) analysis 

Introduction 

DELs introduced new challenges for 

chemical library design and analysis. Due to 

their combinatorial nature, thousands of 

various DEL designs can be created but not 

any of them is worth synthesis and biological 

testing. Instead, possible DELs should be 

virtually generated and compared to identify 

the one that justifies the investment of 

resources for its screening. In addition, DELs 

are not cherry-pickable – once a library is 

synthesized, it is stored as a mixture in an 

Eppendorf tube. Therefore, DELs should be 

considered and handled in their entirety, 

rather than being broken down into individual 

parts. They can also be ultra large-sized – 

containing up to trillions of compounds24, 

thus necessitating ‘big data’ compatible 

approaches for their analysis.  All these 

factors influence how DELs should be treated 

chemoinformatically to select the most 

promising library for a drug discovery task. 

In this work, a vectorial-based representation of chemical libraries was proposed 

to enable more efficient and rapid comparison of compound collections such as DELs. 

The concept of Chemical Library Space (CLS) was introduced to represent a space that 

encompasses entire compound libraries as residing objects. This space can be encoded 

using various library descriptors, with library descriptor vectors defining the position of 

compound collections within it.  

Glossary 

CRV – Cumulated Responsibility 
Vector that is derived from the GTM of 
the library. It is a vector that encodes 
the approximate total number of 
compounds from each node of the map. 
It is used as a representation of the 
library as a whole and can be called a 
CLS vector. 
Normalized CRV (Φ) – Library-
size independent library descriptor 
vector. It can also be visualized as a 
density landscape showing the 
quantitative distribution of compounds 
in the chemical space of a library. 
Library-modulated CRV (Λ) – A 
vector representing a library with 
respect to its overlap with a reference 
collection. It can be visualized as a 
library comparative landscape. 
Property-modulated CRV (Ω) – A 
vector allowing to represent both the 
chemotype and property distribution 
inside the library. It can be visualized 
as a property landscape. 
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A library descriptor vector can be derived from a GTM-generated map of a 

compound collection. GTM is a probabilistic dimensionality reduction method defining 

the position of a data point (molecule) on the latent space map by probabilities specific 

to map nodes called “responsibilities”. The sum of responsibility vectors over all 

compounds from the library provides a Cumulative Responsibility Vector (CRV) that 

allows to encode the entire chemical space of a library. Different variations of this vector 

were proposed here to encode compound collections from many perspectives. To encode 

the structural composition of the library the Normalized CRV (Φ) was created. To encode 

the structural composition with respect to some reference library a Library-modulated 

CRV (Λ) was proposed. Finally, a property-modulated CRV (Ω) allowing to encode a 

library both in terms of its structural and property distribution was created. Two additional 

fingerprint and vectorial representations (Γ and Γw), based on responsibility patterns71 

(RPs) proposed in our previous study10, were used as benchmarks. RP-based 

representation enabled the encoding of the chemotype composition of the library. 

The introduced library vectorial representations (Φ, Λ, and Ω) were used herein 

to rank DELs by their similarity to ChEMBL28 both in terms of structural composition 

and property distribution. To do this, a Tanimoto similarity coefficient between each 

DEL-ChEMBL vector pair was calculated.  
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ABSTRACT: The development of DNA-encoded library (DEL)
technology introduced new challenges for the analysis of chemical
libraries. It is often useful to consider a chemical library as a stand-
alone chemoinformatic objectrepresented both as a collection of
independent molecules, and yet an individual entityin particular,
when they are inseparable mixtures, like DELs. Herein, we
introduce the concept of chemical library space (CLS), in which
resident items are individual chemical libraries. We define and
compare four vectorial library representations obtained using
generative topographic mapping. These allow for an effective comparison of libraries, with the ability to tune and chemically
interpret the similarity relationships. In particular, property-tuned CLS encodings enable to simultaneously compare libraries with
respect to both property and chemotype distributions. We apply the various CLS encodings for the selection problem of DELs that
optimally “match” a reference collection (here ChEMBL28), showing how the choice of the CLS descriptors may help to fine-tune
the “matching” (overlap) criteria. Hence, the proposed CLS may represent a new efficient way for polyvalent analysis of thousands of
chemical libraries. Selection of an easily accessible compound collection for drug discovery, as a substitute for a difficult to produce
reference library, can be tuned for either primary or target-focused screening, also considering property distributions of compounds.
Alternatively, selection of libraries covering novel regions of the chemical space with respect to a reference compound subspace may
serve for library portfolio enrichment.

1. INTRODUCTION

Chemical library design and evaluation have always been one
of the central aspects of computer-aided drug design. Over the
last decades, the main efforts in chemoinformatics were
directed toward different ways of chemical structure encoding,
various approaches for chemical space representation, visual-
ization, and efficient ways to characterize the chemical
composition of analyzed collections. Considering that at the
time medicinal chemists were operating with only a few
compound collections, a given library (in-house stock or
preferable supplier catalog) was a space of exploration, and
underlying compounds were the objects in this analysis. Later
on, advances in organic chemistry (e.g., parallel synthesis)
increased significantly the number of distinct chemical
collections, and the compound population in those libraries
exploded, especially so for tangible libraries. However, the
association of a given molecule to a “classical” compound
library was still somewhat arbitraryone collection could be
enhanced using compounds from the other or even a new
library could be created by cherry-picking compounds from
numerous different collections. Moreover, considering that
each compound was synthesized and biologically tested
separately, it was logical to only evaluate libraries at the level
of individual molecules.
With time, combinatorial chemistry has advanced to the

point that it is now possible to simultaneously synthesize a

mixture containing millions of compounds in a few simple and
easily automatable steps. A variety of encoding methods have
been developed, enabling the recording of specific reaction
rules and building block (BB) combinations defining a
mixture.1 Affinity selection combined with decoding techni-
ques allowed for the simultaneous biological screening of ultra-
large compound collections contained within a single
Eppendorf tube. It is from the background of these
advancements that DNA-encoded library (DEL) technology
emerged and recently became an attractive tool for hit
identification successfully applied at the early stages of drug
discovery.2,3 DEL technology enables much faster and cheaper
identification of potential hits as opposed to widely used but
quite expensive high-throughput screening. DEL technology is
associated with various challengesboth experimental and
computational. One of them is related to the fact that a library
of DNA-encoded molecules is synthesized and tested as a
whole. It can, of course, be designed by thorough choice of its
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BBs or pooling multiple DELs togetherbut, once the mixture
is produced, it cannot be broken down to individual molecules
any longer. This means, it is impossible to exclude or replace
some of the compounds from the DEL once the synthesis is
completed. Hence, it is no longer sufficient to analyze it only
on the level of individual molecules, but a global representation
of a compound library is needed.
Here, we wish to formalize the concept of chemical library

space (CLS)a vector space in which residing items are entire
chemical libraries. The key point here is the chemically
meaningful definition of libraries as mappable objectsa
generalization of standard chemical cartography. Several
approaches of the representation and comparison of chemical
libraries were proposed so far. For example, in the approach of
Fourches et al.,4 each library was represented as a similarity
graph (chemical space network) where two nodesindividual
compoundsare connected if the similarity between them is
higher than a given threshold. To compare two libraries,
connectivity indices are calculated for the corresponding graphs,
allowing discrimination between similar versus dissimilar pairs
of datasets. However, the explicit pairwise compound-to-
compound similarity calculations limit the application of this
approach to rather small datasets. To solve this problem,
modification of the fingerprint-based similarity metrics for
library comparison, avoiding calculation of the entire similarity
matrix, was introduced by Miranda-Quintana et al.5 Proposed
extended similarity coefficients were then applied for the
visualization of the similarity relationships between libraries via
chemical library networks6 by analogy to above-mentioned
chemical space networks.
The aforementioned methods, however, do not intuitively

explain why some libraries are said to be similar. Indeed, a
visual pairwise inspection of compounds in the connected
nodes of chemical space networks answers the question for
individual molecules, but not for compound libraries. One of
the methods that address this problem is a consensus diversity
plot where library position in the CLS is defined by the pair of
diversity values(i) the median of the pairwise Tanimoto
scores over intra-library compound pairs and (ii) the fraction
of scaffolds retrieving 50% of the library.7 The relative size of
the collection is represented by the size of the circle
representing a data point, while its color is defined by the
third diversity metricthe mean of the intra-set Euclidean
distance of six physicochemical properties. Such plots are easily
interpretable, as each of the values in the vector has a particular
chemical meaning. However, the comparison of the internal
diversity of libraries instead of the similarity between them is
much less informative: a library can be internally highly diverse
but have a very similar chemical composition to another
equally diverse library. In another library representation by a
Database Fingerprint (DFP), proposed by Fernańdez-de
Gortari et al.,8 the on-bits correspond to the most frequent
fragments occurring in numerous molecules from the analyzed
library. Even though the DFP allows the incorporation of the
main structural information of the library, it ignores finer
differences between the collections that might lie in the
distribution of the less frequent structural fragments or mutual
occurrence and rearrangements of several fragments in
different groups of compounds. There is also no possibility
to include property information along with the structural one
into the comparison using DFPs.
To solve the foregoing limitations of existing methods, here

we introduce and test several more complex vector-based

representations for compound libraries that enabling the
comparison of numerous large collections (in our case
DELs) from different perspectives and produce intuitive
visualizations of the CLS. They all are based on generative
topographic mapping (GTM)a probabilistic dimensionality
reduction method.9 For each mapped item of the initial, high-
dimensional descriptor space, GTM provides a vector R
(“responsibility vector”) rendering its fuzzy levels of assign-
ment to the k nodes of the 2D map grid. The sum of R vectors
over all members of the library provides a cumulated
responsibility vector (CRV), a “baseline” representation of
the library/mixture as a whole. Different refinements of this
vector are introduced here:

(i) Normalized CRV (Φ), as a library-size independent
library descriptor

(ii) Library-modulated CRV (Λ)representing a library
with respect to its overlap with a reference collection

(iii) Property-modulated CRV (Ω)introducing property-
centered library representation considering both chemo-
type and property distributions over the chemical space.

In the present article, these vectors were used to encode the
previously generated 2.5k different DELs.10 The ability of each
of the vectors to accurately represent and identify DELs closest
to the reference library was evaluated and compared to
previous results obtained using responsibility patterns (RPs).10

Based on the values from each of the introduced library vectors
(Φ, Λ and Ω), GTM landscapes (described in detail in the
Methods section) were created enabling visualization of the
chemical space of a particular library from different
perspectiveseither from structural or property point of
view and which allowed to chemically interpret the similarity
ranking results.
In more general terms, this work showcases how to exploit

the flexibility of GTM technology to define inter-library
similarity metrics based on different criteriafrom those based
on plain library overlap to scores that are fine-tuned by external
information specific to each library’s space zone, as captured in
the herein proposed CLS vectors. Including this external
information (such as the mean of calculated or measured
property values) is easy and computationally efficient, because
it is assigned to the “intrinsic” zones of the chemical space (the
GTM nodes), not to the individual molecules of each library.
This methodology allows one to quickly decide how much a
pair of libraries specif ically overlap within their chemical space
zones characterized by desired physicochemical parameters,
rather than how well they overlap “in general”.

2. DATA

2.1. ChEMBL. The ChEMBL dataset (version 28) was used
here as a reference library. It was downloaded and standardized
in our previous work10 according to the approach implemented
on the Virtual Screening Web Server of the Laboratory of
Chemoinformatics at the University of Strasbourg, using the
ChemAxon Standardizer.11 This procedure included dearoma-
tization and final aromatization (heterocycles like pyridone are
not aromatized), dealkalization, conversion to canonical
SMILES, removal of salts and mixtures, neutralization of all
species except nitrogen(IV), and generation of the major
tautomer according to ChemAxon. It resulted in 1,853,565
unique ChEMBL compounds. This set is extremely diverse: for
example, molecular mass spans a range between 7 (Li+, a
normorhythmic agent) and 2255 g/mol. In principle, there is
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no limitation in size or complexity for molecules in DELs. In
practice, however, given the peculiar constraints of the
synthesis which may not work with arbitrarily complex BBs,
it is clear that a part of the chemical space spanned by
ChEMBL is out of the scope of any practicably achievable
DEL. Hence, ChEMBL was filtered to exclude such molecules.
The following filtering rules were deduced (herein tentatively
named DEL-likeness rules), with cutoffs chosen to encompass
more than 90% of all compounds in all 2497 herein considered
DELs:

• 250 ≤ MW ≤ 750;

• log P ≤ 7;

• number of H-bond acceptors ≤ 15;

• number of H-bond donors ≤ 8;

• number of rotatable bonds ≤ 15.

After filtering, 13% of ChEMBL compounds were discarded.
The remaining 1,605,370 molecules were used as a reference
collection in this analysis.
2.2. DNA-Encoded Libraries. 1M representative subsets

for all 2497 DELs were generated in our previous work10 with
the help of the eDesigner tool.12 This was done using
commercially available BBs from eMolecules and Enamine that
satisfy the Ro213 and eDesigner built-in DNA-compatibility
filters. The enumerated compounds were standardized in the
same way as the ChEMBL dataset.

3. METHODS

3.1. Generative Topographic Mapping. In chemo-
informatics, each molecule can be represented as a data
point defined by a vector of numerical values called
descriptors. Molecules populate a chemical space, which is a
high-dimensional vector space. To analyze and comprehen-
sively visualize it, dimensionality reduction methods are
needed. GTM14−16 was the herein-used dimensionality
reduction tool. It works by fitting a manifold (flexible
hypersurface) into the multidimensional descriptor space
populated by “frame” items, followed by the projection of
the data points onto the thereupon defined 2D latent space
grid.
The manifold is defined by a grid of Gaussian radial basis

functions. It is fitted to the data so as to approximate the data
distribution of the training set and to maximize its likelihood
(i.e., minimize the distance between the manifold and training
data “frame” points). In more detail, the GTM algorithm
training process proceeds by “bending” the manifold to pass
through the densest regions of the data cloud formed by the
frame set. Items are then projected from the multidimensional
space onto the manifold by association to several closest grid
nodes. Next, the manifold is unfolded to obtain a 2D map. The
degree of association of each item (molecule or reaction, in
chemoinformatics) to a node of the map is called a
“responsibility”. Each item is described by a responsibility
vector (real number vector summing up to 1 over all nodes)
that is used to define a projection of the molecule on the map.
Summing up the responsibility values in each node over all
molecules in the analyzed collection produces a cumulated
responsibility vector (CRV) characterizing a whole library.
Different types of GTM landscapes can be created for the

same library, where properties of the compounds projected
onto each node are rendered using a color code. Three major
types of landscapes were used in this study:

(1) Density landscapecreated by coloring the GTM in
accordance with the quantitative distribution of
compounds over the nodes

(2) Library-comparative landscapeobtained by coloring
the GTM by a proportion of compounds of the analyzed
library in the node’s overall population (populated by
both analyzed and reference library molecules)

(3) Property landscapeobtained by coloring the GTM by
responsibility weighted average of compound property
values for each node

Using these landscapes, GTM can be applied for chemical
space analysis, library comparison, or even virtual screen-
ing.15,17

In the present work, the first Universal GTM (UGTM)14,17

was used for the analysis of the 2497 DELs and filtered
ChEMBL28. It was built using ISIDA atom sequence counts
with the length of 2−3 atoms labeled by CVFF force field types
and formal charge status as descriptors.18 Since this map was
trained to predict the biological activity of molecules against
236 targets, it is suitable for the analysis of biologically relevant
chemical space. It can serve not only for predictions of
bioactivity but also for the analysis of large chemical libraries in
the context of medicinal chemistry.15

3.2. Chemical Library Space. The conventional way of
library analysis consists in a detailed investigation of its
compound space where each compound is defined by
molecular descriptorsin our case ISIDA fragment counts.18

However, the structural fragment level is too detailed for
characterizing the whole library. It makes little sense to build a
cumulated count of all fragments seen in the members of a
library because this vector loses the key information on how
those fragments were initially distributed in individual
compounds. In order to generalize the structural information
of the library, one way would be to somehow encode the
“chemotype” countsthe number of compounds of a
particular “chemotype” present in a library. However, the
detailed structural analysis of the large compound collection
can be very computationally demanding, and the notion of
“chemotype” is intrinsically vague and context-dependent.
Hence, in this work, we propose several methods of chemical

library encoding derived using GTM. Since the latter preserves
the topology of the initial space upon the dimensionality
reduction, it is considered for the analyzed library:

(i) zones of the map are associated with predominant
“chemotypes”15,19 as implicitly defined by the highly
relevant fuzzy clustering mechanism of the GTM
approach

(ii) cumulated responsibility (density) for each of those
zones implicitly reflect the chemotype distribution,
without the need to explicitly predefine “chemotypes”.

3.3. Chemical Library Encoding Methods. Several ways
to use GTM responsibilities for library encoding are described
in more detail belowresponsibility pattern fingerprints (Γ),
responsibility pattern count vectors (Γw), and several types of
modified CRVs (Φ, Λ and Ω).

3.3.1. Responsibility Pattern Fingerprints (Γ) and Vectors
(Γw). Due to the probabilistic nature of GTM, a position of a
compound on the map is defined by a probability distribution
over the nodes, which, in turn, could be encoded by a
responsibility vector. Therefore, two different yet similar
compounds may not have exactly the same responsibility
vector. However, similar compounds of a same “chemotype”,
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mapping not with identical, but roughly the same rpik values
may be clustered together under a same Responsibility Pattern,
defined in eq 1. Therefore, RP20 distributions within a library
implicitly reflects the chemotype distribution, without the need
to explicitly predefine “chemotypes”.

= [ × + ]rrp 10 0.9
ik ik (1)

where [] means truncation, rpik is the RP value for compound i
in the node k, and rik is responsibility value for compound i in
the node k
It follows from eq 1 that responsibility values smaller than

0.01 are reassigned to zero, and all othersto integer numbers
from 1 to 10. Molecules situated close to each other in N-
dimensional descriptor space and having slightly different
responsibility vectors may have the same RP. These
compounds usually share the same scaffold or substantial
(connected or disconnected) maximum common substructure,
or pharmacophore.21 Thus, in a way, an RP could be associated
with a prevalent “chemotype”.
To encode a compound library using RPs, a library

responsibility pattern fingerprint (Γ) and RP count vector
(Γw) are suggested. Γ is a binary vector encoding the presence
or absence of a particular reference RP in the analyzed library,
and Γw is a vector with numerical values corresponding to the
number of reference library compounds associated with each
common RP present in both libraries. A schematic
representation of the Γ and Γw calculation is given in Figure 1.
3.3.2. Normalized CRVs (Φ). A CRV = (c1,c2,...,ck) is the

vector encoding a library by the sum of responsibility values
over all molecules of the library in each node of the map, as
shown in eq 2. In other words, to some degree, this vector
allows the encoding of a library by the number of compounds
associated with each node of the corresponding GTM plot.
Thus, the CRV mathematically describes compound distribu-
tion over the 2D map and consequently over the chemical
space of the library that this map visualizes. Considering that
each area of the map is populated by a particular prevailing
chemotype, the CRV is a crude indirect way of assessing the
occurrences of different chemotypes in the library without
actually defining them.

=c r
k

i

N

ik

(2)

where rik is responsibility value of the molecule i in the node k
The CRV is intrinsically dependent on the size of the library

it encodes. Therefore, when collections of different sizes are
compared in a context in which size differences are not
relevant, ck must be normalized by library size N according to
eq 3. The resulting normalized CRV (Φ) encodes relative
compound distribution over the chemical space of the analyzed
collection.

=
c

N
k

k

(3)

3.3.3. Library-Modulated CRV (Λ). So far, the CRV and Φ

consider all the chemical space zones (nodes) to be equally
important in describing the library. However, some nodes may
be more importantfor example, the ones found to be highly
populated by reference library compounds. For this purpose,
the CRV of the analyzed library (a) can be modulated with
respect to the compound distribution of another reference
collection (r). The resulting library-modulated CRV (Λ) can
be computed from the Φ of both collections, by calculating the
fraction of compounds of the analyzed library in the total
population of each node, as shown in eq 4. In Λ, a value Λk = 0
is assigned to all empty nodes in both analyzed and reference
libraries, whereas for all non-empty nodes 1 ≤ Λk ≤ 2 vary as a
function of the fraction of compounds from the analyzed
library in a given node. Nodes populated exclusively by
compounds from r and a have value = 1 and 2

k
,

respectively, whereas mixed nodes containing compounds
from both libraries have values in the range 1 < Λk < 2.

= +
+

a

a r
1

( )

( ) ( )
k

k

k k (4)

where Λk is Λ value in a given non-empty node k for analyzed
library a, whereas Φk(a) and Φk(r) are normalized cumulated
responsibilities in the node k for the analyzed and reference
library, respectively.

Figure 1. Summary of the RP-based library representations. The Γ values for a particular library are assigned based on the presence or absence of a
certain RP in the reference library, and the Γw values represent the counts of reference library compounds covered by this RP.
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When aiming to maximize representativity and coverage of
the reference collection by the analyzed library, the ideal case
would be an Λ with = 0

k for the fully empty nodes and
= 1.5

k
(corresponding to equal representation of both

reference and analyzed libraries) in all occupied ones. This
“ideal” vector can thus be used as a reference in Tanimoto
calculations for ranking libraries based on Λ.
3.3.4. Property-Modulated CRV (Ω). If the analysis of CLS

should be performed in the context of some property or
biological activity of underlying compounds for each library,
the property-modulated CRV (Ω) can be used. Ω is composed
of the mean property values for each node calculated according
to eq 5.

=

•
=

P r

c
k

i

N

i ik

k

1

(5)

where Ωk is the mean property value in the node k and Pi is the
property value for the compound i
Figure 2 shows a simplified scheme describing links between

modified CRVs and related GTM landscapes. As soon as the
compounds are projected on the map, the three types of
landscapesdensity, library comparative, and property land-
scapesare generated, followed by preparation of related
vectors Φ, Λ, and Ω using, respectively, the density, libraries
ratio or mean property value in each node. Each of these
vectors allows encoding a chemical library as an object in the
high-dimensional CLS.
3.4. Similarity Relationships between Libraries in the

CLS. To define similarity relationships between libraries in the

CLS, various scores based on RP-based representation can be
suggested. A score assessing the coverage of a reference library
r by a candidate library a can be defined in terms of the binary
Γ as the fraction of RPs of a reference library also present in a.
Considering the binary nature of Γ, the coverage score is the
number of on-bits common for two libraries divided by the
total number of on-bits in the reference collection; see eq 6.

=a r
a r

r
Coverage( , )

( ) ( )

( )

i i i

i i (6)

where the denominator simply stands for the total number of
RPs encountered in the reference and Γi(a) is a value (1 or 0)
in the Γ of the analyzed library corresponding to the i-th RP.
However, this coverage score does not account for the

number of compounds corresponding to each RP, although
different RPs can be populated differently. This means that the
high RP coverage does not necessarily imply high compound
coverage. To solve this problem, a weighted RP coverage score
can be defined as the fraction of compounds of a reference
library that corresponds to the RPs present in both analyzed
and reference libraries.

=a r
r a

N
wCoverage( , )

( ) ( )
i i i

r

w

(7)

where Γwi(r) is the number of compounds from the reference
library r corresponding to i-th RP and Nr is the total number of
compounds in the reference library r.

Figure 2. Scheme depicting how each of the introduced herein library encodings (Φ, Λ, and Ω) are derived from the GTM for a particular
compound library.
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Notice that both coverage and weighted coverage scores
were used in our previous work10 for the comparison of virtual
DEL collections with the ChEMBL database.
For the CRV-based representations (Φ, Λ, Ω), a pairwise

Tanimoto coefficient is a reasonable estimation of libraries’
similarity

=

+ ·

Tc a r
v a v r

v a v r v a v r

( , )
( ) ( )

( ) ( ) ( ) ( )

k

K

k k

k

K

k k

K

k k

K

k k

2 2
(8)

Here, v is a chosen CRV-based representation (v = Φ, Λ, Ω),
and K is the total number of nodes.

4. RESULTS AND DISCUSSION

The herein proposed library encoding vectors Φ, Λ, Ω,
,and

iw provide different views of the CLS. To investigate
their usefulness, the pool of 2.5k previously generated DELs10

was used. Three case studies were performed. First, we
analyzed how proposed encodings and similarity metrics
handle the comparison of a large 88 M DEL with its 1 M
representative subset. The second case study addresses the
selection of the “optimal” DEL for the primary screening when
no or little information about the biological target is known.
The goal was to identify a DEL that covers “biologically
relevant” space (represented by ChEMBL) to the highest
extent. For this purpose, 2.5k DELs were compared to
ChEMBL (as a reference collection) in the CLS defined by
Γ, Γw, Φ, and Λ. In the third case study, the property-focused
analysis of the libraries was performed using the Ω encodings.
4.1. Representative DEL Subset vs Its Parent Library:

A Test Study of Expected Near-Perfect Overlap. In our
previous study,10 representative sets of each of the 2.5k DELs
were generated using random sampling of BBs in the
eDesigner12 tool and not the full libraries. Such a sub-library
should be very similar to the entire DEL and cover virtually all
of its chemical space. Therefore, overlap analysis of a
representative DEL subset with respect to its parent library is
a baseline case for illustrating how well each of the encodings
reflects their close relationship.
For this purpose, a 3BB DEL2568 based on the aldehyde

reductive amination, Migita thioether synthesis, and amine
guanidinylation was selected. The coverage of the entire 88M
DEL2568 by its representative subset or its similarity was
calculated using each of the selected encodings (Γ, Γw, Φ, and
Λ). Figure 3 provides a visualization of the chemical space of
those two libraries. Relative compound distribution over the
maps is almost identical, which backs up the claim of
representativity of the subset.

From Table 1, it appears that coverage based on Γ is very
lowonly 9% of RPs present in the entire DEL library are

covered by the 1M representative set. However, Γw coverage
shows that those 9% of RPs correspond to 87% of molecules,
which means that the subset lacks very rare (but numerous)
RPs, all while covering “mainstream” chemotypes from the full
collection. It is interesting to witness a combinatorial library
(sharing a common “scaffold” defined by the underlying
chemistry) concentrating 87% of its members into 9% of the
spanned chemical space. This is not unexpectedcombina-
tions of relatively “exotic” and rare BBs result in “exotic” but
rare products.
The similarity between those two collections was also

calculated using CRV-based representationsΦ and Λ. In the
latter case, the Λ vector of the 1M subset was created by
calculating the ratio of molecules from the representative
subset with respect to the reference (full 88M collection) in
each node of the map. It was then compared to the “ideal” Λ

where each node occupied by the reference 88M library has a
value Λk = 1.5, which corresponds to the perfect representation
of the full library by the subset (see details in the Methods
section). Tanimoto coefficients calculated for CRV-based
representations are given in Table 1. Those values being
close to the maximum illustrate expected (and observed in
Figure 3) high similarity between compound distribution in
the chemical spaces of those libraries.
Both CRV-based representations provide close to the

maximum similarity values between the library and its
representative subset, as expected. RP-based representations,
on the other hand, provide a stricter comparison with an
accent on the missing reference RPs (chemotypes) in the
analyzed library. This example demonstrates the importance of
using both the Γ- and Γw-based coverage scores. While the first
one shows how many “chemotypes” are covered, the second
one puts this number into the perspective of their compound
population and provides a compound-weighted coverage of the
chemical space.

4.2. ChEMBL vs DEL Comparison in the CLS Defined
by Different GTM-based Encodings. As in our previous
work,10 here we focused on the case of primary screening
where the selected DEL needs to cover the biologically
relevant chemical space to the highest extent. Technically, such
a task consists in ranking the 2.5k DELs by their similarity (or
coverage) to a reference collectionhere, the ChEMBL
database.

4.2.1. Library Comparison by Responsibility Distribution.
Coverage and Tanimoto similarity coefficients for each of the
2.5k DELs were calculated with respect to the ChEMBL library
using each of the encodings (Γ, Γw, Φ, and Λ). The results are
combined in Figure 4. Two librariesDEL2568 and DEL271
having the highest and the lowest weighted ChEMBL coverage

Figure 3. Density landscapes of the entire 88M DEL2568 and its 1M
representative subset.

Table 1. Coverage and Similarity of the Full DEL2568 by Its
Representative Subset

CLS encoding coverage of the full DEL2568 by the 1M subset

Γ 0.09

Γw 0.87

CLS
encoding

Tanimoto similarity between the full DEL2568 and 1M
subset

Φ 0.99

Λ 0.98
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based on Γwwere selected as points of reference, to trace
their scoring with other representations. Both Γ-based
coverage (Figure 4A) and Φ-based Tc (Figure 4C) adopt
values within a similar and rather low value range: from 0.01 to
0.4. This highlights that DEL compound distribution is quite
different from that of ChEMBL, and the likelihood of finding
the ChEMBL RPs in DELs is rather low. However, the Γw-
based coverage shows that those RPs that are covered by DELs
in fact correspond to the prevailing compound population of
ChEMBL because observed values of coverage almost doubled
with respect to Γ-based coverage (Figure 4B). In all three
cases, the two “marker” libraries, nevertheless, keep their
relative rank: DEL2568 is always ranked in the top 5−10% of
libraries and DEL271in the last 10−15%. As expected,
tuning the overlap criterion by means of the usage of different
CLS vectors should never override the fundamental “core”
library similarity, distinguishing between libraries containing
closely related molecules from those which do not.
In the case of Λ-based similarity, the Tc values are spread

within a narrow range: from 0.8 to 0.92 (Figure 4D). The Λ-
based similarity spectrum is intrinsically different from those
calculated using other encodings. Since vectors for all libraries
are modulated with the CRV of the same reference collection,
the similarity value between two Λ is always higher than that in
the case of Φ, for example. However, the position of DEL2568
and DEL271 in Figure 4D is similar to the other three cases.

Thus, even though being shifted toward higher values,
similarity distribution in the CLS defined by Λ follows the
same trends as in other library spaces.
For further analysis of the similarity relationships in the four

proposed representations of CLS, all DELs were ranked with
respect to the coverage of (or similarity to) ChEMBL. To
simplify the analysis, here we analyze only five DELs: ranked
the first, 50th, 100th, 1000th, and 2497th with respect to
ChEMBL. For each of these five DELs, a density landscape
showing compound distribution in the chemical space of the
library was created (see Figure 5). This figure shows that each
of the representations ranks libraries differentlynone of the
libraries were selected as the best one by more than one
representation. However, DELs having the same rank in
different spaces (landscapes forming columns in Figure 5) still
have very similar compound distribution over the map. Failure
to consensually score one DEL as the best match for ChEMBL,
in any CLS, is due to the fact that there are several DELs that
might claim this title, and no single one is undoubtedly
outstanding in terms of sharing related chemotypes with
ChEMBL. Looking at the problem through the prism of
multiple CLS definitions is evidencing this important aspect,
allowing for more flexibility in experimental setups. In this
scenario, there is no particular reason to pick either of the
DELs of column no 1 in Figure 5a case in which extraneous
parameters (availability, facility of synthesis, and cost) may be

Figure 4. Pairwise comparison of 2.5k DELs with ChEMBL using different representations and metrics: distribution of ChEMBL coverage scores
calculated using Γ (A) and Γw (B), and distribution of Tc between ChEMBL and each DEL calculated using Φ (C) and Λ (D).
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applied by the user to select either of these. Should a
consensual winner emerge from this analysis, selecting it at
higher costs over the others may make sense. Practically, visual
inspection shows that the first few hundred DELs have similar
density landscapes to those of the top-ranked library−

landscapes corresponding to the 100th or even 500th-ranked
library still match landscape No. 1 quite well. Finally, yet
importantly, within the top 100 DELs chosen by each of the
encodings, there are 32 DELs common to all four encodings;
within the top 500, this value rises to 273, and for the top 1000
DELs, it reaches 713, which shows how well the ranking by
coverage or Tc based on four encodings correspond to each
other. For more details, see Figure S1 of Supporting
Information.
Even though each of the analyzed representations offers a

different DEL as the closest to ChEMBL (DEL2970,
DEL2568, DEL1847, and DEL845), they all appear to be
quite similar. Interestingly, all these libraries are three-cycled
DELs that were designed exclusively based on robust coupling
reactionsaldehyde reductive amination (all four libraries),
Ullmann-type N-aryl coupling (DEL2970 and DEL845),

Migita thioether synthesis from thiophenols and arylbromides
(DEL1847 and DEL2568), and carboxylic acid/amine
condensation (DEL1847 and DEL845) (see Figure S2 of
Supporting Information). The size of the full DELs is also very
similar for those four librariesslightly above 80M com-
pounds. The reason for the high diversity of those collections
and thus high coverage of (and similarity to) ChEMBL is due
to the abundance and diversity of the purchasable BBs required
for those reactionsamines, aldehydes, arylhalides, and
carboxylic acids.10,22

Libraries with the lowest rankDEL1216, DEL271,
DEL2266, and DEL3703also have some design features in
common. Their full size is much lower (between 1M and 5M),
and they all have at least two heterocyclization steps in their
designaminothiazole and Larock indole synthesis were
combined to form DEL1216, imidazole and Larock indole
synthesis were used in DEL271 generation, and three
heterocyclization steps (oxadiazole, triazole, and aminothiazole
synthesis) were used both in DEL2266 and DEL3703 (see
Figure S3 of Supporting Information). As is visible from Figure
5, those collections have one (maximum two) density peak,

Figure 5. Density GTM landscapes of ChEMBL28 and selected DELs ranging from the most similar to the least similar to ChEMBL. DELs were
selected and ranked either by coverage scores (in the case of Γ and Γw) or Tanimoto similarity coefficients (in the case of Φ and Λ). Values of
either coverage or Tc are provided in red on each landscape. For all landscapes, the same color scale corresponding to the density distribution of
ChEMBL was used.
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which means that their diversity is much lower, and those
DELs can be considered as focused libraries containing very
similar compounds. This is explainable by the fact that
employing two heterocyclization steps in DEL synthesis means
that all compounds possess at least two identical hetero-
cyclesa consequently large scaffoldwith diversity being
introduced only via their “ornaments”, by contrast to, say, an
amide formation in which everything but the −C(O)NH−

moiety is variable.
The use of only heterocyclizations is convenient for

“focused” DEL synthesis, as the common scaffold generated
by the reaction represents a common signature of all library
members, which vary in terms of scaffold substituents only.23

This provides an excellent library for extracting structure−
activity relations and fine-tuning lead molecules, provided, of
course, that the focus around the chosen heterocyclic core
matches the actual chemical space zone favored by the target.
However, if the goal is to produce general-purpose DELs, it is a
safer option to use building-block-rich coupling reactions
instead because abundant BB classes exist. Many BBs already
contain necessary heterocyclic moieties,24 albeit not necessarily
connected to each other in a same way as they would be linked

up in a heterocyclization synthesis-based DEL. Another option
might be to use only one heterocyclization step combined with
two coupling synthetic cycles. In this way, the diversity coming
from coupling reactions can partially compensate for the
presence of the same heterocycle in each molecule. An example
of such design is DEL2806 (1000th library by Γ)it combines
imidazole synthesis with guanidine group formation from
amines and Ullmann-type N-aryl coupling. All other DELs
featuring from 1st to 500th in Figure 5 are based only on
coupling reactions.

4.2.2. In-Depth Analysis and Interpretability of Library
Overlap. Overlap scores are useful for the rapid processing and
ranking of large sets of candidate libraries, but a real
understanding of overlap must go down to individual
compound structure levels. The strength of this protocol is
that the mapping used to define CLS vectors can implicitly
support this approach. To illustrate that, the density landscape
for DEL1847 that is the closest to ChEMBL according to Φ

ranking was compared to the density landscape of ChEMBL
(Figure 6). DEL1847 is a three-step library based on aldehyde
reductive amination with the NH2 group of the headpiece
(2652 aldehydes), followed by the condensation of the same

Figure 6. Interpretation of the similarity between ChEMBL and DEL1847 via structural analysis of the density landscapes of those libraries. Areas
A1−A8 (labeled in white) correspond to the peaks of high density in ChEMBL space that were reproduced in DEL1847. Areas A9−A12 (labeled in
red) represent mismatched zones.
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amino-group with 21 bifunctional carboxylic acids containing
thiol group that on the third cycle reacts with 1630
arylbromides to form thioether bonds. The total size of the
library is around 90M.
In Figure 6, most of the density peaks of ChEMBL (A1−A8)

were reproduced in DEL1847. These areas contribute to the
similarity of those two libraries and make DEL1847 the most
highly scored by the Tanimoto coefficient (Tc = 0.38)
calculated based on Φ. Indeed, areas A1−A4 are covered by
both libraries, containing molecules of similar structural
features, even though DEL1847 compounds always have
thioether and amide groups in their structures. Nevertheless,
this similarity value is far from perfect, which can be explained
by mismatched density peaks between ChEMBL and
DEL1847. Namely, areas A9 and A11 are heavily populated
in the ChEMBL landscape, but rather moderately occupied in
DEL1847. The former area is populated by 2-aminothiazole-
containing compounds and is expectedly underrepresented in
DEL1847, as only 14 BBs used for its enumeration contain this
structural moiety (0.3% of all BBs). The same applies to area
A11, which is highly populated by pyridazinone/oxadiazolone-
containing amides in ChEMBL and underpopulated in the case
of DEL1847. Regions A10, A12 in ChEMBL are empty in
DEL1847. This is because these areas are populated by
complex natural products,10 and thus cannot be reproduced by
herein considered DELs.
The same analysis was performed for the most dissimilar one

to the ChEMBL library by ΦDEL2266. This library is based
on three heterocyclization reactionsoxadiazole, triazole, and
aminothiazole synthesisthat provide 1.3M compounds in
total. As a result, each compound of the library contains the
same three cycles, which makes this library structurally highly
focused. However, there are no molecules in filtered
ChEMBL28 of similar chemotypes. In Figure 7, highly
populated areas A1 and A2 in the DEL2266 landscape are
almost empty on the ChEMBL map, and the two libraries
almost do not overlap at all, which explains close to zero
similarity between them.

Thus, by analyzing density landscapes for the selected pairs
of libraries, it is possible to explain the similarity behavior in
the CLS defined by Φ. The interpretation of the CLS defined
by Λ can be performed by analyzing pairwise comparative
landscapes featuring reference collection against each of the
analyzed libraries.

4.2.3. Property-Sensitive Library Comparison. A conven-
tional way to analyze compound collections in terms of a
particular physicochemical property is to build a frequency plot
(histogram) showing the distribution of this property for all
library molecules.25−28 This approach though has several
drawbacks. First of all, there is a complete disconnection of
such plots from the chemotype composition of the analyzed
collection. Figure 8 shows that both libraries closest and
farthest to ChEMBL according to Γw ranking (DEL2568 and
DEL271, respectively) have a very similar distribution of log P
values, even though they strongly diverge in terms of
composition. Moreover, compounds with a given property
value (e.g., log P = 4) may be spread all over the mapthey do
not have to be similar simply because they share the same
property value (Figure 8 on the right).
By contrast, property-modulated Ω has two key advantages:

being focused on specific chemical space zones populated by
similar chemotypes, it does account for the chemistry “behind”
the property values. The second key feature is that property-
related information is provided via GTM property landscapes,
thus it is directly associated with chemical space zones. In this
way, Ω representation allows for dual libraries’ analysis and
comparison where the most similar to the reference library
collection simultaneously demonstrates both chemotype and
property similarity.
To further illustrate the advantages of Ω over the property

histograms, the DELs most similar to ChEMBL were selected
and compared using both approaches. First, each classical bar
chart for H-bond acceptor count was encoded by a n-
component vector, whose length corresponded to the number
of bars in the property histogram. Then, based on these
vectors, Tanimoto coefficients were calculated between each
DEL and ChEMBL, and the most similar DEL2189 was
selected (see Figure 9A) with Tc = 0.95. The same was done
by calculating the Tanimoto coefficient between each DEL and
ChEMBL using the respective Ω, which led to the selection of
DEL630 as the most similar one (Figure 9C) with Tc = 0.78.
The Tc values for both DEL2189 and DEL630 calculated
either based on the Ω or H-bond acceptor counts distribution
vectors with respect to the filtered ChEMBL database are given
in Table 2.
From Figure 9 it is visible that even though having similar

global property distributions (illustrated in histograms), the
local distribution of H-bond acceptor counts in each area of
the chemical space of DEL2189 (Figure 9A) is dissimilar
compared to the ChEMBL property landscape (Figure 9B)
there are almost no zones containing compounds with more
than eight hydrogen bond acceptor atoms on the DEL2189
landscape. Moreover, there are lots of ChEMBL areas that are
empty on the DEL2189 landscape, thus the chemotype
similarity of this library to ChEMBL is low (Tc(Φ) = 0.13).
In contrast, DEL630 (Figure 9C) selected as the most similar
to ChEMBL using HAC-Ω representation has a significantly
larger colored surface which means higher chemotype
similarity to ChEMBL (Tc(Φ) = 0.34). Furthermore, the
local property distribution in this collection is much closer to
ChEMBL than that in DEL2189. Indeed, there are many areas

Figure 7. Interpretation of the similarity between ChEMBL and
DEL2266 via structural analysis of the density landscapes of these
libraries.
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colored in the same way in both ChEMBL and DEL630

collections, which means that the average number of H-bond

acceptors in compounds populating these zones is very close.
Thus, Ω encoding allows to take into consideration both

property and chemotype distribution in the chemical space of

analyzed libraries. Different Ω can be created using any

measured or calculated property if it is provided for every

compound in analyzed libraries. Figure S4 renders the

distribution of the similarity of DELs with respect to ChEMBL

in six Ω-encoded CLS: MW, log P, H-bond acceptors and

Figure 8. (Left) Density landscapes of filtered ChEMBL, DEL2568, and DEL271; (center) classical bar chart visualization of calculated log P
distribution for all compounds from analyzed libraries; (right) compounds with log P = 4 (black dots) projected on the corresponding density
landscapes.

Figure 9. Hydrogen bond acceptor count (HAC) landscapes for (A) DEL2189 (selected by property distribution similarity), (B) reference library-
filtered ChEMBL28, and (C) DEL630 [selected by Tc(HAC-Ω) similarity].

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.3c00520
J. Chem. Inf. Model. 2023, 63, 4042−4055

4052

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c00520/suppl_file/ci3c00520_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00520?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00520?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00520?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00520?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00520?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00520?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00520?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00520?fig=fig9&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.3c00520?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


donors, number of rotatable bonds, and quantitative estimate
of drug-likeness (QED score). Using these values libraries can
be ranked according to their property-focused similarity to
ChEMBL. As an example, in Figure 10 six QED landscapes of
DELs ranging from the most similar to the least similar to
ChEMBL in the CLS defined by QED-Ω are provided. As we
go from the first to the last DEL, there is a decrease in the
similarity between each of their QED landscapes and the QED
map of ChEMBL. The top-ranked collectionDEL45 is based
on only two reaction steps (aldehyde reductive amination
followed by imidazole synthesis reaction) and thus expectedly
contains a lot of drug-like compounds (97% of the whole
library). Thus, the QED values for this library are also higher
than for molecules enumerated via a combination of three BBs
in three cycle DELs, which we can see on the landscapes.
Figure 10 also shows that there are a lot of areas on the
ChEMBL and DEL45 QED landscapes that are colored in the
same way. This means, that DEL45 is reproducing not only
global but also local QED distribution observed in the
ChEMBL chemical space. The Tanimoto coefficient value
calculated in the Φ-based CLS (Tc = 0.25, DEL45 is 167th
most similar to ChEMBL by Φ among 2497 DELs in total)
and visual similarity between the density landscapes of those
libraries prove that QED-modulated Ω encodes not only global
and local property distribution but also chemotype distribution
for the analyzed libraries.

5. CONCLUSIONS

In this work, we reported the development of several types of
vector-based encodings for characterizing libraries of various
sizes and compositions as a function of the relative distribution
of molecules in the GTM-based chemical space. These
representations constitute a new way of the analysis of
combinatorial mixtures, such as DNA-encoded libraries
(DELs), that should be considered not only as an ensemble
of compounds, but also as unified entitiesmixtures whose
composition cannot be easily changed once synthesized. Of
course, the methodology generally applies in contexts where
any librarycherry-pickable or notneeds to be regarded as a
stand-alone entity, rather than a collection of individual
molecules. With the encodings introduced here, it becomes
possible to clearly define Chemical Library Space (CLS),
where each collection is considered as a data point. Classical
chemoinformatics allows for the management of a portfolio of
compounds forming a core library (comparison to other
compound sets, directed enrichment in new compounds,
focused subset extraction for screening, etc.), whereas this
methodology enables the management of a portfolio of libraries
(selection of the best suited one for a screening campaign,
enrichment with novel librariesoverlapping or not, etc.).
From the example of ChEMBL vs DEL comparison, it was

shown that all proposed CLS representationsresponsibility
pattern fingerprints (Γ), responsibility pattern count vectors
(Γw), normalized CRVs (Φ), library-modulated CRVs (Λ),
and property-modulated CRVs (Ω)are able to efficiently
encode key information about the “chemotype” distribution of
analyzed libraries, where “chemotypes” are implicitly defined
by the intrinsic neighborhood compliance of GTMs. “chemo-
types”, in this sense, may be common scaffolds including or not
common key “ornaments”, common topological pharmaco-
phores, or more loosely defined compound clusters of
molecules with a specific global charge or outstanding size,
etc. Similarity relationships in all five CLSs seem reasonable

Table 2. Tanimoto Values for DEL2189 and DEL630
Calculated Either Using HAC-Ω or H-Bond Acceptor Count
Distribution Vectors with Respect to the Filtered
ChEMBL28 Database

Tc(HAC-Ω) Tc(property distribution)

DEL2189 0.34 0.95

DEL630 0.78 0.67

Figure 10. First row: On the left: QED landscape of filtered ChEMBL28. On the right: QED landscapes of DELs ranging from the most similar to
the least similar to ChEMBL sorted by their Tanimoto coefficients calculated based on their QED-Ω with respect to ChEMBL (in black). Second
row: On the left: density landscape of the filtered ChEMBL. On the right: corresponding density landscapes for selected DELs with their Φ

similarity values with respect to ChEMBL (in red).
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and chemically meaningful and allow adequate sorting of DELs
with respect to their similarity to ChEMBL. Therefore, any of
the proposed representations can be used for selecting an
optimal DEL for a particular task if the reference collection can
be defined. Here, ChEMBL was used to represent the drug-
relevant chemical space, and it was assumed that the ultimate
goal in general diversity library design is mimicking the
chemical space covered by it. This is of course debatablein
real applications, experts may define reference libraries based
on much stricter and project-specific criteria. The present work
outlines a novel methodology for library selection and
comparison, which was shown to be senseful in all respects
concerning the analysis of herein considered DELs, but must
yet be proven useful in prospective library designa goal
unfortunately way beyond the resources of many academic
research teams.
To analyze libraries with respect to the featured chemotypes

without paying attention to their population the best choice
would be Γ. If the population of the matched chemotypes in
only one of the libraries (reference collection) is important
the coverage score based on the Γw should be used, thereby
ensuring that the candidate library matches the often-seen
patterns in the reference collection, and not its atypical
“singletons”. In case the compound distribution over the
chemical space of all analyzed collections is important, CLS
should be defined by the Φ, whereas Tanimoto similarity
should be used for library ranking. This strategy can also be
used in order to select a library that maximally reproduces
compound distribution from the chemical space of the
reference collection (e.g., selection of the optimal representa-
tive subset). Λ-based encoding is particularly useful when one
wants to compare a coverage of a reference dataset by some
other libraries. In this case, each library is encoded considering
its relative compounds distribution with respect to the
reference collection, so a special accent is placed on the
differences between the relative proportion of compounds
coming from analyzed and reference libraries without taking
into consideration the absolute popularity of each node.
Moreover, in case the accent of the analysis is placed on the
particular calculated or measured property, Ω can be used to
encode libraries with respect to both chemotype and property
distribution in the chemical spaces of these collections. In
contrast to classical property histograms that describe the
global distribution of the property values among compounds of
the whole library, Ω encodes local property distribution among
compounds belonging to different chemotypes and populating
particular areas of the chemical space.
The interpretability of the proposed vectors merits a special

mention here. Being GTM-based, Φ, Ω, and Λ can be
visualized as compound density, property, or comparative
landscapes for each library on a separate plot. By analyzing
landscapes of the selected pairs of libraries, the similarity
behavior in particular CLS can be investigated and interpreted.
For example, in the case of Φ-defined CLS, by comparing the
highest peaks on the density landscapes of two libraries it is
easy to identify which common chemotypes positively
contributed to the similarity, and which mismatched areas of
the chemical space decreased the Tanimoto value.
Now, when the performance of the proposed encodings and

the similarity behavior of libraries (objects) in corresponding
CLS are analyzed and described, it should be last but not least
noted that this CLS may also be visualized, like any “classical”
chemical space. In perspective, the meta-GTM approach29 is

perfectly suited for the dimensionality reduction and visual-
ization of CLS.
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Summary 

The performance of the proposed in this work library vectorial representations 

was verified using several case studies. First, Φ, Λ, Γ, and Γw were calculated for the 

fully enumerated 88M DEL and its 1M-sized representative subset. Essentially, a library 

vector that can precisely encode the structural composition of the library should show 

high similarity between these two. Either a Tanimoto coefficient or coverage score was 

used to measure the similarity between the full library and its subset.  In the case of Φ 

and Λ, the Tc were 0.99 and 0.98 confirming their ability to encode structural composition 

of the DEL in question. Coverage score based on Γ and Γw was 0.09 and 0.87, 

respectively. It means that the subset covers only 9% of chemotypes from the full library 

but they correspond to 87% of compounds present in the full collection. Hence, the subset 

lacks very rare chemotypes while covering popular ones from the full library. Overall, 

the present case study allowed to estimate the reliability of the proposed vectors and 

fingerprints in meaningfully encoding structural and property information of an entire 

compound collection. 

Once the performance of the library representations was confirmed, 2.5K DELs 

were ranked by their similarity to ChEMBL28. The analysis of density landscapes 

revealed that Φ logically classified the most structurally diverse DELs (according to their 

chemical space span on the landscape) as most similar to ChEMBL. Whereas DELs 

concentrated in a single density peak, covering very focused regions of the chemical 

space, were classified as least similar. An in-depth analysis of the structural overlap 

between the most similar DEL and ChEMBL expectedly showed that the overlapping 

density peaks from both libraries contain similar compounds.  

The Ω library vector enabled the ranking of DELs according to their similarity to 

ChEMBL based on both structural and property similarities. The properties used for the 

analysis included molecular weight (MW), logP, H-bond acceptor and donor counts, 

number of rotatable bonds, and the quantitative estimate of drug-likeness score (QED). 

The comparison by Ω enabled the immediate identification of the most similar and 

dissimilar DELs to ChEMBL based on various property distributions and chemical space 

coverage at once, thereby accelerating the multi-parameter library selection process. The 

proposed library vectors being GTM-based, offered a quick method for DEL comparison 
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based on structure and properties while simultaneously enabling the interpetability 

through detailed chemical space inspection using 2D maps.  
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6. Meta-GTM: a tool for Chemical Library Space visualization 

Introduction 

The space of DELs generated in our previous 

study contains 2.5K libraries. To be able to 

select a specific DEL from such a large 

number of libraries possessing the required 

structural coverage and property profile for a 

drug discovery project in hand, methods 

bypassing simple pairwise library comparison 

can be useful. For example, the full CLS 

depiction in one plot allowing to see the 

relationships between thousands of libraries 

can significantly speed up the preliminary 

library analysis and selection of candidate 

collections.   

 In our previous work, we introduced 

library descriptor vectors that define the 

position of compound collections within the 

multidimensional Chemical Library Space 

(CLS). In this way, the CLS of DELs was 

represented from different perspectives using 

various library encodings. The latter were 

then used to calculate the similarity between 

each DEL and ChEMBL, a database of 

biologically tested molecules. While pairwise 

comparison of libraries using these encodings 

can be effective, it does not provide 

information about the relationships between 

more than two libraries. However, 

understanding the relationships between all 

DELs in the CLS, as well as their relation to 

Glossary 

CLS – Chemical Library Space, which is 
a conceptual space defined by library 
descriptors. The latter define the position 
of the compound library in the CLS 
where it is considered an individual 
object. 
GA – In the context of ML model 
optimization, a Genetic Algorithm is an 
evolutionary optimization technique that 
iteratively evolves a population of 
parameter sets (in the case of GTM - map 
parameters) to find the most optimal 
combination according to the selected 
scoring function through processes such 
as selection, crossover, and mutation.  
Meta-GTM landscapes – These are 
meta-GTMs where each node on the map 
contains one or more compound libraries 
and where nodes can be colored based on 
various library characteristics.  
ROC AUC – In virtual screening, ROC 
AUC is a model performance metric 
measuring its ability to correctly rank 
active compounds higher than inactive 
ones. The Area Under the ROC curve 
(AUC) plots the true positive rate against 
the false positive rate. A ROC AUC 
value of 1 indicates perfect 
discrimination between active and 
inactive compounds, while a value of 0.5 
indicates no discrimination (random 
guessing).  
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ChEMBL, can be useful for reducing the number of libraries at the early stages of 

chemoinformatic analysis. This can save time for more detailed comparisons of only 

potentially useful collections for the task in question.  

Just as GTM can visualize high-dimensional compound space, it can also provide 

a 2D map of the CLS. Hence, in this work, building on the success of meta-GTM in 

representing the compound vendor CLS as introduced by Gaspar et al.50, we applied this 

approach to visualize the CLS formed by 2.5K DELs and ChEMBL. Meta-GTM is a 

GTM applied to reduce the dimensionality of the CLS defined by library descriptors. The 

prefix "meta" signifies that GTM is applied for a second time to visualize the CLS, but 

the principle remains the same. To identify the optimal meta-map parameters for 

visualization of each CLS defined by either Φ, Λ, or Ω a Genetic Algorithm (GA) 

optimization was used. The goal was to create a map that accurately visualizes the space 

of DELs, positioning them according to their similarity to ChEMBL and each other within 

the CLS defined by library vectors. To achieve this, the top 100 DELs most similar to 

ChEMBL in the CLS were selected using the Tanimoto coefficient based on their library 

vectors. The performance of the meta-GTM was evaluated by determining if these top 

100 DELs remained in the 100 closest library list to ChEMBL on the meta-map. This was 

assessed by calculating the Euclidean distance between DEL-ChEMBL pairs on the map. 

Subsequently, the ROC AUC was computed, with the top 100 DELs in the initial CLS 

serving as positives and the remaining DELs as negatives. The best-performing meta-

maps visualizing the CLS of DELs and ChEMBL (defined by either of Φ, Λ, or Ω) were 

associated with ROC AUC values ≥ 0.89. This means that all meta-maps created in this 

study allowed to consistently find the top 100 most similar DELs to ChEMBL from the 

initial CLS with the lowest Euclidean distances with respect to ChEMBL on the meta-

maps. Hence, these meta-maps were declared to preserve the interlibrary neighborhood 

relationships observed in CLS. 
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ABSTRACT: In chemical library analysis, it may be useful to describe libraries as
individual items rather than collections of compounds. This is particularly true for
ultra-large noncherry-pickable compound mixtures, such as DNA-encoded libraries
(DELs). In this sense, the chemical library space (CLS) is useful for the
management of a portfolio of libraries, just like chemical space (CS) helps manage
a portfolio of molecules. Several possible CLSs were previously defined using
vectorial library representations obtained from generative topographic mapping
(GTM). Given the steadily growing number of DEL designs, the CLS becomes
“crowded” and requires analysis tools beyond pairwise library comparison.
Therefore, herein, we investigate the cartography of CLS on meta-(μ)GTMs
“meta” to remind that these are maps of the CLS, itself based on responsibility vectors issued by regular CS GTMs. 2,5 K DELs and
ChEMBL (reference) were projected on the μGTM, producing landscapes of library-specific properties. These describe both
interlibrary similarity and intrinsic library characteristics in the same view, herewith facilitating the selection of the best project-
specific libraries.

1. INTRODUCTION

Historically, pharmaceutical companies have relied on in-house
HTS libraries for hit identification. However, due to advances
in disease characterization and the emergence of new
challenging targets, it is becoming increasingly difficult to
find suitable drug discovery starting points using this screening
paradigm.1 Hence, HTS is now complemented by other
approaches such as DNA-encoded library (DEL) technology.2

Since the latter allows for simple and fast combinatorial
synthesis and screening of an entire library of DNA-encoded
compounds (one DEL can contain up to trillions of
compounds3), it enables the exploration of new areas of the
chemical space in just a single screen, allowing for the
identification of ligands for novel target classes or intractable
target families.4 However, it raises the problem of the
appropriate library selection from a possible enormous
chemical library space (CLS)5 of thousands of DELs.
In our recent study,5 we introduced CLS vectors encoding

its structural or/and property information, derived from a
generative topographic map of the corresponding compound
collections. Herewith, the standard chemoinformatics of
molecules can be seamlessly generalized to libraries. Interli-
brary similarity/overlap scoring is the key to selecting analog
or complementary libraries to a given compound collection.
The next step of this generalization, covered in this work, is the
cartography of CLS, allowing visualization of the similarity
relationships of large numbers of considered chemical libraries,
beyond simple pairwise estimation of their degree of overlap.
The visualization of the high-dimensional CLS obviously

requires dimensionality reduction techniques. The most
popular methods used for the chemical space visualization

are principal component analysis6 (PCA), self-organizing
maps7 (SOM), stochastic proximity embedding8 (SPE), and
t-distributed stochastic neighbor embedding9 (t-SNE). How-
ever, GTM is advantageous due to its fuzzy nature, limiting the
information loss upon dimensionality reduction, big data
compatibility, ability to analyze new data without retraining,
and ability to support (predictive) property landscapes.10−12

Detailed comparison of GTM with some other dimensionality
reduction techniques is reported in our review paper.12

A method that was recently used to specifically visualize the
CLS and analyze the relationships between libraries is the
chemical library network13 (CLN), which is a generalization of
chemical space networks14 (CSNs). In this work, the authors
represented a compound library as a collection of fingerprints
and used an extended similarity index15 to quantify the
similarity between a pair of data sets. The libraries were
represented as nodes of the CLN, whereas the connections
between them were defined by the extended similarity index
value. However, this approach has some limitations: the data
set similarity represented by the extended similarity index
cannot be explicitly chemically interpreted and, as the authors
noted, the information about properties associated with the
library is not implemented in CLN. In addition, the CLN was
created for the CLS composed only of 19 libraries, and
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network-style visualization techniques become notoriously
unreadable when the number of mapped items exceeds 102.
In our previous work,5 CLS defined as a high-dimensional

vectorial space was based on the three types of below-
mentioned GTM-based library descriptor vectors:

(1) Normalized (library size-independent) cumulated re-
sponsibility vector (Φ)implicitly representing the
“chemotype” distribution in the library (molecules of
similar responsibility patterns tend to share common
“chemotypes”).

(2) Library-modulated cumulated responsibility vector
(Λ)weighing the library responsibility vector, by
giving more importance to nodes known to harbor an
external reference library.

(3) Property-modulated cumulated responsibility vector
(Ω)weighing the library responsibility vector by the
(physicochemical, target binding, etc.) property values
mapped on every node.

CLS is a regular vector space that can be visualized by any
dimensionality reduction method. Here, it was done using
GTM due to consistency reasons of using the same method
that was employed for the library vector creation. Since the
CLS descriptors are themselves based on the GTM projections
of compound chemical space, the CLS maps will be further
referred to as meta-GTMs (μGTMs).16 In this work, we aimed
to analyze the CLS populated by 2497 virtual DELs and
ChEMBL using μGTM. ChEMBL was selected as a reference
database due to its richness in molecules with high functional
diversity (displaying a broad range of biological activities), thus
being a good reference for the selection of diverse DEL that
may be further used for primary screening. The main goal was
to develop a μ-map of the CLS that will conveniently position
DELs with respect to ChEMBL and each other according to
their similarity observed in an N-dimensional space defined by
library descriptor vectors. Overall, seven μ-maps were built on
Φ, Λ, and Ω modulated by different properties (MW, log P,
number of H-bond acceptors, number of H-bond donors, and
quantitative estimate of drug-likeness, QED).
The power of this visualization technique was evidenced by

generating various μGTM landscapes providing a clear
overview of the ensemble of considered libraries. To create
such landscapes, μ-maps were colored based on the intrinsic
library features such as the number of chemistry cycles and
reaction types (either coupling or heterocyclization trans-
formation). This allowed us to instantaneously identify and
highlight the nature of the closest DEL neighbors of ChEMBL:
2-building block (BB) or 3BB library, employing a particular
reaction type. Maps can also be colored by the estimated cost
of each DEL synthesis, substantially simplifying the process of

selection of the library for screening for medicinal chemists
considering multiple factors at the same time. This
functionality of μGTMthe ability to color the map by any
library featureis useful to consider extra information when
analyzing the CLS in addition to the already existing structural
and/or property similarity information of the libraries.
Our results indicate that μGTM is a valuable tool for

visualizing the CLS from different perspectives, being the first
tool to date that supports property-sensitive visualization and
allows us to include complementary library-related information
in the analysis. Practically, this tool can facilitate decision-
making for medicinal chemists when there is a problem with
the selection of a single compound collection from a pool of
thousands of libraries by considering not only chemical space
coverage but also extra library parameters such as phys-
icochemical profile, drug-likeness conformity, availability,
facility of synthesis, cost, etc., all by providing comprehensible
visualization of the CLS.

2. DATA

2.1. ChEMBL. The ChEMBL28 database containing
molecules biologically tested against more than 15,000 targets
was selected as a reference library.17 Its standardization was
performed in one of our previous works18 in conformity with
the protocol implemented on the Virtual Screening Web
Server of the Laboratory of Chemoinformatics at the
University of Strasbourg, using the ChemAxon Standardizer.19

It was then filtered according to the rules of DEL-likeness
derived in our previous work.5 Hence, until otherwise stated, in
the text, we always refer to the filtered ChEMBL28 containing
1,605,370 molecules. After standardization and filtering, ISIDA
fragment descriptors of type IA-FF-FC-AP-2-3 (ISIDA frag-
ment sequences of 2 and 3 atoms labeled by their CVFF force
field types and formal charge using all paths) were calculated.20

These descriptors were used since they were earlier employed
for the universal map #1 creation that we use for each library
chemical space visualization in this study.21

2.2. DNA-Encoded Libraries. 2497 virtual DELs used in
this work were generated in our previous study18 using
eDesigner22 for DEL design and enumeration. They were
designed using 79 K building blocks (BBs) from eMolecules
and Enamine suppliers and DEL-compatible reactions encoded
in eDesigner. Only 1M representative subset of compounds
per DEL was enumerated, although the designed DEL sizes
varied from 1M to 6.7B. All 2497 DELs were standardized
according to the previously described procedure that was used
for ChEMBL, and the same descriptors were calculated.

Figure 1. Generative topographic map (GTM) creation with the subsequent coloring of the map by the quantitative distribution of compounds in
the chemical space, giving rise to the density GTM landscape.
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3. METHODS

3.1. Visualization of the CLS on a μGTM. 3.1.1. Gen-
erative Topographic Mapping. GTM is an unsupervised
dimensionality reduction method that consists of transforming
the initial N-dimensional space into a two-dimensional (2D)
latent space by fitting a 2D flexible manifold (rectangular
hypersurface) to the data space (Figure 1, steps 1 and 2). The
GTM algorithm adjusts the degrees of freedom by controlling
the manifold shape in order to maximize its proximity to all
“frame items” used to outline the relevant space zone. The
molecules (data points) can be projected to the optimized
manifold with node-specific probabilities termed responsibil-
ities. Then, the manifold is relaxed back to its planar form to
give a 2D map where the position of each molecule is defined
by a responsibility vector (Figure 1, step 3). The map can be
colored based on the cumulated responsibility to give a density
landscape (Figure 1, step 4) or by some property, giving rise to
property landscapes. The relevance of the latter, as predictors
of properties of newly projected items, may serve as
quantitative estimators of the quality of the built map.
The flexibility of the manifold is tunable and is controlled by

the number of radial basis functions (RBFs); the higher it is,
the more flexible the manifold and thus better its ability to
adapt irregular, nonlinear shapes to describe the data.11 In
addition, the map size, the RBF width factor, and regularization
coefficient complete the set of map-defining hyperparameters.
These must be tuned in order to maximize map quality or
fitness23here, by a genetic algorithm (GA).
The GTM that was used in our previous study5 for

visualization of each library space and further for the
generation of library-representative vectors is the “universal”
GTM #1, which was developed by Casciuc et al.21 This map
was trained to be able to robustly separate active from inactive
compounds over a vast set of diverse biological targets. μGTM
tuning followed a similar procedure, except that the specific
fitness criteria (measuring the preservation on the μGTM of
interlibrary neighborhood relationships in observed CLS)
needed to be introduced. The detailed optimization procedure
is described in Section 3.1.3.
3.1.2. Library Descriptor Vectors. A single compound on

the GTM is described by a responsibility vector, outlining the
fuzzy levels of association of the compound to each map node.
To encode a whole library by a single vector, the sum of
responsibility values over all molecules of the library in each

node of the GTM can be calculated to give a cumulated
responsibility vector (CRV) (see Figure 2), described in more
detail in our previous work.5 Since GTM nodes are
predominantly associated with specific “chemotypes” (com-
mon structural traitsscaffold, pharmacophore, size, etc.), the
CRV allows us to quantify the occurrences of such chemotypes
in a library.5

To obtain a library size-independent library descriptor
vector Φ, CRV values can be normalized5 by the library size N.
To stress the importance of some nodes of the map, such as
those densely populated in the reference compound collection,
CRV can be modulated with respect to the compound
distribution of another reference collection to give library-
modulated CRV (Λ). For a viewpoint integrating compound
property information, the responsibility values may be
weighted by the property values of those molecules.5 This
defines property-modulated CRV (Ω). Formulas used to
calculate Φ, Λ, and Ω values are given in the equations section
of the Supporting Information (SI).

3.1.3. μGTM Creation. The terminology μGTM16 is used to
highlight that the input CLS vectors are themselves originating
from standard chemical space GTM. As already mentioned, a
GA was used to search an optimal parameter set producing a μ-
map that will optimally visualize the CLS. This, of course,
implies a quantitative definition of “optimality”a CLS map
fitness score. Typically, the fitness of regular CS maps, hosting
individual compounds, is related to the propensity of the map
to regroup molecules of similar properties and avoid
colocalization of compounds with different properties:
neighborhood behavior (NB) compliance. This is possible
only based on “training” sets of compounds of experimentally
known properties. In the CLS context, μ-mapped items are
libraries and there are no properties measured to globally
characterize each library as an object. Therefore, μ-map fitness
was redefined in terms of the quality of preservation of
interlibrary distances as calculated in the initial CLS descriptor
space. We aimed to select a μ-map where the top 100 closest
DELs to ChEMBL in the CLS vector space will be
preferentially rendered as the top 100 closest neighbors of
ChEMBL on the map. First, the list of the top 100 nearest
DEL neighbors of ChEMBL is established by computing all
ChEMBL-DEL Tanimoto similarity scores in the correspond-
ing descriptor space (see the equations section in the SI) and
sorting them accordingly (noteany DELs immediately

Figure 2. Scheme describing how a responsibility vector is obtained for a single molecule using GTM (top) and how a CRV is obtained for the
whole library of compounds (bottom).
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beyond the 100th position in the list but having an overlap
score equal to the 100th ranked DEL are also included within
this “top 100” list, for consistency). After the manifold is fitted
according to the current μ-map parameter set (GA
chromosome), ChEMBL and DELs are projected on the
manifold, and latent space coordinates (x, y) are calculated for
each library (as geometric centers of their responsibility
clouds). All DELs are then ranked with respect to their
i n c r e a s i n g l a t e n t s p a c e Eu c l i d e a n d i s t a n c e s

x x y y( ) ( )ChEMBL DEL
2

ChEMBL DEL

2
+ with respect to

ChEMBL. Based on this ranking, a receiver operating
characteristic (ROC) can be plotted considering DELs of the
top 100 CLS neighbor set as the “positives” and all others as
“negatives”. If the top 100 neighbors are consistently found
among those with the lowest Euclidean distances, this
translates into a high ROC area under curve (AUC) value.
Thus, this ROC AUC was used as the μGTM fitness score.
The best μ-maps here were selected from the list of five top-
scoring GA chromosomes all with ROC AUC ≥ 0.89.
The full list of μGTM parameters that were optimized by

GA is given in Table S3 in the SI. The maximal number of
parameter configurations to be explored was set to 5000, and
the maximal number of generations indicating when to stop if
no improvement of so far fittest solution is observed was set to
1000. The GA optimization duration typically lasted 1−5 days
(in all cases, an optimal solution was already found after 1 day;
additional calculations were increasing the scoring function
value only by 0.01 for new chromosomes). Separate GAs were
launched on 16 and 48 CPU machines (Intel Xeon W-2145
and Intel Xeon Silver 4214(R)) since the creation of seven
meta-maps necessitated the launch of seven optimizations.
Since we used different types of library descriptor vectors,

several μGTMs were created. The aim was not to select the
best descriptor type; thus, CLS vectors did not compete
against each other. Instead, one map per vector type was
created. Φ- and Λ-based μ-maps were used to analyze the CLS
from the library structural similarity point of view. On Ω-based
μ-maps, the CLS was analyzed by considering both the
property and structural similarity of libraries. Five properties
were selected for analysis: MW, log P, number of H-bond
donors, number of H-bond acceptors, and quantitative
estimate of drug-likeness (QED).
Like with any GTM, a μGTM landscape can be colored

based on projected properties, starting with basic cumulated
responsibility (some CLS zones being more “crowded” in
terms of resident libraries than others), library “status” (being a
member of top 100 similar libraries relative to some reference
database, for example), or other characteristics (underlying
reaction type, number of building blocks engaged in the library
compounds, etc.). Two alternative ways to display land-
scapes“pixelized” and “continuous”were both employed
in this work. In “pixelized” landscapes, only the state of
individual nodes is shown (the relative populations of classes,
or the average property of the node, rendered as a square,
encodes its color, whereas color intensity/transparency reflects
the overall node population size, i.e., cumulated responsibility).
In “continuous” landscapes, the nodes are not emphasized, and
the landscape is obtained by the interpolation of the properties
of neighboring nodes.

4. RESULTS AND DISCUSSION

4.1. Neighborhood Preservation on the μGTM. Figure
3 shows the μGTM fuzzy class landscapes visualizing the CLS

formed by the pool of 2497 DELs and ChEMBL built on Φ

(left) and Λ (right) library descriptor vectors. Landscapes are
colored by the relative occurrence of the top 100 DELs (class
“red”) among all other DELs (class “black”) residing in each
zone. Red nodes contain DELs inside the “top 100” library list,
black ones contain DELs outside this list, and other nodes
contain both library classes. For clarity, ChEMBL is
represented as a cross on the node closest to the center of
mass of its responsibility distribution.
On the μGTM(Φ), ChEMBL is located quite far from any

DELs, with the top 100 closest libraries (Tc = 0.27−0.38 in Φ-
based CLS) situated on the “shores” of the DEL islands nearest
to ChEMBL. Hence, the top 100 DELs indeed stay closest to
ChEMBL on μGTM(Φ). This is in agreement with the high
fitness score (ROC AUC = 0.93) of this μ-map. On the μGTM
built on Λ, the majority of the closest 100 DELs (Tc = 0.9−

0.91) are located quite near to ChEMBL and some of them
even overlapconsistently with the high ROC AUC = 0.94 of
this μ-map. NB compliance of μ-maps is, in this sense, clearly
achieved.
For a more detailed NB analysis on the μGTM(Φ), the

DELs residing (with responsibility >0.8) in two nodesone of
the closest and one of the farthest to ChEMBL, respectively
were selected. Their chemical spaces were visualized by
mapping on the “universal map” #1 of biorelevant chemical
space21 (see Figure 4). The closest node contains DEL3667,
which is based on widespread coupling reactions: carboxylic
acid/amine condensation, aldehyde reductive amination, and
guanidinylation (see Figure 5). Its full size is 95.6M
compounds, which are based on some highly popular building
block classes (13 formyl carboxylic acids, 9 611 and 765
aliphatic amines). The farthest node comprises 104 DELs,
most of them employing exclusively heterocyclization reac-
tions, among which DEL2266. This DEL is based on 278
haloaryl carboxylic acids, 23 azides with an additional amine
group, and 213 α-bromo ketones, giving rise to 1.4M
compounds (Figure 5).
From their density landscapes in Figure 4, it appears that

DEL3667 and ChEMBL are similarwith most of their

Figure 3. μGTM class landscapes built on Φ (normalized cumulated
responsibility vector) (left) and ChEMBL-modulated Λ (ChEMBL-
modulated cumulated responsibility vector) (right) of the pool of
2497 DELs and ChEMBL. The latter is the reference item (not
included in the pool of mapped libraries) but positioned in terms of
its (x, y) coordinates, i.e., center of its responsibility distribution.
Landscapes are colored by the relative occurrence (see the color
scale) of top 100 DELs (class “red”) among all other DELs (class
“black”) residing in each zone. Map parameters are given in Table S2
of the SI.
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density peaks, representing the most populated zones of the
chemical space, coinciding. This DEL is, expectedly, closer to
ChEMBL in CLS than DEL2266 (see Tanimoto scores in
Table 1), as the μ-maps were specifically selected to respect the
initial CLS neighborhood. This example should not be read as
a “validation” but as an illustration of how this framework of
maps may intuitively convey an understanding of the
relationships between libraries, beyond abstract Tanimoto
scores that cannot be interpreted out of context. The density
landscape of DEL2266 in turn is distinct from ChEMBL, with
their density peaks not overlapping, which indicates their
dissimilarity in terms of the covered chemical space. This is
because of the lack of diverse BBs accessible for only
heterocyclization-based DEL synthesisthe case of
DEL2266. A more detailed look at these DELs is given in
Figure 5 where each chemistry cycle along with the number of
BBs that were used for DEL enumeration is shown.

To verify whether the neighborhood relationships between
DELs are preserved on the μGTM, as an example, DEL1847
(the library with the highest similarity to ChEMBL in Φ-based
CLS) was taken and its Tc similarity relative to all other DELs
was calculated. Nine most similar DELs with Tc ≥ 0.7 were
selected, and they were spotted on the map. As seen from the
μGTM in Figure 6, all of them are located either in the same
node as DEL1847 or in neighboring nodes (colored in green),
as expected. Unsurprisingly, DELs of a similar chemical space
coverage project close to each other on the μ-map. Likewise,
nine least similar DELs to DEL1847 were selected out of the
22 equally dissimilar DELs, with Tc < 0.01. As seen in Figure 6,
these DELs are concentrated in the two nodes (colored in red)
distant from the node with DEL1847.
The density landscapes in Figure 6 show that expectedly, the

nine libraries closest to DEL1847 have highly similar density
landscapes. While the density landscapes of the farthest DELs
completely differ from the landscape of DEL1847, all of them

Figure 4. Top: class μGTM(Φ) landscape colored by the relative occurrence (see the color scale) of top 100 DELs (class “red”) among all other
DELs (class “black”) residing in each zone. The brightness is used to differentiate highly populated nodes from scarcely populated ones. Bottom:
density landscapes of DEL3667, ChEMBL, and DEL2266. The schemes depicting the skeleton of compounds present in each DEL and their full
sizes are given below the corresponding density landscapes. Each map’s parameters are given in Table S2 of the SI.
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cover the same, focused area of the chemical space. However,
minimal Tc (maximal distance in the CLS) does not need to
translate to the maximal Euclidean separation on the map
because the CLS versus latent space distance relationship need
not be linear and not even monotonic. NB compliance simply
implies that no “remote” library in CLS is projected among the
nearest neighbors of a reference library.
4.2. Analysis of μGTM Landscapes. 4.2.1. μGTM Land-

scapes Colored by the Number of Building Blocks
(Chemistry Cycles) Used for DEL Synthesis. DELs significantly
vary with respect to the number of building blocks used for
their synthesis, 2BB libraries being easier and cheaper to
produce as well as being more Lipinski-rule compliant. In this
regard, it is interesting to analyze DELs by the number of BBs
incorporated in the final compounds on the μGTM landscape
and spot, at a glance, how 2BB and 3BB libraries cohabitate (or
not) in CLS, and how they are positioned with respect to a
reference library. The μGTM landscapes are created by
coloring the map by property value (here, #BB) of each item
(here: the DEL, defined by its responsibility vector) on the

map (see Figure 7). Since in the current work, #BB may be
only 2 or 3, these landscapes are nothing but fuzzy two-class
landscapes, where CLS zones occupied by only 2BB or,
respectively, 3BB libraries adopt “extreme” colors and zones
occupied by the two types of DELs translate the relative
population onto the provided color spectrum. Overall, out of
2497 DELs, 97 are 2BB and 2400 are 3BB libraries.
In Figure 7, both μGTM class landscapes show that the

closest libraries to ChEMBL are primarily 3BB DELs, while the
majority of 2BB DELs are more widely distributed. This
observation can be attributed to the incorporation of a third
BB in DEL compounds, which inherently enables access to
greater structural diversity. However, it should be noted that
the number of 2BB libraries is almost 25 times lower than that
of 3BB DELs. Therefore, it cannot be claimed that covering
the same chemical space achievable by 3BB libraries using 2BB
DELs is fundamentally impossible (after all, any BB may itself
be envisaged as a coupling product of two precursor BBs
classifying DELs by the BB number only makes sense within
the rather arbitrary context of a given BB pool). The class
landscape also shows that there are very few 2BB-specific
zones, whereas there are many zones that are 3BB-specific (the
number of completely red zones is limited, whereas there is
plenty of fully black ones). In other words, there is no specific
diversity “niche” targetable only by generated here 2BB DELs,
but there is plenty of chemical space that requires 3BB
strategieseverywhere, not only around ChEMBL. It is

Figure 5. Examples of DELs enumerated by either only coupling reactions (DEL3667 located closest to ChEMBL on μGTM) or heterocyclizations
(DEL2266 located farthest to ChEMBL on μGTM) using commercially available building blocks. For simplicity reasons, DNA-encoding steps are
omitted. Additional reagents and reaction names are not given; only the building blocks and reaction types are shown according to the information
present in the SI of eDesigner.22

Table 1. Tanimoto Values Calculated Based on Either Φ or
Λ for DEL3667 and DEL2266 with Respect to ChEMBL

DEL id Tc (Φ) Tc (Λ)

DEL3667 0.33 0.91

DEL2266 0.003 0.81
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important to note that these observations are limited to the
generated space of 2497 DELs in this work.
Altogether, based on the BB landscapes here, the number of

BBs is not that distinctive for the chemical space covered by a
DEL, unlike the reactions behind them. There are 2BB libraries
having higher similarity to ChEMBL than 3BB DELs due to
the use of BB-class abundant coupling reactions, e.g., DEL222
based on carboxylic acid/amine condensation and Ullmann-
type N-aryl coupling with Tc = 0.25 in Φ-based CLS. There are
also plenty of 3BB DELs displaying limited diversity and thus
lower similarity to ChEMBL, for example, DEL3703 with
Tc(Φ) = 0.01 based purely on heterocyclization reactions:
oxadiazole, triazole, and aminothiazole syntheses. The differ-
ence in the ChEMBL coverage by these two DELs can be
clearly seen by comparing their density landscapes to ChEMBL
in Figure S1 of the SI.
4.2.2. μGTM Colored Based on the Reaction Types Used

for DEL Synthesis. The μGTMs(Φ) (Figure 8) were colored
according to the relative proportion of node-resident DELs

based on a chosen reaction type24 (coupling and hetero-
cyclization, respectively) in their chemistry cycles. These are
again fuzzy 2-class landscapes: DELs based on the given
reaction type versus all others. The number of libraries
corresponding to each class is given in the table in Figure 8.
The complete list of reactions included in each type as
encoded in the eDesigner tool used for DEL design and
enumeration is given in Table S1 of the SI. For more
information on the used reactions, see the SI of the
corresponding paper.22

The landscape from Figure 8a is dominated by red since
1190 libraries out of 2497 DELs do not employ any
heterocyclizations. This part of the generated DEL space can
be attained using only coupling reactions, allowing for higher
diversity due to the abundance of the available BBs.25 In the
case of heterocyclization-based DELs, the compounds are
limited to a small number of scaffolds due to the introduction
of the same heterocycle to final molecules and the lower
number of BBs available for this type of transformation. Each
heterocyclization in a way has an intrinsic scaffold bias that
typically leads to a lower scaffold diversity in the resulting
compounds than in the case of coupling reactions.
From the μGTMs in Figure 8 from (b) to (d), it appears

that DELs forming one heterocycle upon synthesis are,
however, exploring novel patterns of chemical space
occupancy, represented by the red and intermediate-colored
landscape areas, which are not reachable with simpler, pure
coupling-based DELs. However, the closure of two or three
heterocycles no longer pushes the respective DELs into the
unchartered μ-map territorythey tend to focus toward the
center of the mono-heterocyclization DEL space. Purely
heterocyclization-based 3BB DELs on the landscape (d) in
Figure 8 are all clustered in a small area of the CLS, showing
their bias toward a particular chemical space region.

Figure 6. Middle top: μGTM(Φ) class landscape of 2497 DELs and ChEMBL. Zones of the map are colored based on the presence of DELs of a
particular class in them: either in the nine closest library list (green) or the farthest library list (red) relative to DEL1847 or in the remaining library
list (dark-gray). Middle bottom: density landscape of DEL1847. Left: density landscapes of the nine closest DELs to DEL1847 lying predominantly
(with the probability to reside in the node >0.9) in the nodes of μGTM(Φ) colored in green. Right: density landscapes of nine farthest DELs to
DEL1847 lying predominantly (with the probability to reside in the node >0.9) in the nodes μGTM(Φ) colored in red. For coherency reasons, all
density landscapes are rendered using the ChEMBL density scale.

Figure 7. μGTM class landscape built either on Φ (normalized
cumulated responsibility vector) or ChEMBL-modulated Λ

(ChEMBL-modulated cumulated responsibility vector) of 2497
DELs, monitoring 2BB versus 3BB DELs. Map parameters are
given in Table S2 of the SI. Out of 2497 DELs, 97 of them are 2BB
and 2400 are 3BB libraries.
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Figure 8. μGTM(Φ) class landscapes of 2497 DELs and ChEMBL and table with the number of libraries corresponding to each class. The maps
are colored based on the ratio of DELs in the node having a particular reaction type in the chemistry cycles for their synthesis. Map parameters are
given in Table S2 of the SI.

Figure 9. Class μGTM landscapes built on (a) MW-Ω, (b) log P-Ω, (c) H-bond donor counts-Ω, (d) H-bond acceptor counts-Ω, and (e)
quantitative estimate of drug-likeness-Ω. Nodes are colored based on the relative fraction of the top 100 DELs among the residents. Map
parameters are given in Table S2 of the SI.
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Figure 10. Top: μGTM(MW-Ω) class landscape where one of the closest and one of the farthest zones relative to ChEMBL is framed in black
rectangles; ChEMBL is depicted as a cross. Bottom: MW landscapes of the DELs (DEL3589 and DEL1427) lying in the closest or farthest nodes,
respectively. Each map’s parameters are given in Table S2 of the SI.

Figure 11. Class μGTM landscapes built on (1) Φ, (2) MW-Ω, and (3) QED-Ω. Nodes are colored based on the relative fraction of the top 100
DELs among the residents. The nodes where DEL1847, DEL3589, and DEL2266 reside (with the responsibility of ≥0.7) are marked by crosses.
ChEMBL is positioned in terms of its (x, y) coordinates, i.e., center of its responsibility distribution, and shown as a cross as well. The table below
contains the rank and Tc similarity values in the corresponding CLS, defined by either Φ, MW-Ω, or QED-Ω. The corresponding density, MW, and
QED GTM landscapes are given below. For all landscapes, the same color scale corresponding to the density or property distribution of ChEMBL
was used.
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In Figure 8e,f, the two μGTMs are class-colored by the
underlying reaction: aldehyde reductive amination (versus all
other reactions) and condensation of carboxylic acids with
amines (idem). On both of these maps, a quite broad area of
the CLS is covered by DELs based on these reactionsthe
majority of the map nodes are colored in either red (resident
DELs are all products of a given reaction) or intermediate
colors (at least some resident DELs are using that reaction)
but rarely in black. In other words, the state-of-art coverage of
the CLS as achieved by the herein-studied 2497 DELs is
impossible without involving reductive amination or amide
formation as at least one synthetic step. DELs employing these
reactions are also located close to ChEMBL in the CLS as can
be seen from the mapsred zones are located near ChEMBL.
This result is not surprising since for aldehyde reductive
amination and condensation of carboxylic acids with amines,
which are the most common coupling reactions employed in
the DEL synthesis, a high number of structurally diverse
building blocks exist.18,24

4.3. Property μGTMs. μGTMs were created for 2497
DELs and ChEMBL using MW, log P, number of H-bond
acceptors, number of H-bond donors, and QED score-
modulated Ω vectors as library descriptors (see Figure 9). As
before, the produced μGTMs were represented as class
landscapes where the first class (red) corresponds to the 100
DELs closest to ChEMBL in CLS (according to the Tanimoto
similarity coefficient computed with corresponding Ω),
whereas the second class (black) represents the remaining
DELs. All maps in Figure 9 show that the ChEMBL is
surrounded by or even overlaps with some of the 100 closest
DELs, as expected.
To have a closer look at the property space spanned by the

DELs positioned in the closest and farthest nodes of the
property μGTM landscape relative to ChEMBL, their GTM
property landscapes were analyzed. A μGTM built on MW-
modulated Ω was taken as an example for such analysis (see
Figure 10). One of the nearest libraries to ChEMBL on
μGTM(MW-Ω) is DEL3589, also nearest in CLS, with
Tc(MW-Ω) = 0.8. It is an 80M DEL enumerated using two
aldehyde reductive aminations and Ullmann-type N-aryl
coupling of arylhalides and amines. DEL1427, one of the
remotest DELs relative to ChEMBL on μGTM(MW-Ω) and
accordingly in CLS, with Tc(MW-Ω) = 0.3, is a 1.6M library
based on guanidinylation of amines and two heterocycliza-
tionstriazole and imidazole syntheses.
MW-colored GTM landscapes of these two DELs show the

drastic difference between them in terms of property and
chemical space coverage as well as in terms of similarity to
ChEMBL. The landscape of DEL3589 covers similar chemical
space as ChEMBL, and many zones on the two maps are
colored likewise. The former means that DEL3589 reproduces
well the structural distribution of ChEMBL and the latter
that the mean property values in the corresponding nodes
match, confirming the similarity of this DEL to ChEMBL in
terms of MW coverage. By contrast, the DEL1427 MW
landscape does not correspond to the coloring of the ChEMBL
landscape. Having DEL3589 and DEL1427 at the “antipodes”
of the μGTM(MW-Ω) in Figure 10 makes perfect sense and
can be easily grasped from GTM landscapes.
In order to analyze whether DEL positions relative to

ChEMBL are different from one property CLS to another, the
two most ChEMBL-similar DEL1847 and DEL3589 and the
most dissimilar DEL2266 in Φ-based CLS were monitored on

μGTM(MW-Ω) and μGTM(QED-Ω) (see Figure 11).
Overall, it is visible that the neighborhood of ChEMBL and
the DELs in question is affected by the property used for the
μGTM creation. For example, the closest DEL1847 is not
consistently in the top 100 neighbor liston μGTM(Φ) and
μGTM(QED-Ω), it is positioned in the top 100 red region of
the μGTMs, but not on μGTM(MW-Ω)it is ranked 222nd
and thus positioned in the mixed zone of the corresponding μ-
map. Coherently, on the density and property landscapes in
Figure 11, DEL1847 has a QED score and quantitative
compound distributions similar to ChEMBL. DEL3589 in its
turn falls into the top 100 in the MW-Ω-defined CLS, which is
visible from the μGTM(MW-Ω) as well as from its MW
landscapeit is positioned in the red node on the μ-map and
its MW distribution coincides better with ChEMBL than one
of DEL1847, which is reflected by the higher coloration match
in many zones of the MW landscapes. Naturally, both
DEL1847 and DEL3589 are always a better match for
ChEMBL than DEL2266, no matter what property the
emphasis is set on. Both these libraries are roughly equal in
terms of their proficiency to mimic the chemical space cover
provided by ChEMBL. However, DEL3589 is a better
“ChEMBL substitute” specifically in terms of MW distribution,
while DEL1847 is more similar with respect to the QED
property. Note that any underlying property could be used

such as activity landscapes generated from experimentally
validated structure−activity sets, in which case the ChEMBL-
likeness of DELs can be specifically tailored with respect to
chemical space zones populated by the known actives.

5. CONCLUSIONS

In this study, we propose chemical library space (CLS)
visualization, using μGTM. In the context of a large pool of
2497 virtual DELs and ChEMBL database (used as reference),
CLS visualization is an intuitive way to gain a global oversight
of this portfolio of diverse libraries, unmatched by simple
pairwise DEL−DEL or DEL−ChEMBL overlap scoring. This
oversight may furthermore be extended to include any other
chemical library, combinatorial or not, to be located on existing
μ-maps.
Several μGTMs were created, using evolutionary map

parameter optimization aimed at preserving interlibrary
distances in original high-dimensional CLS on the map.
They provided a senseful positioning of libraries relative to the
reference collection and each other on the μ-map, matching
their similarity observed in the initial CLS defined by either Φ,
Λ, or Ω. For the latter, five property μGTMs were created

using MW, log P, number of H-bond acceptors, number of H-
bond donors, and QED-modulated Ω as library descriptors.

μGTMs support landscapes of library characteristics. These
are typically class landscapes displaying the relative population
density of libraries of a particular “class” (having a given
feature) versus all of the other libraries. Herein, exemplified
DEL classifications concern the number of chemistry cycles
(2BB versus 3BB DELs), reaction types (coupling or
heterocyclization reactions)but any other deemed relevant
by the practitioner (e.g., high cost versus low cost) are
straightforward to implement. μGTM colored by the number
of reaction cycles showed that there are many CLS zones that
are 3BB DEL-specific, accentuating the necessity to use 3BB
designs to cover vaster regions of CLS studied herein. The use
of a reaction-type-colored μGTM revealed that although
including a few classical coupling reactions in DEL synthesis
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can cover a substantial portion of the produced DEL space, the
incorporation of heterocyclization reactions is necessary to
explore the otherwise uncharted territories of the CLS. This
emphasizes the necessity for the development of BBs for
heterocyclization reactions and the expansion of the functional
group transformation reaction toolkit that will allow us to
access new BB classes, probably more populated, for this type
of transformation.
The proposed method of CLS analysis and visualization

using μGTM represents an efficient and useful tool for (1)
providing a senseful bird’s eye view of the whole CLS and
simplifying the analysis of interlibrary relationships; (2)
analysis of the CLS from different perspectives, positioning
libraries by either chemical space similarity or/and property
distribution similarity; and (3) the selection of a compound
library covering the desired chemical and property space out of
thousands of possible ones, given the appropriate reference
database. In this regard, it can be beneficial to add this method
to the toolkit of medicinal chemists that deal with the selection
of a screening collection to verify beforehand if the designed
library covers the desired chemical and property space or
identify closely lying analogous libraries with similar properties
on μGTM.
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Summary 

In this study, the meta-GTM approach was used to visualize the CLS formed by a large 

pool of 2.5K DELs and ChEMBL to gain insights about their interlibrary similarity 

relationships. The intention was to speed up the process of candidate library selection, for 

example, here the search for an optimal DEL for primary screening was carried out. This 

was achieved by gaining a global oversight of the CLS of DELs with respect to ChEMBL 

using meta-GTM.  

 Seven meta-GTMs were created to visualize seven CLSs defined either by Φ, Λ, 

or various Ω vectors. The latter included MW, logP, number of H-bond acceptors, number 

of H-bond donors, and QED-modulated Ω. All meta-GTMs provided a meaningful 

positioning of DELs with respect to ChEMBL and each other, proving their high 

performance in visualizing the CLS. The positioning of libraries on different meta-GTMs 

logically varied according to the similarity observed in a particular library descriptor 

space – they were positioned either by structural or property interlibrary similarity. 

However, the top 100 DELs relative to ChEMBL from the initial CLS always stayed close 

to it on all the maps, proving their neighborhood behavior compliance and thus usefulness 

for a quick task-specific library selection based on the similarity to a suitable reference 

database. In addition, meta-GTM landscapes colored by various library characteristics 

were created allowing to analyze the CLS from different perspectives. Landscapes 

colored by the number of chemistry cycles (2BB versus 3BB DELs) and reaction types 

(coupling or heterocyclization reactions) were created but any other relevant property 

(e.g. the estimated library production cost, library size, etc.) can be straightforwardly 

implemented. 

 Meta-GTMs colored by reaction type used in DEL synthesis allowed to gain new 

insights about the generated DEL space showcasing their value for multi-library analysis. 

The majority of the CLS was found to be covered by coupling-based DELs. The latter 

included almost always more than one of the commonly employed reactions like 

condensation of carboxylic acid with amine or aldehyde reductive amination. This led to 

the conclusion that the largest part of the space of 2.5K DELs is purely accessible through 

popular couplings in DEL chemistry. Nevertheless, a completely new region of DEL CLS 
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was only reachable with the use of at least one heterocyclization reaction highlighting the 

importance of this type of transformation to advance to new chemical space zones. 

 Overall, the proposed method of CLS visualization using GA-optimized meta-

GTM proved to be useful for: 

1) Providing a general view of the whole CLS represented by thousands of libraries. 

2) Fast selection of the candidate library for a specific drug discovery task, allowing 

identification of the most promising collection out of thousands of possible ones. 

3) Muti-perspective view on the CLS by generating meta-GTM landscapes colored 

according to various library characteristics. 

Thus, meta-GTM represents a valuable tool for medicinal chemists working with 

multiple libraries simultaneously, aiming to select a few based on project-specific criteria. 

This methodology applies to all libraries, not just DELs. For instance, it can be used to 

diversify in-house compound collections by comparing them to commercial compound 

suppliers on the meta-GTM. Another application is identifying a library that is cheaper 

and easier to synthesize while maintaining the desired structural coverage. 
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7. BB reactivity prediction and hit prioritization: BRD4 

focused DEL study 

Introduction 

BRD4 is a member of the 

Bromodomain and Extraterminal (BET) 

protein family, and plays a critical role in the 

development of many cancer types, and is 

associated with tumor metastasis75,76. BRD4 

recognizes and binds superenhancers that 

lead to the substantial over-expression of 

oncogenes causing cancer cell proliferation, 

survival, tumor initiation and cancer 

progression77. Hence, BRD4 has attracted a 

lot of interest as a target for drug 

development. In the past decade, multiple 

small molecule BRD4 inhibitors and 

degraders were developed that showed 

promising anti-cancer effects in pre-clinical 

models77. However, the in-vivo studies on 

newer BET inhibitors78–90 often report 

response data without mentioning associated 

drug concentrations. This limits the full 

comprehension of the 

pharmacokinetic/pharmacodynamic (PKPD) 

profile of these compounds, thus 

compromising their promise in human 

models25. Moreover, low solubility after oral 

dosing decreasing the absorption91, and short 

half-lives have been reported for some of the 

inhibitors83,92,93. Hence, there are still 

research studies focusing on the 

Glossary 

Competitor compound – Is a known 
ligand for a biological target, used in the 
competitive affinity-based screening4. It 
is added at saturated levels to assess its 
effect on the enrichment of hits from an 
initial DEL screen. This method is 
employed when the initial screening 
identifies too many hits. It helps 
determine if the hits bind to the expected 
protein binding site and their 
competitiveness relative to the known 
ligand, aiding in the prioritization of hits 
for further synthesis. 
PKPD profile - Pharmacokinetic 
pharmacodynamic profile. PK analysis 
allows to understand how the body 
affects a drug, whereas PD analysis 
reveals how a drug affects the body74. 
The pharmacokinetics of a compound is 
determined by its absorption, 
distribution, metabolism, and excretion 
in the body. Pharmacodynamics 
measures the compound’s ability to 
interact with the expected target and 
exhibit a biological effect74. 
BA – Balanced Accuracy, used as a 
performance metric for classification 
ML models, in particular when there is a 
class imbalance in the dataset.  BA is the 
average of the recall values for both the 
positive and negative classes. 	 Recall 
measures the proportion of actual 
positive or negative samples that are 
correctly identified by the model. 
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development of novel BET inhibitors with high potency and a more optimal PKPD 

profile25. 

DNA-Encoded Library (DEL) technology progress made it an accepted 

alternative screening platform for early drug discovery projets94. DELs allow to screen 

for affinity millions of molecules all at once, suggesting a more efficient and faster 

exploration of the chemical space. There are many success stories associated with DEL 

technology application – a few compounds discovered by DEL screening entered clinical 

trials according to Gironda-Martínez et al35.  

In a 2019 study by Prinjha25 and coworkers from GSK, a 117M-sized DEL was 

screened against BRD4, leading to the discovery of the active and orally available 3,5-

dimethylphenol benzimidazole series. Inspired by this work, the Novalix drug 

development company produced its own in-house DEL based on the findings from the 

work of GSK scientists. At Novalix, they synthesized a three-BB DEL using 320 

protected diamines (BB1), 334 aldehydes (BB2), and 453 carboxylic acids (BB3) via 

split-and-pool synthesis. These are the BBs that were validated to have sufficient 

reactivity to be used in this DEL production. The nominal size of this DEL is 18 300 960 

compounds, however, only 14.5M compounds were successfully synthesized. This was 

followed by screening on BRD4. After washing out non-binders and elution of the bound 

compounds from the protein, the DNA codes of the binders were amplified and 

sequenced. To identify hits, the enrichment factor (EF) was calculated, it represents the 

increase in frequency of specific DNA sequences (and their corresponding small 

molecules) after affinity selection compared to their frequency before affinity screening 

when no protein was present. Typically, this metric is specific to a pharmaceutical 

company, but Novalix did not disclose the exact enrichment calculation procedure. Based 

on the custom EF cut-off of 600, Novalix scientists selected the best binding 70 230 

compounds and therefrom selected 102 hits. However, the screening of these 102 hits 

against the target protein in the presence of the BRD4 competitor compound (having 

pIC50 of 6.9 with a concentration in the mix of 100 µM) with the aim of tuning the hit 

recovery resulted in 0 out of 102 hits bound.  

The aforementioned experimental results raise the following questions concerning: 
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1) Building Block (BB) reactivity: How to accurately select reactive BBs without 

time-consuming and expensive steps of reagent validation?  

2) The activity of hits: Do 102 hits or 70K selected binders possess sufficient 

bioactivity against BRD4? Are these hits structurally similar to the existing BRD4 

binders? 

To answer the first question, we trained 1530 SVM models on experimentally 

determined BB reactivity labels from Novalix to classify BBs according to their 

reactivity. For the second question, we trained a BRD4 bioactivity SVR model on public 

data from ChEMBL3295 and predicted the activity (pIC50) of Novalix hits. The best 

predictive models with good performance on the ChEMBL32 test set were combined in 

a consensus model that was used for pIC50 prediction for 102 hits. The overlap of Novalix 

102 hits with the BRD4 inhibitors from ChEMBL32 in the chemical space was analyzed 

using Generative Topographic Mapping (GTM) – a robust chemical space visualization 

method9,15,47,67,68. Overall, this work shows new chemoinformatic ways of pre- and post-

processing of focused DEL data that can be cost-effective, time-saving, and insightful for 

medicinal chemists working on DEL production and screening.  
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Data 

BB reactivity 

Acquisition of building blocks (BBs) for DEL synthesis is done through careful selection 

of those with appropriate reactivity. This is usually performed experimentally by 

validation of a BB in an on-DNA test reaction between the BB (reagent) and an 

appropriately functionalized DNA conjugate. BB validation is an essential part of DEL 

design that provides structure-reactivity relationships (SRR) that can further guide the 

purchase of new reagents4.  

At Novalix, for focused BRD4 DEL synthesis 320 protected diamine (BB1), 334 

aldehydes (BB2), and 453 carboxylic acids (BB3) were used. These candidate BBs were 

assigned labels (valid/moderate/invalid) based on the experimentally determined yield of 

the reaction. For BB1 the yield was measured for the coupling reaction with the 

functionalized DNA conjugate (see Figure 16). In the case of BB2, the yield of the 

reaction of different BB2 reagents with a template molecule (a reference DNA-BB1 

conjugate) was measured. Likewise, for BB3 the yield was measured with respect to a 

common reference DNA-BB1-BB2 template.  

 

Figure 16. Description of the data given by Novalix. The labels valid/moderate/invalid 

were given for template+BB pairs, not pairs of individual building blocks. For clarity, 

here, the compound headpiece and the linker are not depicted. 

A building block was considered “valid” when there was more than 70% transformation 

and thus used for the DEL synthesis. A BB was considered “moderate” when the 
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validation reaction yield was 50-70% whereas a BB with a yield below 50% was 

considered “invalid”. Moderate and invalid BBs were not used in the final DEL synthesis. 

The number of labeled BBs is given in Table 2. 

 

Table 2. The number of building blocks classified by Novalix scientists as 

valid/moderate/invalid based on the reaction yield. 

 BB1 BB2 BB3 

Total 320 334 453 

Valid 179 288 355 

Invalid 102 39 98 

Moderate 39 7 0 

BB structures were provided by Novalix, and their standardization was performed 

according to the procedure implemented on the Virtual Screening Web Server of the 

Laboratory of Chemoinformatics at the University of Strasbourg. This process includes 

dearomatization and final aromatization (heterocycles like pyridone are not aromatized), 

dealkalization, conversion to canonical SMILES, removal of salts and mixtures, 

neutralization of all species, except nitrogen (IV), generation of the major tautomer 

according to ChemAxon. For the standardized compounds, different ISIDA fragment 

descriptors were calculated. Descriptor types that resulted in the best models are given in 

Table 6, Table 7, and Table 8. 

BRD4 focused DEL compounds 

Using only valid BBs, a 14.5M BRD4-focused DEL was successfully synthesized in three 

steps of split-and-pool synthesis: 
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IIAB—1-3 scaled Atom-centred fragments with atom symbol and bond 
inclusion; topological distance 1-3; scaled 

IAB—FC-AP-2-6 

orig 

Sequences with atom symbol and bond inclusion; topological 
distance 2-6; FormalCharge representation; all paths; original 

BRD4 inhibitors from ChEMBL32 

The efficacy of the majority of molecules from ChEMBL32 was tested using half-

maximal inhibitory concentration (IC50), therefore pIC50 was selected as a property to 

train SVR models on. After standardization, the ChEMBL dataset contained 2831 unique 

compounds with pIC50(BRD4) in the range of 2.16-9.4. For them, different ISIDA 

fragment descriptors were calculated but for the sake of clarity, only those descriptor 

types that resulted in performant SVR models for pIC50 prediction are given in Table 3. 

To perform a GTM-based comparison of BRD4 inhibitors from ChEMBL32 with 

102 hit compounds identified by Novalix, here seven UGTMs47 were used. For both 

ChEMBL32 and 102 Novalix hits seven types of ISIDA fragment count descriptors 

corresponding to each map were thus calculated. ISIDA descriptor types used for each 

UGTM training as presented in the original article of Casciuc et al.47 are given in Table 

4.  

Table 4. Descriptor types used for UGTM training along with their meaning and 

dimensionality of the descriptor spaces. 

Map 

No 

Descriptor type Meaning Descriptor 

space 

dimensionality 

1 IA-FF-FC-AP-2-3 Sequences of atoms with a length of 
2–3 atoms labeled by force field 
types and formal charge status using 
all paths. 

5161 

2 IIRAB-FF-1-2 Atom-centered fragments of 
restricted atom and bonds of 1–2 
atoms labeled by force field types 

3172 
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3 IAB-PH-FC-AP-2-4 Sequences of atoms and bonds of a 
length 2–4 atoms labeled by 
pharmacophoric atom types and 
formal charges using all paths 

4245 

4 IA-2-7 Sequences of 2–7 atoms. 6520 

5 IAB-FC-AP-FC-2-4 Sequences of atoms and bonds of 2–
4 atoms labeled by formal charge 
using all paths 

3437 

6 IA-FF-P-2-6 Sequences of atom pairs with a 
length of 2–6 intercalated bonds 
labeled by Force Field type 

2901 

7 III-PH-3-6 Atom triplets labeled by 
pharmacophoric atom types with 
topological distance from 3 to 6 
bonds 

4846 

 

Results and discussion 

Prediction of reactivity label of BBs 

Three SVM models were trained on the data for BB1, BB2, and BB3 provided by Novalix 

and tested in a 5-fold cross-validation (CV). The data was split into 80% training and 20% 

validation sets, with the exact number of data points detailed in Table 5. For SVM 

parameter optimization a hill climbing algorithm was used and the objective function was 

Balanced Accuracy (BA). Both linear and RBF kernel SVMs were used in multiple model 

creation using different descriptor sets. The types of descriptors that resulted in successful 

models are listed in Table 6, Table 7, and Table 8. Additional fragmentation options 

from these tables include DoAllWays (DAW), which searches for all paths connecting 

two atoms if fragments are sequences, and AtomPairs (AP), which removes all 

constitutional details of a sequence and only provides the number of constitutive atoms. 

As a result, 1530 models per each BB were trained, and from these, a few with the highest 

BA on the validation set were selected. 
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Table 5. Description of the dataset used for training and validation of SVM models. Only 

valid and invalid data were included in the dataset.  

Dataset # of data points  # of “valid” # of “invalid” 

BB1 281 179 102 

BB2 327 288 39 

BB3 453 355 98 

BB1 reactivity was easiest to predict (BA=0.9-0.95), followed by (BA=0.85-0.89) 

for BB2 and (BA=0.7-0.78) for BB3 as can be seen from the model results in Table 6, 

Table 7, and Table 8. This can be due to many factors. Apparently, BB1 reactivity seems 

to exclusively depend on the amine nucleophilicity (primary amines are less prone to 

steric hindrance), so it was easy to learn. Templates already incorporating a reference 

BB1 or a BB1-BB2 moiety are intrinsically more complex and prone to side reactions 

than the naked DNA headpiece. It should also be noted that the template-BB validation 

reaction cannot give the best representation of the yield that will be observed in the real 

DEL mixture when different BB partners react.  

The best models based on BA values (from Table 6, Table 7, and Table 8) were 

combined in three consensus models for each BB set. Together, they will facilitate the 

future acquisition of BBs for focused BRD4 DEL synthesis, provided that the fragment-

based applicability domain condition for new BBs is verified.  This will enable the 

selection of BBs that are likely to result in high reaction yields, thereby minimizing the 

purchase and experimental testing of unnecessary reagents. Validation experiments will 

still be necessary but only for BBs predicted to be reactive, decreasing the number of 

actual experiments to carry out. 

Table 6. Description of SVM models for BB1 reactivity prediction selected to be 

combined in a consensus model. The description field contains the descriptor type and 

model information. 

No. Model Description BA 

1 t10l2u5k2-3 Triplets; min length 2; max length 5; RBF kernel SVM;  0.953 
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2 t10l3u5k0-3 Triplets; min length 3; max length 5; linear kernel SVM;  0.927 

3 t10l2u4k0-3 Triplets; min length 2; max length 4; linear kernel SVM;  0.919 

4 t1l2u5k0-3 Sequences of atoms only; min length 2; max length 5; linear 

kernel SVM;  

0.915 

5 t4l2u3k0-3 Atom centered fragments based on sequences of atoms; min 

length 2; max length 3; linear kernel SVM;  

0.915 

6 t9l2u4APk0-

3 

Atom centered fragments based on sequences of atoms and 

bonds of fixed length; min length 2; max 4; linear kernel 

SVM;  

0.911 

7 t9l3u4APk0-

3 

Atom centered fragments based on sequences of atoms and 

bonds of fixed length; min length 3; max 4; linear kernel 

SVM;  

0.911 

8 t9l2u4APk0-

2 

Atom centered fragments based on sequences of atoms and 

bonds of fixed length; min length 2; max 4; linear kernel 

SVM;  

0.91 

9 t9l2u5APk2-

2 

Atom centered fragments based on sequences of atoms and 

bonds of fixed length; min length 2; max 5; RBF kernel SVM;  

0.91 

10 t3l3u4k0-3 Sequences of atoms and bonds; min length 3; max length 4; 

linear kernel SVM;  

0.903 

11 t8l2u3k0-3 Atom centered fragments based on sequences of atoms of 

fixed length; min length 2; max length 3; linear kernel SVM;  

0.903 

12 t10l2u5k0-3 Triplets; min length 2; max length 5; linear kernel SVM;  0.903 

13 t9l3u4APk0-

2 

Atom centered fragments based on sequences of atoms and 

bonds of fixed length; min length 3; max 4; linear kernel 

SVM;  

0.902 

14 t9l2u3APk0-

3 

Atom centered fragments based on sequences of atoms and 

bonds of fixed length; min length 2; max 3; linear kernel 

SVM;  

0.9 

15 t9l2u5APk0-

3 

Atom centered fragments based on sequences of atoms and 

bonds of fixed length; min length 2; max 5; linear kernel 

SVM;  

0.9  
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Table 7. Description of SVM models for BB2 reactivity prediction selected to be 

combined in a consensus model. The description field contains the descriptor type and 

model information. 

No. Model Description BA 

1 t8l2u5k0-5 Atom centered fragments based on sequences of bonds 

of fixed length; min length 2; max length 5; linear kernel 

SVM;  

0.892 

2 t4l3u4APk0-

5 

Atom centered fragments based on sequences of atoms; 

min length 3; max length 4; AtomPairs; linear kernel 

SVM;  

0.883 

3 t3l3u4k0-5 Sequences of atoms and bonds; min length 3; max length 

4; linear kernel SVM;  

0.883 

4 t8l3u5k0-5 Atom centered fragments based on sequences of bonds 

of fixed length; min length 3; max length 5; linear kernel 

SVM;  

0.883 

5 t5l3u4k0-5 Atom centered fragments based on sequences of bonds; 

min length 3; max length 4; linear kernel SVM;  

0.867 

6 t5l4u4APk0-

5 

Atom centered fragments based on sequences of bonds; 

min length 4; max length 4; AtomPairs; linear kernel 

SVM;  

0.858 

7 t5l4u4k0-5 Atom centered fragments based on sequences of bonds; 

min length 4; max length 4; linear kernel SVM;  

0.858 

8 t7l4u4APk0-

5 

Atom centered fragments based on sequences of atoms 

of fixed length; min length 4; max length 4; AtomPairs; 

linear kernel SVM;  

0.858 

9 t8l4u4k0-5 Atom centered fragments based on sequences of bonds 

of fixed length; min length 4; max length 4; linear kernel 

SVM;  

0.858 
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Table 8. Description of SVM models for BB3 reactivity prediction selected to be 

combined in a consensus model. The description field contains the descriptor type and 

model information. 

No. Model Description BA 

1 t7l2u5APk0-3 Atom centered fragments based on sequences of atoms 

of fixed length; min length 2; max length 5; linear 

kernel SVM;  

0.782 

2 t7l2u4APk0-3 Atom centered fragments based on sequences of atoms 

of fixed length; min length 2; max length 4; linear 

kernel SVM;  

0.764 

3 t3l3u5k0-3 Sequences of atoms and bonds; min length 3; max 

length 5; linear kernel SVM;  

0.736 

4 t3l2u4k0-3 Sequences of atoms and bonds; min length 2; max 

length 4; linear kernel SVM;  

0.721 

5 t8l2u5k0-3 Atom centered fragments based on sequences of bonds 

of fixed length; min length 2; max length 5; linear 

kernel SVM;  

0.721 

6 t3l2u5k0-3 Sequences of atoms and bonds; min length 2; max 

length 5; linear kernel SVM;  

0.714 

7 t3l4u4k0-3 Sequences of atoms and bonds; min length 4; max 

length 4; linear kernel SVM;  

0.707 

8 t8l3u4k0-3 Atom centered fragments based on sequences of bonds 

of fixed length; min length 3; max length 4; linear 

kernel SVM;  

0.707 

9 t8l3u5k0-3 Atom centered fragments based on sequences of bonds 

of fixed length; min length 3; max length 5; linear 

kernel SVM;  

0.707 

10 t3l4u5DAWk0-

3 

Sequences of atoms and bonds; min length 4; max 

length 5; linear kernel SVM;  

0.704 

 



 123 

Analysis of the chemical space of the BRD4 focused DEL 

GTM-based analysis 

Structures of 102 hits from Novalix DEL were compared to the space of publicly available 

compounds tested against BRD4 from ChEMBL32 using GTM. Seven UGTMs were 

used to project ChEMBL and Novalix compounds and visualize their structure-activity 

relationships. UGTMs were trained by Casciuc et al.47 to predict the biological activity of 

molecules from ChEMBL23. Training and validation sets for these maps consisted of 618 

targets from ChEMBL23, including BRD4 protein47. Therefore, they are suitable for the 

visualization and activity prediction of the chemical space of compounds tested against 

BRD4. Figure 18 shows seven UGTMs, on which ChEMBL32 compounds tested against 

BRD4 were projected. The maps were colored according to the measured pIC50 values 

of ChEMBL23 compounds giving rise to pIC50 landscapes. On each of these UGTM 

landscapes, 102 hits from Novalix were projected (no activity data is yet associated with 

these latter). Based on the color of the region of the map where the hits fall, their possible 

pIC50 value can be inferred. On all maps, the majority of hits represented as black points 

fall into either orange, yellow, or green zones corresponding to pIC50=6-8. A more 

detailed analysis of UGTM pIC50 predictions is given in the bar plot in Figure 19. The 

consensus prediction obtained using all maps shows that 86% of 102 hits are predicted as 

submicromolar inhibitors of BRD4.  
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Figure 18. pIC50 landscapes of the ChEMBL32 dataset of compounds tested against the 

BRD4 target in seven universal maps (UGTMs). On each of the landscapes, 102 Novalix 

hits are projected as black dots. 

 

 

 

Figure 19. Percentage of 102 Novalix hits predicted to have particular pIC50 values by 

seven UGTMs. 
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SVM-based analysis 

GTM (a purely neighborhood-based predictor) is interpretable but less predictive than 

most supervised ML methods used for property prediction68,96. Therefore, the pIC50 

values for 102 hits were also predicted using RBF kernel SVR trained on the same 

ChEMBL32 pIC50 data. Models based on different types of ISIDA fragment descriptors 

were built. They were validated using a 3-fold cross-validation repeated 12 times and the 

four top-scoring ones on the test set were selected to be combined in a consensus model. 

Details and performance of the top models are given in Table 9. The consensus model 

was tested for pIC50 prediction on 102 Novalix hits but also on 70K binders, 70K random 

molecules from the Novalix DEL, and on 70K random ChEMBL32 molecules tested 

against many different targets. This was done to test whether the model simply 

memorized the training BRD4 data or truly learned to identify specific characteristics of 

BRD4 molecular activity.  

Table 9. Description of SVM models and their performance on the test set. 

Data set Descriptor type SVM 

kernel 

Performance 

on test set (Q2) 

ChEMBL32 

pIC50 

IIRAB—1-3 scaled 

IAB—2-6 orig 

IIAB—1-3 scaled 

IAB—FC-AP-2-6 orig 

RBF 0.79 

0.78 

0.78 

0.77 
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Figure 20. Percentage of compounds from four different data sets predicted to have 

particular pIC50 values by the SVR model trained on ChEMBL32 BRD4 data. 

 

Figure 20 shows that the consensus SVR model logically predicted 76% of 102 

hits and 78% of 70K best binders as submicromolar BRD4 inhibitors. More than half of 

70K randomly selected compounds from the DEL were predicted to have submicromolar 

half maximal inhibitory concentration. 64% Of randomly selected compounds from 

ChEMBL32 were predicted to be the least potent, showing that the model learned to 

differentiate BRD4 inhibitor scaffolds from the random target compound structures.  

Both SVR and GTM-based predictions indicate that 102 hits are in the same pIC50 

range as the competitor molecule (pIC50 of 6.9). The screening with the competitor 

molecule is usually done to adjust the affinity screening conditions and then see its effect 

on the enrichment of DEL compounds and thus better characterize them4. It is considered 

in DEL technology that if after such a screen where a known ligand is present in saturated 

levels (in the case of Novalix - 100 µM), the enrichments of hits are reduced or they are 

completely prevented from binding to the target, such hits can be considered as 

“competitive” binders with respect to the known ligand. Compounds that are not 

prevented from binding are those that interact with another binding site of the target. It is 

also important to consider that typical concentrations of the target in a DEL screen is ~1 
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μM and the concentration of DEL members is in the order of ~10-100 fM4. In the case of 

Novalix’s 102 hits, failure to bind the BRD4 upon addition of the competitor molecule 

indicates (1) their affinity for the right binding site and (2) their competitiveness with the 

known ligand that was also confirmed by ML modeling.  
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Summary 

In this work, BB and hit analysis was performed for the focused DEL targeting 

BRD4 protein provided by Novalix.  

1530 SVM models trained on experimentally determined BB reactivity labels 

from Novalix were developed. A few of them achieved good performance – Balanced 

Accuracy (BA) of the best reactivity class prediction models for BB1, BB2, and BB3 was 

0.95, 0.89, and 0.78, respectively. The best models for each BB were combined in the 

consensus model which can potentially accelerate the experimental BB selection and 

validation procedure at Novalix by filtering out unreactive BBs. 

102 Hits obtained after DEL affinity selection against BRD4 protein at Novalix 

were compared to known BRD4 inhibitors from ChEMBL32 using GTM. This showed 

that 102 hits overlap with micromolar and submicromolar BRD4 inhibitors in the 

chemical space defined by structural fragment ISIDA descriptors. In addition, SVR 

models for BRD4 bioactivity prediction were trained on the same data from ChEMBL32. 

The best models showing good performance on the test set (BA ≈ 0.8) were combined in 

a consensus model that was used to predict the pIC50 of Novalix hits. The model logically 

predicted the majority of 102 hits and 70K binders to be in the submicromolar half-

maximal inhibitory concentration range, whereas the randomly selected compounds from 

ChEMBL and Novalix DEL are expectedly predicted to be less potent. In more detail, 

76% of 102 hits were inferred to have a pIC50 of 6.8. These results are coherent with 

experimental observations during the hit recovery tuning screen in the presence of the 

competitor ligand performed by Novalix. The lack of binding observed for the 102 hit 

compounds in an affinity screening against BRD4 in the presence of saturating levels 

(100 μM) of the competitor molecule (pIC50 = 6.9) indicates the competitiveness of hits 

with the known BRD4 ligand for the right binding site. This competitiveness is confirmed 

by ML-predicted pIC50 values for these hits.  

Overall, this work shows how supervised (SVM) and unsupervised (GTM) ML 

methods can be useful for the pre- and postprocessing of focused DEL data. GTM and 

SVM used in this work for chemical space analysis and reactivity or pIC50 prediction, 

were shown to rationalize and accelerate BB reactivity validation and DEL hit 

prioritization tasks. 
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8. Combinatorial Library Network (CoLiNN) for 

combinatorial library visualization without compound 

enumeration 

Introduction 

DELs are combinatorial libraries consisting 

of compounds formed by various 

combinations of BBs according to specific 

reaction rules. To carry out the 

computational analysis of DELs, first, their 

compounds need to be enumerated. 

However, compound enumeration is a task 

that consumes significant time, 

computational resources, and memory. 

Moreover, not any library can be 

enumerated, the reported upper limit for 

enumerable library size is 1012 compounds4. 

In the case of DEL space analyzed in this 

thesis that is composed of 2.5B compounds, 

enumeration and subsequent standardization 

and descriptor calculation were time- and 

memory-limiting steps of the analysis, 

necessitating long calculations on multiple 

48 CPU machines. Hence, in this work, a 

no-enumeration approach to combinatorial 

library analysis and visualization was 

developed. 

 To our best knowledge, there was 

only one study that reported successful 

visualization of a 90K combinatorial library using Multi-Dimensional Scaling (MDS) 

without compound enumeration. In their work, Agrafiotis and Lobanov70 trained a Multi-

Layer Perceptron (MLP) able to predict the coordinates of the products on the MDS map 

Glossary 

GCN – 	Graph Convolutional Network, 
designed to operate on graph-structured 
data (e.g. molecules). 	Each node of the 
graph (atom of the molecule) can have 
associated features, which are used as 
input to the network.	 The convolution 
operation aggregates the features of each 
node with those of its neighbors, and 
multiplies them by learned weight matrix 
and non-linear activation function97. 
CRV – Cumulated Responsibility 
Vector that is derived from the GTM of 
the library. It is a vector that encodes the 
approximate total number of compounds 
from each node of the map. It is used as 
a representation of the library as a whole. 
Normalized CRV (Φ) – Library-
size independent library descriptor 
vector. It can also be visualized as a 
density landscape showing the 
quantitative distribution of compounds 
in the chemical space of the library. 
Tanimoto coefficient (Tc) – Similarity 
coefficient usually calculated between 
two molecular fingerprints or vectors. 
However, in the context of library 
comparison, it is used to calculate the 
similarity in terms of the chemical space 
coverage of two libraries. For this, Tc is 
calculated between CRV or  Φ vectors of 
two libraries to compare. 
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from descriptors of their BBs. However, in their approach, reaction information was 

omitted. Nevertheless, reactions, especially heterocyclizations that introduce a whole new 

scaffold into the molecule can significantly influence the structure of the final product 

and thus its position on the chemical space map. Hence, in this work, we propose a 

Combinatorial Library Neural Network (CoLiNN) that allows to predict the projections 

on the GTM from the BBs and reactions without the need for compound enumeration. 

 CoLiNN is a Graph Convolutional Network (GCN) trained, validated, and tested 

on 2.5K DELs generated in our previous studies. The target value to predict is a 

responsibility vector of a DEL compound, which represents its projection onto the GTM.	

The 2.5K DELs are 2- or 3-BB libraries with 2 or 3 reactions with the full size from 1M 

to 7B compounds. Previously, only 1M compounds per DEL were generated and analyzed 

using GTM to avoid the lengthy and computationally intensive process of enumerating 

entire compound libraries. Here, we aim to bypass the enumeration step to accelerate the 

chemical space analysis of DELs and combinatorial libraries in general. Two CoLiNN 

models were developed: 

1) A local model trained on a small subset of compounds from one 80M-sized DEL  

2) A general chemistry-sensitive model trained on subsets from 388 DELs 

The Kullback-Leibler divergence was selected as the loss function to measure the 

difference between predicted and “true” responsibility vectors. The local model was 

tested on an 80M compound DEL to evaluate how well it predicts the chemical space 

map of the full library using only a subset for training. The general CoLiNN model was 

tested on 2 089 DELs that were not part of the training set but shared building blocks 

(BBs) and reactions with the 388 DELs used for training. Additionally, it was tested on 

the remaining compounds from the 388 DELs that did not participate in the training.  

In this work, only 2 473 out of the initially generated 2 497 DELs were analyzed. 

The remaining 24 DELs were excluded due to data quality issues, as these libraries were 

incorrectly enumerated by eDesigner with one missing BB per compound. Although the 

compounds were still valid, they did not correspond to the expected ones. 
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Summary 

In this work, a GCN-based Combinatorial Library Neural Network (CoLiNN) 

model was developed to predict compound projections on the GTM using only their BBs 

and reactions. CoLiNN enables skipping the compound enumeration step, thereby 

accelerating the library analysis using GTM several thousand-fold compared to the 

enumeration-based workflow. 

The local CoLiNN model, trained on small subsets of the 80M DEL allowed to 

accurately predict the map of the full library. It was determined that 25K compounds is 

an optimal training set size that is enough for CoLiNN to reach highly accurate 

predictions. The accuracy of these predictions was measured using the Tanimoto 

coefficient (Tc) between the Φ vectors of the predicted and the 'true' GTMs of the 80M 

DEL, yielding a Tc value of 0.96. 

The general CoLiNN model, trained on 65K BBs and 29 reactions from 388 

DELs, was also shown to accurately predict compound projection vectors on the GTM 

without the need for compound enumeration. It was tested on 2089 DELs that did not 

participate in training but shared BBs and reactions with 388 training set DELs. For 1600 

DELs out of 2089, it allowed to predict the chemical space map with high accuracy. The 

latter was measured by the Tc between the Φ vectors of the predicted and “true” GTMs 

that spanned 0.8-0.99 for 1600 libraries. The global CoLiNN also showed high 

performance in predicting the chemical space map of the full 80M test set DEL. The Tc 

between the predicted and “true” Φ vectors for this library was 0.91. This result proves 

that the general CoLiNN allows to correctly predict the GTM of even ultra-large sized 

combinatorial libraries. 

 To evaluate whether the predicted by CoLiNN projection vectors can be used 

instead of the “true” ones generated by the GTM algorithm in the library comparison task, 

the ranking of DELs with respect to their similarity to the ChEMBL28 database was 

performed using both predicted and “true” Φ vectors. The two rankings showed a high 

correlation with Spearman r = 0.956. This result showcases that predicted by CoLiNN 

GTM projection vectors can indeed replace the “true” ones and still provide a consistent 

ranking of DELs according to their similarity to ChEMBL. 

Overall, CoLiNN represents an efficient alternative method of compound library 

analysis that can predict chemical space maps of ultra-large DELs with high accuracy 
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without compound enumeration. Global CoLiNN predictions are 7000 faster than the 

typical workflow including enumeration, standardization, descriptor calculation, and 

GTM projection. Thus, CoLiNN holds potential for even non-enumerable combinatorial 

space visualization and analysis.  
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9. General conclusion and perspectives 

DNA-Encoded Libraries (DELs) have emerged as an alternative way of hit identification 

allowing simultaneous screening of ultra-large chemical libraries inaccessible to classical 

high-throughput screening. The ultra-large size and the combinatorial nature of DELs 

bring unique challenges to their design, analysis, and comparison to other chemical 

libraries. This thesis addresses these challenges by developing efficient chemoinformatic 

methods of DEL chemical space exploration with a particular focus on interpretable 

machine learning approaches. At first, the limits of chemical space achievable through 

systematic enumeration of DELs using commercially available building blocks (BBs) 

were assessed by calculating the coverage of known biologically relevant compounds 

from the ChEMBL database by DELs. This was done in a low-dimensional space using 

Generative Topographic Mapping (GTM), which provides an illustrative way to compare 

chemical spaces. To speed up calculations, we developed an enumeration-free approach 

to chemical space visualization by combining GTM with deep neural networks, allowing 

scaling to ultra-large combinatorial chemical spaces. Additionally, we proposed a 

machine learning (ML) workflow for rational BB acquisition and hit prioritization tasks, 

based on the models predicting BB reactivity and DEL compound activity. 

Large-scale generation and analysis of the DEL space 

In this thesis, an ultra-large space of 2.5K DELs was designed using the eDesigner11 tool 

from commercially available Building Blocks (BBs) and DNA-compatible reactions. Per 

DEL, a 1M representative subset of compounds was generated. Since Generative 

Topographic Mapping (GTM) has proven to be an efficient and accurate method of ultra-

large chemical space visualization9,15,47,52,69, it was used to visualize and analyze the space 

of DELs. A comparison of the GTMs of 2.5K DELs with ChEMBL28, a database of 

biologically relevant compounds, revealed that all DELs together cover the largest portion 

of chemotypes present in ChEMBL. However, DELs expectedly cannot cover regions of 

ChEMBL populated by natural products (NP), since in this work there was no intention 

to design NP-like DEL compounds. The GTM-based methodology allowed to identify 

pools of three and five complementary DELs that provided the highest coverage of 

biorelevant chemotypes from ChEMBL, 77% and 81%, respectively. 
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This project represents the first chemoinformatic generation and analysis of DELs 

at such a large scale, paving the way for further thorough investigation of DEL chemical 

space from various drug-discovery relevant perspectives. For instance, in the future, 

libraries generated in this study can be compared to the ZINC virtual screening collection 

of purchasable compounds to better understand the scope and value of the DEL space. 

With the increased availability of DEL-compatible BBs from sources like Mcule98, 

Enamine99, and Chemspace100, the BB collection used here can be expanded to generate 

even more DELs and analyze them. Additionally, here, it was shown that many DELs 

cover similar chemical space regions. Therefore, future research could focus on 

enhancing the DEL design process by selecting BBs that result in structurally distinct 

libraries, minimizing redundant overlaps. 

Efficient methods for the comparison of thousands of compound libraries 

In this project, a Chemical Library Space (CLS) concept was introduced, which is 

composed of chemical libraries just as a Compound Space (CS) is composed of 

molecules. A vectorial representation of compound libraries based on the GTM was 

developed that defines the position of a compound collection within the CLS. This 

representation encodes the chemical space of an entire compound collection in a single 

vector, allowing it to be treated as an individual object and thus quickly compare chemical 

libraries. Using this methodology, 2.5K DELs were compared to ChEMBL either by 

structural or property similarity. It was revealed that the DELs that are the most similar 

to ChEMBL and thus more structurally diverse are all based on robust coupling reactions, 

whereas the majority of the most dissimilar DELs are based on heterocyclizations only.  

 The developed methodology was further extended by using a meta-GTM approach 

to produce a 2D map, where each chemical library is represented as a separate mapped 

object. This approach represents a valuable CLS visualization tool that allows one to get 

a “bird’s eye view” of the space composed of thousands of compound libraries. It was 

successfully applied to visualize the DEL CLS from different perspectives placing the 

libraries on the meta-map according to either their structural or property resemblance. 

The coloring of the meta-map by reaction types allowed to conclude that almost all the 

generated space could be covered by coupling-based DELs.  

Comparing pairs of compound libraries using library vectors or visualizing all 

CLS on meta-GTM can significantly accelerate the selection of the optimal collection 
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based on chemotype, property coverage, or intrinsic library characteristics such as library 

size, synthesis cost, reactions used in synthesis, etc. This methodology is invaluable for 

narrowing down the search for an optimal compound library from thousands of 

possibilities, especially for specific drug discovery tasks that require the simultaneous 

consideration of multiple parameters. In the future, the developed chemical library space 

comparison approaches can be applied not only to DELs but to any other compound 

libraries. For example, tasks such as library diversification, selection of the analog 

collection with better synthesizability and cheaper reagents, and focused library design - 

can all be effectively supported by library vector comparison and analysis on meta-GTM. 

In the case of DELs, it would be interesting to see how the selection of a different BB set 

for its enumeration can shift its position in the CLS using meta-GTM.  

BB reactivity prediction and hit prioritization: BRD4 focused DEL study 

The GTM-based methodology was also shown to be effective for the analysis of 

the focused DEL which was experimentally tested against a BRD4 protein by Novalix. 

The coverage of the known space of BRD4 inhibitors from ChEMBL32 by hits from this 

focused DEL was estimated using GTM. Almost all hits were projected to the same areas 

as known BRD4 ligands with half-maximal inhibitory concentrations in the micromolar 

range confirming their affinity towards the protein. To further prioritize several hits for 

off-DNA synthesis a performant SVR model allowing to predict the pIC50(BRD4) values 

was trained on publicly available data on BRD4 inhibitors from ChEMBL3295. This 

model, coupled with GTM results, allowed to prioritize DEL hits from Novalix for further 

off-DNA synthesis. In addition, given the reactivity labels of the BBs used for the BRD4 

focused DEL synthesis, highly performant SVM models for reactivity prediction were 

developed. These models will allow the future acquisition of only those BBs that were 

predicted reactive thus allowing to decrease the number of time-consuming and expensive 

BB reactivity validation experiments. 

The SVM models developed herein in combination with GTM thus allowed to 

facilitate and interpret the results from the two major steps included in DEL technology - 

affinity screening and BB reactivity validation. These models can serve medicinal 

chemists for faster and more rational BB acquisition as well as for hit prioritization. One 

of the perspectives in focused DEL analysis could be the development of an end-to-end 

chemoinformatic platform accounting both for redundant and unreactive BBs exclusion, 
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chemical space coverage estimation, and ADME-Tox property prediction that could help 

evaluate the promise of DEL compounds in drug discovery campaigns. 

CoLiNN as an efficient tool for combinatorial library visualization without 

compound enumeration 

In the final project, the issue of compound enumeration, which limits the generation of 

combinatorial library compounds due to time and computational resource constraints, was 

addressed. A Combinatorial Library Neural Network (CoLiNN) was developed to predict 

compound projections on the GTM without the need for their enumeration. CoLiNN 

requires only the building blocks (BBs) and reactions used to create a compound as input. 

Trained on 388 DELs, the general CoLiNN model accurately predicted GTM projections 

for the majority of 2 089 DELs not included in the training set and achieved high accuracy 

in predicting the GTM projection of an ultra-large 80M compound DEL. This approach 

accelerates library visualization 7 000-fold compared to the conventional workflow, 

which includes compound enumeration, standardization, descriptor calculation, and GTM 

projection. 

This project paves the way for the ultra-large combinatorial library visualization 

without the need for compound enumeration. The developed CoLiNN model is the first 

of its kind that is thoroughly tested on a substantial number of libraries utilizing different 

BBs and reactions. It was proven effective and accurate in predicting DEL compound 

projections on the GTM. Additionally, CoLiNN can be adapted to predict positions on 

the chemical space maps generated by any other dimensionality reduction method. Future 

enhancements could include using Condensed Graph of Reaction101 (CGR) encoding to 

make CoLiNN's representation of reactions more universal, enabling predictions for 

combinatorial compounds with new reactions not included in the training set. The 

significance of reaction information can also be evaluated by excluding it from training 

and observing its impact on CoLiNN's performance. Moreover, the model can be tested 

on new combinatorial libraries such as the Enamine REAL combinatorial space. Another 

potential direction is to adapt CoLiNN for predicting other properties of combinatorial 

compounds. 
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10. Abbreviations 

BA  Balanced Accuracy  

BB  Building Block 

BET Bromodomain and Extraterminal protein family 

BRD4  Bromodomain containing protein 4 

CLS  Chemical Library Space 

CoLiNN  Combinatorial Library Neural Network  

CRV  Cumulated Responsibility Vector  

DEL  DNA-Encoded Library 

DL Deep Learning 

EF  Enrichment Factor 

GA  Genetic Algorithm 

GCN  Graph Convolutional Network  

GTM  Generative Topographic Mapping 

HTS  High Throughput Screening 

IC50  Half-maximal inhibitory concentration 

ML  Machine Learning 

NCRV  Normalized CRV 

PCR Polymerase Chain Reaction 

pIC50  Negative logarithm of the IC50 value 
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PKPD   Pharmacokinetic Pharmacodynamic 

QED   Quantitative Estimate of Drug likeness 

ROC AUC   Receiver Operating Characteristic Area Under the Curve 

sEH   Soluble Epoxide Hydrolase 

SVM   Support Vector Machine 

SVR   Support Vector Regression 

Tc   Tanimoto coefficient 

UGTM   Universal Generative Topographic Mapping 
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