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Résumé 

Les atomes neutres sont récemment apparus comme une plate-forme compétitive 
pour l'informatique quantique. Le développement de portes quantiques intriquées 
de haute fidélité est la clé du succès de cette plateforme. Dans cette thèse, nous 
développons plusieurs protocoles nouveaux et optimisés pour l'implémentation de 
portes quantiques à deux et plusieurs qubits sur des atomes neutres. Nous 
introduisons la famille des protocoles temps-optimaux, qui implémentent une 
porte quantique donnée aussi rapidement que possible en appliquant une 
impulsion laser unique avec une phase dépendant du temps. Nous explorons 
également les protocoles de portes qui sont particulièrement robustes face à 
certaines sources d'erreurs expérimentales, et les portes qui sont optimisées pour 
leur utilisation dans un code de correction d'erreur quantique. Enfin, nous 
proposons deux nouveaux protocoles pour implémenter des portes multi-qubits 
non-locales sur des atomes neutres couplés à un mode de cavité commun qui peut 
être implémenté simplement par un pilotage classique de la cavité. Les résultats 
de cette thèse permettent d'obtenir des portes quantiques plus simples, de 
meilleure qualité et plus robustes sur des atomes neutres, et constituent une étape 
vers la réalisation de la vision d'un ordinateur quantique. 
 
Mots-clés: Informatique quantique, atomes neutres, atomes de Rydberg, portes 
quantiques, contrôle optimal quantique 

Abstract 

Neutral atoms have recently emerged as a competitive platform for quantum 
computing. The development of high fidelity entangling quantum gates is a key to 
success of this platform. In this thesis, we develop several new and optimized 
protocols for the implementation of two- and multi-qubit quantum gates on 
neutral atoms. We introduce the family of time-optimal protocols, which 
implement a given quantum gate as fast as possible by applying a single laser 
pulse with a time-dependent phase. We also explore gate protocols which are 
particularly robust against certain experimental error sources, and gates which 
are optimized for their use in a quantum error correction code. Finally, we 
propose two new protocols to implement non-local multi-qubit gates on neutral 
atoms coupled to a common cavity mode which can be implemented simply by a 
classical drive of the cavity. The results of this thesis allow for simpler, higher 
quality, and more robust quantum gates on neutral atoms, and constitute a step 
towards realizing the vision of a quantum computer. 
 
Keywords: Quantum Computing, Neutral Atoms, Rydberg Atoms, Quantum 
Gates, Quantum Optimal Control 

Sven JANDURA
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in Jülich. Finally, I would like to thank Felipe Herrera from the Universidad de
Santiago de Chile and Dominique Sugny and Stephane Guerin from the Université
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Résumé de la Thèse en Français

L’invention de l’ordinateur dans la seconde moitié du XXe siècle a révolutionné tous
les aspects de notre monde moderne, depuis les applications scientifiques et indus-
trielles jusqu’à l’adoption généralisée de l’ordinateur personnel et l’essor de l’internet.
Cependant, malgré l’existence de superordinateurs géants, il existe encore un grand
nombre de problèmes de calcul importants sur le plan scientifique ou économique
dont la solution est impossible ou peu pratique sur les machines actuelles. Il s’agit
notamment de problèmes de chimie informatique, liés à la science des matériaux et
à la découverte de médicaments, de problèmes d’optimisation combinatoire avec des
applications en logistique et en recherche opérationnelle, et de problèmes financiers.

Les ordinateurs quantiques promettent de résoudre certains de ces problèmes plus
rapidement que n’importe quel appareil classique en utilisant des algorithmes qui
exploitent des phénomènes quantiques tels que l’intrication et la superposition [1-4].
En outre, d’autres technologies quantiques telles que la détection quantique [5] et
la cryptographie quantique [6] offrent de grandes améliorations dans leurs domaines
respectifs et peuvent être réalisées avec des éléments de construction similaires à
ceux d’un ordinateur quantique. Alors que les ordinateurs quantiques sont restés
pendant longtemps un concept largement théorique, les deux dernières décennies
ont été marquées par un effort scientifique et industriel important pour développer
une machine de démonstration de principe. Cependant, malgré les progrès impres-
sionnants réalisés ces dernières années, la nature fondamentalement fragile de l’in-
formation quantique fait de la réalisation physique de l’informatique quantique une
tâche ardue, et tous les ordinateurs quantiques existants sont trop petits, en termes
de nombre de bits quantiques (qubits), et trop défectueux, en termes de taux d’erreur
par opération, pour permettre une accélération des problèmes de calcul pertinents
dans la pratique. Il est donc nécessaire de développer des méthodes nouvelles et
améliorées pour mettre en œuvre des calculs quantiques de meilleure qualité sur un
plus grand nombre de qubits.

Plusieurs technologies différentes sont actuellement étudiées en tant que candidates
pour une plateforme de calcul quantique. Historiquement, les circuits supraconduc-
teurs [7] et les ions piégés [8] ont été deux des premières plateformes à démontrer
des calculs quantiques de principe à petite échelle. Dans ces plateformes, les bits
quantiques sont encodés dans le courant d’un circuit supraconducteur et dans l’état
électronique et nucléaire des ions piégés, respectivement. Cependant, ces dernières
années, la plateforme prometteuse et en plein essor des atomes neutres piégés a
atteint une performance qui est, selon de nombreuses mesures, comparable à celle
des circuits supraconducteurs et des ions piégés [9-11]. Dans cette plate-forme, des
atomes individuels sont piégés dans des réseaux réguliers de pinces optiques, et des
bits quantiques sont stockés dans l’état électronique et nucléaire de chaque atome.



xii Résumé de la Thèse en Français

L’état des atomes peut être manipulé avec une grande fidélité en appliquant des im-
pulsions laser ou micro-ondes sur ou près de la résonance avec une transition dans
les atomes. Pour mettre en œuvre une porte quantique sur deux atomes ou plus, les
propriétés extrêmes des états dits Rydberg [12] sont exploitées. Les états de Ryd-
berg sont des états très excités d’un atome, dans lesquels il existe une très grande
séparation entre l’électron le plus externe et le noyau. En raison de la grande polari-
sation des états de Rydberg, il existe une forte interaction de van der Waals entre les
atomes adjacents. Cette interaction est de plusieurs ordres de grandeur plus impor-
tante que pour les atomes dans l’état fondamental, de sorte que les portes quantiques
sur deux atomes ou plus peuvent être mises en œuvre en couplant les états fonda-
mentaux de ces atomes à un état de Rydberg, tandis que les atomes spectateurs qui
ne sont pas impliqués dans la porte ne sont pas affectés par l’interaction de van der
Waals. La manière dont l’interaction de van der Waals entre les états de Rydberg
est utilisée pour mettre en œuvre une porte quantique donnée est décrite par un
protocole de porte. Les différents protocoles de porte présentent des avantages et des
inconvénients en termes de fidélité, de durée et de robustesse de la porte.

Dans cette thèse, nous proposons plusieurs nouveaux protocoles de portes quan-
tiques sur deux qubits ou plus qui sont optimaux, et nous explorons plusieurs no-
tions différentes d’optimalité. Pour trouver des protocoles de porte optimaux, nous
utilisons une combinaison de techniques analytiques et de méthodes numériques de
contrôle optimal quantique. Les principaux résultats de cette thèse peuvent être
structurés selon différentes notions d’optimalité :

i) Protocoles optimaux en temps. La vitesse est une notion simple de l’opti-
malité. Comme les effets négatifs de nombreuses imperfections expérimentales
sont réduits pour des durées de porte courtes, la recherche de protocoles de
porte rapides est d’un grand intérêt pratique. Dans cette thèse, nous utilisons
des méthodes numériques et analytiques de contrôle optimal quantique pour
développer une famille de protocoles temps-optimaux. Tous ces protocoles ont
une structure simple et ne nécessitent qu’une seule impulsion laser avec une
phase laser dépendant du temps pour être appliquée sur les atomes. L’exemple
le plus important de protocoles de portes optimales en fonction du temps est
la porte CZ (controlled-Z) optimale en fonction du temps, qui est désormais
couramment utilisée dans de nombreuses expériences [13-17]. Outre la porte
CZ, nous trouvons des protocoles optimaux en termes de temps pour les portes
de phase contrôlées générales à deux qubits, les portes multicontrôlées et pour
la génération d’états de Greenberger-Horne-Zeilinger (GHZ). Nous analysons
également la structure mathématique des protocoles optimaux en termes de
temps à l’aide du principe du maximum de Pontryagin et nous constatons
que la forme de l’impulsion laser utilisée pour mettre en œuvre les proto-
coles optimaux en termes de temps peut être décrite par une simple équation
différentielle.

ii) Protocoles robustes. Si les principales sources d’erreur affectant une porte sont
connues, les protocoles de porte peuvent être conçus pour être aussi robustes
que possible contre ces sources d’erreur. Nous développons des protocoles de
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porte pour la porte CZ qui minimisent l’erreur due à la désintégration de
Rydberg, à une valeur finie de la force d’interaction entre les atomes, aux
fluctuations d’amplitude du laser de Rydberg et aux désaccordages du laser
dus à un décalage Doppler résultant du mouvement thermique des atomes.
Nous analysons ensuite le compromis entre les différentes sources d’erreur pour
des paramètres réalistes de qubits stockés dans des atomes de 171Yb.

iii) Protocoles minimisant le taux d’erreur logique. En raison de la nature fra-
gile de l’information quantique, les erreurs dans un calcul quantique sont
inévitables. Pour atténuer ces erreurs, le cadre du calcul quantique tolérant
aux défauts (FTQC) a été développé [19]. Le FTQC permet de coder un qubit
logique en plusieurs qubits physiques et utilise la redondance pour détecter
et corriger les erreurs de calcul. Dans le contexte de la FTQC, le taux d’er-
reur avec lequel le qubit logique subit une défaillance, appelé taux d’erreur
logique, devient une mesure plus importante que le taux d’erreur des portes
individuelles au niveau physique. Nous montrons, pour l’exemple du code de
surface [21], que les protocoles de portes qui minimisent le taux d’erreur lo-
gique diffèrent sensiblement de ceux qui minimisent le taux d’erreur physique.
Nous identifions les erreurs de fuite de Rydberg comme la source de cette di-
vergence et nous développons des protocoles de porte qui réduisent les effets
de ces erreurs.

Outre l’utilisation de l’interaction de van der Waals entre les états de Rydberg,
il est également possible d’implémenter des portes quantiques sur deux atomes ou
plus en coupant les atomes à un mode commun d’une cavité optique ou micro-onde.
Cette méthode présente l’avantage de permettre une connectivité “tout-à-tout” et
des portes non locales entre les qubits, mais elle se traduit généralement par des
taux d’erreur plus élevés au niveau des portes. Dans cette thèse, nous proposons
également deux nouvelles familles de protocoles de portes pour les atomes couplés à
une cavité. Contrairement à de nombreux travaux antérieurs, ces protocoles peuvent
être mis en œuvre simplement par une commande classique du mode de la cavité,
sans qu’aucun adressage des atomes ne soit nécessaire. Cela ouvre de nouvelles
possibilités expérimentales de mise en œuvre de portes quantiques via des cavités
optiques.

Dans ce qui suit, nous donnons un aperçu de chacun des principaux résultats de la
thèse.

Portes temporelles optimales à deux et plusieurs

qubits sur des atomes de Rydberg

Les portes quantiques qui peuvent créer un enchevêtrement entre deux ou plusieurs
qubits sont un composant crucial de toute architecture informatique quantique. Pour
la plate-forme de l’atome neutre, la méthode la plus populaire pour mettre en œuvre
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des portes sur deux qubits ou plus consiste à coupler un état de base de calcul de
chaque atome à un ou plusieurs états de Rydberg à l’aide d’un laser, puis à utiliser la
forte interaction de van der Waals entre les atomes de Rydberg pour générer l’intri-
cation. Un grand nombre de protocoles de porte différents, présentant des avantages
et des inconvénients différents, peuvent être utilisés à cette fin. [18, 64, 108-110,
112, 113, 115-118, 121-127]. Le choix de l’un de ces protocoles de porte qui per-
mettra d’obtenir la plus grande fidélité de la porte dans une expérience dépend des
détails de la configuration expérimentale et des sources d’erreur dominantes. Toute-
fois, deux propriétés d’un protocole de porte sont particulièrement souhaitables : i)
Le protocole de porte ne doit nécessiter que des lasers de contrôle globaux s’adres-
sant simultanément à tous les atomes. Cela réduit considérablement la complexité
expérimentale par rapport aux protocoles qui nécessitent un adressage individuel des
atomes. ii) Le protocole de porte doit être rapide car, indépendamment du modèle
d’erreur exact, de nombreuses sources d’erreur peuvent être atténuées par des durées
de porte courtes. C’est donc une question fondamentale que de trouver le protocole
le plus rapide possible, appelé temps-optimal [128-131], le protocole de porte global
le plus rapide possible qui met en œuvre une porte quantique donnée.

Dans le chapitre 3 de cette thèse, nous répondons à cette question pour la porte
controlled-Z (CZ) et plusieurs de ses généralisations sur deux qubits ou plus. Nous
supposons un schéma de niveau simple dans lequel nous modélisons chaque atome
comme un système à trois niveaux composé des deux états de base de calcul et
d’un état de Rydberg [64]. Un laser avec une fréquence de Rabi dépendante du
temps Ω(t) couplant l’un des états de base de calcul à l’état de Rydberg est ensuite
utilisée pour mettre en œuvre la porte souhaitée. Alors qu’une variété d’impulsions
différentes Ω(t) peut mettre en œuvre la même porte, nous utilisons la méthode de
contrôle optimal quantique de l’ingénierie des impulsions à ascension de gradient
(GRAPE) [132] pour sélectionner celle qui est optimale en termes de temps.

Pour la porte CZ, nous constatons que le protocole optimal en termes de temps est
environ 10% plus rapide que le protocole le plus rapide connu auparavant, le proto-
cole de Levine-Pichler [18]. Plus important encore, l’impulsion optimale en fonction
du temps peut être mise en œuvre à l’aide d’une impulsion smooth Ω(t), alors que
le protocole LP nécessite un saut discontinu dans la phase du laser. Cela simplifie
considérablement la mise en œuvre expérimentale du protocole temps-optimal par
rapport au protocole LP. C’est cette caractéristique du protocole temps-optimal qui
a conduit à son adoption généralisée dans de nombreuses expériences [13, 14, 16,
17], atteignant des fidélités jusqu’à 99,5% [13], la fidélité la plus élevée actuellement
rapportée pour la plate-forme de l’atome neutre.

Les principaux résultats pour la porte CZ sont résumés dans la Fig. 1. La Fig. 1(a)
montre l’infidélité minimale de la porte en fonction de la durée de l’impulsion, telle
que trouvée par la méthode de contrôle optimal quantique GRAPE en optimisant
sur la phase du laser dépendant du temps (cercles bleus). Dans la limite des petites
durées d’impulsion, l’infidélité minimale est de l’ordre de 0,4, ce qui correspond à
l’infidélité de la simple application de l’opération d’identité. Avec l’augmentation
de la durée d’impulsion, l’infidélité minimale de la porte diminue, avant d’atteindre
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Figure 1 : Porte CZ optimale dans le temps. (a) Infidélité minimale 1 − F
d’une porte CZ telle que trouvée par GRAPE pour des durées d’impulsion 0 ≤
TΩmax ≤ 10. Les cercles bleus (carrés rouges) montrent l’infidélité pour une impul-
sion globale (locale). (b) Zoom et ajustement de l’infidélité près du temps optimal
T∗Ωmax = 7.612. (c) Deux impulsions différentes ϕ(t) (liées par conjugaison com-
plexe ou inversion temporelle) trouvées par GRAPE à la durée optimale T∗. (d)
Population des états |0r〉 et |W11〉 sous l’impulsion optimale en fonction du temps
lorsque l’on commence respectivement à |01〉 et |11〉. (e/f) Trajectoire de |ψ01〉 et
|ψ11〉 sur la sphère de Bloch pendant l’impulsion optimale en fonction du temps.

zéro autour de T∗Ωmax ≈ 7.6, où Ωmax représente l’amplitude de la fréquence de
Rabi du laser. Pour des durées d’impulsion T > T∗, l’infidélité de la porte reste
nulle. Pour déterminer T∗ avec plus de précision, nous utilisons à nouveau GRAPE
pour trouver l’infidélité pour 7.5 ≤ TΩmax ≤ 7.65, illustré sur la Fig. 1(b) avec
l’infidélité en échelle logarithmique. Grâce à un ajustement décrit dans la Sec. 3.3,
nous obtenons T∗Ωmax = 7, 612 [ligne noire dans la Fig. 1(b)].

La Fig. 1(c) montre les deux phases différentes ϕ(t) que nous obtenons à T = T∗.
L’impulsion obtenue dépend du point de départ aléatoire de l’optimisation. Les
deux impulsions peuvent être transformées l’une en l’autre par inversion temporelle
[ϕ̄(t) = ϕ(T−t)] ou par conjugaison complexe [ϕ̄(t) = −ϕ(t)], de sorte que, jusqu’aux
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opérations de symétrie, l’impulsion optimale du point de vue temporel est unique. Il
est intéressant de noter que l’impulsion est invariante en cas d’inversion temporelle
et de conjugaison complexe, de sorte qu’il n’y a que deux et non quatre impulsions
temporelles optimales distinctes. Contrairement à la porte LP, la phase laser de
l’optimum temporel est une fonction continue du temps sans aucun saut de phase. Sa
dépendance temporelle est similaire à celle d’un cosinus, un fait que nous étudierons
en détail dans le chapitre 4.

Pour comprendre comment l’impulsion agit sur les états initiaux |01〉 et |0r〉, nous
considérons la population | 〈0r|ψ01(t)〉 |2 et | 〈W11|ψ11(t)〉 |2 des états |0r〉 et |W11〉,
respectivement, dans la Fig. 1(d). La population de |0r〉 augmente jusqu’à t = T/2
puis diminue jusqu’à 0 jusqu’à t = T , tandis que la population de |W11〉 augmente
jusqu’à t ≈ T/4, puis diminue à nouveau jusqu’à t = T/2, suivie d’une augmentation
symétrique jusqu’à t ≈ 3T/4 et d’une chute jusqu’à 0 à t = T .

Les Figs. 1(e) et (f) montrent l’évolution de |ψ01〉 et |ψ11〉 sur la sphère de Bloch
traversée par |01〉 et |0r〉 ainsi que |11〉 et |W11〉, respectivement. Il est intéressant
de noter que |ψ11〉 présente un chemin auto-intersecté.

Enfin, nous examinons ce qui se passe lorsque nous levons la contrainte d’une im-
pulsion globale et que nous autorisons des impulsions différentes Ω1(t) 6= Ω2(t) sur
les deux atomes. De manière analogue au cas global, nous calculons l’infidélité mi-
nimale en fonction de T à l’aide de GRAPE (carrés rouges dans les Figs. 1(a/b)).
Il est intéressant de noter que l’infidélité minimale cöıncide exactement avec celle
d’une impulsion globale, ce qui montre que l’adressage individuel des atomes n’ap-
porte aucune accélération pour une porte CZ. Nous constatons également que les
impulsions Ω1(t) et Ω2(t) cöıncident avec l’impulsion globale Ω(t) jusqu’à une phase
constante.

Bien que la porte CZ soit la porte d’intrication de deux qubits la plus cruciale sur la
plate-forme de Rydberg, nous utilisons également notre méthodologie temps-optimal
pour trouver des impulsions qui mettent en œuvre des portes de phase contrôlées
arbitraires sur deux qubits, ou des portes de phase sur trois qubits ou plus, telles
que des portes Z multi-contrôlées (CkZ) ou des portes CZ simultanées sur plusieurs
paires de qubits. Dans tous les cas, nous trouvons des formes d’impulsion lisses et
faciles à mettre en œuvre Ω(t). Le cas de trois qubits ou plus est particulièrement
pertinent, car les plateformes de Rydberg permettent l’implémentation native de
telles portes [18, 107, 116], mais avant notre travail, aucun protocole de porte global
n’était connu.

Structure mathématique des impulsions optimales

en fonction du temps

Dans le chapitre 3, nous trouvons l’impulsion optimale en termes de temps qui met
en œuvre une porte CZ sur les atomes de Rydberg en utilisant la méthode de contrôle
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quantique optimal numérique de GRAPE. Il est intéressant de noter que l’impulsion
a une structure assez simple, la phase laser ϕ(t) ressemble approximativement à
la forme d’un sinus. La structure simple de l’impulsion optimale en temps n’est
pas surprenante, puisque le problème de contrôle optimal que nous résolvons est
également assez simple : Il consiste simplement à piloter deux systèmes différents à
deux niveaux dont l’hamiltonien dépend d’un seul paramètre de contrôle, la phase
du laser ϕ.

La nature simple du problème de contrôle optimal permet de l’aborder avec des
méthodes analytiques. Dans ce chapitre 4 de cette thèse, nous utilisons le principe du
maximum de Pontryagin (PMP) [158, 159] pour obtenir une forme semi-analytique
de la phase laser optimale en temps ϕ(t). Plus précisément, nous prouvons que pour
toute porte C-Phase optimale en temps sur deux atomes dans la limite du blocage
de Rydberg, le désaccord ∆ = dϕ/dt est donné par une solution de

1

2
∆̇2 + V (∆) = 0 ∆(0) = 0 (1)

avec

V (∆) =
1

8
∆4 + c2∆2 + c1∆ + c0 (2)

pour certains coefficients c2, c1, c0. En d’autres termes, le désaccord ∆ a la même
dépendance fonctionnelle au temps que la position d’une particule classique de masse
1 et d’énergie 0 oscillant dans le potentiel quartique V (∆). De plus, nous montrons
qu’au temps final T , l’impulsion optimale en temps satisfait ∆(T ) = 0, ce qui cor-
respond au retour de la particule à sa position initiale.

Notre résultat ne fait aucune déclaration sur les paramètres c2, c1, c0, qui doivent
encore être déterminés numériquement. Ainsi, au lieu des M � 1 paramètres requis
dans GRAPE en faisant un Ansatz constant par morceaux de ϕ(t) avec M impul-
sions, cette approche semi-analytique caractérise les impulsions optimales en temps
par seulement trois paramètres. De manière analogue, nous démontrons que pour
les portes C2Z à trois qubits, les impulsions optimales pour le temps peuvent être
décrites par seulement sept paramètres.

Protocoles de portes robustes

L’une des orientations les plus importantes pour le développement continu des pro-
cesseurs quantiques à atomes neutres est l’amélioration de la fidélité des portes à
deux et plusieurs qubits. Dans les chapitres 3 et 4, nous relevons ce défi en trouvant
les protocoles de porte les plus rapides possibles, optimaux en termes de temps.
Étant donné que de nombreuses sources d’erreur sont moins préjudiciables pour des
durées d’impulsion plus courtes, cette approche offre un protocole de porte d’une
grande fidélité, indépendamment du modèle d’erreur exact. Pour les portes quan-
tiques basées sur l’effet de blocage de Rydberg, cependant, les principales sources
d’erreur sont souvent bien comprises et représentent une grande partie de l’infidélité
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Figure 2 : Le schéma des niveaux et les sources d’erreur étudiés dans ce
chapitre. Chaque atome est modélisé comme un système à trois niveaux avec les
états |0〉 , |1〉 et |r〉. Il existe une interaction de van der Waals qui déplace l’énergie
de l’état des deux atomes dans |r〉, et un couplage laser global |1〉 et |r〉 avec une
fréquence de Rabi Ω(t). Les sources d’erreur prises en compte dans ce chapitre
sont indiquées dans des couleurs différentes : La désintégration de l’état de Rydberg
(rouge), les incertitudes sur la force d’interaction (bleu), les déviations de l’amplitude
laser attendue (orange), et les désaccordages laser (vert).

observée expérimentalement [13, 14, 105]. Il est donc possible de développer des
protocoles de porte qui sont robustes contre ces sources d’erreur spécifiques, au prix
d’être plus longs que le protocole optimal en termes de temps.

Dans le chapitre 5, nous considérons plusieurs sources d’erreur pertinentes en pra-
tique et utilisons une combinaison de raisonnement analytique et de méthodes de
contrôle optimal pour trouver des protocoles de porte avec une robustesse accrue
à leur égard. Nous considérons le même schéma de niveau que dans les chapitres 3
et 4, avec deux ou trois atomes, chacun étant modélisé comme un système à trois ni-
veaux avec des états de base de calcul |0〉 et |1〉 et un état de Rydberg auxiliaire |r〉,
une interaction de van der Waals symétrique B

∑
j<k |rjrk〉 〈rjrk|, et un laser global

avec une fréquence de Rabi (complexe) dépendant du temps Ω(t) couplant les états
|1〉 et |r〉. Tout au long de ce chapitre, nous supposons que, au moins en l’absence
d’imperfections, nous avons B = ∞, de sorte que l’excitation simultanée de plus
de deux atomes à l’état de Rydberg est impossible. Nous considérons maintenant
quatre sources d’erreur, à savoir une durée de vie finie de l’état de Rydberg, une force
d’interaction finie incertaine B, et des incertitudes dans l’amplitude et le désaccord
du laser global. Le schéma des niveaux et les sources d’erreur sont représentés sur
la Fig. 2.

Les résultats de ce chapitre concernant la robustesse des protocoles de porte vis-à-vis
de ces sources d’erreur peuvent être résumés comme suit :

i) Décroissance de Rydberg. Les états de Rydberg ont une durée de vie finie γ
limitée par l’émission spontanée vers des états de basse altitude et le couplage à
d’autres états de Rydberg dû au rayonnement du corps noir. La désintégration
de l’état de Rydberg au cours d’une porte entrâıne une erreur. Nous constatons
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que, tant pour la porte CZ que pour la porte C2Z, les impulsions optimales
en temps sont presque optimales pour atténuer cette source d’erreur. Nous
identifions les impulsions qui minimisent l’erreur due à la désintégration de
Rydberg, et montrons que l’infidélité ne peut être réduite que de moins de
1% pour la porte CZ et de moins de 10% pour la porte C2Z par rapport aux
impulsions optimales en fonction du temps.

ii) Incertitudes dans les forces d’interaction. La force d’interaction B est sou-
vent finie et n’est pas connue exactement, car elle dépend de la distance in-
teratomique des atomes, qui fluctue avec le mouvement des atomes dans la
pince optique. Bien que nous montrions dans la Sec. 3.4 qu’il est possible
d’implémenter une porte CZ et une porte C2Z exactement à des forces d’inter-
action finies, ces protocoles ne sont conçus que pour fonctionner à une force
d’interaction spécifique B. Ici, nous trouvons plutôt des protocoles de porte
qui implémentent un CZ et un C2Z exactement seulement à B = ∞, mais
dont l’infidélité augmente aussi lentement que possible avec 1/B. Cela rend
ces portes avantageuses si la force d’interaction est grande mais inconnue.

iii) Les déviations de l’amplitude du laser. Au lieu de la fréquence de Rabi atten-
due Ω(t), les atomes peuvent subir une fréquence de Rabi (1 + εi)Ω(t), avec
différents εi pour différents atomes. Ces fluctuations d’un tir à l’autre peuvent
être dues soit à des fluctuations de l’intensité du laser, soit à des fluctuations de
la position de l’atome par rapport au centre du faisceau laser, par exemple en
raison du mouvement de l’atome dans le piège. Nous utilisons des techniques
de contrôle optimal quantique pour trouver une forme d’impulsion Ω(t) pour
une porte CZ qui réduit l’effet des fluctuations d’intensité de plus de deux
ordres de grandeur, au prix d’une durée d’impulsion plus longue.

iv) Détonation du laser. Diverses sources d’erreur peuvent conduire à un désaccord
∆i du laser et de la transition |1〉 ↔ |r〉. Les sources de désaccord les plus im-
portantes sont les champs électriques parasites, qui déplacent l’énergie de l’état
de Rydberg, les déplacements Doppler de la fréquence du laser dus au mou-
vement thermique des atomes dans le piège, et les fluctuations de l’amplitude
du laser global (voir iii)), qui, en raison du décalage de Stark résultant du
couplage à d’autres états non résonants, affectent également les énergies des
états |1〉 et |r〉. Nous constatons que pour des désaccordages arbitraires ∆i,
seule une petite amélioration de la robustesse par rapport à l’impulsion opti-
male en temps peut être obtenue. Pour les désaccords résultant de décalages
Doppler, nous constatons cependant qu’en inversant le signe du décalage Dop-
pler au milieu de l’impulsion, il est possible d’améliorer la robustesse contre
cette erreur de plusieurs ordres de grandeur. De même, pour les désaccords
dus à un décalage de Stark induit par le laser global, nous pouvons utiliser la
corrélation entre les écarts d’amplitude et le désaccouplement du laser pour
concevoir des impulsions robustes.

Nous considérons d’abord les quatre sources d’erreur ci-dessus séparément. Cepen-
dant, dans une expérience réelle, les quatre sources d’erreur sont présentes en même
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temps, et le protocole de porte idéal établit un compromis entre la robustesse contre
chacune d’entre elles. Pour mieux comprendre ce compromis, nous considérons les
paramètres réalistes d’une expérience 171Yb [85], et nous constatons que pour des
écarts ou désaccords d’amplitude laser moyens ou importants, les impulsions ro-
bustes contre ces sources d’erreur sont plus performantes que l’impulsion optimale en
temps, alors que pour des écarts ou désaccords d’amplitude laser faibles, l’impulsion
optimale en temps, qui minimise essentiellement les erreurs dues à la désintégration
de Rydberg, devient le meilleur choix. Toutefois, il a récemment été proposé [20, 162]
et démontré expérimentalement [14] que dans les qubits métastables, les erreurs de
désintégration de Rydberg peuvent être converties en erreurs dites erasure, qui sont
beaucoup plus simples à corriger dans un code de correction d’erreurs que d’autres
erreurs. En tenant compte de cela, nous trouvons de manière surprenante une large
gamme d’imperfections pour lesquelles l’utilisation d’impulsions robustes contre les
déviations d’amplitude ou les désaccordages augmente l’infidélité de la porte, mais
diminue le taux d’erreurs logiques, par rapport à l’impulsion optimale en termes de
temps. Cela démontre que la fidélité de la porte et le taux d’erreur logique peuvent
différer de manière significative, et que l’optimisation des portes spécifiquement pour
l’optimisation au niveau logique peut apporter des améliorations spectaculaires.

Mesures du stabilisateur de code de surface pour

les atomes de Rydberg

La nature fragile de l’information quantique rend les erreurs inévitables dans tout
calcul quantique effectué sur un processeur quantique réel. Pour combattre ces
erreurs, le cadre de l’informatique quantique tolérante aux fautes (FTQC) a été
développé. Le FTQC code un qubit logique en plusieurs qubits physiques et utilise
la redondance qui en résulte pour détecter et corriger les erreurs. Tant que le taux
d’erreur par opération est inférieur à un certain seuil, cela permet d’atteindre des
taux d’erreur arbitrairement bas du qubit logique en l’encodant dans de plus en plus
de qubits physiques [19, 169-172]. Récemment, plusieurs plateformes de calcul quan-
tique ont dépassé le seuil de la FTQC en minimisant le bruit au niveau des portes
à un ou deux qubits et ont démontré la FTQC dans des expériences de preuve de
principe [13, 15, 16, 58-61]. Avec l’avènement de la FTQC, le taux d’erreur logique,
c’est-à-dire le taux d’erreur du qubit logique, devient désormais une mesure plus
importante que la fidélité de la porte physique. Alors que des fidélités de porte plus
élevées correspondent souvent à des taux d’erreur logiques plus élevés, nous avons
déjà vu dans la Sec. 5.6 que ces deux métriques peuvent parfois diverger de manière
significative. L’optimisation des protocoles de portes en fonction du taux d’erreur
logique qu’ils atteignent dans un protocole FTQC est donc un problème crucial.

Dans le chapitre 6, nous considérons une implémentation du code de surface [21,
168, 183], un code de correction d’erreur quantique populaire, sur un réseau station-
naire d’atomes neutres, avec des interactions entre les atomes médiées par des états
de Rydberg. Dans le code de surface, un qubit logique est encodé dans un réseau
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d’atomes d × d de manière à ce que les erreurs consistant en au plus bd/2c erreurs
d’un seul qubit puissent toujours être corrigées. Nous nous concentrons sur la source
d’erreur de la désintégration de Rydberg, qui est dominante dans de nombreuses
expériences actuelles [13, 14, 105]. Il est intéressant de noter que pour des taux de
désintégration suffisamment faibles γ, le protocole optimal en temps pour la mise
en œuvre d’une porte CZ (voir Sec. 3.3), qui minimise essentiellement l’infidélité de
la porte en présence de désintégration de Rydberg (voir Sec. 5.1) ne minimise pas
le taux d’erreurs logiques. Au lieu de cela, nous trouvons une famille de nouveaux
protocoles de portes qui peuvent atteindre un taux d’erreur logique significative-
ment plus bas, bien qu’ils soient plus lents et aient une infidélité plus élevée. La
raison de cet écart entre l’infidélité et les taux d’erreurs logiques réside dans les
erreurs de fuite de Rydberg : De prime abord, la désintégration de Rydberg d’un
atome peut en fait conduire à une population de l’état de Rydberg de l’extrémité
d’une porte, soit en brisant le blocus de Rydberg et en permettant à un autre atome
d’être excité à l’état de Rydberg, soit par la réexcitation de l’atome désintégré à
l’état de Rydberg après l’événement de désintégration. Ces erreurs de fuite de Ryd-
berg peuvent maintenant affecter les qubits voisins pendant les portes suivantes,
un effet qui n’est pas pris en compte par l’infidélité. Plus précisément, grâce à la
propagation des erreurs de fuite de Rydberg, un événement de désintégration peut
entrâıner des erreurs corrélées sur plusieurs qubits, ce qui permet à des événements
de désintégration déjà dd/4e de conduire à une erreur logique. Les nouveaux pro-
tocoles de porte décrits dans cette section empêchent la propagation des erreurs de
fuite de Rydberg et rétablissent l’échelle originale de dd/2e. Ce résultat démontre
l’importance d’optimiser les portes quantiques pour les erreurs logiques en plus de
la fidélité des portes et ouvre la voie à la réalisation efficace de codes de surface avec
des atomes neutres.

Portes multi-qubits non locales via une cavité en-

trâınée

Les portes de haute fidélité sont essentielles pour l’informatique quantique, mais dans
la perspective d’une informatique évolutive et tolérante aux pannes, il est également
très souhaitable de disposer de portes quantiques non locales entre deux ou plusieurs
qubits. Par exemple, la disponibilité d’une connectivité “tout-à-tout” peut réduire
considérablement la profondeur des circuits quantiques typiques, par rapport à une
connectivité géométriquement locale. En outre, la possibilité d’effectuer des portes
multi-qubits non locales permettrait d’utiliser des codes de correction d’erreurs quan-
tiques (QEC) avec des stabilisateurs non locaux, tels que les codes LDPC [193-196],
qui ont un surcoût significativement plus faible que l’approche actuellement la plus
répandue des codes de surface [168]. Dans de nombreuses plateformes physiques,
cependant, ni les portes non-locales ni les portes multi-qubits ne sont disponibles de
manière native, mais doivent être synthétisées de manière coûteuse à partir d’une
séquence d’opérations locales à un ou deux qubits. Pour les atomes neutres interagis-
sant via les états de Rydberg, nous avons vu dans le chapitre 3 qu’il est possible de
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réaliser des portes multi-qubits. Cependant, seules des portes locales sont possibles,
car la force d’interaction entre les états de Rydberg diminue rapidement avec leur
distance (voir Sec. 2.5).

Une façon de réaliser des portes non locales à deux qubits est d’utiliser la navette de
qubits, qui a été démontrée pour les ions piégés [179] et les atomes neutres [67, 197].
L’évaluation du coût des opérations non locales dans ce cas n’est pas triviale, car
l’architecture peut effectuer certains déplacements parallèles simultanément, mais
les déplacements inégaux doivent être effectués en série. Le temps de navette pour
les atomes dans un réseau planaire de dimension linéaire L, pertinent pour effectuer
des opérations dans certains codes LDPC, est de O(

√
L) [78]. Par ailleurs, des portes

non locales ont déjà été proposées ou réalisées avec des atomes ou des ions neutres
en assurant la médiation des interactions entre les qubits via un mode bosonique
quantifié, en utilisant les modes de mouvement des ions piégés [22, 46, 198, 199]
ou des modes de cavité optique pour les qubits de spin d’atomes neutres [77, 200-
206]. Pour les portes déterministes, l’art antérieur trouve que l’erreur de fidélité est
O(C−1/2) où C est la coopérativité de la cavité supportant le mode [203]. En utilisant
des ressources de détection supplémentaires, les portes non locales annoncées sont
réalisables avec une erreur de O(C−1) mais avec une probabilité d’échec de O(C−1/2)
[205]. Un autre schéma utilisant des transferts de photons annoncés a une meilleure
probabilité de réussite mais impose des exigences strictes sur la structure de niveau
des qubits afin que tous les événements de diffusion et de perte de photons soient
détectables [77]. En revanche, les états intriqués non locaux peuvent être préparés
comme des points fixes de cartes dissipatives avec une erreur de fidélité de O(C−1)
[207], bien qu’une relation de phase fixe doive être maintenue entre les champs
s’adressant aux qubits. Bien que certaines des propositions ci-dessus puissent être
étendues aux portes de Toffoli à N -qubits [205, 206], pour les simulations et les
calculs quantiques numériques à grande échelle, une approche unifiée fournissant
des implémentations natives de familles plus larges de portes multi-qubits serait
hautement souhaitable. Il s’agit là d’un avantage considérable, qui n’est pas fourni
par les schémas ci-dessus.

Dans toutes les propositions ci-dessus, les portes quantiques intriquées sont réalisées
par une commande directe des qubits via un mode d’espace libre, par exemple un
laser, pour activer ou désactiver l’interaction entre les qubits. Dans le chapitre 7 de
cette thèse, nous explorons une approche différente basée sur le simple pilotage du
mode de la cavité directement avec un champ classique qui est modulé en fonction
du temps, sans nécessiter un pilotage externe des qubits. Nous constatons que cette
approche permet deux nouveaux protocoles pour la mise en œuvre de grandes fa-
milles de portes quantiques déterministes non locales à qubits multiples. Appliqués
à seulement deux qubits, les deux protocoles fournissent, avec les portes à qubit
unique, un ensemble de portes universelles pour l’informatique quantique, avec des
erreurs de portes à deux qubits s’échelonnant comme O(C−1/2), similaires aux pro-
tocoles pilotant directement les qubits. Appliqué à plus de deux qubits, cependant,
chaque protocole fournit une famille de portes déterministes non locales à qubits
multiples nécessitant un contrôle minimal, montrant une combinaison unique de ca-
ractéristiques souhaitables telles que la polyvalence dans la conception des portes,
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la vitesse et la robustesse.

Le premier protocole (A) fonctionne dans la limite d’un entrâınement puissant de la
cavité. Il met en œuvre une famille de portes de phase géométriques UA = exp(iθn̂2),
où n̂ est l’opérateur de nombre de qubits dans l’état |1〉, en déplaçant l’état de la
cavité dans une boucle fermée dans l’espace de phase. N’importe quel angle θ peut
être atteint en choisissant une commande appropriée de la cavité. Une application
particulièrement importante du protocole A est la génération d’états GHZ multi-
qubits [156, 208] en utilisant la même procédure que dans la Sec. 3.7, une tâche pour
laquelle les protocoles viables pour les qubits couplés via une cavité sont rares et
nécessitent un entrâınement direct sur les qubits [209]. Le protocole A se distingue
par sa rapidité : dans de nombreuses propositions antérieures, la cavité est fortement
désaccordée par rapport à la fréquence du qubit afin d’éviter un grand nombre de
photons dans la cavité et donc une grande erreur due aux pertes de photons. Cela
se fait au prix d’une longue durée de porte de l’ordre de ∆/g2, où ∆ est le désaccord
de la cavité et g est le couplage entre les qubits et la cavité. Dans le protocole A,
la cavité est également très désaccordée, mais une force d’entrâınement de l’ordre
de ∆ et adaptée au taux de perte de photons permet d’obtenir des durées de porte
de l’ordre de g−1. Un autre avantage du protocole A est sa robustesse : Comme la
porte de Mølmer-Sørensen pour les ions piégés [22], UA est indépendant de l’état
initial du mode de la cavité, ce qui est particulièrement important si le mode de la
cavité se trouve dans le régime des micro-ondes et peut présenter une population
thermique significative. En outre, le protocole A est intrinsèquement robuste aux
imperfections de l’impulsion dans l’entrâınement de la cavité, puisque seule la zone
couverte et non la trajectoire exacte dans l’espace des phases détermine UA.

Le second protocole (B) fonctionne dans la limite d’un entrâınement faible et donc
dans la limite opposée du protocole A. Il utilise une évolution adiabatique du
système cavité-qubit conjoint pour mettre en œuvre une famille de portes de phase
UB = exp[ic1/(c2− n̂)], où c1 et c2 sont des paramètres qui dépendent de l’intensité,
de la durée et du désyntonisme de l’entrâınement appliqué. Le protocole B se dis-
tingue par sa polyvalence : Puisque UB dépend non linéairement de c2, l’application
répétée de UB avec différentes valeurs de c1 et c2 peut être utilisée pour synthétiser
des portes de phase arbitraires exp(iϕ(n̂)). Cela peut par exemple être utilisé pour

mettre en œuvre des portes de rotation de phase exp(iασ
(1)
z ⊗ ...⊗ σ(N)

z ), qui appa-
raissent dans de nombreux algorithmes quantiques variationnels pour les systèmes
fermioniques [210, 211]. Il peut également être utilisé pour implémenter des portes
CkZ, permettant des portes de Toffoli généralisées qui sont fréquemment utilisées
comme primitives en QEC pour réaliser des circuits de vote majoritaire pour l’ex-
traction de syndromes et pour la QEC sans mesure [212-214]. Il convient de noter
que la synthèse de portes Z multicontrôlées utilisant uniquement des portes à un
ou deux qubits nécessite des circuits de grande profondeur ou des qubits ancillaires
supplémentaires [215], ce qui peut être évité à l’aide du protocole B.

Les résultats de ce chapitre ont plusieurs implications principales. Alors qu’il existe
des propositions pour des portes de Toffoli à N qubits sur des qubits couplés via une
cavité [205, 206], nos protocoles donnent la première implémentation native pour une
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grande famille d’autres portes multi-qubits. En particulier, le protocole A introduit
pour la première fois un moyen d’implémenter des portes de phase géométriques
pour plus de deux qubits sur ces systèmes, tandis que le protocole B permet même
l’implémentation de portes de phase natives arbitrary sans les décomposer en portes
à un ou deux qubits. Cela améliore considérablement la perspective de réaliser des
stabilisateurs non locaux et des systèmes de correction d’erreurs quantiques tels que
les codes LDPC avec des surcharges de qubits réduites par rapport aux principaux
systèmes actuels, en particulier si nos protocoles sont parallélisés dans des architec-
tures qui exploitent des modes multiples (par exemple la fréquence, la polarisation,
les modes spatiaux pour les cavités qui se chevauchent) comme nécessaire pour les
opérations parallèles afin de prendre en charge la QEC. Pour les applications à court
terme, le protocole A améliore la bôıte à outils pour la génération de grands états
intriqués de haute fidélité tels que les états GHZ, tandis que les portes de phase ar-
bitraires pouvant être mises en œuvre par le protocole B sont d’un intérêt significatif
pour la simulation quantique. Toutes ces tâches peuvent, pour la première fois, être
accomplies sans qu’il soit nécessaire de piloter les qubits de l’extérieur. En outre, les
deux protocoles appliqués à seulement deux qubits forment, avec les portes à qubit
unique, un ensemble de portes universel pour le calcul quantique. Ces protocoles
peuvent en principe être appliqués à d’autres plates-formes de qubits de pointe pour
l’informatique quantique qui exploitent des modes de bosons délocalisés, tels que
des ions piégés couplés par l’intermédiaire d’un mode de mouvement.

Conclusions et perspectives

Dans cette thèse, nous avons développé plusieurs protocoles de portes nouveaux
et optimisés pour des portes quantiques à deux et plusieurs qubits sur des atomes
neutres interagissant soit par l’interaction de van der Waals des états de Rydberg,
soit par le couplage à un mode de cavité commun. Pour les interactions médiées
par les états de Rydberg, une grande famille de ces protocoles sont des protocoles
temps-optimaux, dans lesquels une impulsion laser globale avec une phase variant
doucement est appliquée sur deux ou plusieurs atomes pour mettre en œuvre une
porte quantique donnée aussi rapidement que possible. Nous avons utilisé la méthode
numérique de contrôle optimal quantique de GRAPE pour trouver le protocole op-
timal en termes de temps pour toutes les portes de phase à deux qubits et plusieurs
portes de phase à plusieurs qubits, et nous avons révélé la structure mathématique
des protocoles optimaux en termes de temps en utilisant le principe du maximum
de Pontryagin. En raison de leur structure simple, de leur polyvalence et de leur
grande fidélité, les protocoles temps-optimaux ont déjà été utilisés pour mettre en
œuvre des portes CZ et pour générer des états GHZ sur un maximum de dix atomes,
et devraient rester des éléments essentiels pour les ordinateurs quantiques à atomes
neutres à l’avenir. L’utilisation d’impulsions optimales en fonction du temps pour
remplacer certaines parties des circuits quantiques par des portes natives ou pour
générer des états spéciaux autres que les états GHZ constitue une direction de re-
cherche future intéressante. En particulier, le développement de protocoles optimaux
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en temps pour générer ce que l’on appelle des états magiques, qui sont nécessaires
pour les calculs quantiques tolérants aux fautes (FTQC), est un objectif de recherche
passionnant.

Alors que la vitesse d’un protocole optimal en termes de temps réduit l’effet de nom-
breuses sources d’erreur, nous avons également montré dans cette thèse qu’il existe
des protocoles de porte plus longs mais robustes, qui peuvent atteindre des fidélités
plus élevées en présence de certaines sources d’erreur. Plus précisément, nous avons
développé des formes d’impulsion qui mettent en œuvre une porte CZ et qui sont
robustes aux déviations de l’amplitude du laser et aux désaccordages du laser dus
aux décalages Doppler induits par le mouvement thermique des atomes. Pour les
erreurs de désintégration de Rydberg, nous avons montré que les protocoles tem-
porellement optimaux pour les portes CZ et C2Z minimisent déjà essentiellement
l’infidélité. Il existe plusieurs sources d’erreurs expérimentales que nous n’avons pas
incluses dans notre discussion sur les portes robustes, et le développement d’ap-
proches pour les atténuer est une direction de recherche importante pour l’avenir.
En particulier, nous n’avons pris en compte que les fluctuations quasi-statiques de
l’amplitude et du désaccord du laser, et une extension de nos résultats à des sources
de bruit dépendant du temps serait hautement souhaitable. En outre, la question de
savoir s’il existe une description semi-analytique des impulsions robustes, semblable
à celle des impulsions optimales en fonction du temps développée dans le chapitre 4,
reste ouverte.

Malgré des protocoles de porte rapides et robustes, les erreurs sont inévitables dans
tout calcul quantique. Le cadre du FTQC utilise la redondance pour atténuer les
effets de ces erreurs. Dans cette thèse, nous avons montré que pour un code de
surface sur les atomes de Rydberg, les protocoles qui minimisent l’infidélité des
portes au niveau physique peuvent être très différents des protocoles qui minimisent
le taux d’erreur logique. Nous avons identifié les erreurs de fuite de Rydberg comme
étant la source de cette divergence et nous avons développé plusieurs protocoles dans
lesquels ces erreurs sont moins préjudiciables. À l’avenir, il sera important d’intégrer
nos résultats avec des approches visant à corriger d’autres erreurs spécifiques aux
atomes neutres, telles que les erreurs de perte d’atomes ou les erreurs de fuite vers
d’autres états hyperfins [84], dans un protocole FTQC monolithique.

Enfin, dans cette thèse, nous avons également développé deux familles de protocoles
de portes qui mettent en œuvre des portes multi-qubits sur des atomes neutres
interagissant via un mode de cavité commun au lieu de l’interaction de van der Waals
des états de Rydberg. Cela permet une connectivité de tout à tout et des portes non
locales entre les atomes. La caractéristique distinctive de nos protocoles est qu’ils
peuvent être mis en œuvre en utilisant simplement une commande classique du
mode de la cavité, alors qu’aucun adressage des atomes n’est nécessaire, ce qui ouvre
de nouvelles possibilités expérimentales. À l’avenir, des variantes de ces protocoles
pourront être utilisées pour générer de grands états intriqués non locaux, tels que
les états GHZ, avec des applications en détection quantique, en cryptographie et en
correction d’erreurs.

Les résultats présentés dans cette thèse ont rapproché de la réalité la vision d’un
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ordinateur quantique à atomes neutres à grande échelle, capable de surpasser les
ordinateurs classiques dans des tâches d’intérêt pratique. Cependant, de nombreux
défis doivent encore être relevés. L’une des tâches les plus importantes est sans doute
la mise en œuvre de protocoles FTQC plus importants, adaptés aux canaux d’erreur
dominants rencontrés dans les atomes neutres. Il s’agit notamment de concevoir des
protocoles capables de corriger simultanément les erreurs de Pauli, les erreurs de
fuite de Rydberg, les erreurs de perte d’atomes et les erreurs de fuite vers d’autres
états hyperfins, et d’utiliser de manière optimale les erreurs d’effacement et le bruit
biaisé [14, 20]. Les protocoles de portes optimaux en temps et robustes développés
dans les chapitres 3–5 ainsi que la discussion sur les erreurs de fuite de Rydberg
dans le chapitre 6 constituent un bon point de départ pour la conception de tels
protocoles FTQC. Une deuxième voie est l’exploration des codes de contrôle de
parité à faible densité (LDPC), qui permettent d’encoder plus de qubits logiques
dans le même nombre de qubits physiques que les codes de surface traditionnels
[29, 78, 79]. Le développement d’approches optimisées pour l’implémentation de
codes LDPC sur des atomes neutres, l’implémentation de portes logiques sur des
qubits encodés dans des codes LDPC, et la compréhension et l’amélioration de la
performance des codes LDPC en cas d’erreurs propres à l’architecture de l’atome
neutre, sont toutes des directions de recherche futures importantes, qui peuvent être
abordées avec les méthodes développées dans cette thèse.
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1 Introduction

The invention of the computer in the second half of the 20th century has revolu-
tionized all aspects of our modern world, from scientific and industrial applications
to the widespread adoption of the personal computer and the rise of the internet.
However, despite the existence of giant super-computers, there are still large classes
of scientifically or economically relevant computational problems whose solution is
impossible or impractical on current machines. These include problems in com-
putational chemistry, material science, drug discovery, combinatorial optimization
problems with applications in logistics and operations research, and problems in
finance.

Quantum computers promise to solve some of these problems faster than any clas-
sical device by using algorithms that exploit quantum phenomena such as entan-
glement and superposition [1–4]. Additionally, other quantum technologies such
as quantum sensing [5] and quantum cryptography [6] offer large improvements
over their classical counterparts, and can be realized with building blocks similar
to those of a quantum computer. While quantum computers have for a long time
been a largely theoretical concept, the last two decades have seen a large scientific
and industrial effort to develop a proof-of-principle machine. However, despite the
impressive progress in recent years, the fundamentally fragile nature of quantum
information makes the physical realization of quantum computing a daunting task,
and all currently existing quantum computers are too small, in terms of the number
of quantum bits (qubits), and too faulty, in terms of the error rate per operation, to
allow a speed-up in practically relevant computational problems. It is thus neces-
sary to develop new and improved methods of implementing quantum computations
with higher quality, and on more qubits.

Several different technologies are currently explored as candidates for a quantum
computing platform. Historically, two of the first platforms to demonstrate small-
scale proof-of-principle quantum computations were superconducting circuits [7] and
trapped ions [8]. In these platforms, quantum bits are encoded in the current in
a superconducting circuit and in the electronic and nuclear state of trapped ions,
respectively. However, in recent years the promising and rapidly advancing platform
of trapped neutral atoms has achieved a performance which is, in metrics such as
qubit number and gate error rate, comparable to that of superconducting circuits and
trapped ions [9–11]. In the neutral atom platform, individual atoms are trapped in
regular arrays of optical tweezers, and qubits are stored in the electronic and nuclear
degrees of freedom of each atom. The state of the atoms can be manipulated with
high fidelity by applying laser or microwave pulses on or close to resonance with
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a transition in the atoms. Usually, to implement a quantum gate on two or more
atoms, the extreme properties of so-called Rydberg states [12] are exploited. Rydberg
states are highly excited states of an atom, in which there is a large separation
between the outermost electron and the nucleus. Due to the correspondingly large
polarizability of Rydberg states, there is a strong van der Waals interaction between
adjacent atoms. This interaction is many orders of magnitude larger than for atoms
in the ground state, so that quantum gates on two or more atoms can be implemented
by coupling the ground states of these atoms to a Rydberg state, while spectator
atoms which are not involved in the gate are not affected by the van der Waals
interaction. How exactly the van der Waals interaction between Rydberg states is
used to implement a given quantum gate is described by a gate protocol. Different
gate protocols have different advantages and drawbacks in terms of the fidelity,
duration and robustness of the gate, and the design of new gate protocols has been
an active field of research in the recent years.

In this thesis, we propose several new gate protocols for neutral atom quantum
gates on two or more qubits which are optimal, and explore several different notions
of optimality. To find optimal gate protocols, we use a combination of analytical
techniques and numerical quantum optimal control methods. The main results of
this thesis can be structured by different notions of optimality:

i) Time-Optimal protocols. A simple notion of optimality is speed. As the ad-
verse effects of many experimental imperfections are reduced for short gate
durations, finding fast gate protocols is of large practical interest. In this
thesis we use numerical and analytical quantum optimal control methods to
develop a family of time-optimal protocols, which implement a given quan-
tum gate as fast as possible. These protocols have a simple structure and
only require a single laser pulse with a time-dependent laser phase to be ap-
plied to the atoms. The most important instance of time-optimal gate pro-
tocols is the time-optimal controlled-Z (CZ) gate, which is by now routinely
employed in many experiments [13–17]. Using the time-optimal CZ proto-
col, gate error rates below 0.5% have been demonstrated [13], more than five
times better than the previously lowest error rate of 2.6% [18]. Besides the
CZ gate, in this thesis we find time-optimal protocols for general two-qubit
controlled phase gates, multi-controlled gates, and for the generation of multi-
qubit Greenberger-Horne-Zeilinger (GHZ) states. The latter lead to an exper-
imental implementation of GHZ states on up to nine atoms and their use in
an optical clock [17]. In this thesis we also analyze the mathematical struc-
ture of time-optimal protocols using Pontryagin’s maximum principle, and find
that the laser pulse shape used to implement time-optimal protocols can be
described by a simple differential equation.

ii) Robust protocols. If the main error sources affecting a gate are known, gate pro-
tocols can be designed to be as robust as possible against these error sources. In
this thesis, we develop gate protocols for the CZ gate which minimize the gate
error due to several common experimental error sources, including Rydberg
decay, a finite value of the interaction strength between the atoms, amplitude
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fluctuations of the Rydberg laser, and laser detunings due to a Doppler shift
arising from the thermal motion of the atoms. We then analyze the trade-
off between different error sources for realistic parameters of qubits stored in
171Yb atoms and find that our robust protocols allow for high gate fidelities
for a large range of laser amplitude fluctuations and atomic temperatures,
thus significantly relaxing the technical requirements for the implementation
of high-fidelity CZ gates.

iii) Protocols minimizing the logical error rate. Due to the fragile nature of quan-
tum information, errors in a quantum computation are unavoidable. To miti-
gate these errors, the framework of fault tolerant quantum computing (FTQC)
has been developed [19]. In FTQC, one logical qubit is encoded into several
physical qubits and the resulting redundancy is used to detect and correct
errors in the computation. In the context of FTQC, the error rate with which
the logical qubit experiences a failure, the so-called logical error rate, becomes
a more important metric than the physical error rate of individual gates on the
physical level. In this thesis, we discover two separate mechanisms which can
cause a divergence between logical and physical error rate, and demonstrate
that the logical error rate can be significantly improved by using gate protocols
with a sub-optimal physical error rate. The first mechanism shows that in the
context of erasure conversion [20] the optimal trade-off between different er-
ror sources for robust gates changes significantly when considering the logical
instead of the physical error rate. In the second, more general, mechanism,
we show that Rydberg leakage errors, in which an atoms erroneously remains
in the Rydberg state at the end of a gate, can significantly reduce the error
correction capabilities of so-called surface codes [21]. We then develop gate
protocols which mitigate the effects of Rydberg leakage errors, significantly re-
ducing the logical error rate at the expense of a small increase of the physical
error rate.

Besides using the van der Waals interaction between Rydberg states, it is also pos-
sible to implement quantum gates on two or more atoms by coupling the atoms
to a common mode of an optical or a microwave cavity. This has the advantage
of allowing for an all-to-all connectivity and non-local gates between the qubits,
but typically results in higher gate error rates. In this thesis, we propose two new
families of gate protocols for atoms coupled to a cavity, using a similar mechanism
than for Mølmer-Sørensen gates for trapped ions [22]. In contrast to many previ-
ous works, these protocols can be implemented simply by a classical drive of the
cavity mode, while no addressing of the atoms is necessary. This opens up new
experimental possibilities of implementing quantum gates via optical cavities.

This thesis is structured as follows: We start in Chapter 2 with an introduction
to quantum computing with neutral atoms and discuss the encoding of a qubit
in an atom, the interaction between atoms and light, the trapping of atoms in
arrays of optical tweezers, and several different approaches for implementing single-
and two-qubit gates, state preparation, and measurement. In Chapter 3 we then
use numerical methods to identify time-optimal gate protocols for several families
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of quantum gates, and discuss the mathematical structure of these protocols in
Chapter 4. In Chapter 5 we discuss robust gate protocols, followed by protocols
optimized for the logical error rate in Chapter 6. We turn our focus to quantum
gates implemented via an optical cavity in Chapter 7. Finally, in Chapter 8 we give
an outlook to applications and extensions of the results of this thesis.

The results of this thesis have been previously published in the following publica-
tions:

• S. Jandura and G. Pupillo. “Time-Optimal Two- and Three-Qubit Gates for
Rydberg Atoms”. Quantum 6 (2022), p. 712. doi: 10.22331/q-2022-05-

13-712

• S. Jandura, J. D. Thompson, and G. Pupillo. “Optimizing Rydberg Gates
for Logical-Qubit Performance”. PRX Quantum 4 (2023), p. 020336. doi:
10.1103/PRXQuantum.4.020336

• S. Jandura, V. Srivastava, L. Pecorari, G. Brennen, and G. Pupillo. “Non-
Local Multi-Qubit Quantum Gates via a Driven Cavity”. arXiv:2303.13127
(2023). url: http://arxiv.org/abs/2303.13127

• S. Jandura and G. Pupillo. “Surface Code Stabilizer Measurements for Ry-
dberg Atoms”. arXiv:2405.16621 (2024). url: http://arxiv.org/abs/

2405.16621

• S. Ma, G. Liu, P. Peng, B. Zhang, S. Jandura, J. Claes, A. P. Burgers, G.
Pupillo, S. Puri, and J. D. Thompson. “High-Fidelity Gates and Mid-Circuit
Erasure Conversion in an Atomic Qubit”. Nature 622 (2023), pp. 279–284.
doi: 10.1038/s41586-023-06438-1

• A. Cao, W. J. Eckner, T. L. Yelin, A. W. Young, S. Jandura, L. Yan, K. Kim,
G. Pupillo, J. Ye, N. D. Oppong, and A. M. Kaufman. “Multi-Qubit Gates
and ’Schrödinger Cat’ States in an Optical Clock”. arXiv:2402.16289 (2024).
url: http://arxiv.org/abs/2402.16289

The results of the following publications of the author are not included in this thesis:

• S. Jandura and E. Y.-Z. Tan. “De Finetti Theorems for Quantum Conditional
Probability Distributions with Symmetry”. Annales Henri Poincaré (2023).
doi: 10.1007/s00023-023-01357-3

• P. J. Ollitrault, S. Jandura, A. Miessen, I. Burghardt, R. Martinazzo, F.
Tacchino, and I. Tavernelli. “Quantum Algorithms for Grid-Based Variational
Time Evolution”. Quantum 7 (2023), p. 1139. doi: 10.22331/q-2023-10-

12-1139

• L. Pecorari, S. Jandura, G. K. Brennen, and G. Pupillo. “High-Rate Quantum
LDPC Codes for Long-Range-Connected Neutral Atom Registers”. arXiv:
2404.13010 (2024). url: http://arxiv.org/abs/2404.13010
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2 Introduction to Quantum Computing
with Neutral Atoms

In the early 1980s, a fundamental connection between the two research fields of quan-
tum physics and computer science, previously thought to be unconnected, started
to emerge. In 1980, Paul Benioff was one of the first to introduce the idea of a
quantum computer in form of a quantum turning machine [30]. Soon after, Yuri
Manin [31] and Richard Feynman [32] independently suggested to use a computer
that exploits quantum phenomena for the simulation of quantum systems, thus
overcoming the exponential overhead that is required to simulate a quantum sys-
tem on a classical computer. Later, David Deutsch, Richard Jozsa, Ethan Bernstein,
Umesh Vazirani, Daniel Simon and others realized that quantum computers can also
outperform classical computers in solving certain oracle problems, which in them-
selves have no connection to quantum physics [33–36]. While these problems had
no immediate practical applications, they demonstrated the computational power
of quantum computers. In the mid 1990s, the first quantum algorithms with poten-
tial applications to practical problems were discovered: In his seminal work, Peter
Shor proposed a quantum algorithm to factor large integers in polynomial time
[37], whose realization would compromise the largely used Rivest-Shamir-Adleman
(RSA) cryptosystem [38]. Later, Lov Grover developed a quantum search algorithm
that can find the input to a black box function which produces a given output with
just O(

√
N) evaluations of the function, while any classical algorithm requires O(N)

evaluations, where N is the number of possible inputs to than function. Since then,
a large variety of quantum algorithms with applications to optimization problems [3,
39], finance [4], quantum chemistry [2], machine learning [40, 41], and many other
fields have been developed.

Building a physical quantum computer is a daunting task. The first quantum com-
putation was realized in 1998 with two quantum bits (qubits) encoded in the nuclear
spin on a carbon nucleus and a proton in a chloroform molecule [42]. Since encoding
qubits in the individual atoms of a molecule is not scalable to more than a handful of
qubits, soon other quantum computing platforms became popular. Superconduct-
ing circuits [7, 43–45], trapped ions [8, 46, 47], qubits encoded diamond vacancies
[48], silicon quantum dots [49, 50], photonic qubits [51, 52], topological qubits [53,
54], and qubits encoded in neutral atoms, the subject of this thesis, are all actively
researched quantum computing platforms with different advantages and drawbacks
[55]. Since the first quantum computing experiments, all of these platforms have
seen tremendous progress. A recent milestone is the demonstration of so-called
quantum supremacy on superconducting qubits [56, 57], where a quantum computer
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solved a problem which arguably would take several millennia to solve on a classi-
cal computer. Also the demonstration of first quantum error correction protocols
on several platforms [15, 58–63], where unavoidable errors in the computation are
detected and subsequently corrected, has been a crucial achievement of the recent
years.

A particularly promising and rapidly advancing quantum computing platform are
optically trapped neutral atoms, the subject of this thesis. Since the first proposal
in 2000 [64] and the first realization of a two qubit gate 10 years later [65] there
has been impressive list of experimental achievements: Two-qubit gates have been
demonstrated with fidelities above 99% [13, 16, 66] and used for the execution of
small quantum circuits and algorithms [67, 68]. Greenberger-Horne-Zeilinger states
(GHZ), an important resource for quantum metrology, have been generated on up
to 20 qubits [69] and used in optical clocks [16, 17]. Several research groups have
shown quantum processors with more than 1000 qubits [70–72]. Mid-circuit mea-
surements and non-demolition readout have been demonstrated on processors with
one [73] or two [74] atomic species. The conversion of unavoidable physical errors
into erasure errors, which are particularly easy to correct, has been demonstrated in
proof-of-principle experiments [14, 75]. Finally, there are even first implementations
of quantum error correction and logical quantum gates and circuits [15]. In the near-
and mid-term future, two-qubit gate fidelities beyond 99.9% [13], processors with
tens of thousands of qubits [71], interconnects between different quantum processors
[76, 77], and the usage of low density parity check (LDPC) error correction codes
[29, 78, 79] are all realistic goals.

This chapter gives an overview on the state of the art of quantum computing with
neutral atoms. We assume that the reader is familiar with the basic concepts of
platform agnostic quantum computing, such as qubits, quantum gates, and quan-
tum circuits. An introduction to this topic can be found in Ref. [1]. The overview
on neutral atom quantum computing provided in this chapter is by no means ex-
haustive, the interested reader is referred to the reviews [9–11, 80] for more details.

The first step in any quantum computation is, of course, deciding how qubits should
be stored. We address this question in Sec. 2.1 by reviewing the level schemes
of alkali and alkaline earth atoms and discussing different qubit encodings. Once
we have decided on what our qubits are, we need to manipulate them. The main
way of manipulating qubits stored in atoms is by applying a classically controlled
electromagnetic field to the atoms, either through a laser or through a microwave
antenna. In Sec. 2.2 we therefore discuss the interaction of atoms with light (and
other electromagnetic radiation). Before any quantum computation can start, the
atoms have to be trapped, which can be done in so-called optical tweezers. We briefly
review this technology in Sec. 2.3. A quantum computation consists of a sequence
of single- and multi-qubit operations. We discuss the implementation of the three
fundamental single qubit operations of qubit initialization, single qubit gates, and
measurements in Sec. 2.4. Finally, in Sec. 2.5 we discuss how the strong van der
Waals interaction between atoms excited to so-called Rydberg states can be used to
implement quantum gates on two or more qubits.
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2.1 Storing Qubits in Atoms

The fundamental unit of information of every quantum computer is the quantum
bit (qubit), a physical system which can be in a superposition of two computational
basis states, conventionally called |0〉 and |1〉. In a neutral atom quantum computer
qubits are stored in the electronic and nuclear degrees of freedom of individual
atoms. Typically, Alkali atoms such as Potassium, Rubidium or Cesium, or alkaline
earth(-like) atoms such as Strontium or Ytterbium are used for this purpose. In the
following we review the level structures of these atoms and discuss different choices
of the computational basis states |0〉 and |1〉.

We start by discussing the level structure of alkali atoms, the atoms in the first col-
umn of the periodic table. Qualitatively, alkali atoms are similar to Hydrogen, since
their outermost shell is an s-shell occupied by just one electron. The level structure
of alkali atoms can be understood by just considering the position operator r and
momentum operator p of this valance electron moving in an effective potential V (r)
[81] which describes the attraction of the valence electron to the nucleus shielded
by the core electrons. Additionally, the atom is described by the spin operator
S = (Sx, Sy, Sz) of the valence electron and the spin operator I = (Ix, Iy, Iz) of the
nucleus. The Hamiltonian of the atom is then given by

H =
p2

2µ
+ V (r) +HSO +HHF . (2.1)

Here, µ = 1/(1/me + 1/mN) is the reduced mass, with me and mN the mass of the
electron and the nucleus, respectively. HSO ∝ L ·S describes the spin-orbit coupling
between the spin S and the orbital angular momentum L = r × p of the electron.
HHF ∝ I · J describes the hyperfine coupling between the spin I of the nucleus and
the total angular momentum J = L + S of the electron [82].

H commutes with the observables L2,S2,J2, I2,F2 and Fz, where F = J + I. Each
eigenstate |ψ〉 of H can thus be associated with quantum numbers l, s, j, i, f and
mF such that L2 |ψ〉 = ~2l(l + 1) |ψ〉 with analogous expressions for S2,J2, I2,F2

and Fz |ψ〉 = ~mF |ψ〉 [82]. The quantum numbers l are constrained to be non-
negative integers. Since the electron is a spin 1/2 particle, the quantum number
s has to take the value s = 1/2. The quantum number i depends on the isotope
of the nucleus. For example, an 87Rb nucleus has a spin of i = 3/2. Since J =
L + S and F = L + I, the quantum numbers j and f are constrained to the values
|l−s|, |l−s|+1, |l−s|+2, ..., l+s and |j−i|, |j−i|+1, |j−i|+2, ..., j+i, respectively.
The quantum numbermF can take the values−f,−f+1, ..., f−1, f . Even for a given
set l, s, j, i, f,mF of quantum numbers there are still several different eigenstates of
H. These eigenstates are then simply enumerated with increasing energy by the
principal quantum number n.

Fig. 2.1 shows some of the most relevant energy levels of a 87Rb atom (nuclear
spin 3/2), the level structures of other alkali atoms are similar. Conventionally, the
eigenstates of H are denoted as |nlj〉, where instead of the integer l we write S for
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... ...

... ...

Figure 2.1: 87Rb Level Structure. The energy levels of a 87Rb atom un-
der Coulomb interaction only (left column), taking spin-orbit coupling into ac-
count (middle column) and taking also the hyperfine interaction into account
(right column). A qubit can be encoded in |0〉 = |5S1/2, f = 1, mF = 0〉 and
|1〉 = |5S1/2, f = 2, mF = 0〉.

l = 0, P for l = 1, D for l = 2, and F for l = 3. The left column in Fig. 2.1 shows
the eigenstates of HCoulomb = p2/2µ+ V (r), neglecting the spin of the electron and
the nucleus. The middle column shows the eigenstates of Hcoulomb +HSO, taking into
account the spin of the valence electron, but not that of the nucleus. The splitting
of the |nl〉 state into different |nlj〉 states is called the fine structure of the atom.
Note that the energy difference between states with the same n and l but different
j is an order of α2 smaller than the energy difference between states with different
n or l, where α ≈ 1/137 is the fine structure constant.

The ground state of a 87Rb atom is the |5S1/2〉 state. All states energetically below
this state are occupied by the core electrons and by the Pauli exclusion principle
cannot be accessed by the valance electron. Two important excited states are the
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|5P 〉 and |6P 〉 states, each of which split into a j = 1/2 and j = 3/2 state under
spin-orbit coupling. The energy difference between these states and the ground state
corresponds to a photon in the optical regime, allowing these states to be accessed
by illuminating the atom with a laser beam (see Sec. 2.2). Finally, an important
class of excited states which will play a prominent role in the rest of this thesis are
so-called Rydberg states |nS〉 , |nP 〉 , |nD〉 , ... , which are states with a large principal
quantum number n (typically n & 40). Since for Rydberg states the valence electron
is far away from the nucleus and all core electrons, their energy levels are similar to
the energy levels of Hydrogen and can be approximated as [83]

En,l,j = − 1 Ry

(n− δl,j)2
(2.2)

where 1 Ry ≈ 13.6 eV is the binding energy of a Hydrogen atom and the parameters
δl,j, called the quantum defects, are fitted to the experimentally obtained energy
levels. The Rydberg states in 87Rb are experimentally accessible from the ground
state through a two-photon transition via the |6P 〉 states, where the second photon
from the |6P 〉 states to the Rydberg states is in the infrared regime.

So far we have ignored the hyperfine coupling HHF between the angular momentum
J of the electron and the spin I of the nucleus. Taking HHF into account splits
the |nlj〉 states into several different hyperfine states with different values of f and
mF . These hyperfine states are shown in the right column of Fig. 2.1. The energy
splitting between hyperfine states with different f is an another factor of α2 smaller
than the fine structure splitting, and typically in the microwave regime.

A qubit can be encoded in the states of an alkali atom by choosing |0〉 and |1〉 to be
two hyperfine states in the |S1/2〉 ground state manifold. These states are not effected
by radiative decay and only couple weakly to their environment, allowing for long de-
coherence times (see Sec. 2.3). A popular choice is to take two states with different f
and mF = 0, such as |0〉 = |5S1/2, f = 1, mF = 0〉 and |1〉 = |5S1/2, f = 2, mF = 0〉
for 87Rb [18], making the qubit frequency magnetically insensitive. However, other
choices have been proposed [84]. Since both computational basis states are encoded
in the ground state manifold of the atom, this type of qubit is known as ground-
ground qubit. It is also possible to encode one or both computational basis states
in a Rydberg state, known as ground-Rydberg and Rydberg-Rydberg qubit, respec-
tively [11]. Due to the finite lifetime of the Rydberg state and the natural interaction
between atoms in the Rydberg state (see Sec. 2.5), this approach is typically only
adopted for quantum simulation [10], and rarely for quantum computation. In this
thesis, we will exclusively consider ground-ground qubits.

Finally we briefly comment on possible qubit encodings in alkaline earth(-like)
atoms, in which the outermost shell is an s-shell occupied by two electrons. These
atoms, in particular Strontium and Ytterbium, have been used in several quantum
computing experiments [17, 85, 86]. (Note that Ytterbium is technically not an al-
kaline earth atom, but its outermost shell is still a completely filled s-shell. For this
reason, it is often referred to as an alkaline earth-like atom). The fact that now there
are two electron spins S1 and S2, which couple to a total electronic spin S = S1 +S2
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allows for an additional degree of freedom in the level structure: The two spins can
either form a singlet (|↑↓〉− |↓↑〉)/

√
2, such that s = 0, or a triplet, i.e. a superposi-

tion of |↑↑〉 , (|↑↓〉+ |↓↑〉)/
√

2 and |↓↓〉, such that s = 1. The quantum numbers l, s
and j are now often combined to a symbol 2s+1lj, where again l = 0, 1, 2, 3 is replaced
by S,P ,D,F . Besides the quantum numbers l, s, j, i, f a state is now identified by the
principal quantum numbers n1, n2 and the angular momentum quantum numbers
l1, l2 of the individual electrons. The ground state of an alkaline earth atom is the
|g〉 = |ns ns 1S0〉 state, where n is the principal quantum number of the lowest s-
shell that is not occupied by the core electrons. Note that |g〉 is a singlet state. The
triplet state with the lowest energy is the |m〉 = |ns np 3P0〉 state. (Note that since
the total wavefunction must be antisymmetric under the exchange of both electrons
there is no |ns ns 3S0〉 state). The state |m〉 has a very long radiative lifetime (e.g.
150 s for 88Sr [87]) and is therefore called metastable state, and effectively acts as
a second ground state of the atom. There are now three possibilities to encode a
qubit, called the optical, metastable, and ground (OMG) qubit [88]. The optical
qubit consists of |0〉 = |g〉 and |1〉 = |m〉, and bears this name since the transition
frequency between |0〉 and |1〉 is in the optical range. For the metastable and ground
qubits, which are only possible for isotopes with nonzero nuclear spin, the states |0〉
and |1〉 are instead chosen to be two hyperfine states in the metastable or the ground
manifold, respectively. One particular advantage of the optical and the metastable
qubit is that the Rydberg states can be accessed from state |1〉 with a single-photon
instead of a two-photon transition [17, 85]. Furthermore, metastable qubits allow
for certain erasure conversion protocols, which simplifies the correction of errors due
to Rydberg decay [14, 20]. Other advantages and drawbacks of each choice of qubit
are discussed in Ref. [88].

In summary, in this section we have discussed the level schemes of alkali and alkaline
earth(-like) atoms. In alkali atoms, a qubit can be encoded in two different hyperfine
states in the ground state manifold, while in alkaline earth (like) atoms there is the
additional possibility of an optical or a metastable qubit. Beyond the ground state,
Rydberg states, i.e. states with a large principal quantum number will play a major
role in this thesis. Between the ground state and Rydberg states there are several
intermediate states that can be accessed optically from the ground state and that
allow accessing the Rydberg state via a two photon transition.

2.2 Atom-Light Interaction

Both the internal and the motional degrees of freedoms of an atom can be controlled
using light fields and electromagnetic waves at other frequencies. In the following
we therefore review the interaction between an atom and a classical light field. We
also briefly discuss spontaneous emission, which is a crucial process that can only
be explained through a quantum mechanical treatment of light.

To understand the interaction between an atom and a light field it is sufficient to
model an atom as a two level system with a ground state |g〉 and an excited state
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|e〉 with energies ~ωg and ~ωe respectively. In the absence of light, the Hamiltonian
of the atom is then just given by

H0 = ~ωg |g〉 〈g|+ ~ωe |e〉 〈e| . (2.3)

An electromagnetic wave with frequency ωl and wavevector k is described by an
oscillating electric field

E(r, t) = Re
(
E0e

−i(ωlt−k·r)
)

(2.4)

where E0 is a complex vector with E0 · k = 0. Of course the electromagnetic wave
also comes with a magnetic component, whose contribution to the interaction is
however much smaller than that of the electric component if the size of the atom
is much smaller then the wavelength [89]. In the following we will therefore neglect
the magnetic field.

The interaction of the atom at r = 0 with the electric field can be approximated as
a dipole interaction

Hint = −E(0, t) · d (2.5)

= −E(0, t) · (〈g|d|e〉 |g〉 〈e|+ 〈e|d|g〉 |e〉 〈g|)

= −1

2

[
E0 · 〈g|d|e〉 eiωlt + E∗0 · 〈g|d|e〉 e−iωlt

]
|g〉 〈e|+ h.c.

where d is the dipole moment operator of the atom. The second equality in the
above equation arises due to the spherical symmetry of the atom, which implies
〈g|d|g〉 = 〈e|d|e〉 = 0. In the third equality, h.c. denotes the hermitian conjugate of
the previous term.

We now perform a time-dependent basis transformation with V (t) = eiωgt |g〉 〈g| +
ei(ωl+ωg)t |e〉 〈e| and obtain

H̄ = V HV † + i~V̇ V † (2.6)

= ~∆ |e〉 〈e| − 1

2

[
E0 · 〈g|d|e〉 e−2iωlt + E∗0 · 〈g|d|e〉

]
|g〉 〈e| − h.c.

where ∆ = ωe−ωg−ωl. In the so-called rotating wave approximation we now neglect
the rapidly oscillating E0 · 〈g|d|e〉 e−2iωlt term since its time average vanishes and
obtain

H̄ = ~∆ |e〉 〈e|+ ~Ω

2
|g〉 〈e|+ ~Ω∗

2
|e〉 〈g| (2.7)

where we introduced the Rabi frequency

Ω = −1

~
E∗0 · 〈g|d|e〉 . (2.8)

The amplitude of the Rabi frequency can be related to the intensity I = cε0|E0|2/2
of the light as

|Ω| = 1

~

√
2I

cε0
| 〈g|n · d|e〉 |. (2.9)
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where n = E∗0/|E0| and c is the speed of light and ε0 the vacuum permittivity. The
phase ϕ of the Rabi frequency is simply the phase of the electromagnetic wave.

It is useful to expand the dipole moment operator d and the electric field E0 as d =∑1
m=−1 dmem and E0 =

∑1
m=−1Emem, where e0 = (0, 0, 1) and e±1 = (1,±i, 0)/

√
2.

Then the E0 and E±1 describe the π and the σ± polarized part of the light field,
respectively, and we have

Ω = −1

~

m∑
m=−1

E∗m 〈g|dm|e〉 . (2.10)

Crucially, for many choices of the states |g〉 and |e〉 the transition dipole moments
〈g|dm|e〉 vanish due to symmetry arguments. These rules are known as selection
rules and can be summarized as follows [89]: Let l, j, f,mf and l′, j′, f ′,m′f be the
quantum numbers of |g〉 and |e〉. Then 〈g|dm|e〉 = 0 unless all of the following hold:

i) |l − l′| = 1

ii) |j − j′| ≤ 1

iii) |f − f ′| ≤ 1

iv) m′F = mF +m

v) If mF = m′F = 0 then f 6= f ′.

In particular, selection rule iv) implies a purely π polarized light field can only couple
states with m′F = mF , while a purely σ± polarized light field can only couple states
with m′F = mF ± 1.

Two special cases of the Hamiltonian H̄ [Eq. (2.7)] are of particular importance.
The first case is the case of a resonant light field, i.e. ∆ = 0. In this case, the
evolution under H̄ is simply given by

Ū(t) = exp(−iH̄t/~) = cos

(
|Ω|t

2

)
I−i sin

(
|Ω|t

2

)(
eiϕ |g〉 〈e|+ e−iϕ |e〉 〈g|

)
(2.11)

where I denotes the identity operator. In particular, for a system starting in |g〉 the
probability of finding the system it state |g〉 at time t is given by

〈g|Ū(t)|g〉 = cos

(
|Ω|t

2

)2

=
1

2
(1 + cos(|Ω|t)) (2.12)

i.e. the population oscillates with frequency |Ω|. These oscillations are called Rabi
oscillations.

The second important case is a far detuned light field, |∆| � |Ω|. In this case we
can can treat the atom-light interaction perturbatively. The Hamiltonian H̄ now
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has dressed eigenstates |g̃〉 and |ẽ〉 close to |g〉 and |e〉, respectively. The energies of
these states in second order perturbation theory are given by

εg/~ = −|Ω|
2

4∆
and εe/~ = ∆ +

|Ω|2

4∆
. (2.13)

In particular we see that the energy of the ground state is lowered if ∆ > 0 and
raised if ∆ < 0. This phenomenon is called light shift. The light shift can be used
to trap atoms: If we model the atom as a multi level system with ground state |g〉
and excited state |e1〉 , |e2〉 , ... the energy of the state perturbed |g̃〉 is given by

εg = −
∑
i

~|Ωi|2

4∆i

= −1

2
α(ωl)|E0|2 = −α(ωl)I

cε0
(2.14)

where

α(ωl) =
∑
i

| 〈g|n · d|ei〉 |2

4~(ωei − ωg − ωl)
(2.15)

is the polarizability of the atom at wavelength ωl. For α(ωl) > 0 the atom is thus
attracted to regions with high intensity.

So far we have treated the electric field as a classical quantity. For most of this thesis,
this will be a sufficient approximation. The one exception is spontaneous emission.
If we leave the atom in the excited state |e〉 it can emit a photon and decay back to
the ground state |g〉 without the presence of any external light field. This process
can only be explained through a fully quantum mechanical treatment of light, which
is beyond the scope of this overview. The emission rate can be calculated as [82]

γ =
(ωe − ωg)3| 〈g|d|e〉 |2

3πε0~c3
(2.16)

and the evolution of the atom can be described through a Lindblad master equation

ρ̇ = −i[H0, ρ] + L†ρL− 1

2
{L†L, ρ} (2.17)

where ρ is the density matrix of the atom and L =
√
γ |g〉 〈e|.

In summary we have derived the interaction Hamiltonian of an atom modeled as a
two level system with a classical light field [Eq. (2.7)]. An extension to more than
two levels is straightforward. We have also given the formula for the spontaneous
emission rate of an excited state, a phenomenon that cannot be described by treating
the light classically.

2.3 Trapping Atoms in Optical Tweezers

Before starting any quantum computation the atoms have to be trapped and ar-
ranged in the desired geometry. In the following we briefly describe the experimental
techniques with which this can be achieved.
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To trap individual atoms in a regular array or another geometry, a light field with
a spatially varying intensity profile has to be produced. Atoms can then be trapped
in the intensity maxima of this light field [see Eq. (2.14)]. Regular arrays of traps
can be produced in an optical lattice by the interference of two counter-propagating
beams [90]. A more flexible approach is to use optical tweezers. In this approach,
spatial light modulators (SLMs) or acousto-optical deflectors (AODs) are used to
create several individual laser beams, which are than tightly focused to a micron-
size waist and each act as an individual trap [91–93]. Tweezers generated by SLMs
can be generated by in arbitrary geometries, but are static during the experiment.
In contrast, tweezers generated by AODs have to be arranged in certain regular
patterns, but can be moved during the experiment [94].

To load the tweezers with atoms, first millions of atoms are trapped and laser cooled
in a magneto-optical trap [95]. Then the tweezers are turned on and capture atoms
in their vicinity. Due to the process of collisional blockade [96], pairs of atoms are
ejected from the tweezers due to light-assisted collisions, leaving every tweezer either
empty or filled with exactly one atom. To produce deterministically filled arrays of
tweezers, fluorescence imaging can be used to determine which tweezers are filled.
These filled tweezers can then be rearranged to produce the desired geometry. This
has been demonstrated for arbitrary geometries in one [91], and two [92] dimensions,
for up to 6100 atoms [71].

Trapping the atoms in tweezers is a source of decoherence for the qubits encoded
in the atoms. There are two relevant error mechanisms: First, atoms can be lost
from the tweezers due to collisions with the background gas. This typically limits
the lifetime of the atoms in the trap to tens of seconds [91], but lifetimes up to
6000s have been observed in cryogenic setups [97]. The second error mechanism is
a dephasing of the qubits. This arises because the polarizability α, and thus the
trap depth, is slightly different for the states |0〉 and |1〉. Due to fluctuations in
the trap depths or the motion of the atoms in the trap, this leads to fluctuations
in the energy difference between |0〉 and |1〉 and thus to dephasing of the qubit.
Typical values of the T ∗2 time describing the time scale of this dephasing are tens
of milliseconds [98], but values above one second have been reported [99]. We point
out that errors due to atom loss and decoherence of the qubit are typically much
smaller than the additional errors induced during two-qubit gates, and thus are not
the dominant error source in a computation.

2.4 Single Qubit Operations

The three fundamental single qubit operations in a quantum computer are the ini-
tialization of a qubit in a well defined initial state, the application of single qubit
gates, and the measurement of the qubit. In the following we briefly discuss tech-
niques that can be used to realize these operations on a neutral atom quantum
computer.
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2.4.1 Qubit Initialization

In the beginning of a quantum computation, all atoms start in an unknown hyperfine
state in the ground state manifold of the atoms. To prepare the atoms in a well
defined initial state, either |0〉 or |1〉, a family of techniques collectively known as
optical pumping is commonly used [18, 85, 95, 98, 100]. In the following we describe
it for 87Rb atoms (see level scheme in Fig. 2.1), but analogous schemes exist for
other atoms.

Initially, all qubits start in the 5S1/2 manifold, but with different values of f and
mF . Then two π-polarized laser beams are applied, coupling |5S1/2 f = 1, mF 〉 ↔
|5P3/2 f = 2, mF 〉 and |5S1/2 f = 2, mF 〉 ↔ |5P3/2 f = 2, mF 〉 for all values of mF ,
respectively. The only exception is that there is no coupling |5S1/2 f = 2, mF = 0〉 ↔
|5P3/2 f = 2, mF = 0〉, due to a selection rule which forbids couplings with f = f ′

if mF = m′F = 0 (see Sec. 2.2). Thus, atoms in state |1〉 = |5S1/2 f = 2, mF = 0〉
are not affected by the laser and will remain in this state, while all other atoms are
excited to the 5P3/2 manifold. The states in the 5P3/2 manifold have a very short
lifetime of 26 ns [101], and quickly decay back to the S1/2 manifold. Some fraction
of the atoms will decay to |1〉, where they will remain indefinitely. All other atoms
will be again excited to the 5P3/2 manifold, from which a fraction of them will decay
to |1〉, while for the others the cycle repeats. Asymptotically, this procedure leaves
all atoms in |1〉.

In practice, state preparation errors arise due to an imperfect polarization of the
laser beams, which allows the transition from |1〉 to |5P3/2 f = 2, mF = ±1〉. These
errors can be significantly reduced by an active Raman assisted optical pumping
scheme [18, 95].

2.4.2 Single Qubit Gates

There are several ways of implementing single qubit gates on neutral atoms. In
the simplest case, electromagnetic radiation with a frequency resonant with the
transition between |0〉 and |1〉 is applied. For qubits encoded in hyperfine states
with different f this radiation is in the microwave regime [98], for qubits encoded
in states with the same f but different mF it is in the radio frequency regime (RF)
[85], and for optical qubits it is in the optical regime [16, 17], so a laser can be used
to apply single qubit gates. In all cases, the Hamiltonian in the rotating frame is
given by (see Sec. 2.2)

H =
Ω

2
|0〉 〈1|+ Ω∗

2
|1〉 〈0| = |Ω|

2
(cosϕσx + sinϕσy) (2.18)

where σx,y denote the Pauli X and Y matrices. Thus by applying H for a time θ/|Ω|
we can implement the two-parameter family of single qubit gates

U(θ, ϕ) = exp

(
−iθ

2
(cosϕσx + sinϕσy)

)
. (2.19)
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The U(θ, ϕ) family of gates is sufficient to synthesize any single qubit gate [1].

Except for optical qubits, the disadvantage of this approach is that is not addressable
to individual qubits, i.e. the same unitary U(θ, ϕ) is applied to all qubits. To make
the gates addressable it is possible to use an additional addressable laser beam which
is off-resonant from any transitions from |0〉 or |1〉. The only effect of this laser is
then to induce a differential light shift ∆ |1〉 〈1| on the qubit. This light shift can
now either be used to implement locally addressable exp(iθσz) gates [68], or to shift
the qubits on which the microwave or RF radiation should not act out of resonance
[102].

A second approach to single qubit gates which is naturally addressable is to use
a Raman transition, i.e. two lasers coupling each of the states |0〉 and |1〉 to an
intermediate state |e〉, such as a 5P1/2 in 87Rb [67, 103]. Both lasers are detuned by
a detuning ∆, giving the Hamiltonian

H = ∆ |e〉 〈e|+ Ω0

2
|0〉 〈e|+ Ω1

2
|1〉 〈e|+ Ω∗0

2
|e〉 〈0|+ Ω∗1

2
|e〉 〈1| . (2.20)

In the limit ∆ � |Ω the state |e〉 can be adiabatically eliminated [104], leading to
the effective Hamiltonian

Heff =
Ωeff

2
|0〉 〈1|+ Ω∗eff

2
|1〉 〈0| (2.21)

with Ωeff = Ω0Ω1/4∆. Now any single qubit gate can be implemented just like with
the Hamiltonian (2.18). Note that this approach introduces the decay of |e〉 as an
additional error source, which can be mitigated by large detunings ∆, at the expense
of long gate durations.

2.4.3 Qubit Readout

Qubit readout is typically done via fluorescence imaging. For this, typically atoms
in one of the two computational basis states are first removed from the traps, for
example by heating them out of the trap [18, 105] or, for alkaline earth (-like) atoms,
through autoionization [14]. Let us assume without loss of generality that atoms
in state |1〉 are removed, so all remaining atoms are in state |0〉. To complete the
measurement we have to determine which traps are still filled with atoms. For this,
one typically employs a cycling transition, i.e. an excited state |e〉 which has a short
lifetime and only decays back to |0〉 and (almost) never to other states. Applying
a laser on or close to the transition frequency between |0〉 and |e〉 then leads to the
scattering of many photons, some of which are collected and detected by a camera,
indicating the presence and position of the atom.

There are several improvements over this simple readout scheme. It is possible to
read out only some, but not all, atoms in the array, either by shelving the qubits
which are not being read out in other states [73], or by using a dual species array
[100]. Furthermore, readout times can be reduced by mapping the single atom to
be read out to a whole ensemble of atoms, and then using the effect of electromag-
netically induced transparency [106] to read out the state of the ensemble.
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2.5 Two- and Multi-Qubit Gates

The implementation of high-fidelity two-qubit gates is arguably one of the most
challenging pieces of a quantum computing architecture. In this section we will
discuss how Rydberg states, introduced in Sec. 2.1, can be used to implement two-
and multi-qubit gates on qubits encoded in neutral atoms. We start by discussing
the van der Waals interaction between two atoms in the Rydberg state in Sec. 2.5.1.
We then introduce the π-2π-π protocol for a controlled-Z (CZ) gate, the earliest
proposal for a quantum gate mediated via Rydberg states, in Sec. 2.5.2. Another
gate protocol, the Levine-Pichler (LP) protocol, which enables the implementation
of a CZ gate without local addressability of the atoms and constitutes a large im-
provement over the π-2π-π protocol, is discussed in Sec. 2.5.3. Finally, in Sec. 2.5.4
we give an overview over the many other gate protocols that have been proposed.

2.5.1 Van der Waals Interaction between Rydberg States

Let us consider two atoms located at positions 0 and R = Rn. We denote by Ei and
|ψi〉 the eigenstates and eigenenergies of the Hamiltonian of a single atom, which is
given by

Hatom =
∑
i

Ei |ψi〉 〈ψi| . (2.22)

If R is much larger than the distance between the electrons and the nucleus in each
atom, the interaction between both atoms can be approximated as a dipole-dipole
interaction

Vdd =
d1 · d2 − 3(d1 · n)(d2 · n)

4πε0R3
(2.23)

where d1 and d2 are the electric dipole moment operators of the two atoms. Ex-
pressed in the basis of the |ψi〉 the interaction reads

Vdd =
∑
ijkl

〈ψiψj|Vdd|ψkψl〉 (2.24)

=
1

4πε0R3

∑
ijkl

[〈ψi|d1|ψk〉 · 〈ψj|d2|ψl〉 − 3 〈ψi|d1 · n|ψk〉 〈ψj|d2 · n|ψl〉] .

The total Hamiltonian describing the system of both atoms is given by

H = Hatom ⊗ I + I ⊗Hatom + Vdd. (2.25)

For large interatomic distances R, the interaction Vdd can be treated perturbatively.
The first order perturbation is

∆E
(1)
ij = 〈ψiψj|Vdd|ψiψj〉 = 0 (2.26)
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Figure 2.2: Van der Waals interaction. Eigenenergies of different eigenstates
of the two-atom Hamiltonian H as a function of the interatomic distance R, relative
to the energy of the |75s, 75s〉 state at R = ∞, for two Cesium atoms. The red
color shows the overlap of the |75s, 75s〉 state with the different eigenstates. This
plot was generated using the Alkali Rydberg Calculator [101].

where we used that 〈ψ|d|ψ〉 = 0 for every eigenstate |ψ〉 of Hatom. Thus, the first
relevant correction is in second order perturbation theory, given by

∆E
(2)
ij = −

∑
kl

| 〈ψiψj|Vdd|ψkψl〉 |2

Ek + El − Ei − Ej
= −

C
(6)
ij

R6
(2.27)

with

C
(6)
ij =

1

4πε0

∑
kl

|〈ψi|d1|ψk〉 · 〈ψj|d2|ψl〉 − 3 〈ψi|d1 · n|ψk〉 〈ψj|d2 · n|ψl〉|2

Ek + El − Ei − Ej
. (2.28)

Thus, two atoms in the state |ψiψj〉 feel an attractive interaction if C
(6)
ij > 0 and

a repulsive interaction if C
(6)
ij < 0. This interaction is called the van der Waals

interaction.

In Rydberg states, i.e. states with a large principal quantum number, the van der
Waals interaction is particularly strong, typically many orders of magnitude larger
than in the ground state. This is because the numerator in Eq. (2.28) is large,
since in Rydberg states the electron is far away from the core, leading to a large
transition dipole moment. At the same time the denominator in Eq. (2.28) is small,
since the energy difference between Rydberg states becomes smaller and smaller as
the atom approaches ionization. Together, these effects lead to an impressive scaling
C(6) ∝ n11 with the principal quantum number n [12].

Fig. 2.2 visualizes the van der Waals interaction by showing the eigenenergies ∆E
of some of the eigenstates of the two-atom Hamiltonian H for two Cesium atoms,
relative to the energy of the |75s, 75s〉 Rydberg pair state at an interatomic distance
R = ∞. The red color shows the overlap of the |75s, 75s〉 state with the different
eigenstates. As R decreases away from ∞, the van der Waals interaction leads to
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Figure 2.3: The π-2π-π protocol. (a) Pulse sequence applied on the con-
trol and target atom. (b-e) Action of the gate on the computational basis states
|00〉 , |01〉 , |10〉 and |11〉.

an upward shift of the energy of the |75s, 75s〉 state. For low enough distances, here
around R ≈ 3µm, the perturbative approximation starts to break down, an different
states start to mix. Due to the many crossing states, this is often referred to as the
spaghetti regime, and typically avoided in a quantum computation.

An important consequence of the strong van der Waals interaction between Rydberg
states is the Rydberg blockade effect : Suppose we use a laser (or two lasers in a two
photon transition), to excite atoms to a Rydberg state. Once one atom is excited,
the energy of Rydberg state of all other atoms is shifted by B = −C(6)/R6. If
the interaction strength |B| is much larger than the Rabi frequency of the laser,
this prevents the excitation of further atoms, i.e. the excitation of these atoms is
blockaded. As we will see in the subsequent sections, the Rydberg blockade effect
plays a crucial role in the implementation of quantum gates on neutral atoms.

2.5.2 The π-2π-π Protocol

In 2000, the first protocol for using the Rydberg blockade to implement a CZ gate
was proposed [64]. This protocol, visualized in Fig. 2.3, models each atom as a three
level system with the computational basis states |0〉 and |1〉 and the Rydberg state
|r〉. The states |1〉 and |r〉 can be coupled by a laser (or a two photon transition)
with Rabi frequency Ω. The protocol then works in three steps [Fig. 2.3(a)]: First,
a pulse with pulse area π is applied on one of the two atoms, designated the control
atom. Then, a pulse with pulse area 2π is applied on the other atom, designated
the target atom. Finally, another pulse with pulse area π is applied on the control
atom. In reference to the pulse durations, this protocol is often called the π-2π-π
protocol.

Let us analyze the effect of these three pulses on the different initial states |00〉, |01〉,
|10〉 and |11〉 of the atoms:

• For the initial state |00〉 [Fig. 2.3(b)], none of the three pulses has any effect
on the atoms, since only |1〉 is coupled to |r〉.
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• For the initial state |01〉 [Fig. 2.3(c)], the pulses on the control atom have no
effect, while the pulse on the target atom excites it to |r〉 and de-excites it
back to |1〉, leading to |01〉 7→ − |01〉.

• For the initial state |01〉 [Fig. 2.3(d)], only the pulses on the control atom have
an effect. They lead to the evolution |10〉 7→ −i |r0〉 7→ − |10〉

• For the initial state |11〉 [Fig. 2.3(e)], the first pulse excites the control atom
to |r〉, i.e. |11〉 7→ −i |r1〉. Due to the Rydberg blockade effect, the second
pulse is now unable to excite the target atom and instead leaves the state
unchanged. Finally, the last pulses de-excites the control atom back to |1〉,
leading to |11〉 7→ − |11〉.

The unitary implemented by this pulse sequence is thus

U = |00〉 〈00| − |01〉 〈01| − |10〉 〈10| − |11〉 〈11| . (2.29)

This is, up to a single qubit Z gate on each qubit, equivalent to a CZ gate.

A major advantage of the π-2π-π gate is that it is independent of the exact inter-
action strength, and thus of the exact distance, between the atoms, as long as the
interaction is large enough to guarantee the Rydberg blockade. A major disadvan-
tage is that different pulses have to be applied to the control and the target atom.
In the next section we will discuss a significant improvement, where both atoms are
subjected to the same pulse.

2.5.3 The Levine-Pichler Protocol

The first protocol to implement a CZ gate with just one global pulse was proposed
in 2019 [18] and is now known as the Levine-Pichler (LP) protocol. As in the π-2π-
π protocol, the LP protocol models each atom as a three level system with states
|0〉 , |1〉 and |r〉. Now a global laser pulse with Rabi frequency Ω(t) is applied on both
atoms [Fig. 2.4(a)], leading to the level scheme shown in Fig. 2.4(b). Crucially, the
Rabi frequency Ω(t) = |Ω(t)|eiϕ(t) is not only characterized by its amplitude |Ω(t)|,
but also by its phase ϕ(t), giving two ways to control the evolution of the atom.

To understand the LP gate, it is useful to rewrite the level scheme as shown in
Fig. 2.4(c): Atoms starting in state |00〉 are completely unaffected by the global
laser. The initial state |01〉 couples only to |0r〉 with Rabi frequency Ω(t), while
symmetrically |10〉 couples only to |r0〉. Finally, the Hamiltonian describing the
evolution of |11〉 can be written as

H11 =
Ω(t)

2
(|11〉 〈1r|+ |11〉 〈r1|+ |1r〉 〈rr|+ |r1〉 〈rr|) + h.c.+B |rr〉 〈rr| (2.30)

=

√
2Ω

2
(|11〉 〈W |+ |W 〉 〈rr|) +B |rr〉 〈rr|
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Figure 2.4: The Levine-Pichler Protocol. (a) Two atoms trapped in optical
tweezers are addressed by a single global laser to implement a CZ gate. (b) Level
scheme assumed by the LP gate. (c) Rewritten level scheme to show the evolution
of the four computational basis states |00〉 , |01〉 , |10〉 and |11〉. (d) Laser phase as a
function of time for the LP gate. The laser phase depends to the pulse duration τ ,
the detuning ∆, and the phasejump ξ. (e) Phase ζ01 (blue) and ζ11 (orange) picked
up by the states |01〉 and |11〉, respectively, as the function of the detuning ∆. The
red line shows ζ11 − 2ζ01. The detuning where this quantity equals −π (green star)
is the value necessary to implement a CZ gate.

with the bright state |W 〉 = (|1r〉+ |r1〉)/
√

2. In the limit B � |Ω| of the Rydberg
blockade the |rr〉 state can even be neglected, so that also the evolution of |11〉 is
described by a two level system, however with an enhanced Rabi frequency

√
2Ω(t).

As we will see in the remainder of this thesis, there exist many pulses Ω(t) that
implement a CZ gate in this setup. In the LP protocol, a particularly simple pulse
shape is chosen, making the analysis of the protocol analytically tractable: The
amplitude is always chosen constant as |Ω(t)| = Ω0, while the phase ϕ(t) is given by
the curve shown in Fig. 2.4(d), parameterized by the three parameters ∆, τ and ξ.
The phase first linearly increases with a slope of ∆ (equivalent to a constant laser
detuning of ∆) for a duration τ . Then, the laser phase makes a discontinuous jump
by ξ, followed by another linearly increasing piece with slope ∆ and duration τ .

It can be shown [18] that by choosing

τ =
2π√

2Ω2
0 + ∆2

(2.31)

and

e−iξ =
−
√

Ω2
0 + ∆2 cosα + i∆ sinα√

Ω2
0 + ∆2 cosα + i∆ sinα

(2.32)
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with α =
√

Ω2 + ∆2τ/2, the pulse acts as

|01〉 7→ eiζ01 |01〉 (2.33)

|11〉 7→ eiζ11 |11〉 . (2.34)

The phases ζ01 and ζ11 are shown as a function of ∆ in Fig. 2.4(e) as the blue and
orange line, respectively. Since single qubit gates are often easy to implement, we
are interested in implementing a up to single qubit gates, i.e. a gate with ζ01 = θ
and ζ11 = 2θ + (2k + 1)π for some single qubit phase θ and some integer k. The
condition of implementing a CZ gate up to single qubit gates is thus

ζ11 − 2ζ01 = (2k + 1)π. (2.35)

The red curve in Fig. 2.4(d) shows that ζ11 − 2ζ01 (red line) intersects −π (black
dashed line) at a crossing point (green star), which can be determined to be at
∆/Ω = 0.377371. Thus, for this value of the ∆ the LP protocol implements a CZ
gate.

2.5.4 Other Gate Protocols

Next to the π-2π-π protocol and the LP protocol, many other gate protocols have
been proposed, which we will briefly review in this section An extension of the π-2π-
π protocol to multi-controlled CkZ gates is discussed in Ref. [107]. In Ref. [108], a
variant of the π-2π-π protocol using a dark state formed by the superposition of two
Rydberg states is proposed and shown to have a lower error due to Rydberg decay
and effects of a finite interaction strength B. In Ref. [109] it is proposed to used
shaped pulses in the π-2π-π protocol to prevent the excitation of Rydberg states
other than the targeted one. Similar to the LP protocol, the protocols in Refs. [110,
111] require only a global laser but, in contrast to the LP protocol, operate using
adiabatic evolution of the atoms.

Instead of operating in the Rydberg blockade limit of large interaction strengths,
it is also possible to operate in the opposite limit of an interaction strength much
smaller than the Rabi frequency. A simple gate protocol in this regime has already
been proposed in the original Ref. [64]. There are extensions of this scheme to
transitions implemented via stimulated Raman adiabatic passage (STIRAP) [112]
or to using an adiabatic passage through a Förster resonance [113]. In Ref. [114]
a so-called ultra-fast gate with a Rabi frequency several orders of magnitude above
the interaction strength between the atoms has been experimentally implemented
in 87Rb atoms.

Finally, there are also proposals for implementing gates on ensembles of atoms [115–
117], for using Rydberg dressing [118–120], and for implementing holonomic gates
[121].
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3 Time-Optimal Two- and Multi-Qubit
Gates on Rydberg Atoms

Quantum gates that can create entanglement between two or more qubits are a
crucial component of any quantum computing architecture. For the neutral atom
platform, the most popular method of implementing gates on two or more qubits
is by coupling one computational basis state of each atom to one or more Rydberg
states using a laser, and then using the strong van der Waals interaction between
Rydberg atoms to generate entanglement. A large number of different gate pro-
tocols with different advantages and drawbacks that can be used for this purpose
(see Sec. 2.5) [18, 64, 108–110, 112, 113, 115–118, 121–127]. Which of these gate
protocols will achieve the highest gate fidelity in an experiment depends on the
details of the experimental setup and the dominant error sources. However, two
properties of a gate protocol are particularly desirable: i) The gate protocol should
only require global control lasers addressing all atoms simultaneously. This signif-
icantly reduces the experimental complexity compared to protocols which require
individual addressing of the atoms. ii) The gate protocol should be fast, because,
independently of the exact error model, many error sources can be mitigated by
short gate durations. It is thus a fundamental question to find the fastest possi-
ble, so called time-optimal [128–131], global gate protocol that implements a given
quantum gate.

In this chapter we answer this question for the controlled-Z (CZ) gate and several of
its generalizations on two or more qubits. We assume a simple level scheme in which
we model each atom as a three level system consisting of the two computational basis
states and one Rydberg state [64]. A laser with time-dependent Rabi frequency Ω(t)
coupling one of the computational basis states to the Rydberg state is then used to
implement the desired gate. While a variety of of different pulses Ω(t) can implement
the same gate, we use the quantum optimal control method of gradient ascent pulse
engineering (GRAPE) [132] to select the time-optimal one.

For the CZ gate, we find that the time-optimal protocol is approximately 10% faster
then the fastest previously know protocol, the Levine-Pichler protocol [18] (See
Sec. 2.5.3). More importantly however, the time-optimal pulse can be implemented
using a smooth pulse Ω(t), while the LP protocol requires a discontinuous jump
in the laser phase. This significantly simplifies the experimental implementation
of the time-optimal protocol compared to the LP protocol. It is this feature of the
time-optimal protocol that has lead to its widespread adoption in many experiments
[13, 14, 16, 17], achieving fidelities up to 99.5% [13], the highest fidelity currently
reported for the neutral atom platform.
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While the CZ gate is the most relevant two-qubit entangling gate on the Rydberg
platform, we also use our time-optimal methodology to find pulses that implement
arbitrary controlled phase gates on two qubits, or phase gates on three or more
qubits, such as multi-controlled Z (CkZ) gates or gates used for the generation of
GHZ states. In all cases we find smooth and easy to implement pulse shapes Ω(t).
Note that for quantum gates on three and more qubits, which can be implemented
natively on the Rydberg platform [18, 107, 116], the time-optimal protocols derived
in this chapter are are first protocols that can be implemented with a global pulse.

This chapter is structured as follows: Sec. 3.1 precisely formulates the problem of
finding time-optimal pulses. In Sec. 3.2 we introduce the GRAPE algorithm, and
use it in Sec. 3.3 to fine the time-optimal protocol that implements a CZ gate under
a perfect Rydberg blockade. The condition of a perfect Rydberg blockade is lifted in
Sec. 3.4. Finally we turn to gates beyond the CZ gate and discuss controlled phase
gates in Sec. 3.5, multi-controlled CkZ gates in Sec. 3.6 and a protocol to generate
GHZ states in Sec. 3.7.

Many results of this chapter have been publish in Ref. [23], the results of Sec. 3.7
have been published in Ref. [17]. We would also like to draw the attention of the
reader to Ref. [127], where a variant of the time-optimal pulse has been developed
independently.

3.1 Problem Formulation

In the following we precisely define the setup that we consider (Sec. 3.1.1) and the
define the gate fidelity, which we will use to measure the quality of a gate (Sec. 3.1.2).
Finally we provide a set of symmetry operations which map a gate protocol to other
gate protocols implementing the same or a related quantum gate (Sec. 3.1.3).

3.1.1 Level Scheme and Hamiltonian

3.1.1.1 General Case

We consider N atoms and model each of them as a three level system with two
computational basis states |0〉, |1〉 and the Rydberg state |r〉 [64]. We assume a
time-independent interaction Bjk between atoms j and k which shifts the energy
of states with both atoms in the Rydberg state. This is described by the diagonal
interaction Hamiltonian

Hint =
∑
j<k

Bjk |rjrk〉 〈rjrk| . (3.1)

We furthermore assume that the states |1j〉 and |rj〉 are coupled by a laser pulse
with a time-dependent complex Rabi frequency Ωj(t) = |Ωj(t)|eiϕj(t) with amplitude
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|Ωj(t)| and phase ϕ(t). In any experiment, the maximal achievable Rabi frequency
|Ωj(t)| is limited by the laser power and waist diameter. To include this into the
model, we introduce the maximum Rabi frequency Ωmax and consider only pulses
with |Ωj(t)| ≤ Ωmax for the rest of this thesis. In the rotating frame and under
the rotating wave approximation the action of the laser is described by the driving
Hamiltonian (~ = 1)

Hdrive(t) =
N∑
j=1

Ωj(t)

2
|1j〉 〈rj|+ h.c. (3.2)

The total Hamiltonian is then given by

H(t) = Hint +Hdrive(t). (3.3)

Note that the states |1〉 and |r〉 can also be coupled by a two-photon transition, in
which case Ωj(t) denotes the effective Rabi frequency.

Our goal is now to find a pulse Ω1(t), ...,ΩN(t) that implements a desired quantum
gate. For this it is necessary to calculate the evolution of all computational basis
states |q〉 (q ∈ {0, 1}N) under the time dependent Schrödinger equation (TDSE)
|ψ̇〉 = −iH |ψ〉. An important property of our setup is that the state |0〉 of any
atom is not coupled to any other state. To formalize this, we consider the family
(Pq)q of projectors, where for q ∈ {0, 1}N the operator Pq denotes the projector onto
the space Hq spanned by all states in which atom j is in state |0〉 if qj = 0 and in
state |1〉 or |r〉 if qj = 1. For example, for N = 2 atoms we obtain P00 = |00〉 〈00|,
P01 = |01〉 〈01|+ |0r〉 〈0r|, P10 = |10〉 〈10|+ |r0〉 〈r0| and P11 = |11〉 〈11|+ |1r〉 〈1r|+
|r1〉 〈r1|+ |rr〉 〈rr|. Crucially, H is block diagonal with respect to the Pq, i.e.

H =
∑
q

Hq with Hq = PqHPq. (3.4)

To calculate the evolution of a computational basis state |q〉, it thus sufficient to
only consider Hq and not the whole Hamiltonian H. Hence, for each of the 2N

different values of q we have to solve the TDSE for the 2nq dimensional Hamiltonian
Hq, where nq =

∑
j qj is the number of atoms that start in state |1〉. In Secs. 3.1.1.2

and 3.1.1.3 below we will see that both the number of TDSEs and the dimension of
each TDSE can be reduced if we consider certain symmetries.

Note that Eq. (3.2) does not explicitly consider a detuning of the laser, since such a
detuning can already be described by a time-dependent phase. To see this, assume
that on a single atom the drive Hamiltonian would be given by

H ′drive = −∆(t) |r〉 〈r|+ Ω(t)

2
|1〉 〈r|+ h.c. (3.5)

for a laser detuning ∆(t). We can switch into a time-dependent frame given by the
basis transformation

V (t) = |0〉 〈0|+ |1〉 〈1|+ exp

(
−i
∫ t

0

dt′∆(t′)

)
|r〉 〈r| . (3.6)



26 Problem Formulation

In this new frame, the Hamiltonian is given by

Hdrive = V H ′driveV
† + iV̇ V † =

1

2
Ω(t) exp

(
i

∫ t

0

dt′∆(t′)

)
|1〉 〈r|+ h.c. (3.7)

Thus, a detuning ∆(t) can be accounted for by modifying the laser phase as ϕ(t) 7→
ϕ(t) +

∫ t
0

dt′∆(t′). Reversely, we can always switch into a frame with a constant
laser phase by modifying the detuning as ∆(t) 7→ ∆(t)+dϕ(t)/dt. For N > 1 atoms
the same argument applies analogously, since Hint commutes with U . Furthermore,
since V acts like the identity on the computational subspace spanned by |0〉 and |1〉,
the Hamiltonians Hdrive and H ′drive implement exactly the same quantum gates.

3.1.1.2 Permutation Symmetric Case

A particularly important case is obtained if all Rabi frequencies and all interaction
strengths are equal, i.e. if Ω1(t) = ... = ΩN(t) =: Ω(t) and B12 = ... = BN−1,N := B.
Equal Rabi frequencies are naturally obtained if all atoms are addressed with a single
global laser, which is experimentally significantly simpler than individual addressing
of the atoms. Note that a constant phase difference between the Rabi frequency of
any two atoms j and k, i.e. Ωj(t) = eiαΩk(t) for a constant phase α, can be
compensated by the basis transformation |rj〉 7→ e−iα |rj〉 and is thus still captured
by the case of equal Rabi frequencies. The condition of equal interaction strength
is trivially satisfied for N = 2 atoms, and can be achieved for N = 3 or N = 4
atoms by aligning the atoms in the shape of an equilateral triangle or a regular
tetrahedron, respectively.

To understand the evolution of an initial computational basis state |q〉 (q ∈ {0, 1}N)
we consider the Dicke states |Dq,m〉 [133], defined as equal superposition of all basis
states in Hq with exactly m atoms in state |r〉, for 0 ≤ m ≤ nq =

∑
j qj. Formally,

|Dq,m〉 is given by

|Dq,m〉 =
1√
|Sq,m|

∑
s∈Sq,m

|s〉 (3.8)

with

Sq,m =
{
s ∈ {0, 1, r}N

∣∣ sj = r exactly m times and ∀j sj = 0⇔ qj = 0
}
. (3.9)

If the atoms start in the initial state |q〉, the state at any later time can be written
as a superposition of the |Dq,m〉. Hence it is useful to express the Hamiltonian Hq

in this basis.

The interaction Hamiltonian acts on |Dq,m〉 as Hint |Dq,m〉 =
(
m
2

)
B |Dq,m〉, where

for m ≥ 2
(
m
2

)
= m!/[2(m − 2)!] denotes the binomial coefficient and we use the

convention
(
m
2

)
= 0 if m < 2. To calculate the matrix elements of Hdrive we

note that an application of Hdrive changes the number of atoms in |r〉 by ±1, so
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〈Dq,m|Hdrive |Dq,m′〉 = 0 unless m′ = m± 1. For the remaining matrix elements we
obtain

〈Dq,m+1|Hdrive |Dq,m〉 =
Ω∗(t)

2

|Sq,m|(nq −m)√
|Sq,m||Sq,m+1|

=
√

(m+ 1)(nq −m)
Ω∗(t)

2
(3.10)

where the first equality follows because each of the |Sq,m| terms in |Dq,m〉 can be
excited to a term in |Dq,m+1〉 by nq − m terms in Hdrive, and the second equality
follows from |Sq,m| =

(
nq

m

)
= nq!/[m!(nq −m)!].

Thus, the Hamiltonian Hq in the permutation symmetric case can be simplified to
an nq + 1 dimensional Hamiltonian

Hq = B

nq∑
m=0

(
m

2

)
|Dq,m〉 〈Dq,m|+

Ω(t)

2

nq−1∑
m=0

√
(m+ 1)(nq −m) |Dq,m〉 〈Dq,m+1|+ h.c.

(3.11)
Note that even so q can take 2N different values there are, up to relabeling the basis
states, only N + 1 different Hamiltonian Hq, one for each value of nq. Thus we can
find the evolution of each computational basis state |q〉 by only solving N+1 TDSEs
with dimensions 1,2,...,N + 1 respectively. For example, for N = 2 atoms the three
Hamiltonians are given by

H00 = 0 (3.12)

H01 =
Ω(t)

2
|D01,0〉 〈D01,1|+ h.c. (3.13)

H11 = B |D11,2〉 〈D11,2|+
√

2Ω(t)

2
[|D11,0〉 〈D11,1|+ |D11,1〉 〈D11,2|] + h.c. (3.14)

with |D01,0〉 = |01〉, |D01,1〉 = |0r〉, |D11,0〉 = |11〉, |D11,1〉 = (|1r〉 + |r1〉)/
√

2 and
|D11,2〉 = |rr〉.

3.1.1.3 The Rydberg Blockade Limit

A second particularly important case is that of equal Rabi frequencies Ω1(t) = ... =
ΩN(t) =: Ω(t) and interaction strengths Bjk � |Ω(t)| for all j, k. Note that in
contrast to Sec. 3.1.1.2 here we do not require that all Bjk are equal, making this
case easily experimentally accessible. In the Bjk � |Ω(t)| case only states with
zero or one atoms in the Rydberg state |r〉 can be accessed when starting in a
computational basis state (Rydberg blockade). Thus Eq. (3.11) can be reduced to
the states |Dq,0〉 = |q〉 and |Dq,1〉 =: |Wq〉 and we obtain

Hq =

√
nqΩ(t)

2
|q〉 〈Wq|+ h.c. (3.15)

To find the evolution of each computational basis state we thus only have to solve
N TDSEs of dimension 2 each (note that the nq = 0 case of dimension 1 is trivial).
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In summary, we have defined the Hamiltonian Hq [Eq. (3.4)] that governs the evo-
lution of an initial basis state |q〉 under a laser pulse Ω1(t), ...,ΩN(t), and discussed
simplifications for the case of a global laser pulse [Eq. (3.11)] and in the Rydberg
blockade limit [Eq. (3.15)].

3.1.2 Time-Optimal Problem and Gate Fidelity

With the Hamiltonian H(t) defined in the previous section [(Eq. (3.3))] we can now
precisely state the problem that we will solve in this chapter:

Time-Optimal Problem: Given a target unitary Utarget on the computational
subspace, find the minimal T such that there exists a pulse Ω1,Ω2, ...,ΩN : [0, T ]→ C
with |Ωj(t)| ≤ Ωmax for all t such that ΠUΠ = Utarget up to a global phase, where

U = τ exp

(
−i
∫ T

0

H(t)dt

)
(3.16)

is the unitary implemented by the pulse Ω1, ...ΩN and Π =
∑

q∈{0,1}N |q〉 〈q| is the
projector onto the computational subspace. Here and in the following τ exp denotes
the time ordered exponential.

Note that since H does not couple the state |0〉, it is only possible to solve the
time-optimal problem for diagonal phase gates, i.e. gates of the form

Utarget =
∑

q∈{0,1}N
eiζq |q〉 〈q| (3.17)

for phases (ζq)q∈{0,1}N .

To solve the time-optimal problem it is useful to have a measure of how much U
and Utarget differ. The average gate fidelity, which we introduce in the remainder of
this section, will serve as such a measure. It is defined as

F =

∫
C

d |ψ〉
∣∣∣〈ψ|U †targetU |ψ〉

∣∣∣2 (3.18)

where C denotes the manifold of all normalized computational states and d |ψ〉 de-
notes the normalized Haar measure on C. A fidelity F = 1 corresponds to an exact
implementation of U up to a physically unimportant global phase, i.e. U = eiαUtarget

for some α.

The integral in Eq. (3.18) can be evaluated to [134]

F =
1

2N(2N + 1)

[∣∣∣tr(U †targetΠUΠ
)∣∣∣2 + tr

(
U †ΠUΠ

)]
. (3.19)
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In the following we denote by |ψq(t)〉 the solution of the TDSE |ψ̇q〉 = −iHq |ψq〉
with |ψq(0)〉 = |q〉. Since |ψq(t)〉 is in Hq for all t and |q〉 is the only computational
basis state in |q〉 it follows that

ΠUΠ =
∑

q∈{0,1}N
〈q|ψq(T )〉 |q〉 〈q| (3.20)

so that

F =
1

2N(2N + 1)

∣∣∣∣∣∣
∑

q∈{0,1}N
e−iζq 〈q|ψq(T )〉

∣∣∣∣∣∣
2

+
∑

q∈{0,1}N
|〈q|ψq(T )〉|2

 (3.21)

For the permutation symmetric cases discussed in Secs. 3.1.1.2 and 3.1.1.3 it is
sufficient to consider the initial states |q(m)〉 = |0...0, 1...1〉 with m atoms in state
|1〉. In this case, only permutation symmetric phase gates with ζq =: ζ̄nq are possible,
and we obtain the fidelity

F =
1

2N(2N + 1)

∣∣∣∣∣
N∑
m=0

(
N

m

)
e−iζ̄m 〈q(m)|ψq(m)(T )〉

∣∣∣∣∣
2

+
N∑
m=0

(
N

m

) ∣∣〈q(m)|ψq(m)(T )〉
∣∣2

(3.22)

As an alternative to the average gate fidelity, the Bell state fidelity defined as

FBell =
1

4N

∣∣∣∣∣∣
∑

q∈{0,1}N
e−iζq 〈q|ψq(T )〉

∣∣∣∣∣∣
2

=
∣∣∣〈ψ|U †targetU |ψ〉

∣∣∣2 (3.23)

with |ψ〉 = 2−N/2
∑

q |q〉 is often considered. Its name arises because for N = 2

it measures the fidelity with which a two atom Bell state (|00〉 + |11〉)/
√

2 can be
prepared using for a CZ gate (ζ̄0 = ζ̄1 = 0, ζ̄2 = π) and single qubit gates applied to
an initial product state. In this thesis we use, unless otherwise notes, the average
gate fidelity F , but very similar results are expected with the Bell state fidelity FBell

instead. In particular, a gate has an average gate fidelity of 1 if and only if it has a
Bell state fidelity of 1.

In summary, we have defined defined the average gate fidelity 1 − F and provided
explicit formulas for evaluating it for the general [Eq. (3.21)] and the permutation
symmetric [Eq. (3.22)] case.

3.1.3 Symmetry Operations

Given a pulse that implements a certain phase gate, we can find a related pulse that
implements the same or a related phase gate by a combination of several symmetry
operations. Thus, the time-optimal pulses found later in this chapter are only unique
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up to these symmetries. In this section we consider the symmetry operations of phase
shifts, time reversal, and complex conjugation.

Let Ω1(t), ...,ΩN(t) be a pulse of duration T that for interaction strengths Bjk im-
plements a (ζq)q phase gate. We will construct several pulses Ω̄1(t), ..., Ω̄N(t) that
for interaction strengths B̄jk implement a (ζ̄q)q phase gate. We denote by H̄(t) the
Hamiltonian from Eq. (3.3) with Ω̄1(t), ..., Ω̄N(t) and B̄jk and by |ψ̄q(t)〉 the solution
of the TDSE given by H̄ with initial state |q〉.

The three symmetry operations act as follows:

i) Phase shifts : Consider Ω̄j(t) = eiαjΩj(t) for constants α1, ..., αN and B̄jk =
Bjk. This implements a ζ̄q = ζq phase gate. To see this, note that |ψ̄q(t)〉 =
V |ψq(t)〉 with

V =
N⊗
j=1

(
|0〉 〈0|+ |1〉 〈1|+ e−iαj |r〉 〈r|

)
. (3.24)

Since |ψq(T )〉 = eiζq |q〉 it follows that also |ψ̄q(T )〉 = eiζq |q〉, so H̄ implements
a (ζq)q phase gate.

ii) Time reversal : Consider Ω̄j(t) = Ωj(T − t) and B̄jk = −Bjk. This implements
a ζ̄q = −ζq phase gate. To see this, first consider Ω̄j(t) = −Ω(T − t) and
B̄jk = −Bjk, so that we obtain H̄(t) = −H(T − t). The solution of the TDSE
under H̄ is given by

|ψ̄q(t)〉 = e−iζq |ψq(T − t)〉 (3.25)

since |ψ̄q(0)〉 = |q〉 and

| ˙̄ψq(t)〉 = ie−iζqH(T − t) |ψq(T − t)〉 = −iH̄(t) |ψ̄q(t)〉 (3.26)

Thus we have |ψ̄q(T )〉 = e−iζq |q〉, so the pulse Ω̄j(t) = −Ωj(T − t) implements
a ζ̄q = −ζq phase gate. By the symmetry under phase shifts it follows that
also the pulse Ω̄j(t) = Ωj(T − t) implements a ζ̄q = −ζq phase gate.

iii) Complex conjugation: Consider Ω̄j(t) = Ωj(t)
∗ and B̄jk = −Bjk. This imple-

ments a ζ̄q = −ζq phase gate. To see this, we first consider the joint complex
conjugation and time reversal symmetry Ω̄j(t) = Ωj(T − t)∗ and B̄jk = Bjk,
so that H̄(t) = H(T − t)∗. The solution of the TDSE under H̄ is given by

|ψ̄q(t)〉 = eiζq |ψq(T − t)〉∗ (3.27)

since |ψ̄q(0)〉 = |q〉 and

| ˙̄ψq(t)〉 = e−iζq [iH(T − t) |ψq(T − t)〉]∗ = −iH̄(t) |ψ̄q(t)〉 (3.28)

Thus we have |ψ̄q(T )〉 = eiζq |q〉, so the pulse Ω̄j(t) = Ωj(T − t)∗ implements a
ζ̄q = ζq phase gate. Together with time reversal symmetry it follows that the
Ω̄j(t) = Ωj(t)

∗ implements a ζ̄q = −ζq phase gate.
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These three symmetry operations show that when using numerical methods to find
the time-optimal pulse for a gate, several solutions are to be expected. Firstly, two
time-optimal pulses can differ by an arbitrary constant phase. This degree of freedom
can be eliminated by restricting the discussion to pulses where Ωj(0) is real and
positive, as we will do from now on. Even with this restriction there are in general
two different time-optimal pulses for a given phases (ζq)q, related by joint complex
conjugation and time reversal. In the special case of B � |Ωj(t)| and for phase gates
where ζq ∈ {0, π} for all q, there are in general even four different time-optimal
pulses, because also individual time reversal or complex conjugation give pulses
implementing the same gate. As will be apparent in Secs. 3.3–3.7, sometimes, but
not always, time-optimal pulses are invariant under joint time-reversal and complex
conjugation, reducing the number of distinct time-optimal pulses to two.

3.2 Gradient Ascent Pulse Engineering (GRAPE)

Quantum optimal control methods [135, 136] are a large family of numerical or an-
alytical techniques to find the, in some sense, optimal way of steering a quantum
system whose Hamiltonian depends on a set of classical controls. They have been
successfully used on a variety of quantum computing platforms such as supercon-
ducting qubits [137–141], trapped ions [142, 143] and neutral atoms [69, 144–150].
In this section, we introduce the numerical quantum optimal control method of
gradient ascent pulse engineering (GRAPE). GRAPE was originally developed to
design pulse sequences for NMR spectroscopy [132] and has since been used on a
large variety of quantum optimal control problems [131, 135–137, 151, 152]. We
discuss one of the simplest possible versions of GRAPE in Sec. 3.2.1 and its applica-
tion to quantum gates implemented via Rydberg states in Sec. 3.2.2. An analytical
quantum optimal control method bases on Pontryagin’s maximum principle (PMP)
will be discussed in Chapter 4.

3.2.1 General Algorithm

In the following we describe one of the simplest versions of the GRAPE algorithm.
Let us consider the following quantum optimal control problem: Let H be a Hilbert
space and H(u(t)) a Hamiltonian depending on N time-dependent controls u =
(u1, .., uN) : [0, T ] → U ⊆ RK . Here and in the following we consider the pulse
duration T as fixed, i.e. it is not part of the optimization. We are given an initial
state |ψi〉 ∈ H and a target state |ψf〉 ∈ H. Our goal is now to find a control u(t)
that minimizes the cost functional

J [u] = |〈ψf |ψ(T )〉|2 (3.29)

where |ψ(t)〉 is the solution to the TDSE

|ψ̇(t)〉 = −iH(u(t)) |ψ(t)〉 |ψ(0)〉 = |ψi〉 . (3.30)
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To solve this problem, we employ the GRAPE algorithm. In GRAPE, we make a
piecewise constant Ansatz and describe u(t) by M � 1 values u(0), ...u(M−1) ∈ U
such that u(t) = u(m) if m∆t ≤ t < (m + 1)∆t, with ∆t = T/M . In this way, any
reasonable control function u(t) can be arbitrarily well approximated as M → ∞.
With the piecewise constant Ansatz, the cost functional J [u] becomes a function
J(u(0), ..., u(M−1)) given by

J
(
u(0), ..., u(M−1)

)
= |〈ψf |UM−1UM−2...U1U0 |ψi〉|2 (3.31)

where Um = exp
(
−iH(u(m))∆t

)
. To minimize J , we can now use a gradient based

minimization algorithm such as gradient descent or the Broyden-Fletcher–Goldfarb-
Shanno (BFGS) method [153]. For this, we do not only need to calculate J , but

also its derivatives ∂J/∂u
(m)
j . Calculating J requires O(M) matrix-vector multipli-

cations. If we would estimate all MK derivatives ∂J/∂u
(m)
j using a finite difference

method, we would need O(M2K) matrix-vector multiplications. GRAPE instead
provides an efficient way to calculate all derivatives in just O(MK) matrix-vector
multiplications, significantly speeding up the calculation of the gradient for M � 1.
To calculate the derivatives ∂J/∂u

(m)
j using GRAPE, we first calculate

|ψ0〉 = |ψi〉 (3.32)

|ψ1〉 = U0 |ψi〉 (3.33)

|ψ2〉 = U1U0 |ψi〉 (3.34)

...

|ψM〉 = UM−1UM−2...U1U0 |ψi〉 (3.35)

by M matrix-vector multiplications. Then we calculate

|χM〉 = |ψf〉 (3.36)

|χM−1〉 = U †M−1 |ψf〉 (3.37)

|χM−2〉 = U †M−2U
†
M−1 |ψf〉 (3.38)

...

|χ0〉 = U †0U
†
1 ...U

†
M−2U

†
M−1 |ψf〉 (3.39)

again by M matrix-vector multiplications. Note that these calculations have to be
done only once for a given set of controls u(0), ..., u(M−1), and do not have to be

repeated for every derivative ∂J/∂u
(m)
j . Now we have

J = |〈χ0|ψ0〉|2 = |〈χ1|ψ1〉|2 = · · · = |〈χM |ψM〉|2 (3.40)

= |〈χ1|U0|ψ0〉|2 = |〈χ2|U1|ψ1〉|2 = · · · = |〈χM |UM−1|ψM−1〉|2 (3.41)

To calculate a given derivative ∂J/∂u
(m)
j we use that neither |ψm〉 nor |χm+1〉 depend

on u
(m)
j . Thus we obtain

∂J

∂u
(m)
j

=
∂ |〈χm+1|Um|ψm〉|2

∂u
(m)
j

= 2Re

(
〈χm+1|Um|ψm〉∗

〈
χm+1

∣∣∣∣∣ ∂Um∂u
(m)
j

∣∣∣∣∣ψm
〉)

(3.42)
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which can be calculated in O(1) matrix-vector multiplications. Since there are
MK derivatives to be calculated, this requires a total of O(MK) matrix-vector

multiplications. The required derivative ∂Um/∂u
(m)
j can either be calculated using

a finite difference method or using analytical approaches (see Sec. 3.2.2).

3.2.2 Application to Rydberg Atoms

Now we will adapt the simple version of GRAPE presented in the previous section to
maximize the fidelity F (see Eq. (3.21)) of a neutral atom phase gate. The system is
described by the Hamiltonians Hq (see Eqs. (3.4),(3.11),(3.15)), which depend on the
laser amplitudes |Ω1|, ..., |ΩN | and phases ϕ1, ..., ϕN . Despite aiming to eventually
find the time-optimal pulse, in this section we will assume a fixed pulse duration T
and describe how GRAPE can be used to find pulses Ωj(t) and ϕj(t) of duration T
that maximize F . Later we will then vary the pulse duration T to find time-optimal
pulse.

We start as in the previous section by making a piecewise constant Ansatz of M

pieces and assuming Ωj(t) = |Ω(m)
j | exp

(
iϕ

(m)
j

)
if m∆t ≤ t < (m + 1)∆t, so that

the fidelity now depends on the parameters |Ω(m)
j | and ϕ

(m)
j . To maximize F using

a gradient based algorithm we need to calculate the derivatives ∂F/∂|Ω(m)
j | and

∂F/∂ϕ
(m)
j . For this, we proceed as follows: For each of the Hamiltonians Hq we

calculate |ψ0,q〉 , ..., |ψM,q〉 and |χM,q〉 , ..., |χ0,q〉 according to Eq. (3.32)–(3.39), with
|ψ0,q〉 = |q〉 and |χM,q〉 = eiζq |q〉. We then calculate the derivatives

∂ 〈χM,q|ψM,q〉
∂|Ω(m)

j |
=

〈
χm+1,q

∣∣∣∣∣ ∂Um,q∂|Ω(m)
j |

∣∣∣∣∣ψm,q
〉

(3.43)

∂ 〈χM,q|ψM,q〉
∂ϕ

(m)
j

=

〈
χm+1,q

∣∣∣∣∣∂Um,q∂ϕ
(m)
j

∣∣∣∣∣ψm,q
〉

(3.44)

with Um,q = exp
(
−iHq(Ω

(m)
1 , ...,Ω

(m)
N )∆t

)
.

The fidelity is given by

F =
1

2N(2N + 1)

∣∣∣∣∣∑
q

〈χM,q|ψM,q〉

∣∣∣∣∣
2

+
∑
q

| 〈χM,q|ψM,q〉 |2
 (3.45)

(see Eq. (3.21)) so that

∂F

∂|Ω(m)
j |

=
1

2N(2N + 1)
2Re

[(∑
q

〈χM,q|ψM,q〉

)∗(∑
q

∂ 〈χM,q|ψM,q〉
∂|Ω(m)

j |

)
(3.46)

+
∑
q

〈χM,q|ψM,q〉∗
〈χM,q|ψM,q〉
∂|Ω(m)

j |

]
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and

∂F

∂ϕ
(m)
j

=
1

2N(2N + 1)
2Re

[(∑
q

〈χM,q|ψM,q〉

)∗(∑
q

∂ 〈χM,q|ψM,q〉
∂ϕ

(m)
j

)
(3.47)

+
∑
q

〈χM,q|ψM,q〉∗
〈χM,q|ψM,q〉
∂ϕ

(m)
j

]
.

Inserting Eqs. (3.43) and (3.44) into Eq. (3.46) and Eq. (3.46) now allows us to

calculate the derivatives ∂F/∂|Ω(m)
j | and ∂F/∂ϕ

(m)
j .

It remains to calculate the derivatives ∂Um,q/∂|Ω(m)
j | and ∂Um,q/∂ϕ

(m)
j required in

Eqs. (3.43) and (3.44). In general we obtain these by approximating Um,q with its

Taylor approximation Um,q ≈
∑L

l=0(−iHq∆t)
l/l!, so that

∂Um,q
∂|Ωj|

=
∑
l,l′≥0
l+l′<L

(−i∆t)l+l′+1

(l + l′ + 1)!
H l
q

∂Hq

∂|Ωj|
H l′

q (3.48)

with an analogous expression for ∂Um,q/∂ϕ
(m)
j . The order L is chosen large enough

to ensure convergence to machine precision, typically L ≈ 10.

There are two cases in which the expansion in a Taylor series can be avoided: The
first case is that of a global drive Ω1 = ... = ΩN = Ω in the limit B � |Ω|, where
the Hamiltonian Hq is just a 2 × 2 matrix (see Sec. 3.1.1.3), so that Um,q as well
as its derivatives can be calculated analytically. The second case is if we only want
to calculate the ∂Um,q/∂ϕ

(m)
j but not the ∂Um,q/∂|Ω(m)

j |, e.g. because we fix the

value of the |Ω(m)
j | and only optimize over the ϕ

(m)
j . In this case we can use that

Hq(Ω1, ...,ΩN) = V Hq(|Ω1|, ...|ΩN |)V † with

V =
N⊗
j=1

(
|0〉 〈0|+ |1〉 〈1|+ e−iϕ

(m)
j |r〉 〈r|

)
(3.49)

so that Um,q = V Ūm,qV
† with Ūm,q = exp [−iHq(|Ω1|, ...|ΩN |)∆t]. Then we get

∂Um,q

∂ϕ
(m)
j

=
∂V

∂ϕ
(m)
j

Ūm,qV
† + V Ūm,q

∂V †

∂ϕ
(m)
j

. (3.50)

Now we use that ∂V/∂ϕ
(m)
j = −iV |rj〉 〈rj| to obtain

∂Um,q

∂ϕ
(m)
j

= −iV
[
|rj〉 〈rj| , Ūm,q

]
V †. (3.51)

Together with Ūm,q, which only needs to be calculated once since it does not depend

on the ϕ
(m)
j , this allows us to calculate ∂Um,q/∂ϕ

(m)
j .
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In summary, we have introduced the GRAPE algorithm and shown how it can
be used to calculate the derivative of the gate fidelity F with respect to the laser
amplitude and phase at any time. Using a gradient based optimizer, a pulse shape
Ω1(t), ...,ΩN(t) that achieves a (local) minimum of the infidelity 1− F can then be
found. In the next sections we will use GRAPE to find the minimal infidelity 1−F
for different pulse durations and identify the time-optimal duration as the smallest
duration in which 1− F = 0 can be achieved.

3.3 Time-Optimal CZ Gate for a Perfect Rydberg

Blockade

In this section we apply the theory developed in Secs. 3.1 and 3.2 to the sim-
plest time-optimal problem: Finding the shortest possible global laser pulse Ω(t) =
Ω1(t) = Ω2(t) that in the B � Ωmax limit implements a CZ gate on N = 2 atoms.
The dynamics of this system is described by two two-level systems

H01 =
Ω(t)

2
|01〉 〈0r|+ h.c. (3.52)

H11 =

√
2Ω(t)

2
|11〉 〈W11|+ h.c. (3.53)

which have to be controlled simultaneously. Since single qubit gates are typically
performed with a much larger fidelity than two qubit gates we slightly weaken our
goal and only require that Ω(t) implements a CZ gate up to single qubit gates, i.e.
Ω(t) implements a phase gate with ζ00 = 0, ζ01 = ζ10 = θ and ζ11 = 2θ+ π for some
phase θ. The additional parameter θ can easily be included in the optimization, the
derivative ∂F/∂θ is given by

∂F

∂θ
=

1

20
Re
[

(1 + 2 〈χM,01|ψM,01〉+ 〈χM,11|ψM,11〉) (3.54)

(−2i 〈χM,01|ψM,01〉 − 2i 〈χM,11|ψM,11〉)
]
.

Since H01 and H11 are proportional to Ω(t), the time-optimal pulse must satisfy
|Ω(t)| = Ωmax for all t. To see this, consider a pulse Ω(t) = |Ω(t)| exp(iϕ(t)) of
duration T with |Ω(t)| < Ωmax for some times t. We can define a rescaled pulse
Ω̄(t) = Ωmax exp(iϕ(τ−1(t))) where

τ(t) =

∫ t

0

dt′
|Ω(t′)|
Ωmax

. (3.55)

This rescaled pulse implements the same gate as the original pulse and has a duration
τ(T ) < T . Hence, the time-optimal pulse must satisfy |Ω(t)| = Ωmax for all t.

With this insight we now use GRAPE together with the BFGS minimization algo-
rithm [153] to find the laser phase ϕ(t) and the single qubit phase θ that minimize



36 Time-Optimal CZ Gate for a Perfect Rydberg Blockade

Figure 3.1: Time-Optimal CZ gate. (a) Minimal infidelity 1 − F of a CZ
gate as found by GRAPE for pulse durations 0 ≤ TΩmax ≤ 10. Blue circles (red
squares) show infidelity for a global(local) pulse. (b) Zoom-in and fit of the infidelity
near the time-optimal time T∗Ωmax = 7.612. (c) Two different pulses ϕ(t) (related
by complex conjugation or time reversal) found by GRAPE at the time-optimal
duration T∗. (d) Population of the states |0r〉 and |W11〉 under the time-optimal
pulse when starting in |01〉 and |11〉 respectively. (e/f) Trajectories of |ψ01〉 and
|ψ11〉 on the Bloch sphere during the time-optimal pulse.

the infidelity 1 − F for different pulse durations T . We use M = 100 steps and
start the optimization with ϕ(1), ..., ϕ(M) and θ chosen independently and uniformly
random from [0, 2π). We verify that the minimal infidelity does not depend on this
initial guess.

Fig. 3.1(a) shows the minimal infidelity 1 − F as a function of the pulse duration
T in units of 1/Ωmax (blue circles). In the limit of T → 0 the infidelity approaches
1 − F = 0.4, corresponding to the implementation of the identity instead of the
CZ gate. With increasing T the infidelity drops and finally reaches 1 − F = 0
at T = T∗ ≈ 7.6. For T > T∗ the infidelity is zero. Note that the LP protocol
(Sec. 2.5.3) demonstrates that there exists an Ω(t) with 1−F = 0, so we know that
for T > T∗ the infidelity is exactly 0, and does not only approach 0 as T → ∞.
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To determine T∗ more precisely we again use GRAPE to find the infidelity for
7.5 ≤ TΩmax ≤ 7.65, shown in Fig. 3.1(b) with the infidelity in log-scale. We fit the
infidelity for T close to T∗ as

1− F (T ) =

{
c(T∗ − T )2 if T < T∗

0 if T > T∗
(3.56)

and obtain T∗Ωmax = 7.612 and c = 5.45×10−2 [black line in Fig. 3.1(b)]. Eq. (3.56)
is found empirically and excellently fits the observed infidelities.

Fig. 3.1(c) shows the two different pulses ϕ(t) that we obtain at T = T∗. Which
pulse is obtained depends on the random starting point of the optimization. The two
pulses can be transformed into each other either by of time reversal [ϕ̄(t) = ϕ(T−t)]
or complex conjugation [ϕ̄(t) = −ϕ(t)] (see Sec. 3.1.3), so that up to symmetry
operations the time-optimal pulse is unique. Note that interestingly the pulse is
invariant under joint time reversal and complex conjugation, so that there are only
two and not four distinct time-optimal pulses. In contrast to the LP gate the laser
phase of the time-optimal is a continuous function of time without any phase jumps.
Its time dependency is similar to that of a cosinus, a fact which we will explore in
detail in Chapter 4.

To understand how the pulse acts on the initial states |01〉 and |0r〉 we consider
the population | 〈0r|ψ01(t)〉 |2 and | 〈W11|ψ11(t)〉 |2 of the states |0r〉 and |W11〉, re-
spectively, in Fig. 3.1(d). The population of |0r〉 increases until t = T/2 and then
decreases to 0 until t = T , while the population of |W11〉 increases until t ≈ T/4, but
then decreases again until t = T/2, followed by a symmetric increase until t ≈ 3T/4
and a drop to 0 at t = T . Figs. 3.1(e) and (f) show the evolution of |ψ01〉 and |ψ11〉
on the Bloch sphere spanned by |01〉 and |0r〉 as well as |11〉 and |W11〉, respectively.
Interestingly, |ψ11〉 shows a self-intersecting path.

Finally we consider what happens when we lift the constraint of a global pulse and
allow for different pulses Ω1(t) 6= Ω2(t) on the two atoms. Analogously to the global
case we calculate the minimal infidelity as a function of T using GRAPE (red squares
in Figs. 3.1(a/b)). Interestingly, the minimal infidelity exactly coincides with that
for a global pulse, showing that individual addressability of the atoms brings no
speedup for a CZ gate. We also find the pulses Ω1(t) and Ω2(t) to agree with the
global pulse Ω(t) up to a constant phase (not shown).

In conclusion we have identified the time-optimal pulse shape Ω(t) that implements
a CZ gate in the B � Ωmax limit. It consists of a constant amplitude Ωmax and a
time-dependent phase ϕ(t) which is a smooth and simple function of time [Fig. 3.1].
The time-optimal pulse duration T∗ = 7.612/Ωmax is approximately 10% faster than
the duration of the LP protocol, showing that also the LP protocol is close to time-
optimal. Finally we have demonstrated that the constraint to global pulses isn’t a
constraint at all: Even when allowing individual addressability of the atoms, the
time-optimal pulse is the global pulse found before.
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3.4 Time-Optimal CZ Gate for Finite Interaction

Strengths

In Sec. 3.3 we found the time-optimal pulse to implement a CZ gate in the limit
B/Ωmax →∞, in which it is impossible to excite both atoms simultaneously to the
Rydberg state. However, in a real experiment, B/Ωmax is always finite, so that a
residual population of the state |rr〉 cannot be completely avoided. In this section
we solve this problem and identify time-optimal pulses that implement a CZ gate
for finite interaction strengths B. We demonstrate that it is possible to implement
a CZ gate for all values of B from the B � Ωmax limit, where the pulses are similar
to those of Sec. 3.3, to the B � Ωmax limit. We note that this is not only useful
for Rydberg blockade gates in the regime of a finite blockade, where typically still
B � Ωmax, but also for spin-flip blockade gates using dressed Rydberg states [154],
in which interaction strengths are typically of the order of Ωmax.

For a finite B, the Hamiltonian H11 [see Eq. (3.53)] is modified to a three level
system as

H11 = B |rr〉 〈rr|+
√

2Ω(t)

2
(|11〉 〈W11|+ |W11〉 〈rr|) + h.c. (3.57)

whileH01 remains unchanged [see Eq. (3.52)]. Note that sinceH11 is not proportional
to Ω(t) anymore, it is now possible that the time-optimal pulse satisfied |Ω(t)| <
Ωmax.

We use GRAPE to find the time-optimal pulse duration as a function of the inter-
action strength B by proceeding analogously to Sec. 3.3. However, in contrast to
Sec. 3.3 we now find that the optimized pulse depends on the the initial guess of the
pulse. Thus we find several locally time-optimal pulses, out of which the shortest
one is the globally time-optimal pulse.

Fig. 3.2 shows the locally time-optimal pulse durations as a function of B for the
regime of small [Fig. 3.2(a)], intermediate [Fig. 3.2(b)] and large [Fig. 3.2(c)] inter-
action strengths B. By observing how the pulse shape changes with B we identify
three distinct types of pulses (types 1–3, marked by different markers in Fig 3.2),
such that for pulses of the same type the pulse shape changes continuously with
B. Figs. 3.3,3.4 and 3.5 show the laser amplitude |Ω(t)| and phase ϕ(t) at selected
values of B for pulses of type 1,2 and 3, respectively.

For large B > 4Ωmax [Fig. 3.2(c)] we find that there are only two locally time-
optimal solutions (type 1 and type 2). Pulses of type 1 always have a slightly longer
duration than pulses of type 2, but for both types the durations are in the range
7.5 ≤ TΩmax ≤ 7.65, within 1.5% of the duration of the time-optimal pulse at
B/Ωmax → ∞. Qualitatively, the two types of pulses correspond to the two time-
optimal pulses that in the B/Ωmax → ∞ limit are related by complex conjugation
(see Sec. 3.3). Pulses of type 1(2) qualitatively resemble the blue(orange) pulse in
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Figure 3.2: Pulse durations T (in units of 1/Ωmax) of locally time-optimal
pulses as a function of the interaction strength B. We identify three types of
pulse shapes such that pulse shapes of the same type change continuously with B
(see main text). (a) For small interaction strength B < Ωmax. Solid lines show fits
assuming a simple protocol of two rectangular pulses with an idle time in between
(see main text). (b) For intermediate interaction strengths Ωmax ≤ B ≤ 4Ωmax. (c)
For large interaction strengths 4Ωmax ≤ B ≤ 100Ωmax.

Figure 3.3: Type 1 Pulses. Pulse shapes |Ω(t)| and ϕ(t) at selected interaction
strengths B for pulses of type 1.
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Figure 3.4: Type 2 Pulses. Pulse shapes |Ω(t)| and ϕ(t) at selected interaction
strengths B for pulses of type 2.

Figure 3.5: Type 3 Pulses. Pulse shapes |Ω(t)| and ϕ(t) at selected interaction
strengths B for pulses of type 3.
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Fig. 3.1(c). For B > 4Ωmax we find that, as in the B →∞ limit, the pulse amplitude
is always maximal |Ω(t)| = Ωmax.

For the regime of intermediate B (Ωmax ≤ B ≤ 4Ωmax) we observe a more complex
behavior of the pulse duration [see Fig. 3.2(b)]. Around B = 2.8Ωmax the duration
of type 2 pulses increases over that of type 1 pulses, only to drop below it again
at B = 2.6Ωmax. At B = 2.4Ωmax the duration of type 2 pulses then increases
rapidly and reaches 10/Ωmax at B = 1.2Ωmax. The duration of type 1 pulses instead
decreases, reaching its minimum of T = 7.3/Ωmax at B = 2.0Ωmax, after which it
starts to increase again. Pulses of type 2 always show |Ω(t)| = Ωmax [Fig. 3.4], while
for pulses of type 1 a dip in |Ω(t)| at t = T/2 starts to appear around B = 1.5Ωmax

[Fig. 3.3].

At B = 1.3Ωmax pulse shapes of a new type, type 3, start to appear. Their pulse
duration drops rapidly, reaching its minimum of T = 6.9/Ωmax at B = 1.15Ωmax,
before rapidly increasing again. Like pulses of type 1, pulses of type 3 show a dip
in |Ω(t)| at t = T/2 which appears around B = 1.1Ωmax [Fig. 3.5].

In the regime of small B ≤ Ωmax we only find pulses of type 1 and type 3, with
type 3 always having the shorter pulse duration [Fig. 3.2(a)]. The pulse duration
of both types increases rapidly with with decreasing B. The pulses for type 1 and
type 3 show a similar structure (see Fig. 3.3 and 3.5): They consist of two pulses
with a maximum laser amplitude |Ω(t)| = Ωmax and an idle time with Ω(t) = 0 in
between them. However, for type 1 the laser phase is constant during each each of
the two pulses, while for type 3 the phase changes approximately linearly with time,
corresponding to a laser with a constant detuning.

Based on this observation we now make the Ansatz

Ω(t) =


Ωmaxe

−iδt if 0 < t < τ

0 if τ < t < T − τ
Ωmaxe

−i[δ(t+τ−T )+α] if T − τ < t < T

(3.58)

which depends on the laser detuning δ, the phase difference α between the two pulses,
the total pulse duration T and the length τ of the two individual pulses. In the limit
B → 0 this implements a CZ gate for δ = 0, α = π, τ = π/Ωmax and T = π/B. This
gate works by simply exciting |1〉 to |r〉 on both atoms simultaneously and letting
the |rr〉 state acquire a phase of π by waiting for a duration of π/B. This has been
described as Model A in Ref. [64].

For different values of B ≤ Ωmax we now numerically minimize the gate fidelity
using the Ansatz (3.58) over the parameters T, τ, δ, α and the single qubit phase
θ by which the implemented gate differs from a CZ gate. For each value of B we
find two sets of parameters which achieve 1 − F = 0. The pulse durations T for
these two solutions are shown as a function of B by the solid blue and red lines in
Fig. 3.2(a). We observe a very good agreement with the pulse durations found by
GRAPE, showing that for B ≤ Ωmax the Ansatz (3.58) indeed captures the time-
optimal pulse. For type 1 we find that in the B → 0 limit the detuning satisfies
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Figure 3.6: Time-Optimal C-Phase Gate. (a) Pulse durations for pulses of
type 1 (blue circles) and type 2 (orange triangles) as a function of the two qubit
phase φ. (b) Same as subfigure (a) but in log-log scale. Solid lines show fits T = φν .
(c)/(d) Pulses of type 1 for selected values of φ below/above π. Pulses of type 2
are complex conjugated or time reversed versions of type 1 pulses, and implement a
controlled 2π − φ phase gate.

δ/B → 0, while for type 3 we find δ/B → 1/2. This shows that for type 1 pulses
the laser is resonant with the |11〉 ↔ |W11〉 transition, but slightly detuned from
the |W11〉 ↔ |rr〉 transition, while for type 3 pulses the laser is resonant with the
two photon |11〉 ↔ |rr〉 transition but slightly detuned from the |11〉 ↔ |W11〉 and
|W11〉 ↔ |rr〉 transitions.

In conclusion, we have identified the locally time-optimal pulses implementing a CZ
gate at various interaction strengths B. We found three qualitatively different types
of pulses, each of which changes continuously with B. For large B two of those pulse
types correspond to the two time-optimal pulses in the B → ∞ limit, for small B
the time-optimal pulses are described by the simple Ansatz (3.58).

3.5 Time-Optimal C-Phase Gates

In the following we identify the time-optimal pulses ϕ(t) that implement a controlled-
phase (C-Phase) gate on two atoms, i.e a phase gate with ζ00 = 0, ζ01 = ζ10 = θ and
ζ11 = 2θ + φ for some so called two-qubit phase φ. C-Phase gates are particularly
useful in quantum simulations, but also appear in quantum algorithms such as the
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quantum Fourier transform [1]. Note that the CZ gate is a special case of a C-Phase
gate with φ = π. We note that results similar to those in this section have been
independently obtained in Ref. [13].

For C-Phase gates we only consider the case of a perfect Rydberg blockade and
proceed analogously to the time-optimal CZ gate (Sec. 3.3). For different phases
φ we identify the time-optimal pulse duration T and the corresponding laser phase
ϕ(t). For all values of φ we find two different locally time-optimal pulses, which we
label type 1 and type 2 [Fig. 3.6(a)]. At φ = π, both pulses have the same duration
and correspond to one of the two time-optimal pulses that are related by complex
conjugation [Type 1(2) is the blue(orange) pulse in Fig. 3.1(c)]. For phases φ < π
we find that type 1 pulses always have the shorter duration, while for φ > π type 2
pulses are shorter. Note that by the complex conjugation or time reversal symmetry
(Sec. 3.1.3), type 2 pulses at a given two-qubit phase φ are identical to the complex
conjugated or time revered version of the type 1 pulses at φ′ = 2π − φ, and vice
versa.

Fig. 3.6(a) shows that the minimal pulse duration approaches 0 only very slowly as
φ approaches 0 or 2π. Fig. 3.6(b) shows the same data as Fig. 3.6(a) with both axis
on a log scale. We fit the pulse duration for low φ as a polynomial

TΩmax = cφν (3.59)

and find an excellent agreement between the data and the fit. We obtain the coef-
ficients ν = 0.22 for type 1 and ν = 0.23 for type 2. This shows that implementing
a C-Phase gate for low φ on Rydberg atoms requires a very long pulse duration,
scaling approximately as T ∝ φ1/4.

Fig. 3.6(c/d) shows the pulse shapes ϕ(t) for selected values of φ for pulses of type
1. The pulses qualitatively resemble the time-optimal pulse of the CZ gate, but
require a larger range of the laser phase as φ approaches 0 or 2π. A semianalytical
description of these pulse shapes will be given in Chapter 4.

In summary we have identified the time-optimal global pulses to implement C-Phase
gates for the whole range 0 < φ < 2π of possible two qubit phases φ. For each φ
there are two distinct locally time-optimal pulses. For both pulse types the pulse
duration only drops slowly as T ∝ φ1/4 as φ→ 0.

3.6 Time-Optimal Multi-Controlled CkZ Gates

In the following we turn to the extension of the time-optimal CZ gate to multi-
controlled CkZ gates on three or more atoms. These gates are phase gates on k + 1
atoms with ζ1...1 = π and ζq = 0 for q 6= 1...1 and can be seen as applying a Z gate
on one of the qubits conditioned on all other qubits being in state |1〉. CkZ gates,
in particular the C2Z gate which is up to single qubit gates is equivalent to a Toffoli
gate, are a useful resource in many quantum algorithms [1]. We again only aim to
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Figure 3.7: Time-Optimal C2Z gate.(a) Infidelity as 1 − F as a function of
pulse duration T measured in units of Ωmax. Depending on the random starting
point of the optimization, the algorithm converges to one of several local minima.
The diameter of the marker is proportional to how often each minima was found. (b)
Zoom-in onto the region 16.3 ≤ TΩmax ≤ 16.6. We identify two distinct pulses (red
upward pointing and turquoise downward pointing triangles), whose time-optimal
pulse duration (16.43/Ωmax and 16.53/Ωmax, respectively), we obtain by a fit of the
form of Eq. (3.56). (c) Laser phase ϕ(t) for Pulse 1 and Pulse 2 as a function of
time. (d/e) Population of |00r〉 (blue, solid line) when starting in |001〉, of |W011〉
when starting in |011〉 (orange, dashed line), and of |W111〉 when starting in |111〉
(green, dash-dotted line) for Pulse 1/2.

implement a CkZ gate up to a single qubit phase θ, i.e. a gate with ζq = θ
∑

j qj for
q 6= 1...1 and ζ1...1 = (k + 1)θ + π for some θ.

We start by identifying the time-optimal pulse for a C2Z gate the case of an infi-
nite blockade strength in Sec. 3.6.1, followed by an adaptation to a finite blockade
strength B = 10Ωmax in Sec. 3.6.2. In Sec. 3.6.3 we discuss a variant of the CkZ gate
for 2 ≤ k ≤ 6 which allows for significantly shorter gate durations, first proposed in
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Ref. [13].

3.6.1 Rydberg Blockade Limit

For a C2Z gate under infinite strengths we have to consider the three two-level
Hamiltonians

H001 =
Ω(t)

2
|001〉 〈00r|+ h.c (3.60)

H011 =

√
2Ω(t)

2
|011〉 〈W011|+ h.c (3.61)

H111 =

√
3Ω(t)

2
|111〉 〈W111|+ h.c (3.62)

where |W011〉 = (|01r〉 + |0r1〉)/
√

2 and |W111〉 = (|11r〉 + |1r1〉 + |r11〉)/
√

3. We
now find the time-optimal C2Z by proceeding analogously to the time-optimal CZ
gate in Sec. 3.3. Fig. 3.7(a) shows the minimal infidelity 1 − F found by GRAPE
as a function of the pulse duration T . We start by minimizing the fidelity for
the largest considered value of T and then use this pulse as the starting point of
the optimization for the subsequent value of T . In contrast to the CZ gate, we
observe that the final fidelity depends on the randomly chosen starting point of
the optimization, and determine several distinct local minima. The radius of the
markers in Fig. 3.7(a) is proportional to how often each local minimum was found.
Despite the existence of several local minimal we still observe the emergence of clear
continuous curve describing the lowest infidelity as a function of T . We approximate
that the shortest possible pulse duration is given by T∗Ωmax ≈ 16.5.

Fig. 3.7(b) shows the infidelity 1 − F in the regime 16.3 ≤ T∗Ωmax ≤ 16.6. We
observe that there are actually two locally time-optimal pulses: Pulse 1, indicated
by the red upward pointing triangles, is also the globally time-optimal pulse and
has a duration T∗Ωmax = 16.43. Pulse 2, indicated by the turquoise downward
pointing triangles, and has a duration of T∗Ωmax = 16.53 and is less than 1% slower
than Pulse 1. Fig. 3.7(c) shows the laser phases ϕ(t) for both Pulse 1 and Pulse
2 (the amplitude for both pulses is given by |Ω(t)| = Ωmax). The laser phase for
Pulse 1 first decreases and than increases again, while the laser phase for Pulse 2
continuously decreases. Interestingly, Pulse 2 is invariant under joint time-reversal
and complex conjugation, so that there is only other pulse related to it by complex
conjugation and/or time reversal (see Sec. 3.1.3). In contrast, there are three other
pulses related to Pulse 1 by these symmetry operations.

To gain a better understanding of the action of the two pulse shapes, Fig. 3.7(d)
shows the population of |00r〉 when starting in |001〉 (solid blue line), the population
of |W011〉 when starting in |011〉 (dashed orange line) and the population of |W111〉
when starting in |111〉 (dash-dotted green line), all under the evolution given by
Pulse 1. Fig. 3.7(e) shows the same populations for the evolution under Pulse 2.
For both cases we see that the populations oscillate with time, with the populations
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Figure 3.8: C2Z gate at finite interaction strengths. (a) Laser phase ϕ(t) of
the time-optimal pulse at B12 = B23 = B13 = 10Ωmax. (b) Detuning ∆ = dϕ/dt for
the pulse from (a). (c) Population of the states |0rr〉 (blue, solid line) and |D111,2〉
(orange, dashed line) during the pulse from (a). (d) Pulses at B = 10Ωmax (red)
that qualitatively resemble Pulse 1 from the B →∞ limit (gray). (e) Analogous to
(d) for Pulse 2.

involving more atoms in state |1〉 oscillating faster. This is consistent with the simple
case of a constant laser phase, where the population of the state |Wq〉 would oscillate
with frequency

√
nqΩmax, where nq =

∑
j qj is the number of atoms starting in state

|1〉. For Pulse 1 and Pulse 2 the laser phase is not constant, but the qualitative
behavior is kept and adapted such that the populations of |00r〉 , |W011〉 and |W111〉
are all zero at the end of the pulse.

In summary we have shown that there are two smooth and simple pulse shapes that
implement a C2Z gate in a time-optimal or almost time-optimal manner. These
pulses constitute the first gate protocol for a C2Z that only requires a global laser
pulse instead of individual addressing of the atoms.
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3.6.2 Finite Interaction Strengths

In a real experiment, the limit of an infinite interaction strength can never be exactly
satisfied. In the following we thus consider the more realistic case of a finite blockade
strength. For simplicity, we restrict ourselves to the case of B12 = B23 = B13 =
10Ωmax. The case of equal interaction strength can be experimentally realized by
aligning the atoms in the shape of an equilateral triangle.

The Hamiltonian H001 from Eq. (3.60) stays unmodified in the case of finite B, while
H011 and H111 from Eqs. (3.61) and (3.62) are modified as

H011 = B |0rr〉 〈0rr|+
√

2Ω(t)

2
(|011〉 〈W011|+ |W011〉 〈0rr|) + h.c. (3.63)

H111 = 3B |rrr〉 〈rrr|+B |D111,2〉 〈D111,2| (3.64)

+

√
3Ω(t)

2
|111〉 〈W111|+ Ω(t) |W111〉 〈D111,2|+

√
3Ω(t)

2
|D111,2〉 〈rrr|+ h.c.

where |D111,2〉 = (|1rr〉+ |r1r〉+ |rr1〉)/
√

3.

We start by finding the time-optimal pulse for a C2Z gate using GRAPE starting
the optimization with a randomly chosen pulse. Interestingly, we are able to achieve
a pulse duration of TΩmax = 10.0, significantly shorter than in the B → ∞ case.
Fig. 3.8(a) shows the laser phase ϕ(t) as a function of time, while the laser amplitude
is again always maximal (|Ω(t)| = Ωmax). The laser phase shows rapid oscillations
as a function of time. To better understand the mechanism of this pulse, we plot the
detuning ∆ = dϕ/dt in Fig. 3.8(c). We observe that ∆ is frequently of the order of
−B, showing that the laser is not always strongly detuned from the |W011〉 ↔ |0rr〉
and the |W111〉 ↔ |D111,2〉 transitions. Fig. 3.8(c) confirms this by showing the
populations of |W011〉 (solid blue line) and |D111,2〉 (orange dashed line). For both
states we find a significant population during the pulse. Together, this shows that
the pulse from Fig. 3.8(a) works fundamentally different than the pulses at B →∞
by significantly populating the states |0rr〉 and |D111,2〉.

While being faster than the pulse in the B →∞ limit, the disadvantage of the pulse
found above is that is is very sensitive to fluctuations in B. For example, decreasing
B by just 10% increases the infidelity to 1 − F = 0.59. This renders the pulse
impractical for experimental implementations, where there is often a considerable
uncertainty in B due to an uncertainty of the interatomic distance arising from the
thermal motion of the atoms.

To mitigate this problem we now aim to find pulses at the finite value of B which
are perturbations of pulses at B →∞. For this, we use that for far detuned pulses
(i.e |∆| � B), the effect of the finite value of B is in first order of B−1 given by an
AC stark shift as

H̄011 = −|Ω(t)|2

2B
|W011〉 〈W011|+

√
2Ω(t)

2
|011〉 〈W011| (3.65)

H̄111 = −|Ω(t)|2

B
|W111〉 〈W111|+

√
3Ω(t)

2
|111〉 〈W111| (3.66)
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Figure 3.9: Variant of the CkZ gate.(a) Laser phase ϕ(t) for the variant of
a CkZ gate discussed in Sec. 3.6.3 for 1 ≤ k ≤ 5. The number next to each gate
indicates k + 1, the total number of atoms. (b) Pulse duration as the function of
k + 1, the total number of atoms in the gate.

We now use GRAPE to find the time-optimal pulses under the approximate Hamil-
tonians H001, H̄011 and H̄111. We then use these pulses as an initial guess for the
evolution under the exact Hamiltonians H001, H̄011 and H̄111. Since H001, H̄011

and H̄111 don’t contain states with two or more atoms in the Rydberg states, this
procedure inhibits pulses with a significant population of these states.

The resulting pulses are shown in Fig. 3.8(d) in red [similar to Pulse 1 in Sec. 3.6.1(c)]
and in Fig. 3.8(e) in turquoise [similar to Pulse 2 in Sec. 3.6.1(c)]. They resemble
the pulses in the B → ∞ limit, shown as the grey curves. Since at finite B only
joint complex conjugation and time reversal gives a pulse implementing the same
gate, while individual complex conjugation or time reversal would also require a
switch of the sign of B (see Sec. 3.1.3), we find two different pulses at finite B
for both Pulse 1 and Pulse 2. The pulse durations are given by TAΩmax = 16.4,
TBΩmax = 16.6, TCΩmax = 17.1 and TDΩmax = 16.2 for the pulses marked as A,B,C
and D in Fig. 3.8(d/e) respectively, similar to those found in the B →∞ limit. The
pulses in Fig. 3.8(d/e) are also significantly more robust against fluctuations in B
than the pulse in Fig. 3.8(a). For all of them, the infidelity stays below 4 × 10−4

when reducing B by 10%.

In summary, we identified two kinds of pulses at finite values of B: A pulse much
shorter than the time-optimal pulse in the B → ∞ limit which significantly popu-
lates states with more than one atom in the Rydberg state and is thus very sensitive
to fluctuations in B, and a family of pulses qualitatively resembling those from the
B →∞ limit which are much more robust against fluctuations in B.

3.6.3 Phase on |0...0〉 instead of |1...1〉

In Secs. 3.6.1 and 3.6.2 we considered a permutation symmetric phase gate with
ζ000 = ζ001 = ζ011 = 0 and ζ111 = π. In Ref. [13] it was discovered that faster pulses
are possible for phase gates with ζ000 = 0 and ζ001 = ζ011 = ζ111 = π. These gates
can be converted into C2Z gates by applying an X gate on each qubit before and
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after the gate. For completeness we also include a short discussion of these results,
which should not be attributed to the author, in this thesis.

Fig. 3.9(a) shows the time-optimal pulses for this variant of a CkZ gate for 1 ≤ k ≤ 5
as found by GRAPE in the B/Ωmax → ∞ limit. Interestingly the pulse shapes for
k = 3 and k = 4 resemble each other, as do the pulse shapes for k = 5 and k = 6.
Fig. 3.9(b) shows the pulse duration as a function of k and reveals an approximately
linear dependency of T on k. Crucially, the pulse for k = 3 has a duration of just
TΩmax = 10.81, about 34% faster than the pulses from Sec. 3.6.1.

3.7 A Protocol to Generate GHZ States

Greenberger-Horne-Zeiling (GHZ) states are are N qubit quantum states of the
form

|GHZ〉 =
1√
2

(
|0〉⊗N + |1〉⊗N

)
. (3.67)

They are of particular importance for quantum metrology, where they can be used
for sensing beyond the standard quantum limit (SQL) and are able to achieve the
Heisenberg quantum limit [155].

In the following we will show how N -qubit GHZ states can be implemented on
neutral atoms by global single qubit gates and a single permutation symmetric
phase gate which can be implemented using a global laser pulse. We assume that all
N atoms are within a Rydberg blockade radius of each other, such that at most one
of them can be in the Rydberg state at any given time. Our GHZ state preparation
protocol has been experimentally implemented in Ref. [17], achieving a fidelity F >
0.7 for a 9 qubit GHZ state and demonstrating an optical clock with a fractional
frequency instability below the SQL.

To generate a GHZ state, we initialize the qubits in the state |+〉⊗N where |+〉 =
(|0〉 + |1〉)/2. Then we apply a global laser pulse Ω(t) to implement the N -qubit
permutation symmetric phase gate

U = exp

(
iπ
∑
j<k

n̂jn̂k

)
(3.68)

where n̂j = |1j〉 〈1j|. Note that U corresponds to applying a CZ gate between every

pair of qubits. The state U |+〉⊗N is thus the graph state of the fully connected
graph [156]. In the following we show that, up to a global phase,

U |+〉⊗N =
1√
2

(
|+i〉⊗N + i |−i〉⊗N

)
(3.69)

where |±i〉 = (|0〉 ± i |1〉)/
√

2 are the eigenstates of the Pauli Y operator with
eigenvalue ±1. Thus a GHZ state can be generated from U |+〉⊗N by applying
global single qubit gates.
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Figure 3.10: Pulses to generate a GHZ state. (a) Laser phase ϕ(t) to imple-
ment U for 2,4,6,8 and 10 atoms. (b) Pulse duration as a function of the number of
atoms.

To show Eq. (3.69) we use that, since U |+〉⊗N is the graph state of the fully con-
nected graph, it holds for all j that SjU |+〉⊗N = U |+〉⊗N , where the stabilizer Sj is
given by Sj = Z1...Zj−1XjZj+1...ZN and Xk or Zk denote the Pauli X- or Z-operator
applied on qubit k, respectively. Since for all j, k we have SjSk = YjYk it follows

that also YjYkU |+〉⊗N = U |+〉⊗N . Thus we can already conclude that U |+〉⊗N is
of the form

U |+〉⊗N = α |+i〉⊗N + β |−i〉⊗N (3.70)

for some coefficients α and β. Since Sj |+i〉⊗N = i |−i〉⊗N and Sj |−i〉⊗N = −i |+i〉⊗N
it follows α = −iβ, showing Eq. (3.69).

It remains to find pulses Ω(t) that implement the unitary U . Using the methods laid
out in Secs. 3.1–3.3 we find the time-optimal pulse that implements U up to single
qubit phase θ. The pulses for 2,4,6,8 and 10 atoms are shown in Fig. 3.10(a). We
observe that the complexity of the pulses increases with increasing N . Fig. 3.10(b)
shows the time-optimal pulse duration, which also increases with N .

Finally we point out an interesting feature of our implementation of U : Since atoms
in state |0〉 act just like missing atoms, a laser pulse Ω(t) that implements U on N
atoms will also implement U on any number N ′ < N atoms, albeit not in a time-
optimal manner. In Ref. [17] this was used to prepare GHZ states of different sizes
by preparing atom ensembles of different sizes and then applying the same pulse
Ω(t) simultaneously on all ensembles. This collection of GHZ states of different sizes
was then used to implement a cascaded quantum phase estimation protocol [157],
increasing the dynamic range for sensing compared to a single GHZ state.

In summary we have demonstrated how the multi-qubit gate U can be used to-
gether with global single qubit gates to generate GHZ states, and how U can be
implemented using simple and smooth laser pulses.
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3.8 Conclusion

In this chapter we have used the numerical quantum optimal control technique of
GRAPE to find time-optimal protocols for the implementation of several two- and
multi-qubit quantum gates. Specifically, we have explored CZ gates for both an
infinite and a finite interaction strength between the atoms, and C-Phase gates,
multi-controlled CkZ gates, and gates to generate GHZ states, for an infinite in-
teraction strength. The time-optimal protocols only require a global laser without
individual addressability of the atoms, and implement a gate simply by modulating
the laser phase as a function of time. Due to their high fidelity, simplicity, and
versatility, time-optimal gates have already been experimentally realized to imple-
ment CZ gates [13–16] and to generate GHZ states [17]. In this chapter we have
assumed the simplest possible level scheme and modeled each atom as a three level
system. As demonstrated in Ref. [14], the optimal control methods used in this
chapter could also be used on more complicated level schemes, e.g. including two
different Rydberg states and a dipole-dipole interaction between them [108, 114].
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4 Mathematical Structure of
Time-Optimal Pulses

In Chapter 3 we found the time-optimal laser pulse that implements a CZ gate on
Rydberg atoms using the numerical quantum optimal control method of GRAPE.
Notably, this pulse has a rather simple structure, the laser phase ϕ(t) approximately
resembles the shape of a sinus. The simple structure of of the time-optimal pulse is
not surprising, since also the underlying optimal control problem is rather simple: It
just consists of steering two different two-level systems whose Hamiltonian depends
on a single control parameter, the laser phase ϕ.

The simple nature of the optimal control problem allows us to approach it with
analytical methods. In this chapter, we will use Pontryagin’s maximum principle
(PMP) [158, 159] to obtain a semi-analytical form of the time-optimal laser phase
ϕ(t). Specifically, we will prove that for any time-optimal C-Phase gate on two
atoms in the Rydberg blockade limit the laser detuning ∆ = dϕ/dt is given by a
solution of

1

2
∆̇2 + V (∆) = 0 ∆(0) = 0 (4.1)

with

V (∆) =
1

8
∆4 + c2∆2 + c1∆ + c0 (4.2)

for some coefficients c2, c1, c0. In other words, the detuning ∆ has the same functional
dependence on time as the position of a classical particle with mass 1 and energy
0 oscillating in the quartic potential V (∆). Furthermore, we show that at the final
time T the time-optimal pulse satisfies ∆(T ) = 0, corresponding to the return of
the particle to its initial position.

Our analytical result makes no statement on the parameters c2, c1, c0, which still have
to be determined numerically. Hence, instead of the M � 1 parameters that are
required in GRAPE by making a piecewise constant Ansatz of ϕ(t) with M pieces,
this semi-analytical approach characterizes time-optimal pulses by only three pa-
rameters. Analogously, we demonstrate that for three qubit C2Z gates, as discussed
in Sec. 3.6.1, time-optimal pulses can be described by only seven parameters.

This chapter is structured as follows: We start by stating the PMP, which is origi-
nally a classical optimal control method, in Sec. 4.1. While a complete proof of the
PMP is out of the scope of this thesis, we give an intuitive proof sketch in Sec. 4.2.
In Sec. 4.3 adapt the PMP to quantum optimal control problems. In Sec. 4.4 we
then apply the PMP to describe time-optimal pulses on Rydberg atoms obtain a



54 General formulation of the PMP

set of coupled ordinary differential equations, which we then use to derive Eq. (4.1).
We also numerically determine the parameters c2, c1, c0 for a C-Phase gate as the
function of the two-qubit phase φ and demonstrate the agreement between the semi-
analytical results of this section with the numerical results of Sec. 3.5. Finally in
Sec. 4.6 we discuss the extension of our semi-analytical approach to three qubit C2Z
gates.

Sections 4.1–4.3 of this chapter are based on the reviews [159, 160], while Secs. 4.4–
4.6 constitute original work.

4.1 General formulation of the PMP

We start this section with an analogy of the PMP in classical mechanics. In spirit,
the PMP makes a statement similar to the Euler-Lagrange equation in classical
mechanics, but applied to an optimal control problem. In classical mechanics, we
know that a particle that moves from an initial point (ti, xi) to a final point (tf , xf )
in spacetime takes a trajectory x(t) that minimizes the action

S[x] =

∫ tf

ti

L(x(t), ẋ(t))dt (4.3)

where L is the Lagrangian of the system. To find the trajectory x(t), we could thus
try to numerically minimize S[x] over all possible trajectories x(t) with x(ti) = xi
and x(tf ) = xf , similar to optimizing the gate fidelity 1−F over all laser phases ϕ(t).
However, we could also use that the optimal trajectory obeys the Euler-Lagrange
equation

d

dt

(
∂L

∂ẋ

)
+
∂L

∂x
= 0. (4.4)

Instead of optimizing over all trajectories, we can restrict ourselves to optimizing
over all trajectories that satisfy Eq. (4.4). Since we know the initial position x(ti) =
xi, these trajectories can be parameterized by their initial velocity ẋ(ti). To find
the trajectory x(t) we now have to find the initial velocity ẋ(ti) which satisfies the
terminal condition x(tf ) = xf . The GRAPE algorithm of Chapter 3 is analogous to
minimizing S[x] directly over all possible trajectories x(t), while the PMP approach
explored in this chapter is analogous to using the Euler-Lagrange equation.

We now give an exact statement of the PMP based on Ref. [159, 160]. Consider a
real n-dimensional manifold M describing the space of all possible states of a system.
For simplicity we here assume that M is embedded in Rn′

for some n′ ≥ n. We are
given a set U ⊆ RK of admissible controls and a steering function f(x, u) which
takes a point x ∈ M and a control u ∈ U to a tangent vector f(x, u) ∈ TxM in the
tangent space of M at x. We are also given an initial point xi ∈ M and a target
submanifold T ⊆ M . A particularly interesting case is T = {xf} where the target
submanifold collapses to a single point xf ∈M .
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A controlled trajectory of duration T > 0 is now defined as a pair (x, u) of two
functions x : [0, T ] → M and u : [0, T ] → U such that x(0) = xi, x(T ) ∈ T and
ẋ(t) = f(x(t), u(t)) for all t ∈ [0, T ]. The duration T can either be fixed, in which
case we only consider controlled trajectories of duration T , or free, in which case we
take T as a property of the trajectory and consider trajectories of all T > 0.

We are now given a Lagrangian L : M × U → R and a terminal cost function
Φ : T → R. The cost of a controlled trajectory (x, u) is defined as

J [x, u] =

∫ T

0

L(x(t), u(t))dt+ Φ(x(T )). (4.5)

We say that (x, u) is an optimal trajectory if J [x, u] ≤ J [x′, u′] for all controlled
trajectories (x′, u′). The time-optimal optimization problem is a special case of this
optimization problem with a free duration T as well as L = 1 and Φ = 0.

To state the PMP we define a Hamiltonian depending on a tangent vector p ∈ TxM
and a real number p0 ∈ R as

H(x, p, p0, u) = 〈p, f(x, u)〉+ p0L(x, u) (4.6)

where 〈·, ·〉 denotes the inner product. This Hamiltonian is not to be confused with
the Hamiltonian describing the evolution of a quantum system. We therefore denote
it as H instead of H. Note that with this definition of H we obtain

ẋ =
∂H
∂p

(4.7)

in analogy to Hamilton’s equation in classical mechanics. (For n > 1 we take ∂/∂x
to mean the gradient with respect to x.)

The PMP now states that for every optimal trajectory (x, u) there exist so-called
costates p(t) ∈ Tx(t)M and a number p0 ∈ {−1, 0} such that all of the following
statements hold

i) The pair (p0, p(t)) never vanishes, i.e. if p0 = 0 then p(t) 6= 0 for all t.

ii) The costates satisfy

ṗ = −∂H
∂x

. (4.8)

Again, this is in analogy to Hamilton’s equation in classical mechanics.

iii) For all times t it holds that

H(x(t), p(t), p0, u(t)) = max
u′

H(x(t), p(t), p0, u′) (4.9)

where max denotes the maximum.

iv) The Hamiltonian along the optimal trajectory, i.e. H(x(t), p(t), p0, u(t)), is
constant. If T is free, we even have H(x(t), p(t), p0, u(t)) = 0 for all t.
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v) Denote by Π the projector onto the tangent space Tx(T )T of T at x(T ). (If T
collapses to a single point we take Π = 0). Then

Π(p(T )) = p0Π

(
∂Φ(x(T ))

∂x

)
(4.10)

In other words, Eq. (4.10) tells us the final value of the costates p(T ), but only
along the directions of the tangent space of T at the final point x(T ).

For our application of the PMP we will mostly work with statements ii) and iii).
They allow to find optimal trajectories as follows: If the maximum in Eq. (4.9) is
achieved by a unique value u, Eq. (4.9) can be used to obtain a relationship u(x, p).
(Later we will prove that for time-optimal pulses on Rydberg atoms, this maximizer
u(x, p) is indeed always unique.) Then, given the initial state x(0) = xi and the
initial costate p(0), the differential equations Eq. (4.7) and (4.8) can be solved to
obtain x(t), p(t) and u(t) for the whole trajectory. Unfortunately, the initial costate
p(0) of the optimal trajectory is generally unknown and has to be determined by
other means, for example by numerically finding all initial costates p(0) that lead
to a trajectory with x(T ) ∈ T and then selecting the trajectory with the minimal
cost out of all of these candidates. Nevertheless this reduces the search space from
the space of all controlled trajectories to the space of all initial costates, i.e. from
an infinite dimensional space to a finite dimensional space.

4.2 Proof Sketch

An exact proof of the PMP is beyond the scope of this thesis, the interested reader
is referred to Ref. [160]. In the following we sketch proof of the PMP based on the
Lagrange multiplier theorem, adapted from Ref. [159].

The Lagrange multiplier theorem states the following: Suppose we want to minimize
a differentiable function f : Rn → R under m equality constraints g1(x) = g2(x) =
... = gm(x) = 0, where the g : Rn → R are differentiable. Let x be the minimum of f
under these constraints. If the gradients∇g1(x), ...,∇gm(x) are linearly independent
then there exists a so-called Lagrange multiplier λ ∈ Rm such that

∇f(x) =
m∑
j=1

λj∇gj(x). (4.11)

The requirement that the ∇g1(x), ...∇gm(x) have to be linearly independent can be
elegantly incorporated by stating that there exists a λ0 ∈ {−1, 0} and a λ ∈ Rm

such that the pair (λ0, λ) does not vanish and such that

λ0∇f(x) +
m∑
j=1

λj∇gj(x) = 0. (4.12)
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If the ∇g1(x), ...∇gm(x) are linearly independent then by the Lagrange multiplier
theorem there exists a solution to Eq. (4.12) with λ0 = −1. If the ∇g1(x), ...∇gm(x)
are instead linearly dependent, then by the definition of linear dependence there
exists a solution to Eq. (4.12) with λ0 = 0 and λ 6= 0.

We now apply the Lagrange multiplier theorem to the minimization of the cost
function J [x, u]. We want to minimize J over all trajectories x : [0, T ] → M with
x(0) = xi and x(T ) ∈ T , all controls u : [0, T ] → M , and, if T is free, over all
durations T , under the constraint that for all t we have ẋ(t) = f(x(t), u(t)). By the
Lagrange multiplier theorem there exist p0 ∈ {−1, 0} and time dependent costates
p(t) such that for

S = p0Φ(x(T )) +

∫ T

0

[
p0L(x(t), u(t)) + 〈(p(t), f(x(t), u(t))− ẋ(t)〉

]
dt (4.13)

the variations δS with respect to δx and δu vanish. For the case of a free final time
we additionally obtain ∂S/∂T = 0.

Using integration by parts and the definition of the Hamiltonian H [Eq. (4.6)], S
can be conveniently rewritten as

S =p0Φ(x(T ))− 〈p(T ), x(T )〉+ 〈p(0), x(0)〉 (4.14)

+

∫ T

0

[H(x(t), p(t), p0, u(t)) + 〈ṗ(t), x(t)〉]dt.

The variation of S is then given by

δS =

〈
p0∂Φ(x(T ))

∂x
− p(T ), δx(T )

〉
(4.15)

+

∫ T

0

[〈
∂H
∂x

+ ṗ, δx(t)

〉
+

〈
∂H
∂u

, δu(t)

〉]
dt.

From δS = 0 for all variations δx with δx(T ) ∈ Tx(T )T it follows that ∂H/∂x+ ṗ = 0
[statement ii)] and that

p0Π

(
∂Φ(x(T ))

∂x

)
− Π(p(T )) = 0 (4.16)

[statement v)]. From δS = 0 for all variations δu it follows that ∂H/∂u = 0. This
is a weaker version of statement iii), since it only assesses that the optimal control
u is an extremum or a saddle point of H. The proof that u is indeed a maximum of
H, as stated by statement iii), is beyond the scope of this proof sketch.

Now only statement iv) is missing. To prove that H is constant along the optimal
trajectory we simply calculate

dH
dt

=
∂H
∂x︸︷︷︸
=−ṗ

ẋ+
∂H
∂p︸︷︷︸
=ẋ

ṗ+
∂H
∂u︸︷︷︸
=0

u̇ = 0. (4.17)
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To shown that for free T we even have H = 0 along the optimal trajectory we use
that ∂S/∂T = 0 and calculate

0 =
∂S

∂T
=

∂

∂T

(
p0Φ(x(T ))− 〈p(T ), x(T )〉

)
+H(x(T ), p(T ), p0, u(T )) + 〈ṗ(T ), x(T )〉

(4.18)

=

〈
p0∂Φ(x(T ))

∂x
− p(T ), ẋ(T )

〉
+H(x(T ), p(T ), p0, u(T ))

= H(x(T ), p(T ), p0, u(T ))

where the last equality follows from statement v). Since H vanishes at the final time
and is constant along the optimal trajectory it must also vanish everywhere along
the optimal trajectory. This completes our proof of the PMP.

4.3 Formulation of the PMP for Quantum Opti-

mal Control Problems

In this section we adapt the formulation of the PMP from Sec. 4.1 to the specific
case of controlling a quantum system. For this, we consider the following problem:
Given a Hamiltonian H(u) depending on a set of controls u ∈ U ⊆ Rm, an initial
state |ψi〉, a manifold of possible final states T , a Lagrangian L(|ψ〉 , u) depending
on a quantum state and a control, and a terminal cost function Φ(|ψ〉) for quantum
states in T , we want to minimize

J =

∫ T

0

L(|ψ(t)〉 , u(t))dt+ Φ(|ψ(T )〉) (4.19)

over all trajectories |ψ(t)〉 and controls u(t) of duration T with |ψ(0)〉 = |ψi〉,
|ψ(T )〉 ∈ T and |ψ̇(t)〉 = −iH(u(t)) |ψ(t)〉.

This is exactly the setting of the PMP as discussed in Sec. 4.1, with the manifold
M being the set of all normalized quantum states, and the steering function f given
by f(|ψ〉 , u) = −iH(u) |ψ〉. The fact that our state space is now a complex vector
space requires two adaptations of the PMP: First, all inner products 〈x, y〉 in the
formulation of the PMP have to be replaced by the real part of the inner prod-
uct between quantum states Re(〈φ|ψ〉) = 〈Re(|ψ〉),Re(|φ〉)〉 + 〈Im(|ψ〉), Im(|φ〉)〉.
Second, the gradients of Φ and H with respect to x and p have to be replaced by
Wirtinger derivatives. The Wirtinger derivative of a real function f(|ψ〉) depending
on a complex state |ψ〉 is defined as

∂f

∂ |ψ〉
=

∂f

∂Re(|ψ〉)
− i ∂f

∂Im(|ψ〉)
(4.20)

where on the right hand side we treat Re(|ψ〉) and Im(|ψ〉) as independent variables.
The Wirtinger derivative is the natural extension of the derivative to functions with
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complex inputs and real outputs, as it satisfies

f(|ψ〉+ ε |φ〉) = f(|ψ〉) + εRe

(〈
∂f

∂ |ψ〉

∣∣∣∣φ〉)+O(ε2). (4.21)

as ε→ 0. With these modifications we can now state the PMP. The costates p0, p(t)
from the real formulation are now replaced by χ0 ∈ {−1, 0} and quantum costates
|χ(t)〉. The PMP Hamiltonian H (different from the Hamiltonian H of the quantum
system), is defined as

H(|ψ〉 , |χ〉 , χ0, u) = Re 〈χ| − iH(u)|ψ〉+ χ0L(|ψ〉 , u) (4.22)

= Im 〈χ|H(u)|ψ〉+ χ0L(|ψ〉 , u).

Since the states |ψ(t)〉 that we consider are confined to the manifold defined by
〈ψ(t)|ψ(t)〉 = 1, the costates are confined to the tangent space of this manifold and
must satisfy Re 〈χ(t)|ψ(t)〉 = 0 for all times t.

The PMP now states that for the optimal trajectory (|ψ(t)〉, u(t)) there exist χ0 ∈
{−1, 0} and costates |χ(t)〉 with Re 〈χ(t)|ψ(t)〉 = 0 such that all of the following
statements hold:

i) The pair (χ0, |χ(t)〉) vanishes at no time t.

ii) The costates satisfy

|χ̇〉 = − ∂H
∂ |ψ〉

= −iH |χ〉+ χ0 ∂L

∂ |ψ〉
. (4.23)

iii) For all times t it holds that

H(|ψ(t)〉 , |χ(t)〉 , χ0, u(t)) = max
u′
H(|ψ(t)〉 , |χ(t)〉 , χ0, u′) (4.24)

iv) H is constant along the optimal trajectory. If the final time T is free, we even
have H(|ψ(t)〉 , |χ(t)〉 , χ0, u(t)) = 0 for all t.

v) Let Π be the projector onto the tangent space of T at |ψ(T )〉. Then

Π |χ(T )〉 = χ0Π
∂Φ(|ψ(T )〉)

∂ |ψ〉
. (4.25)

4.4 Application of the PMP to Time-Optimal Gates

on Rydberg Atoms

We now apply the PMP to the problem of simultaneously controlling N quantum
systems with the Hamiltonians

Hn =

√
nΩmaxe

iϕ

2
|0〉 〈1|+ h.c. =

√
nΩmax

2
(cosϕσx − sinϕσy) (4.26)
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with n = 1, 2, ..., N , where σx and σy denote the Pauli X and Y operators, respec-
tively. For simplicity we will set Ωmax = 1 for the remainder of this chapter.

The Hamiltonians H1, ..., HN describe, up to relabeling of the states, the evolution of
N atoms under a perfect Rydberg blockade and a global pulse with Rabi frequency
Ωmaxe

iϕ(t) as described in Sec. 3.1. We start with N systems in the initial state
|ψn(0)〉 = |0〉 and evolve them under the TDSE |ψ̇n〉 = −iHn |ψn〉. To implement
a phase gate with phases ζ̄1, ..., ζ̄N in a time-optimal fashion, our goal is to find
the shortest possible pulse ϕ : [0, T ] → R such that there is a θ with |ψn(T )〉 =
ei(nθ+ζ̄n)) |0〉 for all n.

The PMP can be applied to this problem with the Hamiltonian H = H1⊕ ...⊕HN ,
the target manifold

T =
{
ei(θ+ζ̄1) |0〉 ⊕ ei(2θ+ζ̄2) |0〉 ⊕ ...⊕ ei(Nθ+ζ̄N ) |0〉

∣∣∣ θ ∈ [0, 2π]
}

(4.27)

the Lagrangian L = 1, and the terminal cost function Φ = 0. The pulse duration
T is of course taken to be free. The PMP states that for the optimal trajectory
|ψ1(t)〉 , ..., |ψN(t)〉 , ϕ(t) there are costates χ0 ∈ {−1, 0} and |χ1(t)〉 , ..., |χN(t)〉 with
Re 〈χn(t)|ψn(t)〉 = 0 such that the following conditions hold:

i) The tuple (χ0, |χ1(t)〉 , ..., |χN(t)〉) never vanishes.

ii) The costates satisfy the TDSE

|χ̇n〉 = −iHn |χn〉 . (4.28)

iii) For all times t the optimal phase ϕ(t) is a maximizer of

H =
∑
n

Im 〈χn|Hn|ψn〉+ χ0 (4.29)

=
1

2
cosϕ

(∑
n

√
nIm 〈χn|σx|ψn〉

)
− 1

2
sinϕ

(∑
n

√
nIm 〈χn|σy|ψn〉

)
+ χ0

This maximum is unique and can be calculated analytically. It is given by ϕ
such that

cosϕ =

∑
n

√
nIm 〈χn|σx|ψn〉√

(
∑

n

√
nIm 〈χn|σx|ψn〉)

2
+ (
∑

n

√
nIm 〈χn|σy|ψn〉)

2
(4.30)

and

sinϕ = −
∑

n

√
nIm 〈χn|σy|ψn〉√

(
∑

n

√
nIm 〈χn|σx|ψn〉)

2
+ (
∑

n

√
nIm 〈χn|σy|ψn〉)

2
(4.31)

[See statement iv) below and Appendix 4.A on why the denominator cannot
vanish] The value of H along the optimal trajectory is then given by

H =
1

2

(∑
n

√
nIm 〈χn|σx|ψn〉

)2

+

(∑
n

√
nIm 〈χn|σy|ψn〉

)2
1/2

+ χ0.

(4.32)
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iv) Along the optimal trajectory we have H = 0. For now, we will assume χ0 =
−1. We consider so-called abnormal solutions with χ0 = 0 [159] separately in
Appendix 4.A and show that no abnormal solution can implement a C-Phase
gate faster than the fastest normal solution.

With χ0 = −1 we obtain that(∑
n

√
nIm 〈χn|σx|ψn〉

)2

+

(∑
n

√
nIm 〈χn|σy|ψn〉

)2

= 4. (4.33)

This also simplifies Eq. (4.30) and (4.31) to

cosϕ =
1

2

∑
n

√
nIm 〈χn|σx|ψn〉 (4.34)

and

sinϕ = −1

2

∑
n

√
nIm 〈χn|σy|ψn〉 . (4.35)

v) The derivative of the final state |ψn(T )〉 with respect to the single qubit phase
θ is given by d |ψn(T )〉 /dθ = in |ψn(T )〉. The tangent space of T at |ψ1(T )〉⊕
... ⊕ |ψN(T )〉 is thus a one dimensional vector space spanned by i |ψ1(T )〉 ⊕
2i |ψ2(T )〉 ⊕ ...⊕Ni |ψN(T )〉. Thus, statement v) of the PMP becomes

0 =
∑
n

Re(in 〈χn(T )|ψn(T )〉) = −
∑
n

nIm 〈χn(T )|ψn(T )〉 . (4.36)

Since |ψn〉 and |χn〉 both evolve under the TDSE given by Hn, their scalar
product 〈χn|ψn〉 is constant in time. Thus, we can conclude that at all times∑

n

nIm 〈χn|ψn〉 = 0. (4.37)

Given initial costates |χ1(0)〉 , ..., |χN(0)〉, the TDSEs |ψ̇n〉 = −iHn |ψn〉 and |χ̇n〉 =
−iHn |χn〉 together with Eq. (4.34) and (4.35) allow us to calculate |ψ(t)〉, |χ(t)〉
and ϕ(t) along the whole trajectory. Our goal is now to find initial costates as well
as a pulse duration T such that the final states are of the form |ψn(T )〉 = ei(nθ+ζ̄n) |0〉
for some θ. The PMP further states that we can limit our search to initial costates
which satisfy Re 〈χn|ψn〉 = 0 as well as Eq. (4.33) and Eq. (4.37).

A particularly elegant formulation can be obtained by introducing N 3-dimensional
vectors vn = (v

(x)
n , v

(y)
n , v

(z)
n ) given by v

(α)
n = Im 〈χn|σα|ψn〉 for α ∈ {x, y, z}. Then

v̇(α)
n = Im(i 〈χn|[Hn, σα]|ψn〉) (4.38)

which leads to

v̇n =
√
n

 cosϕ
− sinϕ

0

× vn =
√
n

 − sinϕv
(z)
n

− cosϕv
(z)
n

cosϕv
(y)
n + sinϕv

(x)
n

 (4.39)
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with

cosϕ =
1

2

∑
n

√
nv(x)

n sinϕ = −1

2

∑
n

√
nv(y)

n . (4.40)

We thus obtain 3N coupled quadratic differential equations for the vn.

Solving this system of differential equations can be simplified by the presence of con-
served quantities. From Eq. (4.39) we immediately obtain N conserved quantities

rn = ‖vn‖ =

√
v

(x)
n

2
+ v

(y)
n

2
+ v

(z)
n

2
. (4.41)

Additionally, Eq. (4.33) gives(∑
n

√
nv(x)

n

)2

+

(∑
n

√
nv(y)

n

)2

= 4. (4.42)

Finally,

C =
∑
n

vzn (4.43)

is a conserved quantity. To see this, we calculate

dC

dt
=

1

2

∑
n

√
n(cosϕv(y)

n + sinϕv(x)
n ) (4.44)

=
1

2

(∑
n

√
nv(y)

n

)
︸ ︷︷ ︸

=− sinϕ

cosϕ+
1

2

(∑
n

√
nv(x)

n

)
︸ ︷︷ ︸

=cosϕ

sinϕ

= 0.

Solving this system of 3N differential equations with N + 2 conserved quantities
for an arbitrary N is still a daunting task. However, in Sec. 4.5 we will provide an
analytical solution in the N = 2 case.

We end this section with an interesting observation: From statement v) of the PMP
we know that

∑
n nIm 〈χn|ψn〉 = 0 at all times (see Eq. (4.37)). At t = 0 and t = T

all |ψn〉 are proportional to |0〉, so that |ψn〉 = σz |ψn〉. Hence we obtain∑
n

nv(z)
n (t) = 0 (4.45)

at t = 0 and t = T . Now we introduce the detuning ∆ = dϕ/dt and find that

∆ cosϕ =
d

dt
sinϕ = −1

2

∑
n

√
nv̇yn =

1

2

∑
n

n cosϕv(z)
n (4.46)

Dividing by cosϕ gives

∆ =
1

2

∑
n

nv(z)
n . (4.47)
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In particular, we obtain ∆(0) = ∆(T ) = 0, showing that for any time-optimal pulse
the laser detuning must vanish at the beginning and at the end of the pulse.

In summary, in this section we have shown that the time-optimal laser phase ϕ(t)
for a phase gate on N atoms can be obtained by a solution of 3N coupled quadratic
differential equations. Unfortunately the initial condition of this system of differen-
tial equations are not known, so that each possible initial condition gives a different
candidate pulse ϕ(t), out of which the time-optimal one still has to be selected. We
have also shown that the detuning ∆ of the time-optimal pulse must vanish in the
beginning and in the end of the pulse.

4.5 Semi-Analytical Pulses for Two-Qubit Gates

In this section we continue the discussion of Sec. 4.4 for the special case of N = 2
atoms. For this we use that the rn are conserved quantities and introduce the
parameterization

vn =

√r2
n − z2

n cos ξn√
r2
n − z2

n sin ξn
zn

 (4.48)

with the new variables ξ1, ξ2, z1, z2. Expressing Eq. (4.42) in this new parameteriza-
tion gives

4 =

(√
r2

1 − z2
1 cos ξ1 +

√
2
√
r2

2 − z2
2 cos ξ2

)2

+

(√
r2

1 − z2
1 sin ξ1 +

√
2
√
r2

2 − z2
2 sin ξ2

)2

(4.49)

= r2
1 − z2

1 + 2(r2
2 − z2

2) +
√

8
√
r2

1 − z2
1

√
r2

2 − z2
2 cos(ξ1 − ξ2).

so that

√
8
√
r2

1 − z2
1

√
r2

2 − z2
2 cos(ξ1 − ξ2) = 4− (r2

1 − z2
1)− 2(r2

2 − z2
1). (4.50)

Calculating ż1 gives

ż1 = cosϕv
(y)
1 + sinϕv

(x)
1 (4.51)

=
√
r2

1 − z2
1(cosϕ sin ξ1 + sinϕ cos ξ1)

=
1

2

√
r2

1 − z2
1

(√
r2

1 − z2
1 cos ξ1 +

√
2
√
r2

2 − z2
2 cos ξ2

)
sin ξ1

− 1

2

√
r2

1 − z2
1

(√
r2

1 − z2
1 sin ξ1 +

√
2
√
r2

2 − z2
2 sin ξ2

)
cos ξ1

=
1√
2

√
r2

1 − z2
1

√
r2

2 − z2
2 sin(ξ1 − ξ2)
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so that √
8
√
r2

1 − z2
1

√
r2

2 − z2
2 sin(ξ1 − ξ2) = 4ż1. (4.52)

By adding the squares of Eq. (4.50) and (4.52) we obtain

8(r2
1 − z2

1)(r2
2 − z2

2) = 16ż2
1 +

[
4− (r2

1 − z2
1)− 2(r2

2 − z2
1)
]2
. (4.53)

From Eq. (4.47) and Eq. (4.43) we obtain z1 + 2z2 = 2∆ and z1 + z2 = C so that

z1 = −2∆ + 2C (4.54)

z2 = 2∆− C. (4.55)

Substituting this into Eq. (4.53) and using that Ċ = 0 gives

1

2
∆̇2 + V (∆) = 0 (4.56)

were

V (∆) = c4∆4 + c3∆3 + c2∆2 + c1∆ + c0 (4.57)

with

c4 = 1/8 (4.58)

c3 = 0 (4.59)

c2 =
(
−2C2 + r2

1 − 2r2
2 + 12

)
/16 (4.60)

c1 = −C (4.61)

c0 =
[(

6C2 − r2
1 − 2r2

2 + 4
)2 − 8

(
4C2 − r2

1

) (
C2 − r2

2

)]
/128. (4.62)

This completes our proof of Eq. (4.1), the main result of this chapter, and shows
that the laser detuning for a time-optimal C-Phase gate on two qubits has the same
functional dependency as the oscillation of a classical particle in a quartic potential.

It remains to numerically determine the coefficients c2, c1, c0 such that the resulting
pulse ∆(t) implements a C-Phase gate with a given two qubit have φ, and to compare
this pulse with the results obtained by GRAPE in Sec. 3.5. For this, it is useful to
use a slightly different parameterization of V : Since V (0) < 0, but V (∆) → ∞ as
∆→ ±∞, V must have at least one negative and at least one positive root. (As we
will see, there are in fact the only roots of V .) We denote by ∆− < 0 the largest
negative and by ∆+ > 0 the smallest positive root. V can then be parameterized
as

V (∆) = (∆−∆−)(∆−∆+)

(
1

8
∆2 +

∆+ + ∆−
8

∆ +
V0

∆+∆−

)
(4.63)

where V0 = V (0) < 0. The last factor of V has the roots

∆+ + ∆−
2

±

√
(∆+ + ∆−)2

4
− 8V0

∆+∆−
. (4.64)
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Figure 4.1: Optimal parameters of V (∆). Parameters (a) ∆± and (b) V0 to
implement a time-optimal C-Phase gate as a function of the two-qubit phase φ.

If 0 > V0 > ∆+∆−(∆+ + ∆−)2/32, these roots are real but always in the interval
[∆−,∆+], contradicting the fact that ∆− is the largest negative and ∆+ is the
smallest positive root of V . Thus we obtain the additional constraint

V0 <
1

32
∆+∆−(∆+ + ∆−)2 (4.65)

and can conclude that ∆+ and ∆− are in fact the only roots of V .

To find the parameters ∆+,∆− and V0 that correspond to a C-Phase gate with
a two-qubit phase φ we now proceed as follows: We first assume without loss of
generality that ∆̇(0) > 0 (This corresponds to the pulses of type 1 in Sec. 3.5. The
pulses with ∆̇(0) < 0 correspond to pulses of type 2 and are related to pulses of
type 1 by the transformation ∆ 7→ −∆, φ 7→ 2π− φ). For a given set of parameters
∆−,∆+, V0 we now numerically integrate the second order differential equation

∆̈(t) = −dV (∆)

d∆
(4.66)

with the initial conditions ∆(0) = 0 and ∆̇ =
√
−2V0. From inspecting the C-Phase

pulses found by GRAPE [Fig. 3.6(c/d)] we see that the time-optimal pulses have
a detuning ∆(t) = 0 at exactly two times 0 < t < T . This means that the pulse
duration T has to be chosen such that ∆(T ) = 0 for the fourth time in the pulse
(counting the initial time t = 0). Having found ∆(t), we now solve the TDSE given
by the H1, H2 [Eq. (4.26)] to obtain the final states |ψ1(t)〉 , |ψ2(t)〉. Now we evaluate
the Bell state fidelity (see Sec. 3.1.2) as

F = min
θ

1

16

∣∣1 + 2e−iθ 〈0|ψ1(T )〉+ e−i(2θ+φ) 〈0|ψ2(T )〉
∣∣2 . (4.67)

Finally, we numerically minimize the infidelity 1 − F over ∆−,∆+, V0 using the
BFGS algorithm with gradients estimated by a finite difference method [161]. We
choose the starting point of the optimization by estimating ∆± from the maxi-
mum/minimum value of ∆ and V0 from ∆̇(0) of the pulses found by GRAPE. The
optimal parameters ∆± and V0 are shown in Fig. 4.1(a) and (b), respectively. Inter-
estingly V0, and thus the initial slope of ∆, diverges as φ→ 0, 2π. We note that the
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Figure 4.2: Pulse shapes found using the PMP. Left column: Potential V (∆)
for a C-Phase gate with two qubit phase φ. Red stars show the turning points with
V (∆) = 0, green circle shows the starting point ∆ = 0. Right column: Detuning
∆(t) of the time-optimal pulse. The orange pulse is obtained by GRAPE, the black
pulse is obtained by the PMP. Dashed red and green lines show the turning points
and the start/end point of ∆, respectively.
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minimal infidelity 1− F is always below 10−8, showing that a C-Phase gate can be
achieved exactly using the pulses found by the PMP.

To show that these pulses are also the same as the pulses found by GRAPE, and
thus the time-optimal pulses, we compare the detunings ∆(t) for both methods in
Fig. 4.2 for different values of φ. The left column shows the potential V (∆) with
the turning points ∆± of the detuning marked by red stars, and the initial detuning
∆ = 0 marked by a green circle. The pulses obtained by the PMP are shown as
the black dashed curves in the right column of Fig. 4.2. They correspond to an
oscillation of a particle with position ∆ and energy 0 in the potential V (∆). The
turning points at ∆± as well as the initial and final detuning ∆(0) = ∆(T ) = 0 are
indicated by the red and green dashed lines, respectively. The orange curve shows
the pulses found by GRAPE in Sec. 3.5. We observe an excellent agreement between
the pulses found by GRAPE and by the PMP for all values of φ, showing that the
semi-analytical pulses found in this chapter indeed capture the time-optimal pulses.

In summary, we have demonstrated that time-optimal pulses for C-Phase gates can
be described by just three parameters (∆± and V0) and are given by the solution of
the differential equation (4.56). The detuning ∆(t) of time-optimal pulses is thus
given by the position of a particle oscillating in a quartic potential V (∆). The
PMP makes no statement on the values of ∆± and V0 that are required for a given
phase φ. Instead we determined ∆± and V0 numerically by matching the final state
|ψ1(T )〉 , |ψ2(T )〉 with the desired target state.

4.6 Extension to Three-Qubit C2Z Gates

In the following we discuss the extension of our semi-analytical approach based on
the PMP to the three-qubit C2Z gates found in Sec. 3.6.1. Here, in contrast to
the two-qubit case, we are not able to obtain a single one-dimensional differential
equation that describes the time-optimal pulses. Instead, we directly optimize over
the initial costates |χ1(0)〉 , |χ2(0)〉 , |χ3(0)〉 and the pulse duration T to minimize
the gate infidelity.

To obtain a guess for the initial costates we consider the pulses found by GRAPE
in Sec.3.6.1. GRAPE provides us with M laser phases ϕ(0), ..., ϕ(M−1) such that the
states at time tm = mT/M are given by

|ψn(tm)〉 = U (m−1)
n ...U (0)

n |ψn(0)〉 (4.68)

with U
(m)
n = exp(−iHn(ϕ(m))T/M). Correspondingly, the costates are given by

|χn(tm)〉 = U (m−1)
n ...U (0)

n |χn(0)〉 . (4.69)

According to statement iii) of the PMP (Eq. (4.24)), we have for all m that

0 =
∑
n

Im

〈
χn(tm)

∣∣∣∣∂Hn

∂ϕ

∣∣∣∣ψn(tm)

〉
=
∑
n

Im 〈χn(0)|αm〉 (4.70)
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Figure 4.3: Semianalytic description of C2Z pulses. Laser phase ϕ(t) for a
time-optimal C2Z gate as obtained by GRAPE (red line: Pulse 1, turquoise line:
Pulse 2) and by the PMP (dashed black line).

with

|αn,m〉 = (U (0)
n )†...(U (m−1)

n )†
∂Hn

∂ϕ
U (m−1)
n ...U (0)

n |ψn(0)〉 . (4.71)

Note that the |αn,m〉 can be calculated just from the laser phases ϕ(0), ..., ϕ(M−1)

obtained by GRAPE.

Eq. (4.70) is an overdetermined system of linear equations of the |χn(0)〉. If ϕ(t)
is the time-optimal pulse, the PMP guarantees that this system has a solution.
Since the pulse found by GRAPE is only a piecewise constant approximation of the
true time-optimal pulse, Eq. (4.70) does not have an exact solution. However, by
minimizing ∑

m

∣∣∣∣∣∑
n

Im 〈χn(0)|αn,m〉

∣∣∣∣∣
2

(4.72)

under the constraint(∑
n

√
nIm 〈χn(0)|0〉

)2

+

(∑
n

√
nRe 〈χn(0)|0〉

)2

= 4 (4.73)

[Eq. (4.33)] we can obtain a guess for the initial costates |χn(0)〉.

We now use this guess as a starting point and minimize the infidelity 1 − F over
the initial costates and the pulse duration using the BFGS algorithm [161]. For the
time-optimal pulse (Pulse 1 in Sec. 3.6.1) we find

|χ1(0)〉 = −0.82374869i |0〉+ (−0.22639913− 1.53071651i) |1〉 (4.74)

|χ2(0)〉 = +1.98173098i |0〉+ (−0.67792116 + 0.14076179i) |1〉 (4.75)

|χ3(0)〉 = −1.05129372i |0〉+ (+0.68595665 + 1.92352732i) |1〉 (4.76)

Since Pulse 2 is also locally, albeit not globally, time-optimal, the PMP also applies
and we find

|χ1(0)〉 = −0.71519316i |0〉+ (−0.45059305− 1.82739933i) |1〉 (4.77)

|χ2(0)〉 = +2.12637520i |0〉+ (−0.57394979 + 0.17718447i) |1〉 (4.78)

|χ3(0)〉 = −1.19933851i |0〉+ (+0.73078560 + 2.06507777i) |1〉 (4.79)



Mathematical Structure of Time-Optimal Pulses 69

Fig. 4.3 compares the pulses found using GRAPE and using the PMP, and finds an
excellent agreement between both pulses. The three initial costates |χ1(0)〉 , |χ2(0)〉
and |χ3(0)〉 are jointly described by seven independent real parameters, since they
are characterized by the nine real numbers Im 〈0|χn〉, Re 〈1|χn〉 and Im 〈1|χn〉 with
the two constraints Im 〈0|χ1〉 + 2Im 〈0|χ2〉 + 3Im 〈0|χ3〉 = 0 and Eq. (4.73). This
established that the time-optimal pulses for a C2Z gate can be described by just 7
real parameters for each pulse.

4.7 Conclusion

In this section we have used the PMP to derive a simple differential equation for
the laser detuning of time-optimal pulses for C-Phase gates. We have shown that
the detuning follows the same dynamics as the oscillation of a particle in a quartic
potential. We found the optimal pulses obtained with the PMP to be in excellent
agreement with the pulses found numerically in Chapter 3, while only requiring three
real parameters to fully specify the pulse. We have also demonstrated that the PMP
can in principle also be applied to CkZ gates, where however the resulting differential
equation is significantly more complex. There are several remaining open questions:
First, it is unclear whether the coefficients c0, c1, c2 or ∆± and V0 describing the
quartic potential can be analytically related to the phase φ of the C-Phase gate. A
second interesting research question is whether the differential equation describing
time-optimal gates on three qubits can be simplified to a form similar to that for
two-qubit gates. Finally, the PMP approach could be extended to gates with a finite
interaction strength, or to gates with individual addressability of the atoms. The
latter might result in an analytical proof of the numerical result that for the CZ gate
no speed-up can be obtained using local addressability (see Sec. 3.3). We remark
that all of these open questions appear rather challenging.

4.A Discussion of Abnormal Solutions

In this appendix we discuss case of abnormal solutions of the PMP with χ0 = 0.
We restrict ourselves to the case of N = 2 atoms. In this case, statement iv) of the
PMP implies

v
(x)
1 +

√
2v

(x)
2 = v

(y)
1 +

√
2v

(y)
2 = 0 (4.80)

at all times t. Taking the time derivative and using Eq. (4.39) leads to

(v
(z)
1 + 2v

(z)
2 ) sinϕ = (v

(z)
1 + 2v

(z)
2 ) cosϕ = 0 (4.81)

which implies v
(z)
1 + 2v

(z)
2 = 0. Taking the time derivative again gives

(v
(y)
1 + 2

√
2v

(y)
2 ) cosϕ+ (v

(x)
1 + 2

√
2v

(x)
2 ) sinϕ = 0. (4.82)
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By inserting Eq. (4.80) we obtain

v
(y)
1 cosϕ+ v

(x)
1 sinϕ = 0. (4.83)

which by Eq. (4.39) implies v̇
(z)
1 = 0. Thus, already v

(x)
1

2
+ v1

(y)2
is a conserved

quantity, and Eq. (4.83) implies

v
(x)
1 = a cosϕ v

(y)
1 = −a sinϕ (4.84)

for some constant a. Taking the time derivative one more time gives

− v(z)
1 sinϕ = −aϕ̇ sinϕ − v(z)

1 cosϕ = −aϕ̇ cosϕ. (4.85)

This implies ∆ = ϕ̇ = v
(z)
1 /a = const. Thus, all abnormal solutions must have a

constant detuning.

In the following we will show that while it is possible to implement certain C-Phase
gates with a constant detuning, such a C-Phase gate will always have a longer
duration than the normal solutions found in Sec. 4.5. For a constant detuning ∆ we
have to consider the two constant Hamiltonians

H01 = ∆ |1〉 〈1|+ Ωmax

2
σx (4.86)

H11 = ∆ |1〉 〈1|+
√

2Ωmax

2
σx. (4.87)

The evolution operators for a duration T are given by

exp(−iH01T ) = e−i∆T/2
[

cos

(
1

2

√
Ω2

max + ∆2T

)
I (4.88)

−i sin

(
1

2

√
Ω2

max + ∆2T

)
∆σz + Ωmaxσx√

Ω2
max + ∆2

]
and

exp(−iH11T ) = e−i∆T/2
[

cos

(
1

2

√
2Ω2

max + ∆2T

)
I (4.89)

−i sin

(
1

2

√
2Ω2

max + ∆2T

)
∆σz +

√
2Ωmaxσx√

2Ω2
max + ∆2

]

We see that an initial state |0〉 will only return to |0〉, up to some phase, at the end
of the gate if

T =
2πk√

Ω2
max + ∆2

=
2πk′√

2Ω2
max + ∆2

(4.90)

for some integers k, k′ ≥ 1. In this case, a C-Phase gate with two-qubit phase
φ = k′π + ∆T

2
is implemented.
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From Eq. (4.90) it follows that

∆ = ±
√

2k2 − k′2
k′2 − k2

Ωmax (4.91)

T =
2π

Ωmax

√
k′2 − k2 (4.92)

Since the minimal difference between two square numbers is 3 = 22 − 12, it follows
that T ≥ 2

√
3π/Ωmax ≈ 10.88/Ωmax. Hence, while there exist C-Phase gates which

can be implemented with a constant ∆, they are always slower than the normal
solutions found in Sec. 4.5, which had a maximum duration of T = 7.612/Ωmax.
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5 Robust Gate Protocols

One of the most important directions for the continued development of neutral
atom quantum processors is improving the fidelity of two- and multi-qubit gates.
In Chapters 3 and 4 we tackled this challenge by finding the fastest possible, time-
optimal, gate protocols. Since many error sources are less detrimental for shorter
pulse durations, this approach offers a gate protocol with a high fidelity independent
of the exact error model. For quantum gates based on the Rydberg blockade effect
however, the leading error sources are often well understood and account for a large
fraction of the experimentally observed infidelity [13, 14, 105]. It is thus possible
to develop gate protocols that are robust against these specific error sources, at the
expense of obtaining protocols that are longer than the time-optimal protocol.

In this chapter we consider several practically relevant error sources, and use a com-
bination of analytical reasoning and optimal control methods to find gate protocols
with increased robustness against them. We consider the same level scheme as in
Chapters 3 and 4, with two or three atoms, each of which is modeled as a three
level system with computational basis states |0〉 and |1〉 and an auxiliary Rydberg
state |r〉, a symmetric van der Waals interaction B

∑
j<k |rjrk〉 〈rjrk|, and a global

laser with a time-dependent (complex) Rabi frequency Ω(t) coupling the states |1〉
and |r〉. Throughout this chapter we assume that, at least in the absence of im-
perfections, we have B =∞, so that the simultaneous excitation of more than two
atoms to the Rydberg state is impossible. We consider four different error sources
in this chapter: a finite lifetime of the Rydberg state, an uncertain finite interaction
strength B, and uncertainties in the amplitude and detuning of the global laser.
The level scheme and the error sources are visualized in Fig. 5.1.

The results of this chapter for the robustness of gate protocols against these error
sources can be summarized as follows:

i) Rydberg decay. Rydberg states have a finite lifetime γ limited by spontaneous
emission to low lying states and the coupling to other Rydberg states due to
black body radiation. The decay of the Rydberg state during a gate leads to
an error. We identify the pulses which minimize the error due to Rydberg
decay, and show that the infidelity can only be reduced by less than 1% for
the CZ gate and less then 10% for the C2Z gate compared to the time-optimal
pulses. Hence, for both the CZ and the C2Z gate the time-optimal pulses are
almost optimal at mitigating this error source.
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Figure 5.1: Level scheme and error sources considered in this chapter.
Each atom is modeled as a three-level system with states |0〉 , |1〉 and |r〉. There
is a van der Waals interaction shifting the energy of the state of both atoms in
|r〉, and a global laser coupling |1〉 and |r〉 with Rabi frequency Ω(t). The error
sources considered in this chapter are marked in different colors: The decay of the
Rydberg state (red), uncertainties in the interaction strength (blue), deviations of
the expected laser amplitude (orange), and laser detunings (green).

ii) Uncertainties in the interaction strengths. The interaction strength B is often
finite and not known exactly, since it depends on the interatomic distance be-
tween the atoms, which fluctuates with the motion of the atoms in the optical
tweezer. While we have shown in Sec. 3.4 that it is possible to implement a CZ
and a C2Z gate exactly at finite interaction strengths, these protocols are only
designed to work at a specific interaction strength B. Here we instead find
gate protocols which implement a CZ and C2Z exactly only at B = ∞, but
whose infidelity increases as slowly as possible with 1/B. This makes these
gates advantageous if the interaction strength is large but unknown.

iii) Laser amplitude deviations. Instead of the expected Rabi frequency Ω(t), the
atoms can experience a Rabi frequency (1+εi)Ω(t), with different εi for differ-
ent atoms. These shot-to-shot fluctuations can either arise due to fluctuations
of the laser intensity, or due to fluctuations of the atomic position with respect
to the center of the laser beam, for example due to the motion of the atom in
the trap. We use quantum optimal control techniques to find a pulse shape
Ω(t) for a CZ gate which reduces the effect of amplitude fluctuations by more
than two orders of magnitude, at the expense of a longer pulse duration.

iv) Laser detuning. Various error sources can lead to detunings ∆i of the laser
and the |1〉 ↔ |r〉 transition. The most important sources of detuning include
stray electric fields, which shift the energy of the Rydberg state, Doppler shifts
of the laser frequency due to the thermal motion of the atoms in the trap, and
fluctuations in the amplitude of the global laser (see iii)), which due to the
Stark shift arising from the coupling to other, off-resonant, states, also affect
the energies of the states |1〉 and |r〉. We find that for arbitrary detunings
∆i, only a small improvement of the robustness over the time-optimal pulse
can be achieved. For detunings arising from Doppler shifts, we however find
that by reversing the sign of the Doppler shift in the middle of the pulse it
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is possible to improve the robustness against this error by several orders of
magnitude. Similarly, for detunings arising due to a Stark shift induced by
the global laser, we can use the correlation between amplitude deviations and
laser detuning to design robust pulses.

We first consider the four error sources above separately. However, in a real experi-
ment all four error sources are present at the same time, and the ideal gate protocol
strikes a compromise between the robustness against all of them. To better under-
stand this compromise, we consider realistic parameters of a 171Yb experiment [85],
and find that for medium or large laser amplitude deviations or Doppler detunings
the robust pulses against amplitude deviations or Doppler detunings outperform the
time-optimal pulse, while for small laser amplitude deviations or Doppler detunings
the time-optimal pulse, which essentially minimizes the errors due to Rydberg decay,
becomes the better choice. However, recently it has been proposed [20, 162] and ex-
perimentally demonstrated [14] that in metastable qubits Rydberg decay errors can
be converted into so-called erasure errors, which are significantly simpler to correct
in an error correction code than other errors. Taking this into account, we surpris-
ingly find a large range of imperfections where using pulses robust against amplitude
deviations or detunings increases the gate infidelity, but decreases the logical error
rate, compared to the time-optimal pulse. This demonstrates that gate fidelity and
logical error rate can differ significantly, and that optimizing gates specifically for
logical-level optimization can yield dramatic improvements.

This chapter is structured as follows: In Sec. 5.1 and Sec. 5.2 we discuss CZ and
C2Z gates which are as robust as possible against Rydberg decay and variations in
the blockade strength, respectively. In Sec. 5.3 we then design pulses for a CZ gates
that are particularly robust against amplitude deviations, and show that pulses with
similar properties for laser detunings do not exist. In Sec. 5.4 we propose a work-
around for detunings arising from Doppler shifts based on inverting the sign of the
Doppler shift in the middle of the pulse. Finally, in Secs. 5.5 and 5.6 we consider the
trade-off between Rydberg decay, laser amplitude deviations, and Doppler detunings
for a CZ gate under realistic parameters in terms of the gate fidelity and the logical
error rate, respectively.

The results of Secs. 5.1 and 5.2 have previously been published in Ref. [23]. Sec-
tions. 5.3–5.6 have previously been published in Ref. [24]. Similar results have been
independently obtained in Ref. [163].

5.1 Minimizing Rydberg Decay

We start by considering a finite lifetime 1/γ of the Rydberg state. We include this
error source as a non-hermitian termHnh = −iγ

2
ΠR, where ΠR =

∑
j |rj〉 〈rj| denotes

the projector onto the states with one atom in the Rydberg state. (Since there can
never be two or more atoms in the Rydberg state, ΠR is indeed a projector.) The
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treatment as a non-hermitian term is exact if all of the Rydberg decay goes outside
of the computational subspace, and otherwise slightly overestimates the error, since
the Rydberg state could decay back to |0〉 and |1〉, leading to a non-zero fidelity
even after a decay event[108].

We can expand the state |ψq(t)〉 when starting in the computational basis state |q〉
as |ψq(t)〉 = |ψ(0)

q (t)〉 + γ |ψ(1)
q (t)〉 + O(γ2), with the first order contribution at the

final time T given by

|ψ(1)
q (T )〉 = −γ

2

∫ T

0

Uq(t, T )ΠRUq(0, t) |q〉 dt (5.1)

where Uq(t1, t2) denotes the evolution from time t1 to time t2 under the Hamiltonian
Hq that describes the decay-free case (see Sec. 3.1.1). Now suppose we have a global
pulse Ω(t) which in the decay-free case implements a (ζq)q phase gate, i.e. satisfies

|ψ(0)
q (T )〉 = exp(iζq) |q〉. The fidelity (see Sec. 3.1.2) of this pulse in the presence of

decay is now to first order in γ given by

F =
1

2N(2N + 1)

( ∣∣∣∣∣∑
q

1− γ

2
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0

dt 〈ψ(0)
q (t)|ΠR|ψ(0)

q (t)〉
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(5.2)

+
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+2N −
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∫ T

0

dt 〈ψ(0)
q (t)|ΠR|ψ(0)

q (t)〉

)

= 1− γ2−N
∑
q

∫ T

0

dt 〈ψ(0)
q (t)|ΠR|ψ(0)

q (t)〉

= 1− γTR

where we introduced the averaged Rydberg time

TR = 2−N
∑
q

∫ T

0

dt 〈ψ(0)
q (t)|ΠR|ψ(0)

q (t)〉 . (5.3)

Our goal is now to find the pulse Ω(t) that implements an exact CZ or a C2Z gate
at γ = 0 and minimizes TR, and thus also the infidelity due to Rydberg decay.

To find this pulse Ω(t) we use GRAPE (see Sec. 3.2) with the Hamiltonians Hq

including the non-hermitian −iγ
2
ΠR term and minimize the gate infidelity. For the

two qubit case, the Hq are given by

H01 =
Ω(t)

2
|01〉 〈0r|+ h.c.− iγ

2
|0r〉 〈0r| (5.4)



Robust Gate Protocols 77

Figure 5.2: Minimizing errors due to Rydberg decay. (a) Minimal Rydberg
time TR for pulses implementing a CZ gate found by GRAPE at different pulse
durations T . Black dashed line shows the value of TR for the time-optimal pulse.
(b) Laser phase ϕ(t) for the pulse that minimizes TR at T = 7.72/Ωmax (blue) and the
time-optimal pulse (gray). For both pulses, the laser amplitude is always maximal.
(c) Laser amplitude and phase of the pulse found by GRAPE minizing TR at a pulse
duration T = 15/Ωmax. (d-f) Analogous to (a-c) with the C2Z gate instead of the CZ
gate. In (e) and (f) the pulse durations are 16.74/Ωmax and 30/Ωmax, respectively.

H11 =

√
2Ω(t)

2
|11〉 〈W11|+ h.c.− iγ

2
|W11〉 〈W11| (5.5)

with straightforward generalizations to the three qubit case. We choose a small value
γ = 10−4Ωmax, which ensures that the pulse that minimizes 1−F still approximately
implements a CZ or C2Z gate in the absence of decay. However, we stress that the
resulting pulse will also minimize the infidelity for all other values of γ, as long as
γTR � 1.

Fig. 5.2(a) shows the value of TR of the optimal pulse for a CZ gate found by GRAPE
as a function of the pulse duration T . We verified that the infidelity of all optimal
pulses in the absence of decay is always below 10−9, and that the minimal value
of TR does not change when changing γ. Both results confirm that our choice of
γ = 10−4Ωmax is small enough only minimize TR over pulses which implement an
exact CZ gate at γ = 0, and there is no trade-off between the infidelity at γ = 0
and TR. For the pulse duration T = 7.612/Ωmax, the duration of the time-optimal
pulse, Fig. 5.2(a) shows that as expected the minimal value of TR is also that of the
time-optimal pulse, TR = 2.957/Ωmax [black dashed line in Fig. 5.2(a)]. As the pulse
duration T increases, the minimal value of TR decreases slightly, reaching a plateau
of TR = 2.936/Ωmax around T ≈ 7.72/Ωmax. Fig. 5.2(b) shows that this pulse (blue)
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is a distorted version of the time-optimal pulse (gray). We verify that even for a very
large pulse duration T = 15/Ωmax no further reduction of TR is obtained. Fig. 5.2(c)
shows the pulse found by GRAPE at this duration. As expected, this pulse has a
laser amplitude of 0, except for a window of duration ∼ 7.72/Ωmax, where the pulse
that minimizes TR is executed. Thus, the infidelity of the CZ gate due to Rydberg
decay can only be reduced by approximately 0.8% compared to the time-optimal
gate, by increasing the gate duration by 1.4%. We conclude that the time-optimal
pulse is also essentially optimal at minimizing the infidelity due to Rydberg decay.

Similar results are obtained for the three-qubit C2Z gate. Analogously to Fig. 5.2(a),
Fig. 5.2(d) shows the minimal value of TR for a pulse implementing a C2Z gate as
a function of the pulse duration. TR drops by 7% from TR = 6.90/Ωmax (value of
the time-optimal pulse) to TR = 6.43/Ωmax when increasing the pulse duration by
1.8% from 16.43/Ωmax to 16.74/Ωmax. Fig. 5.2(e) shows the the pulse minimizing TR
is again a distorted version of the time-optimal pulse, and Fig. 5.2(f) demonstrates
that even at the much larger pulse duration T = 30/Ωmax the pulse minimizing TR
is identical to the pulse at duration 16.74/Ωmax.

In conclusion we have shown that the pulses minimizing TR, and thus the error due
to Rydberg decay, for the CZ and C2Z gate are approximately, but not exactly,
identical to the time-optimal pulses. We note that a parameterization of the pulses
minimizing TR using the PMP as in Chapter 4 is in principle possible by taking the
Lagrangian in the PMP to be L = 2−N

∑
q dt 〈ψq|ΠR|ψq〉, the expected population

of the Rydberg state.

5.2 Robustness to Interaction Strength Variations

In this section we consider errors due to finite interaction strength B. However,
instead of designing pulses that work at a specific blockade strength B, we consider
only pulses that implement a CZ or C2Z gate exactly at B = ∞. Within the set
of these pulses, we then identify the pulses that are affected the least by a finite
B. This results in gate protocols which are as robust as possible against variations
against B, at least when B � |Ω|. Throughout this chapter we assume that B is
unknown but constant. Since B depends only on the interatomic distance, and the
oscillation period of the atoms in the tweezers is typically much shorter than the
pulse duration [105], this assumption is typically justified.

In the limit of large B, all effects of the finiteness of B can to first order in 1/B be
described by a Stark shift of the energy of the states with one atom in the Rydberg
state. For N = 2 atoms this means modifying H11 to

H11 =

√
2Ω(t)

2
|11〉 〈W11|+ h.c.︸ ︷︷ ︸

H
(0)
11

−|Ω|
2

2B
|W11〉 〈W11|︸ ︷︷ ︸
H

(1)
11 /B

+O(B−2) (5.6)
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where we split H11 = H
(0)
11 + 1

B
H

(1)
11 .The quantum state when starting in |11〉 can

be equivalently expanded as |ψ11(t)〉 = |ψ(0)
11 〉 + B−1 |ψ(1)

11 〉 + B−2 |ψ(2)
11 〉 + O(B−3),

while |ψ01〉 stays unmodified. For the three qubit case, H011 and H111 are modified
analogously to Eq. (5.6).

Now let us consider a pulse Ω(t) which at B =∞ implements a CZ gate with fidelity

F = 1, i.e. satisfies |ψ(0)
01 (T )〉 = eiθ |01〉 and |ψ(0)

11 (T )〉 = −e2iθ |11〉 for some single
qubit phase θ. In Appendix 5.A we show that the infidelity of such a pulse is given
by

(1− F )B2 =
1

4
〈ψ(1)

11 (T )|ψ(1)
11 (T )〉 − 1

10

∣∣∣〈11|ψ(1)
11 (T )〉

∣∣∣2 +O
(
B−1

)
. (5.7)

In Appendix 5.A we also derive a similar formula for the C2Z gate. To lowest order,
the gate error thus increases quadratically with 1/B.

Our goal is now to use GRAPE to minimize the second derivative d2(1−F )/d(1/B)2

at B = ∞, as given by the right hand side of Eq. (5.7). Note that this minimizes
the gate error simultaneously for all values of B for which contributions of order
B−3 and higher can be neglected. To apply GRAPE, |ψ(0)

11 〉 and |ψ(1)
11 〉 are treated

as independent states satisfying

d

dt

(
|ψ(0)

11 〉
|ψ(1)

11 〉

)
= −i

(
H

(0)
11 0

H
(1)
11 H

(0)
11

)(
|ψ(0)

11 〉
|ψ(1)

11 〉

)
. (5.8)

Eq. (5.8) now replaces the Schrödinger Equation for |ψ11〉 in the formulation of
GRAPE. For the three qubit case, we proceed analogously for the states |ψ011〉 and
|ψ111〉.

To minimize d2(1 − F )/d(1/B)2 over all states with fidelity F = 1 in the B = ∞
case, the objective function for GRAPE is taken as

J = C(1− F ) +
1

2

d2(1− F )

d(1/B)2

∣∣∣∣
B=∞

. (5.9)

Here, C is a large constant ensuring that only pulses with fidelity close to 1 in the
B = ∞ case can minimize J . We take C = 104 and verify that indeed the gate
errors at B =∞ are always below 3 · 10−6.

Given a pulse Ω(t) with duration T that implements a CZ gate at B =∞, the gate
error at finite B can be reduced by an arbitrary factor β2, for 0 < β < 1, by simply
stretching the pulse to duration T/β and taking Ω̃(t) = βΩ(βt). To see this, note

that H
(1)
11 is decreased by β2, while the pulse duration is increased by 1/β. Hence

|ψ(1)
11 〉 is decreased by β, and 1−F according to Eq. (5.7) by β2. To compare different

pulses beyond a stretch, the dimensionless quantity α = (1 − F )B2T 2 is from now
on taken as a metric for pulse robustness.

Using Eq. (5.7), the time-optimal pulse for the CZ gate is found to have α = 35.9.
To improve upon this, GRAPE is now used to minimize α over both the amplitude
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Figure 5.3: Pulses for the CZ and the C2Z gate that are as robust as
possible against variations of the blockade strength. (a) Rescaled gate
errors (1 − F )B2T 2 for different values of the dimensionless gate duration TΩmax

for the CZ gate. (b) Rescaled gate errors (1 − F )B2T 2 for the C2Z gate. Red
upward pointing triangles show optimization results when initializing GRAPE with
the time-optimal Pulse 1, turquoise downward pointing triangles when initializing
with Pulse 2. (c) [(d)] Laser amplitude [phase] minimizing (1 − F )B2T 2 for the
CZ gate at TΩmax = 30. (e) Population of |W11〉 during the pulse from (c)/(d) as
a function of time. The laser amplitude is large when the population of |W11〉 is
small. (f) [(g)] Laser amplitude(phase) minimizing (1 − F )B2T 2 for the C2Z gate
when initializing GRAPE with Pulse 1 at TΩmax = 60. (h) Population of |W011〉
(orange solid line) and |W111〉 (green dashed line) during Pulse 1 as a function of
time. The laser amplitude is large when the populations of |W011〉 and |W111〉 are
small. (i),(j),(k) Analogous to (f),(g),(h) for Pulse 2 instead of Pulse 1.
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and the phase of the laser pulse at a fixed T , using the time-optimal pulse stretched
to duration T as initial guess. The minimal values of α for values of TΩmax between
7.61 and 30 are shown in Fig. 5.3(a). α decreases as the pulse duration increases,
but asymptotically approaches a non-zero value around α ≈ 28 as T → ∞, which
is an improvement of over 20% compared to the time-optimal pulse. The amplitude
and the phase of Ω(t) at TΩmax = 30 are shown in Figs. 5.3(c) and (d) respectively.
The amplitude starts maximal, then drops to about 25% after a quarter of the pulse
duration. Towards the middle of the pulse the amplitude increases again to around
50%, then it decreases again to 25% at three quarters of the pulse duration and
finally increases to the maximal amplitude at the end of the pulse. This behavior
can be understood by considering the population of |W11〉, the only state affected by
the Stark shift due to the finite B. The population of |W11〉, shown in Fig. 5.3(e),
starts at 0 and increases to 0.9 at t ≈ 0.25T . It then decreases to 0.25 at t = 0.5T
and increases again to 0.9 at t ≈ 0.75T , before dropping to 0 at the end of the
pulse. Notably, the laser amplitude is inversely correlated to the population |W11〉.
Through this, whenever the population of |W11〉 is large, the laser amplitude, and
thus also the Stark shift of |W11〉, is reduced.

For the C2Z gate we find that the time-optimal Pulse 1 has α = 1850, the slightly
slower Pulse 2 has α = 1660. GRAPE is applied with either Pulse 1 or Pulse 2 as
initial guess to minimize α for TΩmax between 16.6 and 60, shown in Fig. 5.3(b) with
red upward pointing triangles for Pulse 1 as initial guess and turquoise downward
pointing triangles for Pulse 2 as initial guess. For both cases α decreases when T is
increased and asymptotically approaches α ≈ 1300 for both pulses, an improvement
of 30% over the time-optimal Pulse 1 and of 20% over Pulse 2. The amplitude
and phase for the pulse minimizing α at TΩmax = 60 when initializing GRAPE
with pulse 1 are shown in Figs. 5.3(f) and (g) respectively, the amplitude and phase
when initializing GRAPE with Pulse 2 in Figs. 5.3(i) and (j) respectively. The laser
amplitude is again inversely correlated to the populations |W011〉 and |W111〉, shown
in Fig. 5.3(h) and (k) as orange solid line and green dashed line respectively, and
displays several peaks at times where the population of these states is small.

The results in this section show that both for the CZ and for the C2Z gate the
time-optimal pulses can be improved to decrease the effect of a finite interaction
strength at the cost of a longer pulse duration. The improvement of the gate error
goes beyond simply stretching the pulses and is based on a modulation of the laser
amplitude to reduce the Stark shift when the states affected by it are populated
most.

5.3 Amplitude- and Detuning-Robust Pulses

In this section we identify global pulses Ω(t) that implement a CZ gate and are robust
against unknown but constant deviations of the laser amplitude and detuning. The
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Hamiltonians Hq in the presence of these imperfections are given by

H10 =
(1 + ε1)Ω(t)

2
|10〉 〈r0|+ h.c.+ ∆1 |r0〉 〈r0| (5.10)

H01 =
(1 + ε2)Ω(t)

2
|01〉 〈0r|+ h.c.+ ∆2 |0r〉 〈0r| (5.11)

H11 =
(1 + ε1)Ω(t)

2
|11〉 〈r1|+ h.c.+ ∆1 |r1〉 〈r1| (5.12)

+
(1 + ε2)Ω(t)

2
|11〉 〈1r|+ h.c.+ ∆2 |1r〉 〈1r|

Eq. (5.12) can be simplified to

H11 =

√
2(1 + ε+)Ω(t)

2
|11〉 〈W+|+ h.c. (5.13)

+ ∆− |W+〉 〈W−|+ h.c.

+ ∆+ (|W+〉 〈W+|+ |W−〉 〈W−|) .

Here, |W±〉 = [(1 + ε1) |r1〉 ± (1 + ε2) |1r〉] /β, with β =
√

(1 + ε1)2 + (1 + ε2)2,
while ∆± = (∆1±∆2)/2 and ε+ = (ε1 + ε2)/2. Note that Eq. (5.12) and Eq. (5.13)
only agree up to terms in second order in ε and ∆. Since ε and ∆ are typically small
deviations, this suffices for the rest of our analysis.

5.3.1 Amplitude Robust pulses

We start by finding a pulse Ω(t) which is robust against amplitude deviations εi 6= 0,

while taking ∆i = 0. We expand the Hamiltonians in ε as H10 = H
(0)
10 + ε1H

(1)
10 ,

H01 = H
(0)
01 + ε2H

(1)
01 and H11 = H

(0)
11 + ε+H

(1)
11 and the quantum state when starting

in |01〉 as |ψ10〉 = |ψ(0)
10 〉+ ε1 |ψ(1)

10 〉+O(ε2
1), with analogous expansions for |ψ10〉 and

|ψ11〉. A pulse Ω(t) of duration τ implements a CZ gate, up to single-qubit rotations,

in the deviation-free case if for all q ∈ {10, 01, 11} it holds that |ψ(0)
q (τ)〉 = eiζq |q〉

with ζ01 = ζ10 = θ and ζ11 = 2θ + π for some single qubit phase θ that does not
depend on the εi (Note that in this section we use τ instead of T to denote the
duration of a pulse, and use T instead to denote the temperature of the atoms). In
this chapter we use the Bell state fidelity instead of the average gate fidelity (see
sec. 3.1.2). It is commonly used fidelity measure on the Rydberg platform [18, 105,
109, 111] and for a CZ gate given by

F =
1

16

∣∣∣∣∣∣1 +
∑

q∈{10,01,11}

e−iζq 〈q|ψ(0)
q 〉

∣∣∣∣∣∣
2

. (5.14)
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Figure 5.4: Comparison between robust pulses. (a) The laser phase as
a function of time for the time-optimal (TO) and amplitude-robust (AR) pulse
implementing the CZ gate. The amplitude of the pulses is always given by |Ω(t)| =
Ωmax. (b) Infidelity of the time-optimal (TO), amplitude-robust (AR), Doppler-
robust (DR) and amplitude- and Doppler-robust (ADR) pulses as a function of
ε := ε1 = ε2, with ∆1 = ∆2 = 0. (c) Infidelity of the same pulses as a function of
∆1, with ε = 0 and ∆2 = 0.

We say that the pulse is robust against amplitude deviations if |ψ(1)
q 〉 = 0 for all q,

such that the leading term of the deviation of |ψq〉 from eiθq |q〉 is quadratic in εi.
To find the robust pulse we minimize the cost function

J = 1− F +
∑
q

〈ψ(1)
q |ψ(1)

q 〉 (5.15)

using GRAPE. Here we use that, as in Sec. 5.2, the |ψq〉 satisfy

d

dt

(
|ψ(0)
q 〉
|ψ(1)
q 〉

)
= −i

(
H

(0)
q 0

H
(1)
q H

(0)
q

)(
|ψ(0)
q 〉
|ψ(1)
q 〉

)
. (5.16)

Eq. (5.16) can now be used used in GRAPE as the Schödinger equation for the joint

state (|ψ(0)
q 〉 , |ψ(1)

q 〉).

We find that for any pulse duration τ longer than a certain critical τ∗ ≈ 14.32/Ωmax

there exists a pulse with J = 0, i.e. a pulse that implements a CZ gate with fidelity
F = 1 which is simultaneously robust to first order against amplitude deviations.
We refer to the shortest possible pulse with τ = τ∗ as the “amplitude-robust” (AR)
pulse. The AR pulse is of the form Ω(t) = Ωmax exp[iϕ(t)], i.e. it has always
maximal amplitude. The laser phase ϕ(t) of the AR pulse as a function of the
dimensionless time tΩmax is shown in Fig. 5.4(a), together with the time-optimal
(TO) pulse (without any robustness) found in Sec. 3.3. We emphasize that the laser
phase of the AR pulse is a smooth function of time, which may be easier to implement
experimentally than a pulse with discontinuities in the amplitude or phase. The
average time spent in the Rydberg state during the AR pulse is τR = 4.74/Ωmax,
roughly 60% longer than the TO pulse, which achieves τR = 2.96/Ωmax.



84 Amplitude- and Detuning-Robust Pulses

To demonstrate the robustness of the AR pulse we first calculate the infidelity 1−F
in the absence of Rydberg decay (γ = 0), as a function of the amplitude error
ε1 = ε2 =: ε. The infidelities are displayed in Fig. 5.4(b) by the orange dotted
(AR pulse) and blue solid (TO pulse) lines. The AR pulse achieves an infidelity
1−F < 10−4 even for very large values of |ε| up to 0.05, improving on the TO pulse
by several orders of magnitude. A similar robustness is obtained for ε1 6= ε2 (not
shown).

5.3.2 Detuning Robust Pulses

Now we turn to pulses which are robust against a detuning of the laser, but not
against deviations of the laser amplitude, i.e. we assume ε1 = ε2 = 0. For this
setting, we demonstrate analytically that no pulse exists for which the implemented
gate is first-order insensitive to ∆1 and ∆2. Analogously to the amplitude robust
pulse, we expand the Hamiltonians and quantum states as Hq = H

(0)
q + ∆1H

(1,1)
q +

∆2H
(1,2)
q and |ψq(t)〉 = |ψ(0)

q 〉+∆1 |ψ(1,1)
q 〉+∆2 |ψ(1,2)

q 〉+O(∆2). Through perturbation

theory we find that for any pulse with |ψ(0)
q 〉 = eiζq |q〉 the first order correction

satisfies

〈q|ψ(1,j)
q (τ)〉 = −ieiζq

∫ τ

0

〈ψ(0)
q (t)|H(1,j)

q |ψ(0)
q (t)〉 dt. (5.17)

By using that
∑

j H
(1,j)
q is the projector onto the states with one atom in the Rydberg

state we see that
∑

j 〈q|ψ
(1,j)
q (τ)〉 = −i exp(iζq)τ

R
q , where τRq =

∫ τ
0

dt(1−| 〈q|ψ(0)
q 〉 |2)

is the average time spent in the Rydberg state when starting in state |q〉. Since
τRq > 0 for all pulses which implement a CZ gate, we see that there is no pulse with

|ψ(1,1)
q (τ)〉 = |ψ(1,2)

q (τ)〉 = 0. Hence there is no pulse such that the implemented gate
is to first order insensitive to ∆1 and ∆2. This motivates the search for different
solutions to dominant detuning errors in experiments in Sec. 5.4 below. Note that
the same argument applies even if we restrict the discussion to equal detunings
∆1 = ∆2 = ∆.

We note that while no robust pulse exists, it is still possible to minimize the sensi-
tivity to finite ∆. In Appendix 5.B we use a combination of GRAPE and analytical
techniques to find the pulse that minimizes 1 − F at small but finite values of ∆,
while still achieving F = 1 at ∆ = 0. This optimal pulse improves the infidelity
by only 17% compared to the TO pulse, an improvement much less relevant than
the several orders of magnitude achieved by, e.g., the AR pulse against amplitude
deviations or the pulses described below.

5.3.3 Stark Shift Robust Pulses

One important source of detuning are uncompensated AC-Stark shifts arising due
to the off-resonant coupling of the global laser to other states. For an uncertain
Rabi frequency (1+εi)Ω, these Stark shifts are of the form χ(1+εi)

2Ω2. The known
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Figure 5.5: Stark shift robust pulses. (a) The Stark shift robust pulses at
identical errors ε1 = ε2 (SSR1) for ζ = 0.0 (identical to AR pulse), ζ = 0.1 and
ζ = 1 (b) The Stark shift robust pulses at independent errors ε1 6== ε2 (SSR2) for
ζ = 0.1 (c) The infidelity 1− F for the AR pulse (solid lines) and the SSR1 pulses
(triangles) as a function of ζ at ε1 = ε2 = 0.01 (d)[(e)] The infidelity as a function
of ε+[ε−] for the AR, SSR1 and SSR2 pulse at ζ = 0.1

part χΩ2 of the Stark shift can be compensated by adjusting the laser frequency
accordingly, leaving an unknown detuning ∆i = ζεiΩ +O(ε2), where ζ = 2χΩ is a
dimensionless quantity measuring the strength of the Stark shift.

Crucially, the detuning ∆ induced by a Stark shift and the amplitude deviation
ε are correlated. This allows, in contrast to Sec. 5.3.2, for the existence of pulses
which are to first order robust against Stark shifts, so called Stark shift robust (SSR)
pulses. For SSR pulses we distinguish between the case of identical errors on both
atoms (ε1 = ε2), and the case of independent errors (ε1 6= ε2). For the case of
identical errors, the SSR pulse (termed SSR1) can be found analogously to the AR

pulse (Sec. 5.3.1) by changing the first order contribution H
(1)
q of the Hamiltonian

to include the Stark shift (e.g. H01 = Ω/2 |10〉 〈r0|+ h.c.+ ζΩ |r0〉 〈r0|). The SSR1
pulses for ζ = 0.1 and ζ = 1 are shown in Fig. 5.5(a) together with the AR pulse
(ζ = 0). The shape of the SSR1 pulse is a small perturbation of the AR pulse for
small ζ (see ζ = 0.1), while for large ζ its shape is qualitatively different from the
AR pulse (see ζ = 1). The SSR1 pulse for ζ = 0.1(ζ = 1) spends an average time
of τR = 4.76/Ωmax (τR = 4.22/Ωmax) in the Rydberg state, comparable to the AR
pulse. For ζ & 2, the optimization procedure fails to find an SSR1 pulse, which is
consistent with the fact that for a pure detuning error (ζ → ∞), no robust pulse
exists (Sec. 5.3.2).
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To quantify the performance of the SSR1 pulse compared to the AR pulse, Fig. 5.5(c)
shows the infidelity 1 − F at ε1 = ε2 = 0.01 for different values of ζ for the AR
pulse (orange line) and the SSR1 pulses (brown triangles). While the infidelity of
the AR pulse strongly increases with increasing ζ, the infidelity of the SSR pulses
stays constant and outperforms the AR pulse at |ζ| = 1 by more than three orders
of magnitude.

For the case of independent errors, it has to be ensured that the final state |ψ11〉 is
also robust against amplitude deviations if ε− = (ε1 − ε2)/2 6= 0. This is achieved

by expanding H11 = H
(0)
11 + ε+H

(1)
11 + ε−H

(1)

11
, where H

(1)

11
= ζΩmax |W+〉 〈W−|+ h.c.

contains only Stark shift terms, and including the corresponding 〈ψ(1)

11
|ψ(1)

11
〉 term

in the cost function (5.15). The resulting SSR pulse (termed SSR2) is displayed in
Fig. 5.5(b) for ζ = 0.1. In contrast to the SSR1 pulse it is qualitatively different

from the ADR pulse, due to the additional requirement that |ψ(1)

11
〉 = 0. The SSR2

pulse for ζ = 0.1 spends an average time of τR = 5.87/Ωmax in the Rydberg state,
roughly 25% more than the SSR1 pulse.

The performance difference between the SSR1 and SSR2 pulse is demonstrated in
Fig. 5.5(d,e). Panel (d) shows the infidelity of the AR (orange), SSR1 (brown) and
SSR2 (pink) pulse at ζ = 0.1 as a function of ε+, while ε− = (ε1 − ε2)/2 = 0. Here,
the SSR1 and SSR2 pulses show a similar infidelity, and both significantly outper-
form the AR pulse. In contrast, panel (e) shows the infidelity of the same pulses
as a function of ε−, while ε+ = 0. As expected, the SSR2 pulse now significantly
outperforms both the AR and the SSR1 pulse.

5.4 Doppler Robust Pulses

A second practically relevant source of detuning error is the Doppler shift ∆j = kvj
where k is the wavevector of the global laser and vj is the velocity of atom j along
the direction of the laser. In contrast to a fixed detuning discussed in Sec. 5.3.2,
the sign of the Doppler shift can be flipped by changing the sign of k or v. In the
following we will argue that a robust gate can be achieved by splitting the gate into
two identical halves applied sequentially, with the sign of ∆j reversed between the
two halves, as illustrated in Fig. 5.6(a). We start in Sec. 5.4.1 by showing how this
reversal of ∆j allows for pulses robust against Doppler shifts. In Sec. 5.4.2 we then
discuss two potential experimental methods for reversing ∆j.

5.4.1 Design of Doppler Robust Pulses

In order to be robust against Doppler errors, we use GRAPE to search for a pulse
Ω(t) of duration τ that satisfies two conditions. First, implementing a C-Phase

gate with two qubit phase π/2 when ∆ = 0 (i.e., satisfying |ψ(0)
q (τ)〉 = eiζq |q〉

with ζ01 = ζ10 = θ and ζ11 = π/2 + 2θ for some single qubit phase θ). Second,
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Figure 5.6: Doppler-robust and amplitude- and Doppler-robust pulses.
Laser phase for (a) the Doppler-robust (DR, green), (b) the amplitude- and Doppler-
robust (ADR, red), and (c) the Stark-shift robust (SSR) ADR pulse. Each pulse
consists of two identical halves, shown by the grey areas, applied with opposite
Doppler shifts ∆ = kv (purple dashed lines), achieved as described in the text. In
each of the halves the laser amplitude is maximal (|Ω(t)| = Ωmax), while Ω(t) = 0
outside of the gray areas. (d) The population PR of the Rydberg state (averaged
over the four computational basis states as initial states) for the DR and ADR pulse
as a function of time. Note that between the two halves of the pulses (shown by the
arrows) the population of the Rydberg state is zero.
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achieving a first order error |ψ(1,j)
q 〉 which is entirely along the direction of |q〉, i.e.

(I − |q〉 〈q|) |ψ(1,j)
q (τ)〉 = 0. The state after applying this pulse once is then

|ψq(τ)〉 =

(
eiζq +

∑
j

∆j 〈q|ψ(1,j)
q (τ)〉

)
|q〉+O

(
∆2
)
. (5.18)

When applying the pulse Ω(t) a second time, the sign of ∆j is reversed. This implies
|ψq(2τ)〉 = e2iζq |q〉+O(∆2), and thus the combined pulse is robust against Doppler
errors. Crucially, the Rydberg population after the first pulse is of order O(∆2),
which makes the gate insensitive to the relative phase of the lasers between the
two pulses and also allows an arbitrary waiting time between the pulses without
incurring errors from Rydberg state decay.

GRAPE can be applied to this problem analogously to the amplitude robust case,
with the cost function

J = 1− F +
∑
j,q

〈ψ(1,j)
q (τ)|(I − |q〉 〈q|)|ψ(1,j)

q (τ)〉 . (5.19)

The shortest possible pulse which is robust against Doppler errors, called the “Doppler-
robust” (DR) pulse, is shown in Fig. 5.6(a). The population of the Rydberg state
(averaged over the four computational basis states as initial states) in shown in
Fig. 5.6(d). As mentioned above, the population of the Rydberg state vanishes be-
tween the two pulses. The average time that the DR pulse spends in the Rydberg
state (over the entire gate) is given by τR = 5.56/Ωmax.

By simply adding the cost functions for the AR and the DR cases, we can identify
the shortest possible pulse which is robust against both imperfections, which we call
the “amplitude- and Doppler-robust” (ADR) pulse. The laser phase of the ADR
pulse is displayed in Fig. 5.6(b), the population of the Rydberg state in Fig. 5.6(d).
The ADR pulse spends an average time τR = 10.37 in the Rydberg state, and is thus
significantly more affected by its decay than the other three pulses. We remark that
the ADR pulse is also robust against amplitude deviations εi that are different in
the two halves of the pulse, since each half is individually robust against amplitude
deviations.

The infidelity of all four pulses (TO, AR, DR and ADR) as a function of the detuning
∆1 of the first atom is shown in Fig. 5.4(b). For the TO and AR pulse the detuning is
kept constant, while for the DR and ADR pulse its sign is switched after the first half
of the pulse. The DR and ADR pulse achieve 1−F < 10−4 for |∆1|/Ωmax < 0.05, two
to three orders of magnitude better than the TO and AR pulses. We also compare
the performance of the DR and ADR pulses to the TO and AR pulses when varying
the amplitude deviation ε in Fig. 5.4(a). As expected, the DR pulse does not show
any robustness to amplitude deviations and behaves similar to the TO pulse, while
the ADR pulse outperforms not only the TO pulse, but also the AR pulse.

Analogously to the AR pulse, a Stark shift robust version exists also for the ADR
pulse, shown for ζ = 0.1 in Fig. 5.6(d). As for the AR pulse, the Stark shift robust
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Figure 5.7: Switch and wait method. Illustration of the switch and the wait
method for reversing the sign of the Doppler shift. In the switch method, the
direction of the laser, and thus the sign of k, is switched after the first pulse. In the
wait method instead we propose to wait for half an oscillation of the atom in the
trap, switching the sign of v and thus the sign of the Doppler shift.

ADR pulse is qualitatively similar to the ADR pulse in the absence of a Stark shift.
It spends an average time of τR = 10.66/Ωmax in the Rydberg state. Note that
the ADR pulses is inherently robust against Stark shift errors with ε1 = −ε2, so
that in contrast to the AR pulse no distinction between identical and independent
errors is necessary. To see this, first note that for the states |ψ10〉 and |ψ10〉 the
distinction between identical and independent errors is irrelevant, because only one
of the two atoms is affected by the error. The remaining state |ψ11〉 (describing
the state of the atoms after the first pulse half when staring in |11〉) is intrinsically
robust against Stark shift errors with ε1 = −ε2, because these errors only result
in a nonzero detuning ∆− = ζε1|Ωmax| and a corresponding perturbation H

(1)

11
=

ζΩmax |W+〉 〈W−|+ h.c.. By the Doppler robustness of the ADR pulse, it holds that

〈W±|ψ(1)

11
〉 = 0. But because H

(1)

11
only leads to the population of |W−〉 and otherwise

leaves the evolution unchanged, it also holds that 〈11|ψ(1)

11
〉 = 0, so that |ψ(1)

11
〉 = 0.

Hence each of the two pulse halves of the ADR pulse are robust against Stark shift
errors with ε1 = −ε2, so also the whole ADR pulse is robust against those errors.
Note that this even holds if the εi are different in each of the pulse halves.

5.4.2 Reversing the Doppler Shift

The DR and ADR pulse require that ∆j is reversed after the first half of the pulse.
Here we propose two methods for switching the sign of ∆j, called the switch method
and the wait method.

In the switch method, the direction of the laser (i.e. the sign of k) is reversed between
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the two pulses. Note that the switch method works regardless of the relative phase
between the two laser beams, because the Rydberg population in between the two
pulse halves vanishes [see Fig. 5.6(b)].

The wait method instead makes use of the fact that the atom is confined in a
potential that is approximately harmonic, and therefore the velocity in the direction
of the laser propagation is periodic with trap frequency ωtr. By waiting for a time
π/ωtr between the two pulses, the sign of v, and thus the sign of ∆j, is reversed.
Since the Rydberg state is not populated between the two pulse halves, no additional
decay error arises during this wait time even if ωtr � γ.

The wait method makes several implicit assumptions on the motion of the atoms.
First, we assume that the propagation direction of the laser is along one of the
normal modes of the trap. Second, we assume that the coherence of the atomic
motion is much longer than one motional period [164]. Finally, we assume that the
atomic temperature is low enough for the trap anharmonicity to be negligible. In
Appendix 5.D.1 we estimate the impact of a finite trap anharmonicity and show
that for achievable experimental parameters it does not significantly affect the gate
performance.

Both the switch and the wait method require that the velocity of the atoms is
approximately constant during each pulse. The acceleration of the atoms during
the pulses is thus a source of error. For the switch method this error can be avoided
by abruptly turning off the trapping potential during the pulses, which is already
common practice in many experiments to avoid differential light shifts and anti-
trapping of the Rydberg state [165]. However, this approach is unsuitable for the
wait method, since it affects the velocity reversal, and is also undesirable because
it heats the atom and may prevent the execution of deep circuits with many gates.
To mitigate these disadvantages, we propose to modulate the trapping potential
sinusoidally in time, and to apply the pulses at times where the potential is zero
(Appendix 5.C). This gives rise to an approximately constant velocity of the atoms
during the pulses while also eliminating the differential light shift and heating from
square-wave modulation [166]. For the wait method, we show that it is possible
to apply the two pulse halves at two different times of vanishing potential such
that the velocity is reversed between the two pulses. Note that fast sinusoidal trap
modulation was experimentally demonstrated in an optical tweezer for the purpose
of eliminating light shifts in a cavity QED experiment [166]. For the remainder of
this chapter we assume that the trap modulation is applied for both the switch and
the wait method, in Appendix 5.D.2 we discuss the two methods without the trap
modulation.

In conclusion, we have shown how the reversal of the Doppler shift in the middle
of the gate allows for a pulse which is robust against errors arising from Doppler
shifts, and a pulse which is robust against both amplitude deviations and Doppler
shifts. We demonstrated that the infidelity arising due to Doppler shifts is reduced
by several orders of magnitude by the robust pulses, and provided two methods to
switch the sign of the Doppler shift.
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5.5 Infidelities in a Realistic Error Model

To assess the performance of the TO, AR, DR and ADR pulses in a realistic ex-
periment, we now include the decay of the Rydberg state and atomic motion in a
harmonic trap. For this we assume random and uncorrelated initial velocities and
positions for both atoms, drawn from a normal distribution with standard devia-
tion

√
kBT/m and

√
kBT/mω2

tr, respectively, where T is the temperature and m
is the mass of the atoms. We then assume that the atoms follow classical trajec-
tories in the harmonic trap, which we incorporate as a modified Rabi frequency
Ω̃(t) = e−ikx(t)Ω(t). In the case of the DR and ADR pulses, we simulate both the
switch and wait method of reversing the detuning between the two pulse halves,
applying the modulation of the trapping potential as described in Appendix 5.C for
both methods. We sample the laser amplitude error ε from a normal distribution
with standard deviation σε. For simplicity, we set ε1 = ε2 = ε, but note that the
same robustness is achieved if ε1 6= ε2 since the AR and ADR pulses are robust
against ε1 and ε2 independently.

For the Rydberg excitation, we consider parameters recently proposed for metastable
171Yb qubits using a single-photon excitation to the |75 3S1 F = 3/2〉 Rydberg state
[20], although we note that these are broadly similar to proposed or achieved values
for other alkaline earth atoms such as Sr [66, 127] and ground-state 171Yb qubits
[85, 167]. The specific numerical values considered here are: Ωmax = 2π × 5.5 MHz,
2π/k = 302 nm, 1/γ = 100µs, ωtr = 2π × 50 kHz and m = 171 u. The interac-
tion strength is B ∼ 5 THzµm6/R6, so that B � Ωmax for realistic values of the
interatomic distance R in the range of 3-6 µm [85]. In the following calculations
we assume a perfect Rydberg blockade. Similar parameters can be obtained for al-
kali atoms, but we note that two-photon excitation typically reduces the wavevector
associated with Doppler shifts, at the expense of an additional decay error from
the decay of the intermediate state. As the Stark shift strength in metastable
171Yb qubits is unknown, we assume the value measured in 88Sr qubits, given by
2πχ ≈ 10kHz/MHz2 [66]. For the Rabi frequency Ωmax this corresponds to ζ ≈ 0.1
. In the following we always use the Stark shift robust variants of the AR and ADR
pulse. Since we restrict ourselves to the ε1 = ε2 case, we use the SSR1 pulse as the
Stark shift robust variant of the AR pulse.

Our results are summarized in Fig. 5.8. We first consider the performance with
only amplitude or Doppler errors. The infidelity as a function of σε with T = 0
is shown in Fig. 5.8(a). For small values of σε the decay of the Rydberg state is
the dominant error, so the fidelities depend only on the time spent in the Rydberg
state. The order of the pulses by increasing time spent in the Rydberg state (in our
case identical to increasing pulse duration) is TO, AR, DR, ADR. In contrast, as σε
increases, the infidelity of the AR and ADR pulses stays almost constant, while the
infidelity of the TO and DR pulses increases quadratically. At σε & 0.010 the AR
pulse becomes favourable compared to the TO pulse, at σε & 0.026 the ADR pulse
becomes favorable compared to the TO pulse. The AR pulse outperforms the ADR
pulse, because while both pulses are robust to deviations of the laser amplitude, the
AR pulse spends less time in the Rydberg state.
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Figure 5.8: Infidelities in a realistic error model. The infidelity 1− F of the
TO, AR, DR and ADR pulse at different values of the amplitude uncertainty σε and
the atomic temperature T . (a) 1 − F as a function of σε at T = 0. For the DR
and ADR pulse, open symbols show the infidelity with the switch method, while
filled symbols show the infidelity with the wait method. Sinusoidal modulation of
the trap is applied in all cases. (b) 1 − F as a function of T at σε = 0. (c) Color
plot of 1−F as a function of both σε and T . For the DR and ADR pulse we use the
wait method including the sinusoidal modulation of the trap. The encircled regions
show the range of imperfections where each pulse performs the best.
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Next we consider the performance as a function of T , in the absence of amplitude
errors (σε = 0) [Fig. 5.8(b)]. At low temperatures the pulses are again ordered by the
time they spent in the Rydberg state. With increasing temperature, however, the
infidelity of the DR and ADR pulses stays almost constant, while the infidelity of the
TO and AR pulses increases linearly with T (quadratically with ∆). For T & 6µK
the DR pulse outperforms the TO pulse, for T & 28µK the ADR pulse outperforms
the TO pulse. These results do not depend on whether the switch or the wait
method is used. We note that the infidelity of the TO pulse at elevated temperatures
is roughly consistent with previous estimates for various non-robust blockade gates
[127, 165]. We remark that with increasing temperature, other imperfections not
considered here, such as the anharmonicity of the trap may become increasingly
relevant (see Appendix 5.D.1 for a discussion).

Finally, we consider the infidelity in the presence of both amplitude and Doppler
errors. Fig. 5.8(c) shows the infidelity of all four pulses over a range of imperfections.
Additionally, the region in which each pulse has the lowest infidelity out of the four
considered pulses is marked. The results are shown for the wait method, we verified
that for the switch method identical results are obtained. As expected, the TO pulse
performs best when all imperfections are small, while ADR pulse is the best pulse for
large amplitude uncertainties and large temperatures. The AR and DR pulses are
the best choice when either the amplitude uncertainty is large or the temperature
is large, while the other imperfection is small.

5.6 Conditional Infidelity and Logical Error Rate

In the previous section we saw that, even with the use of robust pulses, gate errors
of the order 10−3 are unavoidable, making it impossible to perform a quantum
computation with more than 103 operations. However, for many useful quantum
algorithms, a significantly larger operations is necessary [168]. The problem that
the reasonably achievable gate error rates are orders of magnitude below what is
required for longer quantum computations is not unique to neutral atom quantum
processors, but in fact occurs in almost all quantum computing platforms.

To allow quantum computing even with faulty gates, the framework of fault toler-
ant quantum computation (FTQC) has been developed [19, 169–172](see also Chap-
ter 6). FTQC uses redundancy to encode one logical qubit in several physical qubit,
where in a neutral atom quantum computer each physical qubit can be encoded in a
single atom. As long as the error of each physical gate is below a certain threshold, it
is possible to use FTQC to achieve an arbitrarily low logical error rate in the logical
qubit by using more and more physical qubits.

In the context of FTQC, both the error probability and the type of error are impor-
tant. Recently, it was proposed [20, 162] and experimentally demonstrated [14] that
using the metastable state in 171Yb to encode qubits ensures that the vast majority
of Rydberg decay errors result in transitions out of the computational subspace that
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Figure 5.9: Conditional infidelity, erasure bias, logical error rate. (a) Con-
ditional fidelity 1− Fc of the four pulses as a function of the amplitude uncertainty
σε at T = 0. For the DR and ADR pulse, open symbols show results with the switch
method, while filled symbols show the results with the wait method. For both meth-
ods the sinusoidal modulation of the trap is applied. (b) 1− Fc as function of T at
σε = 0. (c) The erasure bias ηe as a function of T and σε (using the wait method
including the trap modulation for the DR and ADR pulse), assuming ηe = 50 in
the absence of imperfections. d) The logical error rate pL as a function of T and σε.
The encircled regions show the range of imperfections where each pulse performs
the best.

can be efficiently detected [20]. This converts decay errors into so-called erasure
errors, for which the FTQC threshold is much higher.

Maintaining this advantage in the presence of experimental imperfections requires
that the fraction of errors converted into erasures, Re, is close to unity. From the
fact that a small fraction of decays of the Rydberg state does lead back to the com-
putational subspace, Ref. [20] estimated that Re = 0.98 for the case of spontaneous
decays from the Rydberg state, which is the only fundamental limitation to the fi-
delity of multi-qubit Rydberg gates. In this case, the estimated XZZX surface code
threshold can be as high as pth = 4.15%, compared to pth = 0.93% for a comparable
Pauli error model [20]. Similar estimates have been made for other erasure-biased
qubits [173].

To understand the error decomposition of our robust pulses, we start by assuming
that all Rydberg decay errors lead to transitions outside of the computational sub-
space and compute the conditional fidelity Fc, i.e. the fidelity conditioned on the
final state being in the computational subspace. The conditional infidelity 1 − Fc
is shown as a function of the amplitude uncertainty σε at T = 0 in Fig. 5.9(a) and
as a function of T at σε = 0 in Fig. 5.9(b), assuming the same experimental pa-
rameters as in Sec. 5.5. The robust pulses always outperform the non-robust pulses
by several orders of magnitude and satisfy 1− Fc � 1− F [see Fig. 5.8(a),(b) and
Fig. 5.9(a),(b)], showing that errors are dominated by transitions out of the com-



Robust Gate Protocols 95

putational subspace. This is expected because the robust pulses effectively trade
sensitivity to imperfections for Rydberg decay. Note that again the switch and the
wait method give identical results in Figs. 5.9(a)(b). For the rest of this work we
show the results from the wait method, but have verified that they do not change
significantly when using the switch method instead.

To quantify the logical error rate achievable for the robust pulses for metastable
171Yb qubits, we now include that not all, but only a fraction of r = 0.98 of the decay
errors are converted into erasures [20]. To calculate the logical error rate we assume,
analogously to Ref. [20], a Pauli error channel, in which an erasure error occurs with
probability pe and a random Pauli error occurs with probability pp. We identify pe
and pp from the probability pd of a decay error and the conditional infidelity 1− Fc
in the exact error model as pe = rpd and pp ≈ (1 − r)pd + (1 − pd)(1 − Fc). Then
a fraction Re = pe/(pe + pd) of all errors are converted into erasures. For the pulse
proposed here, we compute a quantity related to Re, the erasure bias ηe = 1/(1−Re).
A larger erasure bias implies a larger fraction of erasure errors, and thus a higher
threshold error probability. In the ε = ∆ = 0 case the erasure bias is then given by
ηe = 50, the predicted maximum value for 171Yb [20]. Inspecting Fig. 5.9(c), it is
clear that the TO pulse only achieves a large value of ηe for very small temperatures
and amplitude uncertainties and that ηe drops rapidly to ∼ 1 in the presence of
significant amplitude or Doppler errors. The ADR pulse instead maintains ηe ≈ 50
over the whole range of considered parameters of σε up to 0.05 and T up to 50µK.
The DR pulse achieves ηe ≈ 50 as long as σε is small, but ηe drops rapidly as σε
increases, while the AR pulse shows the opposite behavior.

Using the total infidelity and ηe, we can estimate the logical error rate for a given
error correcting code. For concreteness, we consider the d = 5 XZZX surface code,
where the logical error rate after a single round of fault-tolerant error correction,
pL, is presented in Ref. [20] for a range of physical error rates p = 1−F and erasure
biases ηe. The estimated value of pL is shown in Fig. 5.9(d) for the four pulses
studied here. Remarkably, the ADR pulses outperforms the other three pulses by
many orders of magnitude unless either σe or T is very small. This is in contrast
to Fig. 5.8(c), which shows that the total infidelity of the ADR pulse is larger than
that of the other three pulses until σe or T reach modest values. This illustrates
a fundamental tradeoff that is one of the central results of this chapter: the larger
infidelity associated with the longer ADR sequence is more than compensated by
the increased ηe.

5.7 Conclusion

In this chapter we have presented several new laser pulses that implement a CZ or
C2Z gate and maximize the robustness against Rydberg decay, uncertainties in the
interaction strength, deviations in the laser amplitude, and a detuning of the laser.
We found that the time-optimal gates found in Chapter 3 are essentially as robust
as possible against Rydberg decay errors, and can be modified by modulating the
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laser amplitude to increase their robustness against uncertainties in the interaction
strengths.

Using a combination of optimal control methods and analytical reasoning we also
found pulses robust against amplitude deviations of the laser and Doppler shifts,
where the latter is achieved by reversing the sign of the Doppler shift between two
halves of the pulse. These robust pulses strongly suppress errors from amplitude
deviations and Doppler shifts, at the cost of a slightly larger error due to decay
of the Rydberg state. Additionally we estimated the logical qubit performance in
the context of the erasure-biased metastable 171Yb qubit, found that one of the
new pulses (the ADR pulse) outperforms all other pulses unless the imperfections
are very small, because they maintain the erasure bias even in the presence of
imperfections. Robust pulses enable significant gains from quantum error correction
even for significantly elevated temperatures and amplitude deviations.

The results of this chapter significantly relax the technical requirements for FTQC
with neutral atoms [165] by extending the erasure conversion concept to amplitude
and Doppler shift errors [20]. The most important of these is the constraint to
have near-ground-state atomic temperatures: while this level of cooling has been
achieved for a number of neutral atom qubit species [167, 174–177], it is a funda-
mental challenge to maintain these temperatures over long sequences of gates or
atom transport operations. We note that re-cooling after transport is a significant
overhead in trapped ion CCD architectures [178, 179], and that sympathetic cooling
is not straightforward in neutral atoms [180].

Besides laser amplitude inhomogeneities, Doppler shifts, decay of the Rydberg state,
and uncertainties in the interaction strength, an experimental realization of the pro-
posed gates will be affected by error sources not included in our analysis, including
time dependent parameter fluctuations, such as laser phase noise, and uncertainties
in the applied pulse shape. While our pulses are not explicitly robust to those errors,
there is no indication that they are significantly more susceptible to them, compared
to previous approaches such as the TO pulse. Including additional error sources in
the design of robust pulses will be the subject of further investigation. The work of
this chapter allows experimental efforts to be concentrated on error sources against
which our protocols are not robust, at the expense of error sources against which
our protocols are robust.

5.A Gate Error for a CZ and C2Z Error in Second

Order in 1/B

In this appendix we derive perturbative expressions for the infidelity at finite B for
pulses that implement a CZ or C2Z with fidelity F = 1 in the B = ∞ case. For
this, we expand |ψq〉 = |ψ(0)

q 〉+ 1
B
|ψ(1)
q 〉+ 1

B2 |ψ(2)
q 〉+O(B−3) and show that for the
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CZ gate it holds that

F = 1− 1

B2

(
1

4
〈ψ(1)

11 |ψ
(1)
11 〉 −

1

10

∣∣∣〈11|ψ(1)
11 〉
∣∣∣2)+O(B−3) (5.20)

while for the C2Z gate we obtain

F = 1− 1

72B2

(
27 〈ψ(1)

011|ψ
(1)
011〉+ 9 〈ψ(1)

111|ψ
(1)
111〉 −

∣∣∣3 〈011|ψ(1)
011〉 − e−iθ 〈111|ψ(1)

111〉
∣∣∣2

(5.21)

−3
∣∣∣〈011|ψ(1)

011〉
∣∣∣2 − ∣∣∣〈111|ψ(1)

111〉
∣∣∣2 )

where θ is the single qubit phase.

To show Eq. (5.20), we use two ingredients: Firstly any quantity x = x(0) + 1
B
x(1) +

1
B2x

(2) + ... depending on B satisfies

|x|2 =
∣∣x(0)

∣∣2 +
2

B
Re
(
(x(0))∗x(1)

)
+

1

B2

(∣∣x(1)
∣∣2 + 2Re

(
(x(0))∗x(2)

))
+O(B−3).

(5.22)

Secondly, for any normalized vector |φq〉 depending on B and with |φ(0)
q 〉 = |q〉 it

holds that

1 = 〈φq|φq〉 = 1 +
1

B
Re
(
(〈q|φ(1)

q 〉
)

+
1

B2

(
〈φ(1)

q |φ(1)
q 〉+ 2Re(〈q|φ(2)

q 〉)
)

+O(B−3)

(5.23)
so that

Re
(
(〈q|φ(1)

q 〉
)

= 0 (5.24)

and

Re(〈q|φ(2)
q 〉) = −1

2
〈φ(1)

q |φ(1)
q 〉 . (5.25)

For the fidelity of a CZ gate we obtain from Eq. (3.22) with |φ01〉 = e−iθ |ψ01(T )〉
and |φ11〉 = −e−2iθ |ψ11(T )〉 that

F =
1

20

(
|1 + 2 〈01|φ01〉+ 〈11|φ11〉|2 + 1 + 2 |〈01|φ01〉|2 + |〈11|φ11〉|2

)
(5.26)

Now we apply Eq. (5.22). Because the pulse has fidelity 1 in the B = ∞ case we

have |φ01〉 = |01〉 and |φ(0)
11 〉 = |11〉, so that

F =
1

20

(
|3 + 〈0|φ11〉 |2 + 3 + | 〈0|φ11〉 |2

)
(5.27)

=
1

20

(
20 +

10

B
Re
(
〈0|φ(1)

11 〉
)

+
1

B2

(
2
∣∣∣〈0|φ(1)

11 〉
∣∣∣2 + 10Re

(
〈0|φ(2)

11 〉
)))

+O(B−3)

By inserting Eqs. (5.24) and (5.25) into Eq. (5.27) we obtain Eq. (5.20).

For the C2Z gate we obtain from Eq. (3.22) with |φ001〉 = e−iθ |ψ001〉 , |φ011〉 =
e−2iθ |ψ011〉 and |φ111〉 = −e−3iθ |ψ011〉 that

F =
1

72

(
|1 + 3 〈001|φ001〉+ 3 〈011|φ011〉+ 〈111|φ111〉|2 (5.28)

+ 1 + 3 |〈001|φ001〉|2 + 3 |〈011|φ011〉|2 + |〈111|φ111〉|2
)
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(a) (b) (c)

Figure 5.10: Comparison between exact and approximate infidelity. Com-
parison between the exact gate error at finite B (blue, solid line) and the gate error
calculated from Eqs. (5.20) and (5.21) together with approximating the effects of a
finite B through an Stark shift (orange, dashed line). a) For the time-optimal pulse
for the CZ gate. (b)[(c)] For Pulse 1[2] for the C2Z gate. For all three pulses there
is an excellent agreement between the exact gate error and the approximation for
large enough B.

We apply Eq.(5.22) and use that |φ001〉 = |001〉, |φ(0)
011〉 = |011〉 and |φ(0)

111〉 = |111〉 to
obtain

F =
1

72

[
72 +

1

B
Re
(

54 〈011|φ(1)
011〉+ 18 〈111|φ(1)

111〉
)

+
1

B2

( ∣∣∣3 〈011|φ(1)
011〉+ 〈111|φ(1)

111〉
∣∣∣2

(5.29)

+3
∣∣∣〈011|φ(1)

011〉
∣∣∣2 +

∣∣∣〈111|φ(1)
111〉
∣∣∣2 + Re

(
54 〈011|φ(2)

011〉+ 18 〈111|φ(2)
111〉
))]

By inserting Eqs. (5.24) and (5.25) into Eq. (5.29) we obtain Eq. (5.21).

We numerically confirm Eqs. (5.20) and (5.21) as well as the fact that to first order
in 1/B it is sufficient to account for the finiteness of B through a Stark shift . For
this, we consider the time-optimal pulse for the CZ gate and Pulse 1 and Pulse 2
for the C2Z gate (see Secs. 3.3 and 3.6) and calculate the gate error once using the
exact Hamiltonian and once from Eqs. (5.20) and (5.21). In the latter case, the

|ψ(1)
q 〉 are found through Eq. (5.8). The exact and the approximate gate error are

shown in Fig. 5.10 as blue solid line and orange dotted line, respectively. For all
three considered pulses the exact and the approximate gate error are in excellent
agreement for large B.

5.B Pulse Most Robust against Detuning Errors

In Sec. 5.3.2 we showed that there exists no pulse Ω(t) such that the quantum state
after the pulse is to first order insensitive to the detunings ∆1 and ∆2. In this
appendix we derive a pulse which is nevertheless as robust as possible. For this
we assume ∆1 = ∆2 = ∆, which is the case when the detuning error arises from
frequency noise of the laser and not from Doppler shifts.
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The fidelity of the pulse can be expanded as F = F (0) + ∆F (1) + ∆2F (2) + O(∆3)
with F (0) given by Eq. (5.14) and

F (1) =
1

2

√
F (0)

∑
q∈{10,01,11}

Re
(
e−iζq 〈q|ψ(1)

q 〉
)

(5.30)

F (2) =
1

16

∣∣∣∣∣∣
∑

q∈{10,01,11}

e−iζq 〈q|ψ(1)
q 〉

∣∣∣∣∣∣
2

(5.31)

+
1

2

√
F (0)

∑
q∈{10,01,11}

Re
(
e−iζq 〈q|ψ(2)

q 〉
)
.

We now consider a pulse with F (0) = 1, i.e. |ψ0)
q 〉 = eiζq |q〉. By normalization of

|ψq〉 it must hold that Re(e−iζq 〈q|ψ(1)
q 〉) = Re(〈ψ(0)

q |ψ(1)
q 〉) = 0 and that 〈ψ(1)

q |ψ(1)
q 〉+

2Re(e−iθq 〈q|ψ(2)
q 〉) = 0. Inserting this into Eqs. (5.30) and (5.31) we obtain F (1) = 0

and

F (2) =
1

16

∣∣∣∣∣∑
q

e−iζq 〈q|ψ(1)
q 〉

∣∣∣∣∣
2

− 1

4

∑
q

〈ψ(1)
q |ψ(1)

q 〉 (5.32)

Our goal is now to find the pulse which minimizes −F (2) while satisfying F (0) = 1.
As a reference we calculate for the time-optimal pulse −F (2) = 3.45/Ω2

max.

We now insert the relation e−iζq 〈q|ψ(1)
q 〉 = −iτRq (see Eq. (5.17) into Eq. (5.32) and

use the fact that, because ∆1 = ∆2, |ψ10〉 and |ψ01〉 are identical up to relabeling

the states. We obtain −F (2) = −F (2)
c − F (2)

r with

−F (2)
c =

1

16

(
4(τR10)2 + 3(τR11)2 − 2τR10τ11

)
(5.33)

−F (2)
r =

1

2
| 〈r0|ψ(1)

10 〉 |2 +
1

4
| 〈W+|ψ(1)

11 〉 |2 (5.34)

Here, −F (2)
c is the conditional fidelity and measures the infidelity arising from de-

viations of the final state in the computational subspace while −F (2)
r measures the

infidelity arising from population of the Rydberg state. Since τRq > 0 we see that

also −F (2)
c > 0 and thus −F (2) > 0.

A lower bound on the minimal possible −F (2) is obtained by minimizing −F (2)
c over

all pulses with F (0) = 1. We do so using the GRAPE algorithm with the cost function
J = C(1 − F (0)) − F (2)

c for a large C = 104. The large value of C ensures that the
pulse minimizing J will have F (0) ≈ 1, while the second term in J ensures that the
pulse minimizes −F (2)

c . We find that the minimal value is −F (2)
c = 2.87/Ω2

max, for a
pulse Ω∗ with duration τ∗ = 7.70/Ωmax. The pulse Ω∗ is shown in the shaded area

in Fig. 5.11. Through the pulse Ω∗, the value of −F (2)
c decreases by 17% compared

to the TO pulse.
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Figure 5.11: Most robust pulse against detunings. Schematic shape of the
amplitude (blue, left vertical axis) and phase (red, right vertical axis) of the pulse
achieving the highest robustness against the detuning of the laser. As explained in
Appendix 5.B the pulse consists of 7 pieces of durations τon, τ1, τon, τ∗, τon, τ2 and τon,
respectively. The gray area shows the pulse minimizing −F (2)

c , while the rest of the
pulse compensates the errors in the Rydberg state.

Now we show the following: Using the pulse Ω∗ as a building block we can construct
a new pulse Ω(t) with −F (2)

r = 0, while still satisfying −F (2)
c = 2.87/Ω2

max, the
same value as for Ω∗. The amplitude and phase of Ω(t) are shown schematically in
Fig. 5.11. The pulse is described by 5 parameters τon, τ1, τ2, ϕ1 and ϕ2 and consists
of seven parts:

Ω(t) =



Ωmaxe
iϕ1 if t ∈ [0, t1]

0 if t ∈ (t1, t2]

Ωmaxe
i(ϕ1+π) if t ∈ (t2, t3]

Ω∗(t) if t ∈ (t3, t4]

Ωmaxe
iϕ2 if t ∈ (t4, t5]

0 if t ∈ (t5, t6]

Ωmaxe
i(ϕ2+π) if t ∈ (t6, t7]

(5.35)

with t1 = τon, t2 − t1 = τ1, t3 − t2 = τon, t4 − t3 = τ∗, t5 − t4 = τon, t6 − t5 = τ2

and t7 − t6 = τon. The pulse Ω(t) starts by turning on the laser for a time τon with
phase ϕ1 (green area in Fig. 5.11) , followed by an idle time of τ1 (orange area in
Fig. 5.11) and another pulse of duration τon, but this time with opposite sign of Ω,
i.e. with phase ϕ1 + π. After these first three parts the pulse Ω∗ is applied (gray
area in Fig. 5.11), followed by the last three parts which have the same structure
as the first three parts, but with laser phase ϕ2 and idle time τ2. The pulse Ω(t)
is designed such that for ∆ = 0 it implements the same gate as Ω∗(t), because the
second and the sixth part of Ω(t) have no effect and the first and third part as well
as the fourth and seventh part cancel each other.

In the following we consider the limit τon → 0, while keeping τonτj constant (for
j = 1, 2). We calculate how the pulse Ω(t) acts on the relevant computational basis
states |10〉 , |01〉 and |11〉, starting with |10〉. We start by calculating the zeroth

order contribution of the state, |ψ(0)
10 〉. Outside of the short parts of the pulse with
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duration τon it is given by

|ψ(0)
10 (t)〉 =


|10〉 − ie−iϕ1Ωmaxτon/2 |r0〉 if t ∈ [t1, t2]

|ψ(0)
10,∗(t− t3)〉 if t ∈ [t3, t4]

eiζ10 (|10〉 − ie−iϕ2Ωmaxτon/2 |r0〉) if t ∈ [t5, t6]

(5.36)

where |ψ10,∗〉 denotes the state when executing the pulse Ω∗(t). Note that because we
work in the limit τon → 0 there is no population in the Rydberg state except when
the pulse Ω∗ is executed, so that 〈10|ψ(1)

10 (t7)〉 = 〈10|ψ(1)
10,∗(τ∗)〉 and thus −F (2)

c =
2.87/Ω2

max.

To calculate the error along |r0〉, 〈r0|ψ(1)
10 (t7)〉, we note that the pulse Ω∗ maps the

state |r0〉 to e−iζ10 |r0〉 in the ∆ = 0 case. This is due to the symmetry between |10〉
and |r0〉 in the Hamiltonian (5.10). This fact together with Eq. (5.36) gives

〈r0|ψ(1)
10 (t7)〉 = − ei(−ζ10−ϕ1)τ1τonΩmax/2 (5.37)

+ 〈r0|ψ(1)
10,∗(τ∗)〉

− ei(ζ10−ϕ2)τ2τonΩmax/2

Analogously we find when starting in |11〉 that

〈W+|ψ(1)
11 (t7)〉 = −

√
2ei(−ζ11−ϕ1)τ1τonΩmax/2 (5.38)

+ 〈W+|ψ(1)
11,∗(τ∗)〉

−
√

2ei(ζ11−ϕ2)τ2τonΩmax/2

The pulse Ω(t) thus satisfies −F (2)
r = 0 if

1

2

(
e−iζ10 eiζ10√
2e−iζ11

√
2eiζ11

)(
ξ1

ξ2

)
=

(
〈r0|ψ(1)

10,∗(τ∗)〉
〈W+|ψ(1)

11,∗(τ∗)〉

)
(5.39)

with ξj = e−iφjτjτonΩmax. Now the ξj and thus the τj and ϕj can be found by simply
solving the linear system of equations (5.39). We find the solutions ϕ1 = 2.21,
ϕ2 = −0.05, τ1 = τ2 = 1.01/(τonΩ2

max). We numerically verified that in the limit
τon → 0 the pulse Ω(t) indeed achieves −F (2) = 2.87/Ω2

max.

5.C Modulation of the Trapping Potential

The wait method proposed in Sec. 5.4.2 requires a periodic motion of the atoms in
the optical tweezer trap. While this can be in principle achieved simply by keeping
the trapping potential constant in time, this approach induces differential light shifts
between ground and Rydberg states, and can also lead to the anti-trapping of the
Rydberg state. In the following we provide a method to achieve a periodic motion
of the atoms through a trapping potential which is sinusoidally modulated in time.
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The pulse halves can then be executed at times where the trap intensity vanishes
and there is no differential light shift and no anti-trapping of the Rydberg state.
Additionally, this method ensures that the velocity of the atoms, and thus the
Doppler shift, is constant during each of the pulse halves. This is an improvement
because the Doppler robust pulses are only designed to be robust against a Doppler
shift which is constant during each pulse half.

We propose to modulate the potential V induced by the optical tweezers trapping
the atoms sinusoidally in time with frequency ν, so that it is given by

V (t, x) = V0(1− cos(νt))x2 (5.40)

The evolution of the atoms in the trap is thus governed by ẍ = −2V0
m

(1− cos(νt))x,
which is a rescaled version of the Mathieu differential equation [181]. According to
Floquet’s theorem, the solutions are of the form x(t) = eiωtrty(t) + c.c. where y is
a 2π/ν-periodic function and 2ωtr/ν is called the Mathieu characteristic exponent.
While ωtr can in general be complex, it has been shown that ωtr ∈ R for sufficiently
large ν [182]. For example, in the limit ν → ∞ the potential V (t) can be replaced
by its time average and we obtain simply ωtr =

√
2V0/m.

We now apply the two pulse halves that make up the DR and ADR pulse centered
at times t1 = 2πn1/ν and t2 = 2πn2/ν, where n1 and n2 are integers. In this way
V (t1) = V (t2) = 0, so the atoms move with a constant velocity and differential
light shifts vanish. Now our goal is to find a modulation frequency ν such that a
velocity reversal is achieved between t1 and t2. Since we require v(t1) = −v(t2)
the relation (t2 − t1)ωtr = π has to be satisfied, so ν = 2(n2 − n1)ωtr. For a
given value of V0 and (n2 − n1) we can now numerically find ν by first finding
the Mathieu characteristic exponent ωtr. To ensure that the duration of the time
slots with almost constant velocity is as long as possible we take n2 − n1 = 2 and
find ν = 4.079

√
2V0/m. In our numerical calculations of the infidelity we took V0

such that ωtr = ν/4 stays at the value of 50 kHz that we assumed before the trap
modulation. The maximum potential 2V0 has to be roughly twice as much as the
potential needed for an oscillation of the atoms at the same frequency without the
trap modulation.

The potential V (t) and the exemplary velocity v of an atom moving in this potential
are shown in Fig. 5.12. The two pulse halves making up the Doppler robust pulse
are to be applied in two adjacent time slots marked by the vertical green bars. As
can be observed from the figure, the velocity is flat at these time slots, and changes
sign between any two adjacent time slots. Furthermore, the differential light shift is
strongly suppressed over the duration of the pulse.

5.D Comparing Switch and Wait Method of Doppler

Shift Reversal

In Secs. 5.5 and 5.6 we saw that the switch and the wait methods give identical
fidelities and logical error rates. In this appendix, we discuss two aspects in which
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Figure 5.12: Sinusodial modulation of trapping potential. We propose a
sinusodial modulation of the trapping potential V (blue, solid line) with frequency
ν. The exemplary velocity of an atom moving in this potential is shown by the red,
dash-dotted line. The two halves of the DR and ARD pulse are executed in adjacent
time-slots marked by the green, vertical lines. During the time-slots the potential is
zero, and the velocity is thus constant. The velocity switches sign between adjacent
time-slots.

the performance of the two methods differ. We start in Sec. 5.D.1 by discussing
the effects of trap inhomogeneities and anharmonicities, which only affect the wait
method. In Sec. 5.D.2 by we then show that without the trap modulation the
performance of the wait method is unaffected, while the performance of the switch
method decreases significantly. We conclude with a comparison between the switch
and the wait method in Sec. 5.D.3.

5.D.1 Robustness to Trap Inhomogeneities and Anharmonic-
ity

The wait method is sensitive to several non-ideal characteristics that can arise in
practice. The first is an imprecise knowledge of the trap frequency, or a difference
in frequency across multiple traps. This gives a contribution to the infidelity scaling
as Tσ2

ω, where σω is the standard deviation of the trap frequency ωtr. We find that
the induced errors are almost completely in the computational subspace, so that the
contribution to the conditional infidelity is the same as to the infidelity. In order
to keep a relative impact below 10% on the infidelity at T = 50µK, we require
σω/ωtr < 0.06 (0.04) for the DR (ADR) pulse. However, to maintain an erasure
bias above 45 [90% of the value shown in Fig. 5.9(c)], the trap frequencies must be
stabilized to σω/ω < 0.01 (0.005). We note that achieving a 1% frequency uniformity
requires only 2% intensity uniformity (assuming equal beam sizes), a number which
has been experimentally demonstrated in large-scale tweezer arrays [86].

The wait method is also sensitive to the anharmonicity of the trap, which nat-
urally arises from the Gaussian shape of the optical tweezer, and gives rise to a
temperature-dependent trap frequency. As before, there is a similar contribution
to the infidelity and conditional infidelity, which scales as T 3/U2

0 , where U0 is the
tweezer depth. Considering an optical tweezer with a 1/e2 intensity radius w0 = 500
nm, the trap frequency ωtr = 2π× 50 kHz assumed in Secs. 5.5 and 5.6 is consistent
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Figure 5.13: Performance of the switch and the wait method without the
trap modulation. (a) Infidelity at σε = 0, (b) Conditional infidelity at σε = 0 (c)
The logical error rate switch method. For the ADR pulse a decrease of the logical
error rate by approximately one order of magnitude is observed compared to the use
of the trap modulation (Fig. 5.9d))

with a tweezer depth of U0 = 127µK, for which the anharmonicity will affect the
erasure bias in Fig. 5.9(c) significantly, reducing it to approximately ηe = 27(17) at
T = 10µK and ηe = 3.0(1.8) at T = 30µK for the DR(ADR) pulse. However, the
conditional infidelity improves as 1/U2

0 , allowing for rapid improvement in deeper
traps. For example, setting U0 = 2 mK can recover ηe ≈ 40 for the ADR pulse
at temperatures up to 30 µK. At fixed w0, this will increase the trap frequency to
ωtr = 2π × 200 kHz, which we have verified does not significantly affect the other
results presented. The effect is even smaller for lighter atoms or larger w0.

Note that trap inhomogeneities and anharmonicity affect the wait method regardless
of the use of the trap modulation, while the switch method is unaffected by these
imperfections.

5.D.2 Performance without Trap Modulation

In Fig. 5.13(a),(b) we show the infidelity and the conditional infidelity without the
trap modulation. We observe that for the wait method the infidelity and conditional
infidelity are essentially identical to the results including the trap modulation [see
Figs. 5.8(b) and 5.8(c)]. In contrast, for the switch method without the trap modu-
lation the ADR pulse has a slightly worse fidelity, and the conditional infidelity for
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the DR and ADR pulse increases by one to two orders of magnitude. We conclude
that the switch method is significantly more sensitive to changes in the velocity dur-
ing each pulse than the wait method. We attribute this to the fact that for a time
dependent velocity, the wait method gives a more exact reversal of the Doppler shift
than the switch method. This is because in the switch method only the Doppler
shift at the end of first pulse is the negative of the Doppler shift at the beginning of
the second pulse, while for the wait method the Doppler shift at each point in the
first half is the negative of the Doppler shift of the same point in the second half.

In Fig. 5.13(c) the logical error rate of the switch method without the trap modu-
lation is shown. The error rate achievable at 50 µK using the ADR pulse increases
by approximately one order of magnitude to 10−4 compared to the use of the trap
modulation. Again the wait method performs identically regardless of whether the
trap modulation is applied (not shown).

Note that it is still favorable to apply the trap modulation for the wait method,
because it mitigates differential light shifts and the anti-trapping of the Rydberg
state, which are not considered above.

5.D.3 Comparison between Switch and Wait Method

Combining the results from Secs. 5.D.1 and 5.D.2 we can summarize the advantages
and disadvantages of both methods: The switch method requires a more elabo-
rate experimental setup than the wait method, because the laser direction has to
be switched. Additionally, its performance is worse than the wait method if the
trap modulation is not applied. However, the switch method is more robust to
trap inhomogenieties and anharmonicity. On the other hand, the wait method can
be implemented with just a single laser beam, and achieves the same performance
regardless of whether the trap modulation is applied (neglecting errors from differen-
tial light shifts). However, it is affected by trap inhomogenieties and anharmonicity,
whose effect can be mitigated by increasing the trap frequency and depth.
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6 Surface Code Stabilizer
Measurements for Rydberg Atoms

The fragile nature of quantum information makes errors unavoidable in any quantum
computation performed on a real quantum processor. To combat these errors, the
framework of fault tolerant quantum computation (FTQC) has been developed.
FTQC encodes a logical qubit into several physical qubits and uses the resulting
redundancy to detect and correct errors. As long as the error rate per operation
is below a certain threshold, this allows for arbitrarily low error rates of the logical
qubit by encoding it in more and more physical qubits [19, 169–172]. Recently,
several quantum computing platforms have surpassed the threshold for FTQC by
minimizing noise at the level of single- and two-qubit gates and demonstrated FTQC
in proof-of-principle experiments [13, 15, 16, 58–61]. With the advent of FTQC, the
logical error rate, i.e. the error rate of the logical qubit, now becomes a more
important metric than the physical gate fidelity. While higher gate fidelities often
correspond to higher logical error rates, we have already seen in Sec. 5.6 that these
two metrics can sometimes diverge significantly. It is thus a crucial problem to
optimize gate protocols for the logical error rate that they achieve in an FTQC
protocol.

In this chapter we consider an implementation of the surface code [21, 168, 183],
a popular quantum error correction code, on a stationary array of neutral atoms,
with interactions between the atoms mediated via Rydberg states. In the surface
code, one logical qubit is encoded in a d×d array of atoms in a way such that errors
consisting of at most bd/2c single qubit errors can always be corrected. We focus on
the error source of Rydberg decay, which is dominant in many current experiments
[13, 14, 105]. Interestingly, we find that for low enough decay rates γ, the time-
optimal protocol for the implementation of a CZ gate (see Sec. 3.3), which essentially
minimizes the gate infidelity in the presence of Rydberg decay (see Sec. 5.1) does not
minimize the logical error rate. Instead we find a family of new gate protocols that
can achieve a significantly lower logical error rate, despite being slower and having
a higher infidelity. The reason for this discrepancy between infidelity and logical
error rates are Rydberg leakage errors: At first counter-intuitive, Rydberg decay of
an atom can actually lead to a population of the Rydberg state of the end of a gate,
either by breaking the Rydberg blockade and allowing another atom to get excited to
the Rydberg state, or by the re-excitation of the decayed atom to the Rydberg state
after the decay event. These Rydberg leakage errors can now affect neighboring
qubits during subsequent gates, an effect which is not captured by the infidelity.
Specifically, through the propagation of Rydberg leakage errors, one decay event
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can lead to correlated errors on several qubits, allowing already dd/4e decay events
to lead to a logical error. The new gate protocols presented in this chapter prevent
the propagation of Rydberg leakage errors, and restore the original dd/2e scaling.
This result demonstrates the importance of optimizing quantum gates for logical
errors in addition to gate fidelities and opens the way to the efficient realization of
surface codes with neutral atoms.

This chapter is structured as follows: We start in Sec. 6.1 by giving a brief introduc-
tion to quantum error correction with surface codes. In Sec. 6.2 we then discuss how
these codes can be realized on neutral atom arrays, and how we calculate the logical
error rate for different gate protocols. In Sec. 6.3 we consider a model with two
different atomic species, and a Rydberg blockade only between atoms of different
species, and show why the time-optimal protocol can only correct for dd/4e decay
events in this settings. Given this insight we construct a gate protocol which can
correct dd/2e decay events, and compare it with the time-optimal protocol. Finally
in Sec. 6.4 we extend this model to just a single atomic species with a Rydberg
blockade between all neighboring atoms.

This chapter has been previously published in Ref. [26].

6.1 Introduction to Quantum Error Correction

with Surface Codes

In this section we give a brief introduction to the surface code [21, 183]. An in-depth
review of this topic can be found in Ref. [168].

The surface code is one of the most popular quantum error correction code, due to
the combination of its high threshold and the possibility to implement it using only
geometrically local gates. In the surface code, one logical qubit is encoded in an d×d
array of physical qubits called data qubits, shown as solid circles in Fig. 6.1(a). The
linear size d of the array is called the distance, and has to be an odd integer. The
surface code is an example of a stabilizer code [170] and as such, it is specified by
d2 − 1 stabilizers S ∈ {I,X, Y, Z}⊗d2 , where X, Y, Z are the Pauli operators. These
stabilizers must commute with each other and have to be independent, meaning that
no stabilizer can be written of the product of the other stabilizers. The code space
of a stabilizer code is then given by the joint +1 eigenspace of all stabilizers, i.e.

Hc = {|ψ〉 |S |ψ〉 = |ψ〉 for every stabilizer S}. (6.1)

It can be shown that dim(Hc) = 2 [1], so that we can encode one qubit in Hc.

On the surface code, the stabilizers take the form S = Xj1Xj2Xj3Xj4 (X-stabilizers)
or S = Zj1Zj2Zj3Zj4 (Z-stabilizers), where Xj and Zj denote the Pauli X and Z
operators on qubit j, respectively. The four qubits in each stabilizer are taken to
be the corners of a plaquette of the lattice of data qubits, with X and Z-stabilizers
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Figure 6.1: Introduction to the surface code. (a) The surface code consists
of a d × d lattice of data qubits (filled black circles). The code space is defined by
d2 − 1 stabilizers of Z- or X-type (yellow or green squares, respectively), which tile
the plaquettes of the lattice of data atoms in a checkerboard pattern. Logical Z and
X operators can be applied by applying X and Z operators along a column and row
of the lattice, respectively. To read out stabilizers, an ancilla qubit (open circles) is
placed onto each plaquette of the lattice. (b) Circuit to read out a Z-stabilizer. (c)
Logical error rate pL as a function of the depolarizing rate p for different distanced
d, assuming a two-qubit depolarizing channel after each CZ gate of the circuit in
(b).

alternating in a checkerboard pattern as shown in Fig. 6.1(a). (Note that stabilizers
at the boundary of the lattice only contain two qubits.) All X-stabilizers clearly
commute with each other, as do all Z-stabilizers. To see that also every X-stabilizer
commutes with every Z-stabilizer, note that any X and Z-stabilizer have either
zero or two qubits in common. If they have zero qubits in common, they clearly
commute, while if they have two qubits in common, they commute because the X
and Z operators on each of these two qubits anticommute.

We can define the logical Z operator ZL = Zj1 ...Zjd , where the qubits j1, ..., jd are
aligned along a column of the surface code [see Fig. 6.1(a)]. Note that the choice of
column does not matter, since a logical operator defined along a different column
can always be written as a product of ZL and Z-stabilizers. ZL commutes with all
stabilizers, since it has either zero or two qubits in common with every X-stabilizer,
and naturally commutes with all Z-stabilizers. Furthermore, ZL is independent of
all stabilizers, i.e. cannot be written as a product of them. We can now define
the logical computational basis states |0〉L and |1〉L as the (up to a global phase)
unique +1 and −1 eigenstates of ZL in Hc. Analogously, we can define the logical
X operator XL = Xj1 ...Xjd , where the qubits j1, ..., jd are aligned along a row of
the surface code, and the states |+〉L and |−〉L as the ±1 eigenstates of XL. Note
that, as desired, ZL and XL anticommute because they have exactly one qubit in
common. With the definition of Hc and the operators ZL and XL we have now
completely defined the logical qubit.

To understand how errors in the surface code can be corrected, assume that we start
in a state |ψ〉 ∈ Hc, and an X-error occurs on qubit j, leaving us is |ψ′〉 = Xj |ψ〉.
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Since Xj commutes with all X-stabilizers, we clearly still have S |ψ′〉 = |ψ′〉 for all X-
stabilizers S. For the Z-stabilizers, we note that there are exactly two Z-stabilizers
S that contain the qubit j and thus anticommute with Xj. These two Z-stabilizers
satisfy S |ψ′〉 = − |ψ′〉, while for all other Z-stabilizers we have S |ψ′〉 = |ψ′〉. Thus,
by measuring the stabilizers we can determine which two Z-stabilizers contain the
qubit with the error, and hence determine the location of the error. Analogously,
single Z-errors can be detected by the corresponding X-stabilizers, and single Y
errors can be detected because they are equivalent to an X and a Z-error on the
same qubit.

Now assume the error E = Pj1 ...Pjn with Pj ∈ {X, Y, Z} occurs on the qubits
j1, ..., jn. As long as not to many qubits are affected by this error, it is still possible
to use the measured eigenvalues of the stabilizers to infer a correction operation E ′

such that EE ′ is a product of stabilizers, so that we obtain E ′E |ψ〉 = |ψ〉 and the
error can be corrected. There are several algorithms, called decoders, for finding
E ′ from the values of the stabilizers, such as minimum weight perfect matching
[184], union find [185] or believe propagation with ordered statistics post-processing
[186]. However, when too many error occur simultaneously, any decoder will fail.
The minimum example of such an incorrectable error are dd/2e Z-errors on qubits
aligned vertically along a column of the lattice. This error leads to exactly the
same stabilizer measurement outcomes as a Z-error on all bd/2c other qubits of
the column. Assuming independent errors, the latter case is more probable and
will be chosen as the correction operation. However, now the original error and
the correction operation together form exactly the operator ZL and the attempt to
correct the errors has actually lead to a logical error. Thus, only errors with less
than dd/2e affected qubits can be corrected with certainty.

It remains to discuss how the stabilizers of the surface code can be measured. For
this, we can insert one ancilla qubit for each stabilizer into the array of data qubits
[shown by the open circles in Fig. 6.1(a)]. To measure a Z-stabilizer, the circuit
in Fig. 6.1(b) is then executed: First the ancilla qubit is prepared in |+〉 = (|0〉 +
|1〉)/

√
2, followed by CZ gates between the ancilla and each data qubit, and the

measurement of the ancilla qubit in the X-basis. X-stabilizers can be measured
analogously, with Hadamard gates inserted on all data qubits before and after the
measurement. Of course the CZ gates used to measure the stabilizers introduce
errors themselves, as do the the Hadamard gates and state preparation and qubit
measurement. However, it is possible to correct for these errors by performing the
stabilizer measurement O(d) times, and using a modified version of the decoders
mentioned above [168].

An important metric of a surface code is its logical error rate pL, which measures
the probability of a introducing a logical error per round of stabilizer measurement.
The logical error rate depends on the error model describing the physical errors. A
simple error model is that every CZ gate is followed by a two-qubit depolarizing noise
channel with depolarizing rate p, i.e. each two-qubit error E ∈ {I,X, Y, Z}⊗2\{I⊗I}
is inserted with probability p/15. (More complicated error models are explored in
the remainder of this chapter.) Fig. 6.1(c) shows the logical error rate as a function
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of the depolarizing rate p, calculated using the Clifford simulator STIM [187] and
a minimum weight perfect matching decoder [184]. We observe that asymptotically
the logical error rate decreases polynomially with the depolarizing rate, and that
the exponent of this polynomial matches dd/2e. This is consistent with the above
discussed fact that a surface code of distance d can correct all errors of weight bd/2c,
but that there are uncorrectable error of weight dd/2e.

6.2 Stabilizer Measurement Schemes for Rydberg

Atoms

In the following we discuss how the abstract, hardware-agnostic, surface code dis-
cussed in Sec. 6.1 can be implemented on a stationary array of Rydberg atoms. We
consider a rotated surface code of distance d made of 2d2 − 1 stationary atoms ar-
ranged in a square lattice [Fig. 6.1(a)]. Stabilizers are given by products of PauliX or
Z operators on four data atoms on the corner of a plaquette, and read out using one
ancilla qubit in the center of the plaquette. We assume that all stabilizers are mea-
sured independently, and stabilizer measurements are only performed simultaneously
if they involve disjoint sets of atoms. Let us consider a single Z-stabilizer measure-
ment (X-stabilizer measurements are performed in the same way, with Hadamard
gates inserted on all data atoms before/after the measurement): Each one of the
five atoms on the plaquette is modeled as a three level system, with computational
basis states |0〉, |1〉 and Rydberg state |r〉 [Fig. 6.2(b)]. Their dynamics is governed

by a Lindblad master equation ρ̇ = −i[H, ρ] +
∑

i,q L
(q)
i ρL

(q)
i

†
−{L(q)

i

†
L

(q)
i , ρ}/2 with

Hamiltonian (~ = 1)

H =
4∑

ij=0

Bij |rirj〉 〈rirj|+
4∑
i=0

Ωi(t)

2
|ri〉 〈1i|+ h.c. (6.2)

and L
(q)
i =

√
γ/2 |qi〉 〈ri| for i ∈ {0, ..., 4} and q ∈ {0, 1}. Here, Bij is the interaction

strength between atoms i and j prepared in the Rydberg state |r〉, Ωi(t) is the
(complex) time-dependent Rabi frequency of a laser incident on atom i coupling
|1〉 and |r〉 and γ is the decay rate of the Rydberg state, which we assume to
decay to |0〉 and |1〉 with a branching ratio of 1:1. We consider either Bij = 0
or Bij =∞, corresponding, respectively, to the absence of interactions or a perfect
Rydberg blockade between atoms i and j, where simultaneous occupation of Rydberg
states for atoms i and j is impossible.

To measure a stabilizer, we follow the circuit shown in Fig. 6.2(a): First, the ancilla
atom is prepared in |+〉 = (|0〉+ |1〉) /

√
2. Then, laser pulses Ω0 and Ω1(t)...,Ω4(t)

are applied on the ancilla and the four data atoms, respectively, where we assume
that for all pulses |Ωj(t)| ≤ Ωmax, with Ωmax the maximal achievable Rabi frequency.
The pulses are chosen such that in the decay free case (γ = 0) a unitary U is
implemented which, up to single qubit gates RZ(θa) = exp(iθa |1〉 〈1|) and RZ(θd)
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Figure 6.2: Implementing a surface code on Rydberg atoms. (a) Circuit
to measure a Z-stabilizer (see main text). (b) Each atom is modeled as a three level
system with states |0〉 , |1〉 , |r〉, a time-dependent drive Ω(t) with phase ϕ(t) and
amplitude |Ω(t)| ≤ Ωmax coupling |1〉 and |r〉, and a decay from |r〉 to |0〉 and |1〉
with decay rate γ/2 each. (c) The realistic stabilizer measurement is equivalent to
four CZ gates followed by an error channel Ẽerr. (d) Amplitude and phase of Ω for
the symmetric time-optimal (TO), no-hopping (NH) protocols (e) Laser pulse Ωa(t)
and Ωd(t) applied on the ancilla- and data atom, respectively, for the simultaneous
(SIM) and no-phase (NP) protocols. (f) For the TO/NH/NP protocols four CZ
gates are applied subsequently in the indicated order. For the SIM protocol only
one global gate is applied on all 5 atoms simultaneously. (g) Summary of which
protocol has the lowest logical error rate as a function of γ in the d→∞ limit.

on ancilla and data atoms, respectively, corresponds to four controlled-Z (CZ) gates,
one between each data atom and the ancilla atom (however, see discussion for the
SIM protocol below). For simplicity we assume that all population remaining in
the Rydberg state at the end of the pulses is then removed by applying the channel
D(ρ) = ΠρΠ + 〈r| ρ |r〉Π/2 on each atom, with Π = |0〉 〈0| + |1〉 〈1|. This could be
realized either by simply waiting long enough for the Rydberg state to decay with
high probability, or by coupling the Rydberg state to a short lived intermediate
state which decays to |0〉 and |1〉. Thus, our model captures the effect of Rydberg
leakage errors during one stabilizer measurement, but not between different stabilizer
measurements. Finally, single qubit gates RZ(−4θa) and RZ(−θd) are applied on
the ancilla and data atoms, respectively, to compensate for the single qubit rotation
induced by U , and the ancilla qubit is measured in the X-basis. The noisy stabilizer
measurement can now be seen as four ideal CZ gates between the ancilla and the data
qubits, followed by a 5-qubit error channel Ẽerr and the measurement of the ancilla
qubit [Fig. 6.2(c)]. To simulate Ẽerr using a Clifford simulator we apply randomized
compiling [188] and assume that random Pauli gates P and the Clifford conjugate
gates P ′ are inserted before and after the measurement, respectively. This ensures
that Ẽerr is a Pauli channel, i.e. of the form

Ẽerr(ρ) =
∑
Q

λQQρQ (6.3)

where Q is summed over all 5-qubit Pauli strings and λQ is the probability of Pauli
error Q. We note that omitting P and P ′ from the measurement circuit while
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Figure 6.3: Data-ancilla blockade. (a) Logical error rate pL as a function of
the decay rate γ (in units of Ωmax) for the NH (solid lines) and TO (dashed lines)
protocols. (b) Logical error rate for the NH (solid lines) and SIM (dashed lines)
protocol. Black stars show the crossover points between these two protocols. The
gray dashed line shows the asymptotic crossing point γ× = 1.1 × 10−3Ωmax in the
limit d → ∞ (see Appendix 6.D). (c) Four different ways how a |r〉 〈1| error can
propagate through a VCZ gate. Coefficients c1, .., c4 are calculated in the main text.
The projectors Π restrict the state before the |r〉 〈1| error to the computational
subspace. (d) Three possible ways how a |r〉 〈1| error on the ancilla qubit after the
first gate (first row) can spread. The n-th row shows error after n VCZ gates.

still assuming that Ẽerr is of the form of Eq. 6.3 corresponds to the Pauli twirling
approximation [189].

The logical error probability pL of this scheme depends on the pulses Ω0(t), ...,Ω4(t).
To compute pL, we first compute the error probabilities λQ by solving the Lindblad

master equation given by H and L
(q)
i (see Appendix 6.A). We then use the stabi-

lizer circuit simulator STIM [187] together with a minimum weight perfect matching
decoder [184] to calculate the logical error rate pL of d rounds of stabilizer measure-
ments using the computed λQ.

We have now established our model for implementing a stabilizer measurement on
a stationary array of Rydberg atoms, and shown how to numerically calculate the
logical error rate pL as a function of the pulses Ω0(t), ...,Ω4(t). In the next sections
we will use this to compare different pulses.

6.3 The Data-Ancilla Blockade Model

In order to exemplify the role of Rydberg leakage errors in stabilizer measurements,
we now discuss a so-called data-ancilla blockade model, where we assume that for
atoms on the same plaquette there is only a Rydberg blockade between the ancilla
and all data atoms, but not between two data atoms. This model can be approxi-
mately realized in dual species arrays [74, 190, 191]. In Sec. 6.4 we then discuss the
all-to-all blockade model, where we assume a Rydberg blockade between all atoms
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on a plaquette. This model can be approximately realized in single-species arrays
[68, 105].

In both blockade models, the stabilizer measurement can be realized by applying
four subsequent CZ gates, each with the same pulse Ωa(t) on the ancilla atom and
Ωd(t) on the data atom. The gate infidelity under Rydberg decay is minimized if
each CZ gate is implemented using the time-optimal (TO) gate (Sec. 3.3), in which
the same laser pulse Ω(t) = Ωa(t) = Ωd(t) with constant amplitude Ωmax and time
dependent phase ϕ(t) is applied symmetrically on both atoms [Fig. 6.2(d)]. This
implements a VCZ := CZ[RZ(θa) ⊗ RZ(θd)] gate [where RZ(θa) acts on the ancilla
and RZ(θd) acts on the data atom, respectively], with θa = θd = 2.17 [23].

Figure 6.3(a) shows the logical error rate pL for the TO protocol (dashed lines) for
distances between d = 3 and d = 9 in the data-ancilla blockade model. In particular,
for d = 3 we find that for small enough decay rates γ the logical error rate scales as
pL ∼ γν with ν ≈ 1, meaning that already a single decay event can cause a logical
error. This contradicts the expectation that a d = 3 surface code should be able to
correct a single decay event.

To understand why the TO protocol performs worse than expected, it is sufficient
to consider a single decay event during the first of the four VCZ gates: Due to the
fraction of the laser pulse that is applied after the decay event, it is possible that the
ancilla qubit is found in |r〉 at the end of the gate. Instead of a Pauli X, Y or Z-error
this corresponds to a |r〉 〈1| error which occurs right after the first VCZ gate on the
ancilla qubit. (Note that no |r〉 〈0| error can occur, since a atom starting in |0〉 can
never be excited to |r〉). This latter type of Rydberg error can be detrimental, as
VCZ only acts as a CZ gate on the computational subspace, but its action on states
outside of the computational subspace depends on the gate protocol. In particular,
a |r〉 〈1| ⊗ I error followed by a VCZ gate is equivalent to a VCZ gate followed by a
linear combination of |r〉 〈1| ⊗ I, |r〉 〈1| ⊗ Z, I ⊗ |r〉 〈1| and Z ⊗ |r〉 〈1| errors, with
coefficients c1, c2, c3 and c4, respectively [Fig 6.3(c)].

In the Appendix 6.C, the coefficients c1 to c4 for a symmetric protocol with θa =
θd =: θ in which the same pulse Ω(t) is applied to both atoms are calculated as

c1/2 =
(
e−2iθ ∓ ie−3iθ sin θ

)
/2 (6.4)

c3/4 = ±
(
e−3iθ cos θ

)
/2 (6.5)

where the − sign is used for c1 and c4 and the + sign is used for c2 and c3. In particu-
lar, for the TO protocol we find that all ci are nonzero and thus all four propagation
channels occur with a nonzero amplitude. Hence, a single |r〉 〈1| error after the first
VCZ gate can propagate in 34 different ways. Three of those error propagation paths
are shown in Fig. 6.3(d), where each of the four rows shows possible errors after
each of the four VCZ gates. We see that a single |1〉 〈r| error on the ancilla qubit can
lead to pairs of Z-errors on the data qubits that are aligned horizontally, vertically,
or diagonally. The pair of vertically aligned Z-errors is particularly detrimental,
since the logical Z operator is oriented vertically [Fig. 6.1(a)] and thus only dd/4e
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of those errors suffice to make a logical Z-error. This is in contrast to independent
single qubit errors, where dd/2e errors are necessary for a logical error. Note that,
since also horizontally or diagonally aligned errors can occur, this behavior cannot
be fixed by changing the order in which the VCZ gates are applied to the data qubits.

Equations (6.4) and (6.5) show however a way in which the spreading of the |1〉 〈r|
error can be prevented: For θ = π/2 we obtain c1 = −1, c2 = c3 = c4 = 0, so that
the |1〉 〈r| error commutes with the VCZ gate, up to a global phase. Using quantum
optimal control methods [132] and the methodology developed in Chapter 3 we
determine the shortest possible pulse Ω1(t) = Ω2(t) that implements a VCZ gate
with θ = π/2 [see Fig. 6.2(d)]. Similar to the TO pulse, this pulse requires a
continuous variation of the laser phase with time only, while the amplitude is kept
fixed at Ωmax, which is expected to be experimentally advantageous [13]. When
applied to the whole plaquette, this continuous pulse forms the basis of the No-
Hopping (NH) protocol for stabilizer measurements. Note that in the NH protocol,
the time spent in the Rydberg state is increased by less than 10% compared to the
TO protocol. The solid lines in Fig. 6.3(a) show the logical error rate for the NH
protocol: For large decay rates γ & 10−3Ωmax the NH protocol yields essentially
the same logical error rates as the TO protocol since both protocols spend a similar
time in the Rydberg state. However, for small decay rates γ . 10−3Ωmax, the NH
protocol significantly reduces the logical error rate compared to the TO protocol
for all distances d, demonstrating that in this regime the propagation of Rydberg
leakage errors becomes the dominant error source. For d = 3, ν takes the expected
value ν = 2.01 ≈ 2, showing that two decay events are necessary to produce one
logical error in the NH protocol. We expect that in the currently experimentally
accessible region 10−4Ωmax . γ . 10−3Ωmax [13, 14, 17, 74, 75] the logical error rate
can then be improved by more than one order of magnitude. Since the exponent ν
scales linearly with the distance d, even larger improvements are expected for larger
distances.

The data-ancilla blockade also allows for a stabilizer measurement protocol in which
the four CZ gates are not applied subsequently, but simultaneously, by applying a
π-pulse on the ancilla qubit, followed by a 2π-pulse applied on all data qubits, and
a final π-pulse on the ancilla qubit [Fig. 6.2(e)]. This is similar to π − 2π − π
protocol [64] (see Sec. 2.5.2, though here the 2π-pulse is applied to all qubits. By
acting on all qubits simultaneously, this protocol (called SIM protocol from now on)
reduces the time spent in the Rydberg state by ∼ 40% compared to the NH protocol.
Fig. 6.3(b) shows that for a decay rate γ > γ× = 1.1× 10−3Ωmax the SIM protocol
also reduces the logical error rate compared to the NH protocol. However, in the
SIM protocol a single decay event of the ancilla qubit during the 2π pulse on the
data qubits can lead to any 5-qubit error Q, so that again only dd/4e decay events
are necessary for a logical error (see Appendix 6.D We thus find that for γ < γ× the
NH protocol achieves the lower logical error rate [see Fig. 6.2(g)].
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Figure 6.4: All-to-all blockade. (a) Logical error rate pL as a function of the
decay rate γ (in units of Ωmax) for the NP (solid lines) and NH (dashed lines)
protocols. (b) Propagation of |r〉 〈1| qubit on a spectator qubit by a VCZ gate.
θerr = −θd for the all-to-all blockade and θerr = 0 for the data-ancilla blockade (see
main text).

6.4 The All-to-All Blockade Model

Now we turn our discussion to the all-to-all blockade model, in which there is also a
Rydberg blockade between data qubits on the same plaquette. Fig. 6.4(a) shows the
logical error rate of the NH protocol in this blockade model (dashed lines). Similar
to the TO protocol under the data-ancilla blockade, we find that in a d = 3 surface
code with the NH protocol a single decay event can already cause a logical error
(ν = 1.06 ≈ 1). To understand this phenomenon we consider how a |r〉 〈1| error
on a spectator data qubit D′, i.e. a qubit not involved in a VCZ gate between the
ancilla qubit A and a data qubit D, is propagated by this VCZ gate [Fig. 6.4(b)].
Under the all-to-all blockade model, the |r〉 〈1| error on D′ completely prevents the
execution of the VCZ gate, leading to a V †CZ = CZ[RZ(−θa) ⊗ RZ(θerr)] error with
θerr = −θd. We note that this is different from the data-ancilla blockade, where a
Rydberg excitation of D′ still allows D to be excited to the Rydberg state, so that
VCZ acts like a single qubit RZ(θd) gate on D, corresponding to θerr = 0.

A direct calculation (see Appendix 6.E) shows that a |r〉 〈1| error on the first data
qubit can lead to any combination of Pauli Z-errors on data qubits through the
propagation described in Fig. 6.4(b), thus allowing dd/4e decay events to cause a
logical error. The only exception are the cases θerr = 0 and θerr = π, in which
dd/2e decay events are required. Hence, the NH protocol can correct bd/2c errors
under the data-ancilla blockade (θerr = 0), but only bd/4c errors under the all-to-all
blockade (θerr = π/2).

With this understanding of the underlying error mechanism we now identify the
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fastest possible gate protocol that is able to correct for bd/2c decay events in the
all-to-all blockade model. Such a protocol requires i) θd ∈ {0, π} and and ii) either
|c1| = 1, c2 = c3 = c4 = 0 or |c2| = 1, c1 = c3 = c4 = 0, preventing the propagation of
Rydberg leakage errors. From Eq. (6.4) and (6.5) we see that no symmetric protocol
can simultaneously satisfy i) and ii). Using quantum optimal control methods, we
then find the shortest asymmetric pulses Ωa(t) 6= Ωd(t) that satisfy i) and ii).
Interestingly, this protocol – which we call the No Phase (NP) protocol since the
data qubit only accumulates an irrelevant phase θd = π – has a rather simple
structure, shown in Fig. 6.2(f): On the ancilla qubit, two pulses with amplitude
Ωmax and duration τ1 ≈ 3.57/Ωmax are applied, where the second pulse has a phase
shift of π compared to the first pulse, and there is an idle time T − 2τ1 in between
them, where T ≈ 9.20/Ωmax. On the data qubit the laser pulse is instead always
applied with amplitude Ωmax, but there are two phase jumps of π, switching the
sign of Ω, at times τ2 and T − τ2, with τ2 = (T − 2π/Ωmax)/4. Fig. 6.4(a) shows
that the NP protocol (solid lines) indeed achieves significantly lower logical error
rates than the NH protocol, and, in the d = 3 case, is able to correct for one decay
event (ν = 1.85 ≈ 2). We note that also the original π-2π-π protocol [64] satisfies
conditions i) and ii), but has a 30% longer Rydberg time and thus a larger logical
error rate than the NP protocol (see Appendix 6.F).

6.5 Conclusion

In conclusion we have established that, due to the propagation of Rydberg leakage
errors, gate protocols which minimize the two-qubit gate fidelity do not necessarily
achieve the lowest possible logical error rates. For the data-ancilla and all-to-all
blockade model we identified the relevant error mechanisms and mitigated them by
introducing two new protocols for performing stabilizer measurements with Rydberg
atoms, which significantly reduce the logical error rate. Interestingly both proto-
cols require breaking the symmetry between ancilla and data atoms, either by an
asymmetric blockade model or by an asymmetric laser pulse. While in our numeri-
cal results we consider Rydberg decay as the only error source, we expect that our
protocols also mitigate Rydberg leakage errors arising due to other errors sources,
such as Rydberg dephasing. The precise effect of other error sources, as well as
the effects of the optical traps, which can exert a repulsive force on atoms in the
Rydberg state, will be subject to future work. In a broader context, the results of
this chapter demonstrate the necessity to optimize stabilizer measurements on the
physical level to achieve the lowest possible logical error rate and points the way
towards an efficient realization of surface codes with neutral atoms.

6.A Numerical Calculation of Error Probabilities

To calculate the error probabilities λQ in Eq. (6.3) we first numerically integrate

the Lindblad master equation given by H and the L
(q)
i with the initial condition
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ρ(0) = R for each 5-qubit Pauli string R, obtaining the result F(R) := ρ(T ), where
T is the duration of the laser pulses. We then calculate the error channel Eerr ,
without the application of the Pauli gates used for randomized compiling, as

Eerr(R) = U †D⊗5(F(R))U. (6.6)

Eerr can be expressed using its χ matrix as

Eerr(ρ) =
∑
Q,Q′

χQ,Q′QρQ′ (6.7)

where Q and Q′ are summed over all 5-qubit Pauli strings. The twirled channel is
then given by [189]

Ẽerr(ρ) := 4−5
∑
P

PEerr(PρP )P =
∑
Q

λQQρQ (6.8)

where λQ = χQ,Q.

Now we use that

tr(REerr(R)) =
∑
Q,Q′

χQ,Q′ tr(RQRQ′) (6.9)

=
∑
Q

λQ tr((RQ)2)

= 25
∑
Q

s(R,Q)λQ

where the second equality follows from tr(RQRQ′) = ± tr(QQ′) = ±25δQQ′ and
s(R,Q) = 1 if R and Q commute and s(R,Q) = −1 if R and Q anti-commute.

Inverting Eq. (6.9) gives

λQ = 4−5
∑
R

s(R,Q) tr(REerr(R)) (6.10)

so λQ can be calculated using Eq. (6.6).

6.B Decomposition of Error Probabilities into De-

cay Events

In the following we calculate λQ to first order in γ. For this, denote by U(t1, t2)
the evolution operator under H(t) (without Rydberg decay) from time t = t1 to
t = t2. Note that U = U(0, T ). For an initial density matrix ρ(0), the solution of
the Lindblad equation is to first order in γ given by

ρ(T ) = Uρ(0)U † +
∑
q,i

∫ T

0

dt
[
F

(q)
i (t)ρ(0)F

(q)
i (t)† (6.11)

−
{
F

(q)
i (t)†F

(q)
i (t), ρ(0)

}
/2
]
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with F
(q)
i (t) = U(t, T )L

(q)
i U(0, t).

Thus, the error channel Eerr (see Eq. (6.6)) is given by

Eerr(ρ) = ρ+
∑
q,i,k

∫ T

0

dt
[
E

(q)
i,k (t)ρE

(q)
i,k (t)† (6.12)

−
{
E

(q)
i,k (t)†E

(q)
i,k (t), ρ

}
/2
]

with E
(q)
i,k = U †DkU(t, T )L

(q)
i U(0, t) where the Dk are the Kraus operators of D⊗5.

Now every E
(q)
i,k (t) can be expanded as

E
(q)
i,k (t) = 2−5

∑
Q

tr
(
QE

(q)
i,k (t)

)
Q (6.13)

where Q is summed over all 5-qubit Pauli strings. From comparing Eq. (6.12) with
Eq. (6.7) we can read off that for Q 6= I⊗5

λQ = χQ,Q = 4−5
∑
q,i,k

∫ T

0

dt
∣∣∣tr(QE(q)

i,k (t)
)∣∣∣2 (6.14)

The interpretation of Eq. (6.14) is that in order to find the error probabilities λQ, at
least to first order in γ, it is sufficient to consider single decay events. Each decay
event is associated with a Lindblad operator L

(q)
i , specifying that qubit i decays

from state |r〉 to state |q〉, with a time t at which the decay takes place, and with a
Kraus operator Dk specifying how the channel D⊗5 acts. The index k = (k0, ..., k4)
is summed over {0, 1, 2}5, and the Kraus operators are given by Dk = D̄k0⊗ ...⊗D̄k4

with D̄0 = |0〉 〈r| /
√

2, D̄1 = |1〉 〈r| /
√

2 and D̄2 = Π = |0〉 〈0|+ |1〉 〈1|.

In the main text and below, we show that for error strings Q with two vertically
aligned Z-errors on the data qubits we obtain λQ = Θ(γ) (i.e. λQ is of order γ) by

considering a single decay event and showing that tr
(
QE

(q)
i,k (t)

)
6= 0. Since all terms

in Eq. (6.14) are nonnegative, this is indeed sufficient to show that λQ = Θ(γ).

6.C Propagation of |r〉 〈1| Errors under VCZ

6.C.1 Symmetric Protocols

In the following we derive Eqs. (6.4) and (6.5). For this we consider a symmetric
protocol, i.e. a protocol in which the same pulse Ω(t) is applied to both atoms. The
action of such a pulse can be understood by considering the two two-level systems
[18, 23]

H1 =
Ω(t)

2
|0r〉 〈01|+ h.c. (6.15)
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and

H2 =

√
2Ω(t)

2
|W+〉 〈01|+ h.c. (6.16)

with |W±〉 = (|1r〉 ± |r1〉)/
√

2. VCZ can be obtained by integrating the Schrödinger
equation with H1 and H2.

The pulse Ω(t) is chosen such that VCZ acts as VCZ |01〉 = eiθ |01〉 and VCZ |11〉 =
−e2iθ |11〉. Since H1 and H2 are traceless it follows that VCZ must have determinant
1 when restricted to the {|01〉 , |0r〉} or {|11〉 , |W+〉} subspaces. Thus it follows
that VCZ |0r〉 = e−iθ |0r〉 and VCZ |W+〉 = −e−2iθ |W+〉. Additionally, since the same
pulse is applied to both atoms but |W−〉 is antisymmetric under the exchange of the
atoms, |W−〉 is unaffected by the pulse, i.e VCZ |W−〉 = |W−〉. Given the evolution
of |W±〉 under VCZ we can now compute

VCZ |1r〉 = (VCZ |W+〉+ VCZ |W−〉)/
√

2 (6.17)

= e−iθ (i sin(θ) |1r〉 − cos(θ) |r1〉)

and analogously

VCZ |r1〉 = e−iθ (i sin(θ) |r1〉 − cos(θ) |1r〉) . (6.18)

Now we want to find an error E such that applying VCZ after a |r〉 〈1| error is
equivalent to applying first VCZ and then E, at least under the condition that the
before the |r〉 〈1| error we are in the computational subspace. Formally, we want to
find E such that

VCZ(|r〉 〈1| ⊗ I)Π⊗2 = EVCZΠ⊗2 (6.19)

Using that [VCZ ,Π
⊗2] = 0 and (|r〉 〈1| ⊗ I)Π⊗2 = |r0〉 〈10|+ |r1〉 〈11| we obtain

EΠ⊗2 =VCZ |r0〉 〈10|V †CZ + VCZ |r1〉 〈11|V †CZ (6.20)

=e−2iθ |r0〉 〈10| − e−3iθ[sin(θ) |r1〉 〈11| − cos(θ) |1r〉 〈11|]
=e−2iθ |r〉 〈1| ⊗ (I + Z)/2− ie−3iθ sin(θ) |r〉 〈1| ⊗ (I − Z)/2

+ e−3iθ cos(θ)(I − Z)/2⊗ |r〉 〈1|

For E = c1 |r〉 〈1|⊗ I+ c2 |r〉 〈1|⊗Z+ c3I⊗|r〉 〈1|+ c4Z⊗|r〉 〈1| Eq. (6.19) is indeed
satisfied with c1, c2, c3 and c4 given by Eq. (3) and (4).

6.C.2 The π-2π-π Protocol

For completeness we show here that the π-2π-π protocol [64] does not spread Ryd-
berg excitation errors. On states outside of the computational subspace, the π-2π-π
protocol acts as follows (we assume the first qubit is the ancilla qubit, on which the
two π pulses are applied, and the second the data qubit, on which the 2π pulse is
applied);
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Figure 6.5: Fitting curve parameters for the SIM gate. (a) Exponent ν
with which pL increases with γ as a function of code distance d for the NH (blue,
solid line) and the SIM (orange, dashed line) protocol. (b) Offset A (see text) for
the NH (blue, solid line) and the SIM (orange, dashed line) protocol.

VCZ |0r〉 = − |0r〉 (6.21)

VCZ |r0〉 = |r0〉 (6.22)

VCZ |1r〉 = − |1r〉 (6.23)

VCZ |r1〉 = − |r1〉 (6.24)

Thus we obtain for a |r〉 〈1| error on the ancilla qubit

VCZ(|r〉 〈1| ⊗ I)Π⊗2 = |r0〉 〈10|+ |r1〉 〈11| (6.25)

= (|r〉 〈1| ⊗ I)VCZΠ⊗2

corresponding to c1 = 1 and c2 = c3 = c4 = 0.

6.D Error Analysis for the SIM protocol

6.D.1 Fit of the Logical Error Rates

To understand the behavior of the crossing point between the NH and the SIM
protocol [see Fig. 2(b) in the main text] we fit for each distance d the logical error
rate as pL = eAγν , with exponent ν and offset A. Fig. 6.5 shows a linear relationship
ν = αd between ν and d and an affine relationship A = log(c) − log(γth)ν between
A and ν, so that we obtain

pL = c

(
γ

γth

)αd
. (6.26)

From fitting the curves in Fig. 6.5 we obtain

α = 0.55 γth = 3.9× 10−3 c = 0.036 (6.27)
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for the NH protocol and

α′ = 0.38 γ′th = 6.8× 10−3 c′ = 0.044 (6.28)

for the SIM protocol.

The crossing point between protocols with different parameters γth, c, α and γ′th, c
′, α′

is then given by

γ× = (c/c′)
1/[(α′−α)d]

(
γ′α

′

th /γ
α
th

)1/(α′−α)

(6.29)

which converges to γ′th
α′/(α′−α)γth

α/(α−α′) = 1.1×10−3/Ωmax as d→∞. This asymp-
totic crossing decay rate is shown by the gray dashed line in Fig.2(b) (main text).

6.D.2 Analytical Discussion

In the following we show that for the SIM protocol we have λQ = Θ(γ) for all 5-qubit
Pauli errors Q 6= I⊗5, i.e. that just one decay event can cause any Pauli error Q on
all 5 qubits on the plaquette.

To show this it is sufficient to consider the decay of the ancilla qubit (i = 0) at
t = 2π/Ωmax, i.e. exactly in the middle of the 2π pulse applied on the data qubits.

Below we show that for any error Q there exist q and k such that tr
(
QE

(q)
0,k

)
6= 0.

Together with Eq. (6.14) this establishes λQ = Θ(γ).

Consider an initial state |a, d1, d2, d3, d4〉 of the ancilla and the data qubits, with
a, d1, ..., d4 ∈ {0, 1}. Until the decay event, the evolution is given by

U(0, t) |a, d1, ..., d4〉 =

{
(−i)d1+...+d4 |0, d̄1, ...d̄4〉 if a = 0

−i |r, d1, ..., d4〉 if a = 1
(6.30)

where for x ∈ {0, 1} we define x̄ = 0 if x = 0 and x̄ = r if x = 1. After the decay,

i.e. after applying L
(q)
0 , we are in the state

L
(q)
0 U(0, t) |a, d1, ..., d4〉 = −iδa,1 |q, d1, ..., d4〉 (6.31)

where δa,1 = 1 if a = 1 and δa,1 = 0 if a = 0. At the end of the pulse we obtain

F
(q)
0 = U(t, T )L

(q)
0 U(0, t) as

F
(q)
0 |a, d1..., d4〉 =

{
−δa,1 |r, 0, ..., 0〉 if q = 1 and d1 = ... = d4 = 0

−iδa,1(−i)d1+...+d4 |q, d̄1, ..., d̄4〉 otherwise

(6.32)

Now let Q = Q0 ⊗ ... ⊗ Q4 be a Pauli error. We consider the Kraus operator
Dk = D̄k0 ⊗ ... ⊗ D̄k4 of D⊗5 (see Appendix 6.B) and choose k as follows: We
always take k0 = 2, and for j = 1, ..., 4 we take kj = 0 if Qj ∈ {X, Y } and kj = 1 if
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Qj ∈ {I, Z}. Furthermore, we choose q = 0 if Q0 ∈ {X, Y } and q = 1 if Q0 ∈ {I, Z}.
Then we obtain

DkF
(q)
0 |a, d1, ..., d4〉 = (−i)5δa,1δd1,1...δd4,1 |q, k1, ..., k4〉 (6.33)

and thus also

E
(q)
0,k |a, d1, ..., d4〉 = −(−i)5δa,1δd1,1...δd4,1 |q, k1, ..., k4〉 . (6.34)

Hence we find

tr
(
QE

(q)
0,k

)
= −(−i)5 〈1, ..., 1|Q |q, k1, ..., k4〉 (6.35)

which is nonzero by the choice of q and k1, ..., k4.

6.E Propagation of a |r〉 〈1| Error on a Spectator

Qubit under All-to-All Blockade

In the following we show that a |r〉 〈1| error on the first data qubit after the first
CZ gate can cause any Pauli-Error Q = Q0 ⊗ ... ⊗ Q4 with Qj ∈ {I, Z} on the 5
qubits of the plaquette by the error propagation shown in Fig. 3(c) (main text).
The only exceptions are the cases θerr = 0 and θerr = π, for which only errors with
Q2 = Q3 = Q4 are possible, so that up to bd/2c decay events can be corrected.

By propagating through the three subsequent VCZ gates, the |1〉 〈r| error on the first
data qubit causes an error

E = (|r〉 〈1|)1CZ(0,2)CZ(0,3)CZ(0,4)Esq (6.36)

where (|r〉 〈1|)1 denotes a |r〉 〈1| error on qubit 1, CZ(i,j) denotes a CZ gate between
qubits i and j and

Esq = RZ(−3θd)⊗ I ⊗RZ(θerr)
⊗3. (6.37)

The error E can cause a Pauli error Q if there is a Kraus operator D of the channel
D⊗5 such that tr(DEQ) 6= 0. We now only consider D = Π⊗|1〉 〈r|⊗Π⊗3 and Pauli
errors of the form Q = Zz0 ⊗ ...⊗ Zz4 . We obtain for a, d1, ..., d4 ∈ {0, 1} that

DE |a, d1, ..., d4〉 = δd1,1e
iα |a, d1, ..., d4〉 (6.38)

with
α = πa(d2 + d3 + d4)− 3θda+ θerr(d2 + d3 + d4). (6.39)

With that, we obtain

tr(DEQ) = (−1)z1
1∑

a=0

eia(πz0−3θd)

1∑
d2,d3,d4=0

eiβ (6.40)
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with

β =
4∑
j=2

[π(zj + a) + θerr]dj. (6.41)

We now obtain
1∑

d2,d3,d4=0

eiβ =
4∏
i=2

1∑
d=0

ei[π(zj+a)+θerr]d. (6.42)

The sum
∑1

d=0 exp{i[π(zj + a) + θerr]d} vanishes if and only if π(zj + a) + θerr =
(2k+ 1)π for some integer k. Since zj, a ∈ {0, 1} this is only possible if θerr ∈ {0, π}.
This establishes that for θerr /∈ {0, π} indeed every error Q = Zz0 ⊗ Zz4 is possible.
In contrast, if θerr ∈ {0, π} then

∑1
d=0 exp{i[π(zj+a)+θerr]d} only doesn’t vanish for

zj = a (for θerr = 0) or zj = a⊕ 1 (for θerr = π), where ⊕ denotes addition modulo
2. In either case, it follows that for tr(DEQ) 6= 0 it is required that z2 = z3 = z4.

6.F Comparison between TO and π-2π-π Gate un-

der All-to-All Blockade

In the following we compare the TO and the π-2π-π protocols, two of the most
popular protocols in experimental implementations, under the all-to-all blockade.
As discussed in the main text, the TO protocol is only able to correct bd/4c decay
events, while the π-2π-π can correct bd/2c decay events. However, the TO protocol
has an almost 50% smaller Rydberg time than the π-2π-π protocol.

Fig. 6.6(a) shows the logical error rate under the data-ancilla blockade for the TO
and the π-2π-π protocol for distances between d = 3 and d = 13 and 10−4 ≤
γ/Ωmax ≤ 2 × 10−3. For large decay rates γ the TO protocol has the lower logical
error rate, due to the smaller Rydberg time. However, for small decay rates γ the
π-2π-π protocol has the lower logical error rate, due to its ability to correct bd/2c
decay events. The black stars mark the points where both protocols have the same
logical error rates. With increasing distance d the crossing point moves to larger
decay rates γ, but converges to a finite values as d→∞.

To determine the crossing point γ× we proceed analogously to Sec 6.D.1 and fit
a linear relationship ν = αd between ν and d [6.6(b)] and an affine relationship
A = log(c) − log(γth)ν between A and ν [6.6(a)]. From the fits in Fig 6.6(b/c) we
extract

α = 0.41 γth = 4.5× 10−3 c = 0.038 (6.43)

for the TO protocol and

α′ = 0.58 γ′th = 2.5× 10−3 c′ = 0.038 (6.44)

for the π-2π-π protocol. This gives an asymptotic crossing point γ′th
α′/(α′−α)γth

α/(α−α′) =
5.6×10−3/Ωmax as d→∞, comparable to current experimental error rates 10−3Ωmax .
γ . 10−4Ωmax.
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Figure 6.6: Comparison between TO and π-2π-π protocol under the all-
to-all blockade. (a) Comparison of the logical error rate pL for the TO (solid
curve) and the π-2π-π (dashed curve) protocol. Stars mark the crossover points
between the two protocols, the solid dashed line marks the value γ× for which both
protocols give the same pL in the d → ∞ limit. (b) Exponent ν with which pL
increases with γ as a function of code distance d for the TO (blue, solid line) and
the π-2π-π (orange, dashed line) protocol. (c) Offset A (see text) for the TO (blue,
solid line) and the π-2π-π (orange, dashed line) protocol.
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7 Non-Local Multi-Qubit Gates via a
Driven Cavity

High-fidelity gates are essential for quantum computing, but looking towards scal-
able fault-tolerant computation, it is additionally highly desirable to have non-local
quantum gates between two or more qubits. For example, the availability of an
all-to-all connectivity can vastly reduce the circuit depth of typical quantum cir-
cuits, compared to a geometrically local connectivity [192]. Furthermore, the ability
to perform non-local multi-qubit gates would enable the usage of quantum error
correction (QEC) codes with non-local stabilizers, such as low density parity check
(LDPC) codes [29, 193–196], which have a significantly lower overhead than the cur-
rently leading approach of surface codes [168]. In many physical platforms, however,
neither non-local nor multi-qubit gates are natively available, but have to be costly
synthesized from a sequence of local single- and two-qubit operations. For neutral
atoms interacting via Rydberg states, we have seen in Chapter 3 that it is possible
to realize multi-qubit gates. However, still only local gates are possible, since the
interaction strength between the Rydberg states decays rapidly with their distance
(see Sec. 2.5.1).

One way to realize non-local two-qubit gates is via qubit shuttling, which has been
demonstrated for trapped ions [179] and neutral atoms [67, 197]. Evaluating the
cost of non-local operations in this case is nontrivial, as the architecture can per-
form certain parallel moves simultaneously, but unequal moves must be performed
serially. The shuttling time overhead for atoms in a planar lattice of linear dimen-
sion L, relevant to performing operations in certain LDPC codes, is O(

√
L) [78].

Alternatively, non-local gates have been previously proposed or realized with neu-
tral atoms or ions by mediating interactions between qubits via a quantized bosonic
mode, using motional modes of trapped ions [22, 46, 198, 199] or optical cavity
modes for neutral atom spin qubits [77, 200–206]. For deterministic gates, prior
art finds the fidelity error is O(C−1/2) where C is the cooperativity of the cav-
ity supporting the mode [203]. Expending additional detector resources, heralded
non-local gates are achievable with error O(C−1) but with a failure probability of
O(C−1/2) [205]. Another scheme using heralded photon transfers has an improved
success probability but places stringent requirements on the level structure of the
qubits so that all scattering and photon loss events are detectable [77]. In contrast,
non-local entangled states can be prepared as fixed points of dissipative maps with
an O(C−1) fidelity error [207], though a fixed phase relation must be maintained
between the fields addressing the qubits. While some of the proposals above can be
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extended to N -qubit Toffoli gates [205, 206], for large scale digital quantum simu-
lations and computing a unified approach that provides native implementations of
larger families of multi-qubit gates would be highly desirable.

In all proposals above, entangling quantum gates are realized by a direct drive of the
qubits via a free space mode, e.g. a laser, to turn the interaction between the qubits
on or off. In this chapter, we explore a different approach based on simply driving
the cavity mode directly with a classical field that is modulated in time, without
requiring an external drive of the qubits. We find that this approach enables two
new protocols for the implementation of large families of deterministic non-local
multi-qubit quantum gates. Applied to just two qubits, both protocols provide,
together with single qubit gates, a universal gate set for quantum computing, with
two-qubit gate errors scaling as O(C−1/2), similar to the protocols driving the qubits
directly. Applied to more than two qubits, however, each protocol provides a family
of deterministic, multi-qubit non-local gates requiring minimal control, showing a
unique combination of desirable features such as versatility in gate design, speed,
and robustness.

The first protocol (A) operates in the limit of a strong drive on the cavity. It
implements a family of geometric phase gates UA = exp(iθn̂2), where n̂ is the number
operator of qubits in state |1〉, by displacing the state of the cavity in a closed loop
in phase space. Any angle θ can be achieved by choosing an appropriate drive of
the cavity. A particularly important application of protocol A is the generation of
multi-qubit GHZ states [156, 208] using the same procedure as in Sec. 3.7, a task for
which viable protocols for qubits coupled via a cavity are rare and require a direct
drive on the qubits [209]. One distinguishing feature of protocol A is its speed:
In many previous proposals, the cavity is far detuned from the qubit frequency to
avoid a large number of photons in the cavity and thus a large error through photon
losses. This comes at the cost of a long gate duration of the order ∆/g2, where
∆ is the detuning of the cavity and g is the coupling between the qubits and the
cavity. In protocol A, the cavity is also far detuned, but a driving strength which
is of the order of ∆ and adapted to the photon loss rate allows for gate durations
of order g−1. An additional advantage of protocol A is its robustness: Similar to
the Mølmer-Sørensen gate for trapped ions [22], UA is independent of the initial
state of the cavity mode, which is of particular importance if the cavity mode is in
the microwave regime and may exhibit significant thermal population. Furthermore,
protocol A is inherently robust against pulse imperfections in the drive of the cavity,
since only the area enclosed and not the exact trajectory in phase space determines
UA.

The second protocol (B) operates in the limit of a weak drive and thus in the opposite
limit of protocol A. It makes use of an adiabatic evolution of the joint cavity-qubit
system to implement a family of phase gates UB = exp[ic1/(c2 − n̂)], where c1 and
c2 are parameters depending on the intensity, duration and detuning of the applied
drive. The distinguishing feature of protocol B is its versatility: Since UB depends
nonlinearly on c2, the repeated application of UB with different values of c1 and c2

can be used to synthesise arbitrary phase gates exp(iϕ(n̂)). This can for example be
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used to implement phase-rotation gates exp(iασ
(1)
z ⊗...⊗σ(N)

z ), which appear in many
variational quantum algorithms for fermionic systems [210, 211]. It can also be used
to implement CkZ gates, enabling generalized Toffoli gates which are frequently used
as primitives in QEC to perform majority voting circuits for syndrome extraction
and for measurement free QEC [212–214]. Note that synthesizing multi-controlled
Z gates using only single- and two-qubit gates either requires circuits of large depths
or additional ancilla qubits [215], both of which can be avoided using protocol B.

There are several main implications of the results of this chapter. While there are
proposals for N -qubit Toffoli gates on qubits coupled via a cavity [205, 206], our
protocols give the first native implementation for a large family of other multi-qubit
gates. In particular, protocol A introduces for the first time a way to implement
geometric phase gates for more than two qubits on these systems, while Protocol
B even allows for the implementation of native arbitrary phase gates without de-
composing them into single- and two-qubit gates. This significantly enhances the
prospect of realizing non-local stabilizers and quantum error correction schemes such
as LDPC codes with reduced qubit overheads compared to current leading schemes,
in particular if our protocols are parallelized in architectures that exploit multiple
modes (e.g. frequency, polarization, spatial modes for overlapping cavities) as neces-
sary for parallel operations to support QEC. For near term applications, protocol A
enhances the toolbox for the generation of large high-fidelity entangled states such
as GHZ states, while the arbitrary phase gates implementable by protocol B are of
significant interest for quantum simulation. All of these tasks can for the first time
be accomplished without the need of an external drive of the qubits. Additionally,
both protocols applied to just two qubits form, together with single qubit gates, a
universal gate set for quantum computation. These protocols may in principle also
be applied to other leading qubit platforms for quantum computing that exploit
delocalized boson modes, such as trapped ions coupled via a motional mode.

The chapter is structured as follows: In Sec 7.1 we introduce the Hamiltonian con-
sidered in this work. In Secs. 7.2 and 7.3 we present protocols A and B, respectively,
and derive their fidelities in the presence of the relevant losses. Finally, in Sec. 7.4
we estimate the achievable infidelities for our protocols for three different systems:
atoms coupled via an optical cavity, Rydberg atoms coupled via a microwave cavity
and polar molecules coupled via a microwave cavity.

This chapter has been previously published in Ref. [25].

7.1 Setup

The setup we have in mind is rather general and is shown in Fig. 7.1. It consists of N
three-level systems with computational basis states |0〉 and |1〉 and an excited state
|e〉, with transition frequencies ω0 for the |1〉 ↔ |0〉 and ωe for the |1〉 ↔ |e〉 tran-
sition. A cavity mode with annihilation (creation) operators a(a†) and frequency
ωc couples the states |1〉 and |e〉 with coupling strength g. We assume that all
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Figure 7.1: Setup. (a) A register of qubits is coupled to a common cavity with
decay rate κ. By simply driving the cavity with a single classical field η(t) detuned
by δ from the resonance frequency of the cavity, a non-local entangled state like
|GHZ〉 is generated, or, with a sequence of drives, non-local gates like a C2Z gate
are implemented. (b) Level scheme for each qubit consisting of the computational
basis states |0〉 and |1〉 (with infinite lifetime), and an ancillary excited state |e〉
(with lifetime 1/γ). The |1〉 ↔ |e〉 transition is coupled to the cavity with coupling
strength g and detuned from the cavity resonance by ∆− δ.

qubits couple with the identical coupling strength g to the cavity mode. The ef-
fects of inhomogeneities in the coupling strength are discussed in Appendices 7.A.5
and 7.B.3.

The cavity mode is driven by a (complex) classical field of strength η(t) according
to

Hdrive = i(η(t)e−iωdt + c.c.)(â† − â). (7.1)

This classical field is detuned from the cavity and the |1〉 ↔ |e〉 transition by δ =
ωc − ωL and ∆ = ωe − ωL, respectively. The Hamiltonian in the rotating wave
approximation and in the rotating frame defined by

Ûr(t) = exp

[
it(ωL(â†â+ n̂e) +

∑
j

ω0 |0j〉 〈0j|)

]
(7.2)

then reads (~ = 1)

H(t) = δâ†â+ (∆− iγ/2)n̂e + [(gŜ− + iη(t))â† + h.c.], (7.3)

with n̂e =
∑

j |ej〉 〈ej| the population of state |e〉 with lifetime 1/γ, and Ŝ+ =∑
j |ej〉 〈1j|, Ŝ− = (Ŝ+)† collective raising and lowering operators, respectively.

The system evolves under the Lindblad master equation ρ̇ = −iHρ+ iρH†+LρL†−
{L†L, ρ}/2 with the jump operator L =

√
κâ and 1/κ the lifetime of excitations in

the cavity mode. The decay of |e〉 is treated as population leakage, described by a
non-hermitian term in H. Thus, expressions for the fidelity of the gate protocols
derived below will be exact if none of the decay channels of |e〉 can repopulate |0〉 or
|1〉, and otherwise will provide a lower bound. For both protocols, a time-dependent
pulse η(t) of duration T and with η(0) = η(T ) = 0 is applied, while g, δ and ∆ are
kept constant in time.

To make our gates address only a subset of qubits in a register, we can map the
|1〉 state for qubits that should be spectators to an ancillary state |a〉 that does not
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couple to the bosonic mode either due to being far off resonant or by virtue of selec-
tion rules which forbid direct coupling to |e〉. Alternatively, a spatially addressable
off-resonant laser beam can be used to apply an ac-Stark shift to the qubits, shifting
the |1〉 ↔ |e〉 transition far enough out of resonance with the cavity to neglect the
coupling [216, 217].

7.2 Protocol A

In this section we discuss the first of our two protocols, Protocol A, which for N = 2
forms a universal gate set for quantum computation – together with single qubit
gates –, while for arbitrary N it can be used to generate GHZ states.

Protocol A operates in the limit of a large detuning ∆ between the cavity and
the |1〉 ↔ |e〉 transition and of a cavity driving strength η of the same order (i.e.,
∆, η → ∞ and ∆ = O(η)). We take δ to be of order O(g) and choose the pulse
duration T to be of the order of O(g−1), such that it does not diverge in the limit
∆, η → ∞. In the following, we start by deriving an effective Hamiltonian valid in
the limits given above, by first applying a time-dependent basis transformation on
the cavity in Sec. 7.2.1, followed by a time-dependent basis transformation on the
qubits in Sec. 7.2.2 to eliminate the state |e〉. The resulting effective Hamiltonian is
similar to that of a Mølmer-Sorensen-Gate for trapped ions [22] and is then used in
Sec. 7.2.3 to derive a family of geometric gates UA = exp(iθn̂2). The fidelity of the
gate for arbitrary N as a function of γ and κ is calculated analytically in Sec. 7.2.4.
Section 7.2.5 verifies the analytical results against numerical simulations of the full
Lindblad dynamics, finding excellent agreement.

7.2.1 Basis Transformation on the Cavity

To motivate the first basis transformation, acting on the cavity, we note that due to
the limit η →∞ the cavity typically contains many (∼ |η|2/δ2) photons. However,
due to the simultaneous limit ∆→∞ the number of photons only weakly depends
on n, the number of qubits in state |1〉. It is thus useful to switch into a time-
dependent frame of the cavity which reduces the number of photons. For this, we
choose a frame which is given by the evolution that the cavity would undergo if it
were not coupled to the qubits. This corresponds to the case n = 0, where all qubits
are in state |0〉.

Such a frame is given by the simple displacement D(α) = exp(αâ† − α∗â), where
α(t) is the solution of

α̇ = −η − (iδ + κ/2)α, α(t = 0) = 0. (7.4)

If n = 0, a cavity starting in the empty state |0〉 will be in the coherent state
|ψcav(t)〉 = |−α(t)〉 at time t, so that D(α) |ψcav(t)〉 = |0〉. Note that the cavity
remains in a pure state at all times, even if it undergoes decay.
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Given the evolution of ρ for n = 0, we now treat the evolution of the joint cavity-
qubit system for a general n. For this, we now proceed with the basis transformation
ρ̃(t) = D(α(t))ρ(t)D(α(t))†. For general n, the evolution of ρ̃ is then given by (see
Appendix 7.A.1)

H̃ = δâ†â+ (∆− iγ/2)n̂e + g[(â† − α∗)Ŝ− + h.c.] (7.5)

and L̃ = L =
√
κâ. Hence, the drive of the cavity mode is converted into an effective

drive of the qubits with strength −igα. Because the decay in the original frame is
compensated by a κ-dependent choice of α, in this new frame there are no excitations
in the cavity mode and no decay events if n = 0 – even if in the original frame there
may be many excitations and decay events.

7.2.2 Basis Transformation on the Qubits and Derivation of
the Effective Hamiltonian

In order to derive an effective Hamiltonian on the computational states |0〉 , |1〉, and
the cavity, and to eliminate the state |e〉, we now use the limit ∆ → ∞. For this,
we consider H̃(0) = ∆n̂e − (gα∗S− + h.c.), which is the part of H̃ which scales with
∆. (Recall that as ∆→∞ we also consider the limit η →∞, and thus |α| → ∞).
We perform a time-dependent basis transformation on the qubits so that the new
basis states are the instantaneous eigenvectors of H̃(0). Such a basis transformation
is given by (see Appendix 7.A.2)

Û = exp

[
λ

2

(
−eiµŜ+ + e−iµŜ−

)]
(7.6)

with cosλ = ∆/
√

4g2|α|2 + ∆2 and µ = arg(α). In this new basis, the Hamiltonian

is given by H̄ = ÛH̃Û † + i
˙̂
UÛ †. Crucially, the inertial term i

˙̂
UÛ † is of order O(1),

i.e. it does not diverge as ∆→∞. Since however the gap between the eigenspaces
of H(0) diverges as ∆ → ∞ and we consider a pulse duration T independent of ∆,
the inertial term does not couple different eigenspaces of H0, and only changes the
energy of each eigenspace. Thus we have H̄ = UH̃Û † +O(1)n̂ +O(1)n̂e. A direct
calculation (see Appendix 7.A.2) now shows

H̄ = δâ†â+
(
ε1 − i

γ1

2

)
n̂+

(
εe − i

γe
2

)
n̂e + (ζâ† + ζ∗â)(n̂− n̂e) (7.7)

where

εe/1 = (∆±
√

∆2 + 4g2|α|2)/2 +O(1) (7.8)

ζ =
g2α√

4g2|α|2 + ∆2
(7.9)

γe/1 =
γ

2

(
1±

√
1− 4|ζ|2/g2

)
(7.10)

where the expressions above are evaluated with the + sign for εe and γe and the −
sign for ε1 and γ1. The O(1) term in εe/1 arises from the inertial term, and below
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we will see that its exact value does not influence the gate. We note that Eqs. (7.8)–
(7.10) are time-dependent. In Sec. 7.2.3 below we use the time-dependency of ζ to
implement the desired quantum gate.

If we assume that none of the qubits start in state |e〉, the terms in Eq. (7.7)
proportional to n̂e can be neglected. Furthermore, the ε1n̂ term just corresponds to
a frequency shift of the qubits, which can be compensated for either by single qubit
z-rotation at the end of the gate, or by a change of reference frame. We are thus
left with the effective Hamiltonian

Heff = δâ†â+
(
−iγ1

2
+ ζâ† + ζ∗â

)
n̂. (7.11)

This effective Hamiltonian simply describes a driven cavity, where the driving strength
ζn̂ depends on the number n of qubits in state |1〉. It is thus analogous to the Hamil-
tonian for a Mølmer-Sørensen gate [22].

The finite lifetime γ of the state |e〉 leads to an effective error rate γ1n̂. Note that
since the basis transformation in this section only affected the space of the qubits,
the Lindblad operator Leff = L =

√
κâ is unchanged. We discuss the influence of

these error sources in Sec. 7.2.4 below.

7.2.3 Implementation of a Quantum Gate

In this section we use the effective Hamiltonian (7.11) to derive a shape of ζ(t)
which implements a quantum gate UA = exp(iθn̂2) on the qubits only and leaves
the system in a state with no entanglement between the cavity and the qubits. We
first consider the loss free case γ = κ = 0, while the infidelity for finite values of γ
and κ is calculated in the next section.

We choose ζ to be of the form

ζ(t) = −δf(t) + iḟ(t), (7.12)

where f can be any real function satisfying f(0) = f(T ) = 0, ḟ(0) = ḟ(T ) = 0, and
δ2f(t)2 + ḟ(t)2 < g2/4 for all t. These constraints arise because

i) To find a pulse η(t) in the original Hamiltonian (7.3) which leads to the desired
ζ(t) in the effective Hamiltonian (7.11), Eqs. (7.9) and (7.4) have to be inverted
to first find α(t) and then η(t). Equation (7.9) is only invertible if |ζ(t)| < g/2,
which imposes the constraint δ2f(t)2 + ḟ(t)2 < g2/4 on the choice of f , while
Eq. (7.4) can be solved for η(t) for any differentiable α(t).

ii) However, we require α(0) = α(T ) = 0, so that the new frame introduced in
Sec. 7.2.2 coincides with the lab frame at t = 0 and t = T . This is guaranteed
by f(0) = f(T ) = 0 and ḟ(0) = ḟ(T ) = 0.
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Now we show that the choice ζ(t) = −δf(t) + iḟ(t) indeed leads to the implemen-
tation of UA with the phase θ given by

θ = δ

∫ T

0

dtf(t)2. (7.13)

While this derivation is analogous to that of a Mølmer-Sorensen gate [22], we rederive
it here in a way which allows for the easy addition of the effects of finite γ and κ in
the next section.

We first assume that the qubits start in a computational basis state |q〉 (q ∈ {0, 1}N)
with exactly n =

∑N
j=1 qj qubits in state |1〉 (i.e. n̂ |q〉 = n |q〉). Additionally, we

assume that the cavity starts in a coherent state |β(0)〉. Since any initial state of
the joint cavity-qubit system can be written as a superposition of states of the form
|ψ(0)〉 = |β(0)〉⊗ |q〉, those states suffice to uniquely determine the dynamics of the
system under Heff for any initial state.

We now make the Ansatz |ψ(t)〉 = eiϕn(t) |βn(t)〉 ⊗ |q〉, which indeed satisfies the
Schrödinger equation for Heff if

β̇n = −iδβn − inζ (7.14)

ϕ̇n = −nRe(ζ∗βn), (7.15)

Making the choice ζ(t) = −δf(t) + iḟ(t), the solution to Eq. (7.14) is given by

βn(t) = β(0)e−iδt + nf(t). (7.16)

Plugging this into Eq. (7.15) yields

ϕn(T ) = −nRe

[∫ T

0

dt(−δf(t)− iḟ(t))
(
β(0)e−iδt + nf(t)

)]
= −nRe

[∫ T

0

dt
(
−nδf(t)2 + ḣ(t)

)]
(7.17)

where

h(t) = −i
(
β(0)f(t)e−iδt +

1

2
nf(t)2

)
. (7.18)

Using that h(0) = h(T ) = 0, we obtain ϕn(T ) = n2θ.

Thus, the final state at time t = T is |ψ(T )〉 = eiθn
2 |β(0)e−iδT 〉⊗|q〉 = |β(0)e−iδT 〉⊗

(UA |q〉). Since the final state of the cavity is independent of n, there is no entan-
glement between the qubits and the cavity at time T . Furthermore, since UA is
independent of β(0), and any arbitrary initial state of the cavity can be written as a
superposition of different coherent states |β(0)〉, the implemented unitary is in fact
independent of the initial state of the cavity.
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7.2.4 Performance in the Presence of Losses

In this section we calculate the gate fidelity for the implementation of UA in the
presence of losses. In contrast to the previous section we restrict ourselves to an
initial state |0〉 of the cavity. We start by solving the Lindblad equation with the
effective Hamiltonian Heff and the jump operator L. This allows us to find the
quantum channel E acting on the qubits which is obtained when the cavity is traced
out after the gate. Given E , we then find an expression for the infidelity. In the
limit γ, κ→ 0 and T →∞, the infidelity is found analytically to be

1− F =

(
κ

4(1 + 2−N)δ
+
γδ

2g2

)
Nθ. (7.19)

To our knowledge this is the first analytical solution of 1 − F for Hamiltonians of
the type of Eq. (7.11) in the presence of the relevant losses.

To solve the Lindblad equation for Heff of Eq. (7.11) and L, we proceed analogously
to Sec. 7.2.3 by first providing an Ansatz for the density matrix of the joint cavity-
qubit system and then verifying that this Ansatz provides the correct solution of
the time-dependent Lindblad equation.

To determine E , it is sufficient to consider initial operator of the form ρ(0) = |0〉 〈0|⊗
|q〉 〈q′| of the joint cavity-qubit system, where |q〉 and |q′〉 (q, q′ ∈ {0, 1}N) are
computational basis states with exactly n =

∑
j qj and m =

∑
j q
′
j qubits in state

|1〉.

We now make the Ansatz

ρ(t) =
eiϕnm

〈βn|βm〉
|βn〉 〈βm| ⊗ |q〉 〈q′| . (7.20)

In Appendix 7.A.3 we show that this Ansatz solves the Lindblad equation if

β̇n = −(iδ + κ/2)βn − inζ (7.21)

ϕ̇nm = (m− n)(ζβm + ζ∗βn) + i(m+ n)γ1/2. (7.22)

The quantum operation on the Hilbert space of the qubits is given by

E(|q〉 〈q′|) = trcav(ρ(T )) = eiϕnm(T ) |q〉 〈q′| . (7.23)

This latter expression for E is used in the next subsection to determine the fidelity
F .

With Eq. (7.23), the averaged gate fidelity can be computed as

F =

∫
dψ 〈ψ| e−iθn̂2E(|ψ〉 〈ψ|)eiθn̂2 |ψ〉 (7.24)

=
1

2N(2N + 1)

[
N∑
n=0

(
N

n

)
eiϕnn +

N∑
n,m=0

(
N

n

)(
N

m

)
eiϕnm−i(n2−m2)θ

]
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where the integral is taken over the whole computational subspace, and the second
expression follows from [134].

Equation (7.24) now allows us to calculate the gate fidelity for arbitrary values of
δ, T , γ and κ by inserting the solutions of Eqs. (7.21) and (7.22), given by

βn(t) = −in
∫ t

0

dt′ζ(t′)e−(iδ+κ/2)(t−t′) (7.25)

and

ϕnm(T ) =

∫ T

0

[(m− n)(ζ(t)βm(t)∗ + ζ(t)∗βn(t)) + i(m+ n)γ−(t)/2] dt (7.26)

respectively. In the limit γ, κ → 0 and T → ∞ this can be evaluated to Eq. (7.19)
(see Appendix 7.A.4). From Eq. (7.19) we observe that δ can be used to trade
between the infidelity arising from the decay of photons in the cavity (proportional
to κ) and decay of the ancillary state |e〉 (proportional to γ). The infidelity is
minimized for δ =

√
κ/[2(1 + 2−N)γ]g, which gives

1− F =
Nθ√

2(1 + 2−N)C
(7.27)

where C = g2/(γκ) denotes the cooperativity of the cavity.

7.2.5 CZ gate: Numerical Results

In the following we confirm our analysis above and find the infidelity of the UA
gate away from the limit ∆, η → ∞ via a numerical simulation of the full Lind-
blad equation for the specific case of the CZ gate (N = 2). The latter is im-
plemented, up to single qubit gates, for θ = π/2. To achieve this, we choose

f(t) =
√

4π/(3δT ) sin2(πt/T ), which satisfies the requirement δ
∫ T

0
f(t)2dt = π/2

(see Eq. (7.13)). We numerically verify that there is a δ with |ζ(t)| < g/2 for all t
as long as Tg ≥ 8.3.

For the chosen f , the infidelity 1−F is shown in Fig. 7.2(a) as a function of the pulse
duration T for several values of the cooperativity C and ratios γ/κ. The solid lines
show the infidelity in the limit ∆ → ∞ calculated analytically using Eqs. (7.24)-
(7.26). The choice of δ has been optimized to achieve the best fidelity at each value
of the pulse duration T . As T →∞ the infidelity approaches its asymptotic value,
which is as predicted by Eq. (7.19) independent of γ/κ and only depends on the
cooperativity C. For shorter pulse durations, there is a slight dependency on γ/κ,
with the best infidelity always being achieved at γ/κ ∼ 1. Note that the asymptotic
value of the infidelity as T → ∞ is often already closely approached for durations
T ∼ 20g−1, underlining the fast speed of protocol A.

The dots in Fig. 7.2(a) show the infidelity which is achieved at a finite value of ∆,
chosen such that maxt η(t) = 30g. These values were found through a numerical
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Figure 7.2: Protocol A. (a) Infidelity of a CZ gate vs pulse duration T for
different values of C and γ/κ. Solid lines show the infidelity (analytic result) in the
∆→∞ limit, circles show the infidelity (numerical calculation) at a finite value of
∆, chosen such that maxt |η(t)| = 30g. For each T , C and γ/κ, δ is optimized to
obtain the minimal 1-F . (b) Numerical (circles) and analytical (dashed line) value
of the infidelity vs C in the ∆, T →∞ limit for different values of γ/κ.

integration of the Lindblad equation given by H [Eq. (7.3)] and the jump operator
L. Only small deviations between the numerical and the analytical results can be
observed, showing that a maximum driving strength of 30g is sufficient to implement
protocol A with high fidelity.

Finally, Fig. 7.2(b) compares the asymptotic value of the infidelity from Fig. 7.2(a)
with its analytical prediction 1−F = 1.99/

√
C from Eq. (7.27). A good agreement

is observed for all values of C and γ/κ.

This concludes our discussion of protocol A. We have demonstrated that by driving
the strongly detuned cavity with a strong drive η, the unitary UA = exp(iθn̂2) can be
implemented through the proper choice of η(t). We derived the infidelity of protocol
A and showed that it agrees with numerical simulations. Together with global single
qubit gates, protocol A can be used to generate GHZ states on N qubits using the
same procedure as in Sec. 3.7.

7.3 Protocol B

In contrast to protocol A, protocol B is an adiabatic protocol that operates in the
limit η → 0, with detunings ∆, δ = O(g), and a pulse duration T = O(η−2). In
Sec. 7.3.1 we discuss protocol B in the absence of losses, followed by the calculation
of the infidelity for finite values of γ and κ in Sec. 7.3.2. We confirm our analysis
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through a numerical simulation in Sec. 7.3.3. In Sec. 7.3.4 we discuss how several
repetitions of protocol B can be used to implement arbitrary phase gates.

7.3.1 Loss Free Case

We start by assuming γ = κ = 0. We consider an initial state |ψ(0)〉 = |0〉⊗|q〉, with
the cavity starting in state |0〉 and the qubits in a computational basis state |q〉 (q ∈
{0, 1}N), with exactly n =

∑
j qj qubits in state |1〉. Note that |ψ(0)〉 is an eigenstate

of the Hamiltonian H [Eq. (7.3)] for η = 0. If now η is varied slowly enough, the
system will stay in an eigenstate of H and accumulate a dynamical phase. Since at
the final time we have again η(T ) = 0, we obtain |ψ(T )〉 = eiϕn |0〉 ⊗ |q〉, where the
dynamical phase is given by

ϕn = −
∫ T

0

〈ψn(t)|H(t) |ψn(t)〉 dt. (7.28)

Using second order perturbation theory, one obtains (see Appendix 7.B.1)

ϕn = − I

δ − ng2/∆
, (7.29)

where I =
∫ T

0
|η(t)|2dt is the pulse energy. Thus, the pulse implements a unitary

UB = exp

[
−i I

(δ − n̂g2/∆)

]
. (7.30)

7.3.2 Performance in the Presence of Losses

For γ, κ 6= 0 the quantum operation on the space of the qubits can be approximated
by (see Appendix 7.B.2)

E(|q〉 〈q′|) = cnme
i(ϕn−ϕm) |q〉 〈q′| . (7.31)

Again, |q〉 and |q′〉 are computational basis states of the qubits with exactly n =∑
j qj and m =

∑
j q
′
j qubits in state |1〉, respectively. The coefficients cnm are given

by
cnm = 1− [(γn + γm + (sn − sm)2]/2, (7.32)

with

γn =
γng2

(∆δ − ng2)2
I = − γ

∆

ng2

∆δ − ng2
ϕn (7.33)

sn =

√
κ∆

∆δ − ng2

√
I = ±

√
κ∆√

|∆δ − ng2|

√
|ϕn|. (7.34)
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where in the last equality the sign is + if ∆/(∆δ − ng2) > 0 and − otherwise.

The fidelity can be calculated analogously to Eq. (7.24) as

F =
1

2N(2N + 1)

[
N∑
n=0

(
N

n

)
cnn +

N∑
n,m=0

(
N

n

)(
N

m

)
cnm

]
. (7.35)

To implement a CZ gate (N = 2), up to single qubit gates, I has to be chosen such
that |ϕ2 − 2ϕ1 + ϕ0| = π. Given this choice, the values of δ and ∆ that maximize
F can be found numerically as δ = 0.529

√
κ/γg, ∆ = −2.09

√
γ/κg, which gives

1− F = 1.79/
√
C.

The scaling of the optimal δ and ∆ with γ and κ can be explained as follows:
Inserting the second expressions from Eq. (7.33) and (7.34) into Eq. (7.35) shows that
for any given phases ϕ0, ..., ϕN , the infidelity is of the form 1− F = γh1(δ∆)/|∆|+
κh2(δ∆)|∆|, where h1 and h2 are positive functions independent of γ and κ which
only depend on δ and ∆ through the product δ∆. At a fixed value of δ∆, the
optimal choice of ∆ is thus |∆| =

√
γ/κ

√
h1(δ∆)/h2(δ∆), and the infidelity is

1 − F =
√

2γκh1(δ∆)h2(δ∆). Since h1 and h2 are independent of γ and κ, the

optimal value of the product δ∆ is also independent of γ and κ. Since ∆ ∝
√
γ/κ

it follows δ ∝
√
κ/γ.

7.3.3 CZ Gate: Numerical Results

To confirm our formula for the infidelity and to determine the infidelity for finite
pulse durations T , we numerically solve the Lindblad equations for different pulse
durations T and different values of γ and κ. To achieve adiabaticity, η(t) is chosen as
a flat-top pulse, rising to its maximum value ηmax with a sin2-shaped flank of duration
T0 ≤ T/2, staying at ηmax for a duration T − 2T0, and then falling back to 0 in a
sin2-shaped flank. T0 and ηmax are numerically chosen to satisfy |ϕ2− 2ϕ1 +ϕ0| = π
with the minimal possible slope maxt |η̇(t)|.

Figure 7.3(a) shows the infidelity as a function of T for a CZ gate using protocol B
for different values of C and γ/κ. We find that 1−F approaches its asymptotic value
1.79/

√
C for pulse durations 102g−1 . T . 103g−1, while for smaller T it increases

due to diabatic errors. The different behavior for different γ/κ ratios arises due to
a nontrivial behavior of |ϕ2 − 2ϕ1 + ϕ0| away from the perturbative approximation
made above.

7.3.4 Implementation of Arbitrary Phase Gates

In the following we show how N − 1 repetitions of protocol B can be used to im-
plement an arbitrary symmetric phase gate exp(iϕ(n̂)) for any function ϕ(n̂), up to
single qubit gates and a global phase.
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Figure 7.3: Protocol B. (a) Infidelity (numerical calculation) for a CZ gate as
a function of pulse duration T for different values of C and γ/κ. (b) Infidelity of
a phase-rotation gate with α = π/4 in the T → ∞ limit as a function of N . Also
shown is the infidelity of the same gate implemented using a decomposition into CZ
and single-qubit gates using the circuit from Ref. [210]. (c) Infidelity of a CN−1Z
gate vs N when implemented using protocol B and by decomposition into CZ and
single qubit gates using an ancilla-free Gray-code [215].

To see this, let us consider applying protocol B N−1 times, with different detunings
δ1, ..., δN−1 and ∆1, ...,∆N−1 and different pulse energies I1, ..., IN−1 in each pulse.
We require that ∆k − δk is independent of k, so that the different pulses can be
implemented by only changing the amplitude, duration and detuning of the external
drive of the cavity, while the detuning between the cavity frequency and the |1〉 ↔
|e〉 transition stays constant. Each of these pulses now implements a phase gate
exp(iϕk(n̂)) with ϕk(n̂) given through Eq. (7.29). Taking all pulses together and
adding a global phase θg and a single qubit phase θs, the implemented phase gate is

ϕ(n̂) = θg + n̂θs −
N−1∑
k=1

Ik
δk − n̂g2∆k

(7.36)

Observe that the ϕ(n̂) depend linearly on the N + 1 variables θg, θs and I1, ..., IN−1.
Thus, since there are N + 1 possible values of n (from 0 to N), Eq. (7.36) has a
unique solution of the θg, θs and I1, ..., IN−1 as a function of ϕ(·) and the δk and ∆k.
Hence there are pulse energies I1, ..., IN−1 to implement exp(iϕ(n̂)) up to single qubit
gates and a global phase. Note that such I1, ..., IN−1 can be found for any choice of
the δk and ∆k. In Appendix 7.B.4 we give a method based on linear programming
to find the δk and ∆k which minimize the gate infidelity.
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We exemplify the procedure described above for two classes of multi-qubit gates:
Phase-rotation gates exp(−iαZ1⊗...⊗Zn) – corresponding to phases ϕn = −α(−1)n

– and N -qubit multi-controlled-Z gates (CN−1Z gates), i.e. phase gates with ϕN = π
and ϕn = 0 for n < N . The infidelity for both multi-qubit gates as a function
of N is shown in Fig. 7.3(b,c) for different values of γ/κ. Here, we take δk −
∆k = 2.09g/

√
κ/γ + 0.529g

√
κ/γ (the optimal choice for N = 2), and choose the

δ1, ..., δN−1 to maximize the fidelity (See Appendix 7.B.4). Note that for CN−1Z
gates we consider the minimal fidelity Fmin = min|ψ〉 〈ψ|CN−1ZE(|ψ〉 〈ψ|)CN−1Z |ψ〉
instead of the average gate fidelity for a fair comparison between different N . An
approximately linear scaling of the infidelity with N is observed for both gates in
Fig. 7.3(b,c). Our protocol outperforms implementations using decompositions into
individual CZ and (perfect) single qubit gates in both cases for any N > 2.

This concludes our discussion of protocol B. We showed that by driving the cavity
with a weak and slowly changing pulse η(t), a multi-qubit quantum gate can be
implemented by adiabatic evolution. Like for protocol A, the infidelity in the limit
T →∞ only depends on the cooperativity and not on the ratio γ/κ. We also showed
how N − 1 repetitions of protocol B with different pulse parameters can be used to
implement any symmetric phase gate.

7.4 Fidelity Estimates in Realistic Systems

In this section we provide estimates for the achievable gate fidelity and pulse duration
for protocols A and B for three different physical systems. We discuss atoms coupled
to an optical cavity in Sec. 7.4.1, Rydberg atoms coupled to a microwave cavity in
Sec. 7.4.2, and polar molecules coupled to a microwave cavity in Sec. 7.4.3.

7.4.1 Neutral Atoms Coupled to an Optical Cavity

As a first example, we consider neutral 87Rb atoms trapped in optical tweezers
and coupled to a fiber Fabry-Perot cavity as pioneered in Refs. [218–220]. As
qubit states, we choose the electronic groundstates |0〉 = |5 2S1/2 F = 1mF = 0〉
and |1〉 = |5 2S1/2 F = 2mF = 0〉, while the ancillary state |e〉 is the electronically
excited state |e〉 = |5 2P3/2 F = 3mF = 0〉. The linewidth of the |1〉 ↔ |e〉 transition
(λ = 780 nm) is γ = 2π × 6 MHz (FWHM).

For the cavity we assume a finesse F ≈ 2 × 105, a waist radius wr ≈ 2µm and a
length L ≈ 40µm [218–220] resulting in a cooperativity of C = 3λ2F/(2π3w2

r) ≈
1500 with a coupling strength of g =

√
3λ2cγ/(2π2w2

rL) ≈ 2π × 400 MHz and
κ = πc/LF ≈ 2π × 20 MHz (FWHM), so that γ/κ ≈ 0.3. These values for the
cavity parameters are within experimental reach [218].

With the numbers above, for protocol A a CZ gate on two atoms can be achieved
with a fidelity of 1− F ≈ 5.1% in the limit T,∆ → ∞. Finite values for ∆ can be
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chosen as long as ∆ < ω0, with the latter the energy separation between the states
|0〉 and |1〉 (which is about 6.8 GHz for the states given above). For example, for
a detuning ∆ = 1 GHz, the infidelity only slightly increases to 1 − F = 6.4% for
a choice of a finite (fast) pulse duration T = 80 ns. Other choices of ∆ and T are
possible [see Fig. 7.2(a)].

For protocol B, the infidelity in the limit T → ∞ is given by 1 − F = 4.6%.
Similar infidelities can be achieved for finite pulse durations, e.g. 1− F = 5.0% for
T = 120 ns. These gate speeds compare favorably to those for current fast neutral
atom gates [11, 64], however the fidelity is limited by the cooperativity C. We note
while these infidelities are comparatively large, they are sufficient for specific tasks,
e.g. for linking error corrected qubits [221].

7.4.2 Rydberg Atoms Coupled to a Microwave Cavity

Higher fidelities at the expense of longer gate durations can be achieved by taking
both |1〉 and |e〉 to be Rydberg states e.g. |1〉 = |90 2P3/2〉 and |e〉 = |90 2S1/2〉 in
Cs with lifetime 2 ms and 820 µs, respectively , while |0〉 is chosen as a long-lived
state in the ground manifold of the atoms. In this case, the |1〉 ↔ |e〉 transition has
the frequency ωe ≈ 2π × 5 GHz, and is thus in the microwave regime.

The states |1〉 and |e〉 may be coupled via a superconducting microwave resonator
with reasonable coupling strength g ≈ 2π×4 MHz [222]. Quality factors Q > 3×108

have been reported for microwave stripline resonators [223], yielding κ = ωe/Q ≈
2π × 17 Hz, and thus a cooperativity C = 5× 109, with γ/κ ' 12.

We include the decay of the state |1〉 in our analysis, which is important as the
latter is now a Rydberg state with a lifetime comparable to that of |e〉. Therefore,
the minimal infidelity is not achieved anymore as ∆, T → ∞, but at finite values
of T . For protocol A, as an example we choose ∆ = 2π × 400 MHz, which is much
smaller than the spacing of |1〉 and |e〉 to adjacent Rydberg states (approximately 5
GHz). The minimal infidelity of 1− F = 2.3× 10−4 is then achieved at T = 800ns.
Furthermore, protocol A could be used to generate a GHZ state on 40 qubits with
an infidelity below 10−2, in a duration of T = 800 ns (the same duration as for a CZ
gate).

Since protocol B is much slower than protocol A, due to its adiabatic nature, it is
also affected more strongly by the decay of |e〉. However, the minimal achievable
infidelity of 1 − F = 2.1 × 10−3 at T = 6.0µs still significantly outperforms the
infidelities from the previous section (Sec. 7.4.1).

7.4.3 Polar Molecules Coupled to a Microwave Cavity

As a final platform we consider ultracold polar molecules coupled to a microwave
resonator [224–226]. Following Ref. [224], we assume Ca79Br molecules [227] trapped
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electrostatically in the vicinity of a superconducting microwave stripline resonator.
We chose the computational basis states |0〉 = |N = 1,mN = 0, F = 1,mF = 0〉,
|1〉 = |N = 1,mN = 0, F = 2,mF = 1〉 to be different hyperfine levels of the first
excited rotational manifold of the molecule, where N is the rotational quantum
number. The ancillary state |e〉 is then chosen in the second excited rotational
level, |e〉 = |N = 2,mN = 0, F = 2,mF = 1〉. These states are chosen to ensure that
|0〉 , |1〉 and |e〉 are simultaneously trappable [224].

For this choice of states the frequency of the |1〉 ↔ |e〉 transition is given by ωe =
2π × 11 GHz and is thus in the microwave regime. Coupling strengths up to g =
2π×400 kHz can be achieved with realistic experimental parameters [224]. Assuming
Q = 3× 108 (as in Sec. 7.4.2) yields κ = ωe/Q ≈ 2π × 37 Hz, while the decay from
|e〉 is γ . 10−2Hz [228] and can be neglected. If we assume γ = 0, arbitrarily low
fidelities can be reached if we allow for arbitrarily long gate times. At finite pulse
duration, protocol A can achieve an infidelity of 1 − F = 1.0 × 10−5 already at a
pulse duration of T = 80µs, at ∆ = 2π × 1.2 MHz � g. Again, other choices of T
and ∆ are possible, see Fig. 7.2(a).

At the same pulse duration, the infidelity of protocol B is given by 1−F = 8.7×10−5.
This is almost one order of magnitude worse than protocol A, but nevertheless still
sufficient for most quantum information processing tasks.

7.5 Conclusion

We have presented two new protocols for implementing a large family of non-local
multi-qubit quantum gates on qubits coupled to a common cavity mode. These pro-
tocols are implemented by applying a classical drive to the cavity mode, while no
external drive on the qubits is required. Applied to just two qubits, both protocols
form, together with single qubit gates, a universal gate set for quantum computing.
Applied on more than two qubits, protocol A can be used to generate a GHZ state,
while protocol B can be used to implement arbitrary phase gates, such as phase-
rotation or multi-controlled Z gates. We evaluated the fidelity of both protocols in
the presence of a finite lifetime of the ancillary state |e〉 of the qubits and of the
photons in the cavity, finding that the infidelity scales as O(C−1/2). For Rydberg
atoms or polar molecules coupled via a microwave cavity, we expect that our proto-
cols can achieve infidelities below 10−3 with realistic parameters, while for neutral
atoms coupled via optical cavities infidelities of the order of a few percent can be
reached.

Our protocols allow for the first time the realization of a large family of deterministic
non-local multi-qubit quantum gates with applications in digital quantum simula-
tions, metrology, cryptography and error correction, by controlling the system via
only a simple classical drive of the cavity. In a quantum computing architecture,
our protocol could be applied in several manners, either as the only entangling gate
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of the architecture, or in conjunction with other, local, entangling protocols. For ex-
ample, in an array of Rydberg atoms, entangling operations between nearby atoms
could be performed using the Rydberg blockade mechanism, while entangling atoms
further apart could be done with our protocols. It is also possible to use our pro-
tocols only for certain error correction tasks, while other entangling operations are
done by local gates. Finally, our protocols could also be extended to overlapping
cavities [77] to connect even more atoms.

In this chapter we modeled each qubit as a three level system and the cavity as
a single bosonic mode. We expect that our protocols are generalizable to more
complicated models with e.g. several excited states, a nonzero coupling from |0〉 to
|e〉, or several bosonic modes (e.g. light modes of different polarizations) supported
in the cavity. For example, the derivations of both protocols can be extended in a
straightforward manner to include the coupling of |1〉 to a second exited state |e′〉.
Such an additional coupling would only effect the parameter θ in protocol A and the
dependency of ϕ(n̂) on n̂ in protocol B. Finding the optimal gate parameters and
the achievable fidelities for more general models of the qubit and the cavity will be
subject to future work.

We expect that our protocols may significantly benefit from optimization of the
time-dependent pulse-shape η(t). In particular, while the infidelity for the various
gates in the limit T → ∞ is independent of the exact choice of η, we expect that
the infidelity at finite T could be improved by applying quantum optimal control
techniques to optimize the pulse-shape of η(t) [135, 136], making our protocols both
higher-fidelity and faster.

7.A Supporting Calculations for Protocol A

7.A.1 First Basis Transformation on the Cavity

Here we discuss the first time-dependent basis transformation on the subsystem
of the cavity and derive Eq. (7.5). For a function α(t) consider the displacement
operator D(α(t)) = exp(α(t)â†−α∗(t)â). Recall that it satisfies D(α)âD(α)† = â−α
and D(α)â†D(α)† = â† − α∗, and furthermore

d

dt
D(α) = [α̇â† − α̇∗â+ iIm(α̇∗α)]D(α) (7.37)

= D(α)[α̇â† − α̇∗â− iIm(α̇∗α)].

Now we define ρ̃ = D(α)ρD(α)†. It satisfies

˙̃ρ =− i(H ′ρ̃− ρ(H ′)†) + L′ρ̃(L′)† − 1

2
{(L′)†L′, ρ̃} (7.38)

+

(
d

dt
D(α)

)
D(α)†ρ̃+ ρ̃D(α)

(
d

dt
D(α)†

)
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where H ′ = D(α)HD(α)† and L′ = D(α)LD(α)†.

We calculate

H ′ = δâ†â+ (∆− iγ/2)n̂e + g(â†Ŝ− + âŜ+) + (iη − δα)â† − (iη∗ + δα∗)â (7.39)

− gα∗Ŝ− − gαŜ+ + δ|α|2 + i(ηα∗ − η∗α)

and

L′ρ̃(L′)† − 1

2
{(L′)†L, ρ̃} = Lρ̃L† − 1

2
{L†L, ρ̃}+

κ

2
(−α∗âρ− αρâ† + α∗ρâ+ αâ†ρ)

(7.40)

as well as (
d

dt
D(α)

)
D(α)†ρ̃+ ρ̃D(α)

(
d

dt
D(α)†

)
= [α̇â† − α̇∗â, ρ̃] (7.41)

Plugging Eqs. (7.39)–(7.41) into Eq. (7.38) gives

˙̃ρ = −iH̃ρ̃+ iρ̃H̃† + LρL† − 1

2
{L†L, ρ} (7.42)

with

H̃ =δâ†â+ (∆− iγ/2)n̂e + g(â†Ŝ− + âŜ+) (7.43)

− gα∗Ŝ− − gαŜ+ +
[
(iη − (δ − iκ/2)α + iα̇)â† + h.c.

]
Now we take α(t) such that

α̇ = −η − (iδ + κ/2)α (7.44)

which is satisfied by

α(t) =

∫ t

0

dt′η(t′)e−(iδ+κ/2)(t−t′). (7.45)

With this choice, H̃ becomes simply

H̃ = δâ†â+ (∆− iγ/2)n̂e + g(â†Ŝ− + âŜ+)− gα∗Ŝ− − gαŜ+ (7.46)

thus completing our derivation of Eq. (7.5)

7.A.2 Second Basis Transformation on the Qubits

In this appendix we perform the time dependent basis transformation H̄ = UH̃U †+
iU̇U † for

U = exp

[
λ

2

(
−eiµŜ+ + e−iµŜ−

)]
(7.47)
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and

H̃ = δâ†â+ (∆− iγ/2)n̂e + gâ†Ŝ− + gâŜ+ − gαŜ+ − gα∗Ŝ−. (7.48)

We calculate

U =
[
|0〉 〈0|+ cos

(
λ

2

)
(|1〉 〈1|+ |e〉 〈e|) + sin

(
λ

2

)(
−eiµ |e〉 〈1|+ e−iµ |1〉 〈e|

) ]⊗N
(7.49)

which gives

UŜ+U † =
(
UŜ−U †

)†
= cos2

(
λ

2

)
Ŝ+ − e−2iµ sin2

(
λ

2

)
Ŝ− (7.50)

+e−iµ sin

(
λ

2

)
cos

(
λ

2

)
(n̂− n̂e)

and

Un̂eU
† = cos2

(
λ

2

)
n̂e + sin2

(
λ

2

)
n̂ (7.51)

+ sin

(
λ

2

)
cos

(
λ

2

)(
e−iµŜ− + eiµŜ+

)
,

Now first consider H(0) = ∆n̂e − gαŜ+ − gα∗Ŝ−, the part of H̃ that scales with ∆.
We choose λ and µ so that UH(0)U † is diagonal. We find

UH(0)U † =

[
∆ cos2

(
λ

2

)
+
g

2

(
αe−iµ + c.c.

)
sin (λ)

]
n̂e (7.52)

+

[
∆ sin2

(
λ

2

)
− g

2

(
αe−iµ + c.c.

)
sin (λ)

]
n̂

+

[
∆

2
eiµ sin (λ) + e2iµ sin2

(
λ

2

)
gα∗ − gα cos2

(
λ

2

)]
Ŝ+

+

[
∆

2
e−iµ (λ) + e−2iµ sin2

(
λ

2

)
gα− gα∗ cos2

(
λ

2

)]
Ŝ−

The coefficients of Ŝ+ and Ŝ− vanish for µ = arg(α) and λ such that ∆ sin
(
λ
2

)
cos
(
λ
2

)
=

gα(cos2
(
λ
2

)
− sin2

(
λ
2

)
), which is satisfied for cosλ = ∆/

√
∆2 + 4g2|α|2. We denote

by ε− and ε+ the coefficients of n̂ and n̂e, respectively, and find

ε− = ∆ sin2

(
λ

2

)
− 2g|α| sin

(
λ

2

)
cos

(
λ

2

)
(7.53)

=
1

2

(
∆−

√
∆2 + 4g2|α|2

)
ε+ = ∆ cos2

(
λ

2

)
+ 2g|α| sin

(
λ

2

)
cos

(
λ

2

)
(7.54)

=
1

2

(
∆ +

√
∆2 + 4g2|α|2

)
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Now we consider H̃−H(0) = δâ†â−iγ
2
n̂e+gâŜ

++gâ†Ŝ− and calculate U(H̃−H(0))U †

term by term (the notation O(1) refers to the limit ∆→∞).

Uâ†âU † = â†â (7.55)

Un̂eU
† =

1− cosλ

2
n̂+

1 + cosλ

2
n̂e +O(1)Ŝ+ +O(1)Ŝ− (7.56)

=
n̂+ n̂e

2
− ∆ (n̂− n̂e)

2
√

∆2 + 4g2|α|2
+O(1)Ŝ+ +O(1)Ŝ−

UŜ+U † =
α∗√

∆2 + 4g2|α|2
(n̂− n̂e) +O(1)Ŝ+ +O(1)Ŝ− (7.57)

so that in total we find

UH̃U † = δâ†â+ (ε1 − iγ1/2)n̂+ (εe − iγe/2)n̂e (7.58)

+ (ζâ† + ζ∗â)(n̂− n̂e) +O(1)Ŝ+ +O(1)Ŝ−

where

γ± =
γ

2

(
1± ∆√

∆2 + 4g2|α|2

)
, (7.59)

ζ =
g2α√

∆2 + 4g2|α|2
. (7.60)

Now using the fact that iU̇U † is O(1) and acts on the qubits only (i.e. contains no
a or a† terms) we obtain Eq. (7.7) from the main text for H̄.

7.A.3 Analytic Solution of Time Evolution under Heff

In this appendix we find the analytic solution of the Lindblad equation ρ̇ = −iHρ+
iρH† + LρL† − 1

2
{L†L, ρ} under H = δâ†â + (−iγ1(t)/2 + ζ(t)â† + ζ(t)∗â)n̂ and

L =
√
κâ for an arbitrary drive ζ(t) and time dependent decay rate γ1(t). For

this, we assume an initial state ρ(0) = |βn(0)〉 〈βm(0)| ⊗ |q〉 〈q′|, where βn and βm
are coherent states and |q〉(|q′〉) are computational basis states with n(m) qubits in
state |1〉. Note that initial states of this form are a basis of space of all possible
initial density matrices, so solving the Lindblad equation for the initial state ρ(0)
suffices to solve it for an arbitrary initial state.

In the following we show that the solution to the Lindblad equation is given by

ρ(t) = eiϕnm(t) |βn(t)〉 〈βm(t)| ⊗ |q〉 〈q′|
〈βm(t)〉 βn(t)

(7.61)
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where β̇n = −(iδ + κ/2)βn − inζ, i.e.

βn(t) = βn(0)e−(iδ+κ/2)t − in
∫ t

0

dt′ζ(t′)e−(iδ+κ/2)(t−t′) (7.62)

and

ϕnm(t) =

∫ t

0

dt′ [(m− n)(ζ(t′)βm(t′)∗ (7.63)

+ ζ(t′)∗βn(t′)) + i(m+ n)γ1(t′)/2] .

Tracing out the cavity then gives the reduced density matrix ρeff = eiϕnm(t) |q〉 〈q′|
discussed in the main text.

To show Eq. (7.61), we make the Ansatz ρ = ρnm ⊗ |q〉 〈q′| with ρnm of the form
ρnm(t) = cnm(t) |βn(t)〉 〈βm(t)|. The Lindblad equation gives

ρ̇nm = −iHnρnm + iρH†m + LρnmL
† − 1

2
{L†L, ρnm}, (7.64)

with Hn = δâ†â+ (−iγ1/2 + ζâ† + ζ∗â)n.

We start by calculating the left side of Eq. (7.64). It is a property of coherent states
that

d

dt
|βn(t)〉 = β̇nâ

† |βn〉 −
1

2

d|βn|2

dt
|βn〉 (7.65)

so that

ρ̇nm =cnmβ̇nâ
† |βn〉 〈βm|+ cnmβ̇

∗
m |βn〉 〈βm| â (7.66)

+

(
ċnm −

cnm
2

d(|βn|2 + |βm|2)

dt

)
|βn〉 〈βm|

Now we evaluate the right side of Eq. (7.64):

Hnρnm/cnm =
[
(δβn + nζ) â† + nζ∗βn − inγ1/2] |βn〉 〈βm| (7.67)

ρnmH
†
m/cnm = [(δβ∗m +mζ∗) â + mζβ∗m + imγ1/2] |βn〉 〈βm| (7.68)

LρnmL
†/cnm = κβnβ

∗
m |βn〉 〈βm| (7.69){

L†L, ρnm
}
/cnm =

[
κβnâ

† + κβ∗mâ
]
|βn〉 〈βm| (7.70)

Together, Eq. (7.67)-(7.70) give

− iHnρnm + iρnmH
†
m + LρnmL

† − 1

2
{L†nmL, ρnm} (7.71)

=cnm(−iδβn − inζ − κβn/2)â† |βn〉 〈βm|
+ cnm(iδβ∗m + imζ∗ − κβ∗m/2) |βn〉 〈βm| â
+ cnm(−inζ∗βn + imζβ∗m + κβnβ

∗
m

− (n+m)γ1/2) |βn〉 〈βm|
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Equating Eq. (7.66) and Eq. (7.71) gives Eq. (7.62), as well as

ċnm/cnm =
1

2

d(|βn|2 + |βm|2)

dt
(7.72)

− inζ∗βn + imζβ∗m + κβnβ
∗
m − (n+m)γ1/2

Now we take cnm = eiϕnm/ 〈βm|βn〉. Using 〈βm|βn〉 = exp
(
−1

2
(|βn|2 + |βm|2) + β∗mβn

)
we obtain

iϕ̇nm =
ċnm
cnm

+
d

dt

(
−1

2
(|βn|2 + |βm|2) + β∗mβn

)
(7.73)

= −inζ∗βn + imζβ∗m + κβnβ
∗
m − (n+m)γ1/2 + β̇∗mβn + β∗mβ̇n

= i(m− n)ζ∗βn + i(m− n)ζβ∗m − (n+m)γ1/2

where in the last equality we inserted β̇n = −(iδ + κ/2)βn − inζ. Integrating
Eq. (7.73) gives Eq. (7.63).

7.A.4 Calculation of the Fidelity in the Limit T →∞

In the following we show that in the limit T →∞ and to first order in γ and κ the
infidelity of protocol A is given by

1− F =

(
κ

4(1 + 2−N)δ
+
γδ

2g2

)
Nθ. (7.74)

In the limit T → ∞ the solution to β̇n = −(iδ + κ/2)βn − inζ can be obtained by
an adiabatic approximation. For this, we insert β̇n = 0 and obtain

βn =
−inζ

iδ + κ/2
≈ −nζ

δ

(
1 + i

κ

2δ

)
. (7.75)

With Eq. (7.22) we obtain

ϕnm = (n2 −m2)θ + (m− n)2 iκ

2δ
θ + i(m+ n)

∫ T

0

dtγ1(t)/2 (7.76)

where θ = 1
δ

∫ T
0

dt|ζ(t)|2. Since in the limit T →∞ we have ζ → 0 we approximate

γ1 =
γ

2

(
1−

√
1− 4|ζ|2/g2

)
≈ γ|ζ|2

g2
(7.77)

so that

ϕnm
θ

= n2 −m2 + (m− n)2 iκ

2δ
+ (m+ n)

iγδ

2g2
(7.78)

Inserting this into Eq. (7.24) and using that

N∑
n,m=0

(
N

n

)(
N

m

)
(m− n)2 = 4N

N

2
(7.79)
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and
N∑
n=0

(
N

n

)
(n+ n) = 2NN, (7.80)

N∑
n,m=0

(
N

n

)(
N

m

)
(n+m) = 4NN, (7.81)

we obtain Eq. (7.74).

7.A.5 Effects of Coupling Inhomogeneities on the Fidelity

In this section we calculate the effect different couplings g1, ..., gN of each qubit to
the cavity on the gate fidelity. We assume that the g1, ..., gN are independent and

identically distributed random variables and have the quadratic mean ḡ =
√

E[g2
j ].

Furthermore assume that the drive η(t), and thus α(t), is chosen as given in the
main text, with the homogeneous coupling g replaced by ḡ.

To be able to obtain analytical solutions we restrict ourselves to the case T → ∞,
but expect a similar scaling for finite T .

Following the same steps as in the main text, an effective Hamiltonian can be found
as

Heff = δa†a+
∑

q∈{0,1}N
(ζqa

† + ζ∗q a) |q〉 〈q| (7.82)

where

ζq =
N∑
j=1

qj
g2
jα√

4g2
j |α|2 + ∆2

≈ α

∆

N∑
j=1

qjg
2
j (7.83)

where the last approximation holds in the T →∞ limit, where |α| � ∆.

Starting in the initial state |ψ(0)〉 = |0〉 ⊗ |q〉 for a computational basis state q ∈
{0, 1}N , the state at the final time T is given by |ψ(T )〉 = eiϕq(T ) |βq〉 ⊗ |q〉, where
β̇q = −iδβq − iζq and ϕ̇q = −Re(ζ∗qβq). In the limit T → ∞ we obtain βq(t) =
−ζq(t)/δ and

ϕq(T ) =

(∑
j

qjg
2
j

)2 ∫ T

0

dt
|α(t)|2

∆δ
(7.84)

=

(∑
j

qjg
2
j

)2
θ

ḡ4

≈ nθ2 +
2nθ

ḡ2

∑
j

qj(g
2
j − g2)

where n =
∑

j qj is the number of qubits in state |1〉. Crucially, βq(T ) = 0, so
that the action of the gate can still be described by a unitary operation, given by
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U =
∑

q e
iϕq(T ) |q〉 〈q|. In the following, we will evaluate the averaged fidelity for the

difference U †AU between the gate UA which we aim to implement, and the gate U
which is actually implemented.

The averaged fidelity can be evaluated as [134]

1− F =
1

2N(2N + 1)

2N +

∣∣∣∣∣∣
∑

q∈{0,1}N
ei(ϕq(T )−nθ2)

∣∣∣∣∣∣
2 (7.85)

≈ 1 +
1

2N(2N + 1)

[(∑
q

(ϕq − n2θ)

)2

− 2N
∑
q

(ϕq − n2θ)2

]

We obtain the upper bounds

1− F ≤ 1

2N

∑
q

(ϕq − n2θ)2 (7.86)

=
4θ2

ḡ4

1

2N

∑
q∈{0,1}N

(
n
∑
j

qj(g
2
j − ḡ2)

)2

The expected value of the infidelity can be upper bounded, using the independence
of the gj, as

E[1− F ] ≤ 4θ2

ḡ4

∑
q

n2
∑
j

q2
jE[(g2

j − ḡ2
j )

2] (7.87)

=
4θ2

ḡ4
Var[g2

1]
1

2N

N∑
n=0

(
N

n

)
n3 (7.88)

= N2(N + 3)
θ2

2ḡ4
Var[g2

1]. (7.89)

Note that since we assume that the gj are independent and indetically distributed,
the Var[g2

1] can be replace by Var[g2
j ] for any j.

7.B Supporting Calculations for Protocol B

7.B.1 Eigenenergies of H in Perturbation Theory

In this appendix we calculate perturbations of the eigenenergies of H in the limit
η → 0 and prove Eq. (7.29). To find the eigenenergy for a computational basis state
|q〉 with n qubits in state |1〉 it is sufficient to consider the three states |0, q〉, |1, q〉
and |χ〉 = Ŝ+ |0, q〉 /

√
n, where the first entry in a ket vector denotes the number of
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excitations in the cavity mode, and the second entry denotes the state of the qubits.
Projected onto these three states, H is given by

H = δ |1, q〉 〈1, q|+ ∆ |χ〉 〈χ|+ g
√
N(|1, q〉 〈χ|+ |χ〉 〈1, q|)︸ ︷︷ ︸

H0

+ iη |1, q〉 〈0, q| − iη∗ |0, q〉 〈1, q|︸ ︷︷ ︸
V

. (7.90)

Denote by |p±〉 the eigenstates of H0 and by E± their corresponding energies. The
second order perturbation of the eigenenergy of |0, q〉 is

εn = −
∑
j

| 〈0, q|V |pj〉 |2

Ej
= −η2 〈1, q|H−1

0 |1, q〉 = − |η|2∆

∆δ − ng2
. (7.91)

This completes the proof of Eq. (7.29). We note that the perturbed eigenstate is
given by

|ψq(t)〉 = |0, q〉 − iη(t) (∆ |1, q〉 − g
√
n |χ〉)

∆δ − ng2
. (7.92)

7.B.2 Effect of Losses

In this appendix we calculate process E of protocol B to first order in γ and κ in the
adiabatic limit and prove Eq. (7.32). We assume an initial state ρ(0) = |0, q〉 〈0, q′|.
Let U(t) be unitary evolution in the absence of noise, and let ρ̃(t) = U(t)†ρ(t)U(t).
Then

˙̃ρ = −γ
2
U †n̂eUρ̃−

γ

2
ρ̃U †n̂eU + κU †âUρ̃U †â†U − κ

2
U †â†âUρ̃− κ

2
ρ̃U †â†âU. (7.93)

To first order in γ and κ we thus find using the adiabatic approximation U(t) |0, q〉 =
e−iϕn(t) |ψq(t)〉 with ϕn(t) =

∫ t
0

dt′εn(t′) that

ρ̃(T ) = |0, q〉 〈0, q′|+
∫ T

0

dt
[
− 1

2
e−iϕn(t)U †(t)(γn̂e + κâ†â) |ψq(t)〉 〈0, q′| (7.94)

− 1

2
eiϕm(t) |0, q〉 〈ψq′(t)| (γn̂e + κâ†â)U(t)

+ κe−i(ϕn(t)−ϕm(t))U †(t)â |ψq(t)〉 〈ψq′(t)| â†U(t)
]
.

We obtain

cnm := ei(ϕn(t)−ϕm(t)) 〈q| E(|q〉 〈q′|) |q′〉 (7.95)

=
∞∑
k=0

〈k, q| ρ̃(T ) |k, q′〉
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Up to second order in η only terms with k = 0 contribute, so we obtain

cnm = 1 +

∫ T

0

dt
[
− 1

2
〈ψq(t)| (γn̂e + κâ†â) |ψq(t)〉 (7.96)

− 1

2
〈ψ′q(t)| (γn̂e + κâ†â) |ψ′q(t)〉

+ κ 〈ψq(t)| â |ψq(t)〉 〈ψ′q(t)| â† |ψ′q(t)〉
]
.

Using that 〈ψq| n̂e |ψq〉 = |η|2g2n/(∆δ − ng2)2, 〈ψq| â†â |ψq〉 = |η|2∆2/(∆δ − ng2)2

and 〈ψq(t)| â |ψq(t)〉 = −iη∆/(∆δ − ng2) we find

cnm = 1− γn + γm
2

− s2
n + s2

m − 2snsm
2

(7.97)

with

γn =
γng2

(∆δ − ng2)2
I sn =

√
κ∆

∆δ − ng2

√
I. (7.98)

This proves Eq. (7.32).

7.B.3 Effects of Coupling Inhomogeneities on the Fidelity

Analogously to Sec. 7.A.5 we now calculate the effect of inhomogeneities in the
coupling strength in protocol B. We assume again that the g1, ..., gN are independent
and identically distributed random variables and have the quadratic mean ḡ =√

E[g2
j ].

Repeating the derivation in the main text with couplings g1, ..., gN which are different
for each qubit gives a phase

ϕq = − I

δ − 1
∆

∑N
j=1 qjg

2
j

(7.99)

≈ − I

δ − nḡ2/∆
− I∆

(δ∆− nḡ2)2

∑
j

qj(g
2
j − ḡ2) (7.100)

which is accumulated when starting with the qubits in state |q〉 (for q ∈ {0, 1}N .
Here, as in Sec. 7.A.5, we use n =

∑
j qj. Analogously to Eq. (7.87) we obtain

1− F ≤ 1

2N

∑
q∈{0,1}N

[
I∆

(δ∆− nḡ2)2

∑
j

qj(g
2
j − ḡ2)

]2

(7.101)

so that

E[1− F ] ≤ Var[g2
1]

1

2N

N∑
n=0

(
N

n

)
n

[
I∆

(δ∆− nḡ2)2

]2

(7.102)
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7.B.4 Using Protocol B for Arbitrary Phase Gates

In this appendix we discuss how protocol B can be used to implement phase gates
exp(iϕ(n̂)) for arbitrary ϕ = (ϕ(0), ..., ϕ(N)) (Here and in the following a bold font
is used to indicate vector quantities). We aim to do this by applying K pulses
with detunings δ1, ..., δK and ∆1, ...,∆K , as well as driving fields η1(t), ..., ηK(t) and

corresponding pulse energies I = (I1, ..., IK) with Ik =
∫ Tk

0
|ηk(t)|2dt. With this, we

implement a phase gate with ϕ = AI, where A is a (N + 1)×K matrix with

Ank = − 1

δk − ng2/∆k

. (7.103)

By adding the infidelities of the individual pulses we obtain an average gate infidelity
b · I, where

bk =
1

2N(2N+1)

(
N∑
n=0

(
N

n

)
ε

(n,n)
k +

N∑
n,m=0

(
N

n

)(
N

m

)
ε

(n,m)
k

)
(7.104)

with

ε
(n,m)
k =γg2

(
n

(∆kδk − ng2)2
+

m

(∆kδk −mg2)2

)
(7.105)

+ κ∆2

(
1

∆kδk − ng2
− 1

∆kδk − ng2

)2

.

Thus, for a fixed set of detunings δ1, ..., δK and ∆1, ...,∆K , finding the optimal values
of I becomes a linear programming problem:

Find I

that minimizes b · I
subject to AI = ϕ

and I ≥ 0

The solution to this linear program can be readily found using the simplex method,
which is implemented in various software packages [161].

Since the solution of the given linear program is always on an extremal point of
the simplex given by AI = ϕ and I ≥ 0, there are exactly N + 1 indices k such
that Ik 6= 0. To find the optimal pulse detunings one can thus take the following
approach: First take K � N and take the δ1, ..., δK to form a uniformly spaced
grid. Take ∆k − δk some constant independent of k to ensure that the different
pulses can be implemented by only changing the pulse frequency, not the frequency
of the cavity or the |1〉 ↔ |e〉 transition. Now the linear program given above is
solved, giving N + 1 indices k1,..., kN+1 at which Ik 6= 0. To implement the phase
gate given by the ϕ, N + 1 pulses with detunings δk1 ,...,δkN+1

and ∆k1 ,...,∆kN+1
as

well as pulse energies Ik1 , ..., IkN+1
have to be applied.
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A reduction to N − 1 instead of N + 1 required pulses is obtained if one only aims
to implement the phase gate exp(iϕ(n̂)) up to a global phase and single qubit gates.
Formally, this means replacing the constraint AI = ϕ by

∀n ≥ 2 (AI)n − n(AI)1 + (n− 1)(AI)0 = ϕn (7.106)

Since this condition is still linear in I, the optimal I can be found as before through
a linear program.

With the procedure outlined above, I is chosen to maximize the average gate fidelity.
For implementing a CN−1Z gate, our goal is instead to maximize the minimal fidelity.
This is not possible with our linear programming approach in a straight forward
manner, so we resort to a heuristic approach. For this, we replace the bk (Eq. (7.104))
by

bk =
1

(N + 1)2

N∑
n,m=0

ε
(n,n)
k (7.107)

and solve the corresponding linear program. Compared to Eq. (7.104) this approach
has the advantage that it weights the performance of the gate for all n and m equally,
while Eq. (7.104) weights terms with n,m ∼ N/2 higher than terms with extreme
n and m. The resulting I are then used to evaluate the minimal fidelity.
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8 Conclusions and Outlook

In this thesis we have developed several new and optimized gate protocols for two-
and multi-qubit quantum gates on neutral atoms interacting either via the van der
Waals interaction of Rydberg states or by the coupling to a common cavity mode.
For interactions mediated via Rydberg states, a large family of these protocols are
time-optimal protocols, in which a global laser pulse with a smoothly varying phase
is applied on two or more atoms to implement a given quantum gate as fast as
possible. We used the numerical quantum optimal control method of GRAPE to
find the time-optimal protocol for all two-qubit phase gates and several multi-qubit
phase gates, and revealed the mathematical structure of time-optimal protocols
using Pontryagin’s maximum principle. Due to their simple structure, versatility,
and high fidelity, time-optimal protocols have already been used to implement CZ
gates and to generate GHZ states on up to ten atoms, and are expected to remain
crucial building block for neutral atom quantum computers in the future. It is an
interesting future research direction to use time-optimal pulses to replace certain
parts of quantum circuits by native gates, or to generate special states other than
GHZ states. In particular, the development of time-optimal protocols to generate
so-called magic states, which are required for fault tolerant quantum computation
(FTQC), is an exciting research goal.

While the speed of time-optimal protocol reduces the effect of many error sources,
we also showed in this thesis that there are longer but robust gate protocols, which
can achieve higher fidelities in the presence of certain error sources. Specifically, we
developed pulse shapes which implement a CZ gate and are robust to deviations
in the laser amplitude and laser detunings due to Doppler shifts induced by the
thermal motion of the atoms. For Rydberg decay errors we instead showed that
the time-optimal protocols for the CZ and C2Z gate essentially already minimize
the infidelity. There are several experimentally relevant error sources which we did
not include in our discussion of robust gates, and developing approaches to mitigate
them is an important future research direction. In particular, we considered only
quasi-static fluctuations in the laser amplitude and detuning, and an extension of our
results to time-dependent noise sources would be highly desirable. Furthermore, it
remains open whether there is a semi-analytical description of robust pulses, similar
to that of time-optimal pulses developed in Chapter 4.

Despite fast and robust gate protocols, errors are unavoidable in any quantum com-
putation. The framework of FTQC uses redundancy to mitigate the effects of these
errors. In this thesis, we showed that for a surface code on Rydberg atoms the pro-
tocols which minimize the gate infidelity on the physical level can differ significantly
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from protocols that minimize the logical error rate. We identified Rydberg leakage
errors as the source of this discrepancy and developed several protocols in which
these errors are less detrimental. In the future, it will be important to integrate
our results with approaches to correct other errors specific to neutral atoms, such as
atom loss errors or leakage errors to other hyperfine states [84], into one monolithic
FTQC protocol.

Finally, in this thesis we also developed two families of gate protocols that implement
multi-qubit gates on neutral atoms interacting via a common cavity mode instead
of the van der Waals interaction of Rydberg states. This allows for an all-to-all
connectivity and non-local gates between the atoms. The distinguishing feature of
our protocols is that they can be implemented by simply using a classical drive of
the cavity mode, while no addressing of the atoms is necessary, opening up new
experimental possibilities. In the future, variants of these protocols may be used to
generate large non-local entangled states, such as GHZ states, with applications in
quantum sensing, cryptography, and error correction.

The results presented in this thesis have brought the vision of a large scale neutral
atom quantum computer capable at outperforming classical computers in practically
relevant tasks closer to reality. However, many challenges still have to be overcome.
Arguably one of the most important tasks is the implementation of larger FTQC
protocols adapted to the dominant error channels encountered in neutral atoms.
This includes the design of protocols that can simultaneously correct Pauli errors,
Rydberg leakage errors, atom loss errors, and leakage errors to other hyperfine states,
and that make optimal use of erasure errors and biased noise [14, 20]. The time-
optimal and robust gate protocols developed in Chapters 3–5 as well as the discussion
of Rydberg leakage errors in Chapter 6 form a good starting point for the design
of such FTQC protocols. A second avenue is the exploration of low density parity
check (LDPC) codes, which allow to encode more logical qubits in the same number
of physical qubits than traditional surface codes [29, 78, 79]. Developing optimized
approaches for implementing LDPC codes on neutral atoms, implementing logical
gates on qubits encoded in LDPC codes, and understanding and improving the
performance of LDPC codes under errors unique to the neutral atom architecture
are all important future research directions, which can be tackled with the methods
developed in this thesis.
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M. D. Lukin. “Nanophotonic Quantum Phase Switch with a Single Atom”.
Nature 508 (2014), pp. 241–244. doi: 10.1038/nature13188.

[167] A. Jenkins, J. W. Lis, A. Senoo, W. F. McGrew, and A. M. Kaufman. “Yt-
terbium Nuclear-Spin Qubits in an Optical Tweezer Array”. Physical Review
X 12 (2022), p. 021027. doi: 10.1103/PhysRevX.12.021027.

[168] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland. “Surface
Codes: Towards Practical Large-Scale Quantum Computation”. Physical Re-
view A 86 (2012), p. 032324. doi: 10.1103/PhysRevA.86.032324.

[169] P. W. Shor. “Scheme for Reducing Decoherence in Quantum Computer Mem-
ory”. Physical Review A 52 (1995), R2493–R2496. doi: 10.1103/PhysRevA.
52.R2493.

https://doi.org/10.1103/PhysRevLett.112.190403
https://doi.org/10.1103/PhysRevLett.112.190403
https://doi.org/10.1103/PRXQuantum.2.030203
https://mast.queensu.ca/~andrew/teaching/pdf/maximum-principle.pdf
https://mast.queensu.ca/~andrew/teaching/pdf/maximum-principle.pdf
http://www.scipy.org/
https://doi.org/10.1103/PhysRevX.13.041013
https://doi.org/10.1103/PRXQuantum.4.020335
https://doi.org/10.1103/PhysRevA.72.023406
https://doi.org/10.1103/PhysRevA.72.023406
https://doi.org/10.1088/0953-4075/49/20/202001
https://doi.org/10.1088/0953-4075/49/20/202001
https://doi.org/10.1038/nature13188
https://doi.org/10.1103/PhysRevX.12.021027
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevA.52.R2493


174

[170] D. Gottesman. Stabilizer Codes and Quantum Error Correction. 1997. url:
http://arxiv.org/abs/quant-ph/9705052.

[171] E. Knill and R. Laflamme. “Theory of Quantum Error-Correcting Codes”.
Physical Review A 55 (1997), pp. 900–911. doi: 10.1103/PhysRevA.55.900.

[172] A. M. Steane. “Efficient Fault-Tolerant Quantum Computing”. Nature 399
(1999), pp. 124–126. doi: 10.1038/20127.

[173] A. Kubica, A. Haim, Y. Vaknin, H. Levine, F. Brandão, and A. Retzker.
“Erasure Qubits: Overcoming the T1 Limit in Superconducting Circuits”.
Physical Review X 13 (2023), p. 041022. doi: 10 . 1103 / PhysRevX . 13 .

041022.

[174] A. M. Kaufman, B. J. Lester, and C. A. Regal. “Cooling a Single Atom in
an Optical Tweezer to Its Quantum Ground State”. Physical Review X 2
(2012), p. 041014. doi: 10.1103/PhysRevX.2.041014.

[175] J. D. Thompson, T. G. Tiecke, A. S. Zibrov, V. Vuletić, and M. D. Lukin.
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Sortais, A. M. Lance, M. P. A. Jones, G. Messin, A. Browaeys, and P. Grang-
ier. “Two-Dimensional Transport and Transfer of a Single Atomic Qubit in
Optical Tweezers”. Nature Physics 3 (2007), pp. 696–699. doi: 10.1038/
nphys698.

[198] C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt,
M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe.
“Experimental Entanglement of Four Particles”. Nature 404 (2000), pp. 256–
259. doi: 10.1038/35005011.
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