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Sidaty El hadramy

Résumé
Cette thèse présente un nouveau système de réalité augmentée (RA) guidé par l’échographie in-
travasculaire (IVUS) destiné à améliorer la précision des interventions chirurgicales hépatiques mini-
invasives. Bien que l’IVUS offre des avantages pour l’imagerie intraopératoire, aucune méthode
antérieure n’a intégré ces données en temps réel dans le guidage chirurgical des procédures hépa-
tiques. La méthode proposée vise à aligner les données IVUS intraopératoires avec les images CT
préopératoires, offrant ainsi aux chirurgiens une vue anatomiquement précise des structures hépa-
tiques, adaptée à la déformation de l’organe durant l’intervention. Pour la mise en place de ce system,
nous adoptons une approche de recalage non-rigid basée sur les caractéristiques anatomiques, com-
binant un modèle biomécanique avec des modèles d’intelligence artificielle (IA). Cette combinaison
permet d’assurer à la fois la précision et le fonctionnement en temps réel. Les contributions majeures
comprennent le développement du SOniCS, intègrant FEniCS et SOFA pour une modélisation précise
des tissus mous, ainsi qu’une méthode alimentée par l’IA permettant de reconstruire des volumes
IVUS 3D sans systèmes de suivi externes, simplifiant ainsi la configuration chirurgicale. La contri-
bution principale est la méthode de recalage spécifique au patient et fonctionnant en temps réel,
permettant un alignement continu des données IVUS avec les modèles préopératoires et une adap-
tation aux caractéristiques individuelles des patients. Le travail présenté dans cette thèse constitue
une avancée significative dans le domaine de la chirurgie hépatique assistée par ordinateur, offrant
un système pratique pour assister les interventions chirurgicales hépatiques mini-invasives.
Mots clés : Intelligence Artificielle, Réalité Augmentée, Chirurgie Hépatique

Abstract
This thesis presents a novel augmented reality (AR) system guided by intravascular ultrasound (IVUS)
to enhance the precision of minimally invasive liver surgeries. While IVUS provides advantages for in-
traoperative imaging, no previous method has integrated this real-time data into the surgical guidance
of liver procedures. The proposed method aims to align intraoperative IVUS data with preoperative
CT images, providing surgeons with an anatomically accurate view of liver structures that adapt to
the deformation of the organ during the intervention. We adopt a non-rigid registration approach
based on anatomical features to implement this system, which combines a biomechanical model with
artificial intelligence (AI) models. This combination allows for both accuracy and real-time. Major
contributions include the development of SOniCS, a framework that integrates FEniCS and SOFA
for accurate soft tissue simulation, and an AI-driven method for reconstructing 3D IVUS volumes
without external tracking systems, thus simplifying the surgical setup. The primary contribution of
this thesis is developing a patient-specific, real-time registration method that allows for continuous
alignment of IVUS data with preoperative models and adaptation to patient-specific characteristics.
The work presented in this thesis represents an advancement in computer-assisted liver surgery, pro-
viding a practical system to assist minimally invasive liver interventions.
Key words : Artificial Intelligence, Augmented Reality, Liver Surgery
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CHAPTER 1. INTRODUCTION

1.1 Clinical Context

The liver is a highly complex and fascinating organ located in the thoracoabdominal cav-

ity, in direct contact with the diaphragm, which separate both cavities. It is the largest

organ in the human body and consists of two lobes divided by a falciform ligament (See

Figure 1.1). The liver holds approximately 13% of the body’s blood supply at any given

time [Meskell (2010)]. This blood primarily enters the liver through the portal vein, car-

rying nutrients and substances from the gastrointestinal tract, spleen, pancreas, and gall-

bladder. In addition, the liver receives oxygen-rich blood from the hepatic artery, which

branches directly from the celiac trunk and descending aorta.

Figure 1.1: Anatomy of the liver. The images are taken from: https://web.unicz.it

Inside the liver, the portal vein, hepatic artery, lymphatics, nerves, and hepatic bile duct

converge at a central location within the liver, forming a network that branches out through

a structure known as the portal canal, see Figure 1.2. From the portal canal, these path-

ways extend throughout the liver, culminating in the sinusoids, known as the liver’s cap-

illary system. Here, blood from the portal vein combines with blood from the hepatic

artery’s end-arterial branches. After traversing the sinusoids, the mixed blood flows into

the central veins, eventually exiting the liver via the hepatic vein. This process supports

vital functions such as filtering toxins from the bloodstream, regulating blood sugar lev-

els, and producing bile for fat digestion. This makes the liver vulnerable to various dis-

eases. These diseases contribute to multiple abnormalities and shorten life expectancy

[Landreau et al. (2015)].

Liver cancer, with its rising incidence and high mortality rates, presents a significant

global health challenge. It is the fifth most common cancer worldwide and the third lead-

ing cause of cancer mortality [Ferlay et al. (2010)]. Hepatocellular carcinoma (HCC), the
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1.1. CLINICAL CONTEXT

Figure 1.2: Network of interconnecting and diverging blood vessels within the liver. The
image is taken from: https://web.unicz.it.

primary form of liver cancer, accounts for 4.7% of all new cancer cases and 8.2% of cancer-

related deaths [Bray et al. (2018)]. The liver is also a common site for metastases from

other cancers, particularly colorectal cancer (CRC), which is the second most common

cancer globally, responsible for 10.2% of new cases [Steele et Ravikumar (1989)]. Each

year, around 1,750,000 individuals are expected to be diagnosed with either primary or

secondary liver cancer [Bray et al. (2018)], highlighting the urgent need for effective treat-

ment and prevention strategies. Major risk factors include chronic hepatitis B and C infec-

tions, cirrhosis, excessive alcohol consumption, and obesity. Liver cancer is characterized

by the appearance of abnormal cells that do not perform their usual functions. These ab-

normal cells form tumors, tissues that vary in size and shape and can develop in any part

of an organ.

Depending on the size and location of the tumors, as well as the patient’s overall con-

dition, liver cancer can be treated using several methods: liver resection, Radiofrequency

Ablation (RFA), or liver transplantation. The appropriate treatment is typically deter-

mined through multidisciplinary decision-making, which involves detailed imaging and

assessment of the organ’s characteristics and the patient’s overall health. Liver resection

is a surgical procedure that involves removing a segment of the liver containing tumors

[Orcutt et Anaya (2018), Galle et al. (2018)]. The primary challenge with this approach is

ensuring that the remaining portion of the liver is sufficiently large and receives adequate

blood supply to maintain normal liver function. Surgeons carefully assess the patient’s

3
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CHAPTER 1. INTRODUCTION

liver health, along with the tumor’s location and its proximity to surrounding structures,

to ensure that the liver can regenerate and maintain its vital functions after surgery. In

RFA, clinicians use heat to destroy cancer cells by inserting a needle-like probe directly

into the tumor [Curley et al. (1999)], hence destroying unhealthy cells. This minimally in-

vasive technique is often used for smaller tumors or patients who are not candidates for

surgery. Liver transplantation is considered for a more extensive disease [Llovet (2005)].

This procedure involves replacing the diseased liver with a healthy liver from a donor, of-

fering a potential cure for patients with advanced liver cancer. For HCC, liver transplan-

tation is often the preferred treatment due to its potential to remove both the tumor and

any underlying liver disease simultaneously. However, the scarcity of compatible donors

frequently makes transplantation impractical for many patients, leading to liver resection

as the more viable alternative. In contrast, for CRC that has metastasized to the liver, re-

section is generally the preferred approach. This preference is because CRC metastases

often involve discrete, localized tumors that can be effectively removed while preserving

liver function.

1.2 Liver surgery

Liver surgery, particularly hepatectomy or liver resection, is the single and only treatment

with curative intentions. This surgical procedure involves removing the tumor along with

a margin of healthy tissue, aiming to eradicate cancer cells and prevent recurrence [Or-

cutt et Anaya (2018)]. The generative capacity of the liver allows it to recover and regrow

after significant portions are excised, making surgery a viable option for many patients.

A successful surgical resection necessitates the complete removal of the tumor(s) with

safety margins while preserving as much healthy tissue as possible. Additionally, vital

liver parts, such as arteries and veins, must be spared or strategically divided during the

surgery. These requirements make resection procedures highly complex from both tech-

nical and clinical perspectives. Before the intervention, an initial contrasted 3D medical

imaging method, such as CT or MRI, is usually acquired from the patient’s abdomen area.

This 3D image, called preoperative, helps clinicians localize the tumors’ positions, evalu-

ate the difficulty of the intervention, and plan the resection if needed. Depending on the

patient’s condition, the surgery can be categorized into two main types: open and min-

imally invasive (including laparoscopic and robotic), see Fig 1.3. The choice between

these approaches depends on several factors, including the tumor’s size and location, the

patient’s overall health, and the surgeon’s expertise [Mirnezami et al. (2011)]. These con-

siderations help determine the most appropriate surgical method to achieve the best pos-
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sible outcome.

Figure 1.3: Surgical approaches to liver resection: On the left, the laparoscopic ap-
proach is depicted, involving small incisions through which laparoscopic tools are in-
serted to perform the surgery. The open surgery approach is illustrated on the right,
where a large incision is made to access the liver directly. The images are taken from:
https://arinmed.com/

Open liver surgery is the traditional approach, where a large incision is made in the

abdomen to access the liver directly. This method provides the surgeon with a clear and

comprehensive view of the liver and surrounding structures, allowing for extensive pro-

cedures and thorough tumor removal. The advantages of open surgery include its ability

to address more significant and complex tumors and the surgeon’s greater access to the

liver for precise manipulation [Wang et al. (2019)]. However, open surgery also has no-

table drawbacks, such as a longer recovery time, increased risk of postoperative pain and

infection, and a more visible scar. These factors can impact the patient’s overall recovery

experience and time away from daily activities.

Laparoscopic liver resection (LLR), or minimally invasive liver surgery, is character-

ized by the use of small incisions through which specialized instruments and a camera

are inserted to operate the patient [Reich et al. (1991)]. LLR offers significant advantages

over traditional open liver surgery. The minimally invasive nature of the procedure, which

involves smaller incisions, leads to reduced postoperative pain and faster recovery times

for patients. This results in shorter hospital stays and a quicker return to normal activi-

ties and work. Additionally, LLR typically causes less blood loss during surgery, reducing

the need for blood transfusions and minimizing the risk of related complications [Wang

et al. (2019)]. However, LLR has notable drawbacks that can impact its effectiveness and

suitability for some patients, as reported by several studies [Cherqui et al. (2000), Dulucq

et al. (2005)]. One major drawback of LLR is the limited access to the liver and surround-

ing structures. The small incisions restrict the surgeon’s ability to maneuver and visualize
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the entire liver comprehensively. This limitation can make it challenging to address large

or complex tumors effectively, as the surgeon has less room to work and may not be able

to see or reach certain areas of the liver fully. Another significant drawback is the techni-

cal complexity involved in LLR. The use of specialized instruments and the laparoscopic

camera requires a high degree of precision and skill. Surgeons must navigate the limited

space and operate with a 2D view of the liver, which can be less intuitive than the direct

3D view obtained during open surgery. A further drawback is the lack of haptic feedback

during laparoscopic procedures. Unlike open surgery, where surgeons can directly feel

the tissues and organs they are working on, laparoscopic surgery relies on visual cues and

instrument resistance. This absence of tactile sensation can make it more challenging

to gauge the force needed, increasing the risk of inadvertent damage to healthy tissue or

vital structures. The lack of haptic feedback necessitates greater reliance on visual infor-

mation, which can sometimes be insufficient for ensuring the delicate handling required

in complex liver surgeries.

Due to these drawbacks, accessing tumors outside the anterior periphery of the right

lobe or the left lobe is challenging [Descottes et al. (2003)]. Tumors in these regions are

typically considered high-risk for resection because laparoscopic tools may not easily

reach them, and major vessels nearby could cause life-threatening blood loss if dam-

aged. Image-Guided Surgery (IGS) is a modern surgical technique that leverages ad-

vanced imaging technologies to assist surgeons in performing precise and minimally in-

vasive procedures [Blau et al. (2016)]. In the context of LLR, IGS is invaluable due to the

liver’s complex vascular structure and its proximity to other vital organs. It allows sur-

geons to visualize and navigate the anatomy in real-time, improving accuracy and reduc-

ing the risk of complications. One emerging form of IGS is augmented reality (AR). AR su-

perimposes the 3D preoperative models of the patient’s liver, including tumors and blood

vessels, onto the surgeon’s view, providing a detailed roadmap during the operation [Acidi

et al. (2023)]. This integration improves spatial orientation and situational awareness,

thus improving real-time decision-making. Making locating and removing liver lesions

easier while preserving healthy tissue precisely.

1.3 Augmented reality

Augmented reality (AR) is a method that can potentially enhance the precision of LLR

[Brunet et al. (2019); Haouchine et al. (2013)]. Preoperative images, such as CT or MRI

scans, are used to create a detailed three-dimensional model of the liver, including its in-

ternal structures. During the preoperative planning stage, surgeons segment and identify
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the organ and its internal structures, including tumors. This three-dimensional model,

complete with marked tumors, can then be integrated with the intraoperative view [Feuer-

stein et al. (2007)] to provide AR. By incorporating AR, clinicians can visualize the liver

model overlaid with the real-time surgical field during surgery. This integration allows

them to accurately identify the current positions of the tumors on the organ, facilitating

precise resection. The use of AR in LLR would be beneficial as it compensates for the lim-

ited field of view inherent in minimally invasive procedures. AR provides surgeons with a

comprehensive, enhanced visualization that improves their ability to navigate and oper-

ate within the complex anatomy of the liver. An example of AR for LLR, from Haouchine

et al. (2013), is illustrated in Figure 1.4, where the 3D model of the liver, portal and hepatic

veins, and the tumors are overlaid onto the laparoscopic view.

Figure 1.4: An example of Augmented reality (AR) in laparoscopic liver resection (LLR)
involves using a preoperative CT scan to create a 3D model of the liver and its internal
structures. This model is then overlaid on the intraoperative view to assist surgeons dur-
ing the procedure. The image is from Haouchine et al. (2013).

The soft tissue nature of the liver and the patient’s respiration, combined with the

surgeon’s interactions with the organ, cause significant deformation during surgery. This

dynamic environment means that the preoperative CT images often no longer match the

current shape and position of the liver and its structures. The liver moves and deforms

as the patient breathes, and surgical manipulations further alter its shape. These changes

make it challenging to maintain the accuracy of the preoperative model during the actual

procedure. Consequently, the preoperative images can become misaligned with the liver’s

real-time anatomy, reducing their effectiveness in accurately tracking tumors and inter-

nal structures. This misalignment presents a significant challenge, as surgeons cannot
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rely on the preoperative model for precise guidance. Discrepancies between the preop-

erative images and the liver’s current state can lead to difficulties in accurately locating

tumors and navigating around critical structures. Without real-time updates, the risk of

incomplete tumor removal or accidental damage to healthy tissue increases. To address

this issue, the preoperative model can be enhanced with intraoperative imaging tech-

niques that provide real-time updates on the liver’s deformation and internal structure

movements. Integrating modalities such as intraoperative CT, MRI, fluoroscopy, laparo-

scopic cameras, and ultrasound can dynamically adjust the preoperative model to reflect

the liver’s current position and shape, offering more accurate and up-to-date informa-

tion [Oliveira et Tavares (2014)]. This approach enables the AR to be updated during the

intervention regarding organ deformation, surgeon interactions, and human respiration.

Enhancement of the preoperative model through integration with intraoperative imag-

ing techniques is achieved via a process known as registration. Registration involves

aligning and fusing the preoperative data with intraoperative data to create a coherent

and updated organ representation. This process ensures a dynamic adjustment of the

preoperative model to accurately reflect the liver’s current anatomy by correcting for any

deformation or movement that has occurred. The precision of the registration is often

highly correlated with the choice of intraoperative imaging modalities [Zhang (2021)].

High-quality intraoperative data permits an accurate alignment of preoperative models

with the liver’s current anatomy, ensuring precise tumor localization and navigation. In-

traoperative CT and MRI are highly effective, offering detailed and high-resolution im-

ages. However, they have drawbacks such as radiation exposure, increased procedural

time, and higher costs and logistical complexities [Shekhar et al. (2010)]. Fluoroscopy

provides real-time imaging but is limited by radiation exposure and offers less detailed

soft-tissue contrast. Laparoscopic cameras are helpful for direct visualization but are con-

strained by a restricted field of view and challenging depth perception, providing no infor-

mation on internal structures [Madhok et al. (2022)]. IntraOperative UltraSound (IOUS),

though it has lower image resolution than other cited modalities, is effective for real-time

imaging and provides in-depth information about the liver’s internal structures. Its ma-

jor advantages include the absence of radiation exposure, making it safer for patients,

and its ability to deliver immediate feedback during surgery. These features make IOUS a

practical and valuable tool in clinical settings, particularly for tracking the liver’s internal

structures. It can offer real-time data to support an accurate registration of preoperative

models with the liver’s current anatomy [Nakamoto et al. (2007); Shahin et al. (2014)].
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1.4 Intraoperative Ultrasound (IOUS)

Ultrasound imaging is a medical technique that uses high-frequency sound waves to pro-

duce images of structures within the body. The physics involves sending sound waves

into the body using a transducer, which also receives the echoes that bounce back from

tissues. These sound waves are generated by piezoelectric crystals within the transducer

that vibrate when an electric current is applied, creating pressure waves propagating through

the body. A process known as beam forming is employed to utilize these waves effectively.

Beamforming directs the waves in a specific pattern to focus on a particular area, enhanc-

ing image resolution and clarity. The returning echoes are captured by the transducer

and converted back into electrical signals. In B-mode (brightness mode) imaging, these

signals are processed to create a two-dimensional grayscale image, where each pixel’s

brightness corresponds to the echo’s amplitude, representing different tissue densities

and structures within the scanned area. This method provides detailed cross-sectional

images, aiding in diagnosing and monitoring various medical conditions. Placing an ul-

trasound probe in contact with the tissue of interest allows the measurement of reflected

sound waves to produce an image of the underlying anatomy. Different tissue properties,

particularly at organ boundaries, determine the contrast in the image.

The use of ultrasound imaging in intraoperative interventions was introduced in the

late 1980s [Castaing et al. (1985); Machi et al. (1987)] to enhance the accuracy and safety

of these procedures. IntraOperative UltraSound (IOUS) has been particularly valuable in

open liver surgery, allowing surgeons to visualize deeply located tumors within the liver

parenchyma and identify critical surrounding blood vessels. In addition to open surg-

eries, ultrasound technology has been adapted for minimally invasive surgeries (MIS).

Using ultrasound in these settings is especially important to compensate for the draw-

backs of MIS surgeries presented earlier. To support the requirements of MIS, specialized

ultrasound probes have been developed, including laparoscopic ultrasound (LUS) and

intravascular ultrasound (IVUS), each designed to meet the needs of different types of

procedures.

1.4.1 Laparoscopic Ultrasound (LUS)

Building on the success of IOUS in open surgeries, Laparoscopic Ultrasound (LUS) (an ex-

ample of a LUS probe is presented in Figure 1.5) was developed to extend these benefits

to minimally invasive procedures. Introduced by Fukuda et al. (1984), LUS involves cou-

pling an ultrasound transducer to a standard laparoscopic tool, enabling the surgeon to

maneuver the probe to scan the liver tissue while observing the laparoscopic video feed,

9



CHAPTER 1. INTRODUCTION

see Figure 1.6. The transducer is typically mounted on a flexible tip that can be articulated

in multiple directions (see Figure 1.5), facilitating comprehensive liver scanning. LUS has

become especially important in laparoscopic staging procedures, where it helps assess tu-

mor resectability without large incisions. Since laparoscopic techniques lack tactile feed-

back, LUS provides essential localization sensitivity, often detecting tumors that may not

be visible on preoperative scans, thus enhancing surgical planning and outcomes.

Figure 1.5: An example of Laparoscopic Ultrasound (LUS) probe, Model: BK medical
4-way Laparoscopic linear array transducer 8666-RF. The image is taken from https:
//kenmedsurgical.com.

Figure 1.6: Left: Laparoscopic camera image showing the liver, with the LUS transducer
in contact with the organ. Right: Image captured using the LUS transducer. Both images
are taken from Adams (2014).

However, performing LUS during LLR is particularly demanding due to the combined

difficulties of laparoscopy’s poor ergonomics, limited field of view, and the skills required

to maneuver the probe and analyze images. Additionally, LUS images can be intermittent

and asynchronous with the ongoing surgery, necessitating multiple iterations and repeti-

tive steps, such as alternating between inserting the probe and repositioning surgical in-

struments. Moreover, manipulating the probe can cause liver deformation, further com-

plicating image interpretation and integration in an AR system. Therefore, a method that
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allows for continuous and synchronous ultrasound assessment throughout the surgery,

with minimal interruptions and without deforming the organ, would offer more potential

for registration and AR applications.

1.4.2 IntraVascular Ultrasound (IVUS)

Intravascular ultrasound (IVUS) is an intravascular imaging technique mainly used in

interventional cardiology to analyze lesion morphology, measure plaque burden, guide

stent sizing, evaluate stent expansion, and detect procedural complications [Mintz et al.

(1995)]. It involves the use of a catheter equipped with a miniature ultrasound transducer

at its tip (Figure 1.7 illustrates an IVUS transducer). During cardiovascular procedures,

the catheter is inserted into the patient’s vascular system, typically through the femoral

or radial artery, and navigated toward the coronary arteries under fluoroscopic guidance.

The catheter is then advanced through the vascular pathway to the target area within the

coronary arteries [Parviz et al. (2018)]. Once positioned correctly, the transducer emits

sound waves penetrating the vessel walls. These sound waves are reflected to the trans-

ducer, which then processes the echoes to create detailed cross-sectional images of the

vessel lumen and wall. The IVUS catheter can be manually [Parviz et al. (2018)] pulled

back through the artery, allowing for a continuous scan and a view of the vessel’s condi-

tion. This imaging technique helps cardiologists accurately assess plaque composition,

vessel size, and the effectiveness of stent placement, thereby enhancing the precision and

safety of cardiac interventions.

Figure 1.7: Left: An example of IntraVascular Ultrasound (IVUS) probe. Model: ACUSON
AcuNav™ Ultrasound Catheter. Right: Zoom on the tip where an ultrasound transducer
is equipped. Both images are taken from: https://www.jnjmedtech.com/.

IVUS is also finding significant applications in liver surgery, where its minimally in-

vasive and radiation-free imaging capabilities offer substantial benefits for intraoperative

guidance. Urade et al. (2021) demonstrated the feasibility of completing the entire navi-

gation of the liver through the Inferior Vena Cava (IVC) and the Hepatic Vein (HV), relying
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solely on IVUS images without the need for additional X-ray imaging techniques. As il-

lustrated in Figure 1.8, the catheter is positioned in the lumen of the inferior vena cava.

Therefore, an overall and full-thickness view of the liver can quickly and easily be obtained

through mostly rotation movements of the catheter, while it is constrained to the lumen

of the inferior vena cava and with no interaction with the tissue (contactless).

Figure 1.8: Intravascular ultrasound image-guided liver navigation identifying the follow-
ing structures: 1. Right hepatic vein; 2. Right median hepatic vein; 3. Left median hepatic
vein; 4. Left lateral hepatic vein. The image is taken from Urade et al. (2021).

In contrast to LUS, IVUS offers continuous, synchronous imaging throughout the pro-

cedure without occupying one of the incisions used for specialized instruments and the

laparoscopic camera. LUS, being in direct contact with the liver’s surface, can induce

organ deformation and compress adjacent blood vessels, complicating image interpreta-

tion and distorting the liver’s natural shape. This external pressure can impede the accu-

racy of the visual data, making it difficult for surgeons to assess the liver’s condition and

navigate effectively. On the other hand, IVUS is situated within the blood vessels, avoiding

direct contact with the liver, and thus does not alter the liver’s shape or compress its ves-

sels. It moves in harmony with the liver’s natural motion, including respiratory changes,
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providing more stable images. This characteristic of IVUS makes it easier to interpret the

imaging data, facilitating better surgical decision-making and enhancing the overall effec-

tiveness of liver interventions. The interpretation is demonstrated by Urade et al. (2021)

as illustrated in Figure 1.9 where ultrasound images of the hepatic veins are captured by

the IVUS positioned at the inferior vena cava.

Figure 1.9: Intravascular ultrasound images of the hepatic veins are captured from the
inferior vena cava, as depicted in the schematic showing four ultrasound planes labeled
A, B, C, and D. In these images, the right side represents the proximal end, and the left side
represents the distal end. The specific veins are labeled as follows: A: Right hepatic vein,
B: Right median hepatic vein, C: Left median hepatic vein, and D: Left lateral hepatic vein.
This illustration was created by Urade et al. (2021).

1.5 Ultrasound-guided augmented reality

In the previous sections, we have discussed the advantages that AR may offer in the con-

text of liver surgery, particularly in addressing the limitations of LLR. We presented how

augmented reality can enhance the surgeon’s ability to visualize and resect tumors ac-

curately, thus overcoming the restricted field of view inherent in laparoscopic surgery.

Additionally, we explored the role of IOUS as a valuable real-time intraoperative imaging

modality that enables in-depth perception of anatomical structures, guiding surgeons to-

ward more precise tumor resections. As previously mentioned, the AR system is built by

registering intraoperative and preoperative data, allowing more accurate surgical naviga-

tion. In this section, we will delve into the mathematical formulation of the registration

problem, which is crucial to performing augmented reality, and provide a brief overview
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of the state-of-the-art registration methods, with a particular focus on methods involving

ultrasound.

1.5.1 The registration problem

Let M and F be the fixed and moving images, defined in domains ΩM ⊂ R3 and ΩF ⊂ R3,

respectively. The domain ΩM corresponds to the spatial region covered by the moving

image, while ΩF defines the spatial region of the fixed image. The registration problem

aims at finding a transformation φ∗ : ΩM → ΩF , that maximizes the similarity between

features in M to homologous in F according to a given similarity criterion Lsi m . This

transformation typically consists of two components. The first is a rigid transformation,

denoted T : ΩM → ΩF , which maps the domain ΩM to ΩF . This linear transformation

includes a translation vector t ∈ R3 and rotation matrix R ∈ R3×3 transformations. For a

point x ∈ΩM , its rigid transformation is written as:

T (x) = t+Rx (1.1)

This rigid transformation handles global alignment but does not account for local defor-

mations. A second component is introduced to address local variations and deforma-

tions: a non-linear or non-rigid transformation u : ΩF →ΩF , which is applied after the

rigid transformation. The non-rigid transformation is represented by a displacement field

u that allows for more flexible alignment by deforming the moving image to match the

fixed image more accurately, especially in cases where the organ or structure undergoes

local shifts or deformations during surgery. Therefore, the combination of both transfor-

mations φ, for a given point x ∈ΩM , reads as:

φ(x) = T (x)+u(T (x)) (1.2)

The optimal transformation φ∗ is then found by maximizing a similarity metric that eval-

uates how well the transformed moving image aligns with the fixed image. This is mathe-

matically formulated as:

φ∗ = argmax
φ

Lsi m(M ◦φ,F ) (1.3)

Solving Equation 1.3 typically relies on optimization methods. Classical optimization

techniques are typically employed to iteratively adjust the transformation parameters to

minimize the difference between the two images. For rigid registration, gradient-based

methods such as gradient descent [Baldi (1995)], Gauss-Newton [Pratt et al. (1998)], or
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Levenberg-Marquardt [Moré (1978)] are commonly used. These methods compute the

gradient of the similarity metric with respect to the transformation parameters and up-

date the transformation iteratively until convergence. For non-rigid registration, where

complex deformations are required, more advanced optimization methods are often ap-

plied. Variational approaches and regularization techniques [Henn et Witsch (2005)] are

used to balance the trade-off between image similarity and transformation smoothness.

For example, methods based on B-splines or thin-plate splines [Oliveira et Tavares (2014)]

are used to model the deformation field, with optimization ensuring both accurate align-

ment and physically plausible deformations. Recently, Deep learning-based registration

methods have gained prominence due to their ability to learn complex transformations

and handle non-linear deformations more efficiently [Fu et al. (2020)]. These methods

use convolutional neural networks (CNNs) to predict the transformation parameters di-

rectly from the image data. In supervised learning approaches, a neural network is trained

to learn the mapping between image pairs and their corresponding transformation pa-

rameters [Eppenhof et Pluim (2019)] (e.g., translation, rotation, and deformation fields).

The training process requires ground-truth transformations, which are often obtained

from manually annotated datasets [Hu et al. (2018)]. In unsupervised deep learning ap-

proaches, the network learns to register images without explicit ground-truth transfor-

mations [Balakrishnan et al. (2018)]. These methods minimize a loss function that incor-

porates a similarity metric directly between the moving and fixed images and a regular-

ization term that ensures smooth and realistic deformations. One popular framework is

VoxelMorph, introduced by [Balakrishnan et al. (2019)], which uses a CNN to predict the

displacement field that aligns two medical images.

The definition of the similarity metric is essential to ensure an accurate alignment be-

tween fixed and moving images. Two main approaches can be used to compute this sim-

ilarity. The first approach is intensity-based, where the similarity is computed directly

within the image space, comparing pixel or voxel intensities without requiring explicit

segmentation. The second approach is feature-based. It involves detecting specific fea-

tures or anatomical structures from both images and calculating the similarity based on

those extracted features in Euclidean space. This method relies on explicit geometrical or

structural features for alignment. These features can be specific points on the organ or

internal structures surface extracted through segmentation process.

1.5.2 Intensity-based registration

In intensity-based registration methods, the similarity between the moving image M and

the fixed image F is computed directly based on the intensity values at corresponding
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pixels or voxels in the two images. This approach assumes that there is a meaningful

relationship between the intensities of corresponding points in both images, and the reg-

istration is driven by this intensity relationship. Depending on the imaging modalities,

intensity values may be directly comparable (e.g., in mono-modality registration) or may

require more complex statistical relationships (e.g., in multi-modality registration). This

leads to two distinct cases in intensity-based registration. In mono-modal registration,

where the images come from the same modality (such as two US scans), Identity and

Linear mappings are commonly considered [Roche et al. (2000)]. The identity mapping

assumes that the moving and fixed images are identical once they are registered. The Sum

of Squared Differences (SSD), commonly used as a similarity metric for mono-modal reg-

istration [Mohammadi et Keyvanpour (2021)], relies on this assumption. Introduced by

Barnea et Silverman (1972), it is formulated as:

SSD(F, M) = 1

N

∑
x∈ΩF∩M

|M(x)−F (x)|2 (1.4)

Where ΩF∩M represents the overlap between the ΩM and ΩF . N is the number of points

in the overlap. However, SSD is effective only when there are no significant changes in the

contrast between the moving and fixed images [Hill et al. (2001)]. This limitation becomes

particularly evident in imaging modalities such as ultrasound, where noise and intensity

variations are prevalent. Ultrasound images, including speckle noise, can distort inten-

sity values and reduce the effectiveness of SSD, making it difficult to achieve accurate

alignment. To overcome this limitation, Rosenfeld (1976) proposed the Normalized Cross

Correlation (NCC) similarity, which assumes the intensities of M as a linear function of

the intensities of F when both are aligned, it reads as:

NCC(F, M) =
∑

x∈ΩF∩M (M(x)− M̄)(F (x)− F̄ )√∑
x∈ΩF∩M (M(x)− M̄)2 ∑

x∈ΩF∩M (F (x)− F̄ )2
(1.5)

In Equation 1.5, M̄ and F̄ are the mean intensities in the images M and F respectively. This

metric measures how both image intensities are linked by a linear relation when aligned.

Although NCC is more general than SSD and effective for mono-modal registration prob-

lems, numerous studies have shown that it is not sufficiently robust for multi-modal sce-

narios [Mohammadi et Keyvanpour (2021); Roche et al. (2000)].

For mutli-modal registration, the statistical dependency between the intensity values

of the images is usually measured to evaluate the similarity between images [Tingting et

Ning (2013)]. The Mutual Information (MI) is the most popular function for the purpose

[Studholme et al. (1997)]. Introduced in the work of Collignon et al. (1995) and the works

of Wells et al. (1996), MI quantifies how much knowing the intensity value of one image
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reduces the uncertainty on the intensity value in the other image [Viola et Wells (1997)]

and is expressed as:

MI(F, M) = ∑
x,y∈ΩF∩M

p(x, y) log
p(x, y)

p(x)p(y)
(1.6)

This equation is similar to the concept of Kullback-Leibler divergence, which is used to

measure the difference between two probability distributions. In this context, MI(F,M)

measures the statistical dependence between the two image distributions, F and M . Specif-

ically, it compares the joint distribution p(x, y), which represents the likelihood of inten-

sity pairs occurring together in both images, to the product of the marginal distributions

p(x)p(y), which represents the scenario where the intensity values of F and M are statis-

tically independent. When the joint distribution is similar to the product of the marginals,

the images share little or no information, indicating independence. Conversely, higher MI

signifies greater dependency between the two distributions, meaning the images share

more structural or intensity-related information. This makes MI suitable for multi-modal

registration, as it can capture the relationship between images with different intensity

scales or contrasts, unlike SSD and NCC similarities presented earlier.

MI and its variants like Normalized Mutual Information (NMI) proposed by [Studholme

et al. (1999)], and Entropy Correlation Coefficient (ECC) proposed by [Maes et al. (1997)]

have been effective in various multi-modal registration problems. Nevertheless, many

studies have shown that MI shows weaknesses in the context of US images [Roche et al.

(2000); Woods et al. (1992)]. This limitation can be attributed to both the inherent inten-

sity variations in US images and their unique physical imaging principles. Unlike other

imaging modalities, which often display clear intensity patterns, ultrasound images pri-

marily show contrast at the boundaries between different tissues. This is because ultra-

sound signals are reflected at interfaces with a change in acoustic impedance. Conse-

quently, regions within the tissue interfaces, where intensity patterns are less defined and

often obscured by speckle noise, do not provide consistent intensity information. As a

result, successful registration of ultrasound images with other modalities must focus on

capturing and aligning spatial information related to these tissue interfaces rather than

relying solely on intensity-based similarities. Various MI variants have been developed

and adapted to address this limitation [Rivaz et al. (2015)]. For instance, Roche et al.

(2000) introduced a modified version of MI that incorporates functional mapping [Wein

et al. (2007)] between the intensities of the fixed and moving images.
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1.5.3 Feature-based registration

Feature-based registration is a technique used to align images by identifying and match-

ing distinct features, such as points, edges, or landmarks, common between them [Abdel-

Basset et al. (2017)]. This approach has been widely used in multi-modal medical imag-

ing, where aligning images from different modalities (e.g., CT, MRI, US) is challenging due

to their varying intensity profiles [Guan et al. (2018)]. As explained earlier, in multi-modal

registration, voxel intensities may not directly correspond between modalities because

each captures different aspects of anatomy. However, feature-based methods overcome

this limitation by focusing on consistent anatomical landmarks, such as bones, organs, or

tumors, which are present in both images. These features are typically obtained by seg-

menting the fixed and moving images, allowing the registration process to concentrate

on aligning the key anatomical structures. The similarity in feature-based registration is

usually measured by calculating the Euclidean distance between corresponding features

in both images, with the aim of minimizing these distances for optimal alignment [Guan

et al. (2018)].

The simplest feature-based method is Point-based Registration, originally proposed

by Arun et al. (1987). In this technique, a set of corresponding points, known as fidu-

cials, is selected from the two images being registered. The algorithm then applies a least-

squares fitting process to minimize the distance between these matched points, result-

ing in a rigid transformation that aligns the two datasets. While this method is effective

when dealing with small, well-defined sets of points, it becomes increasingly challenging

as the size of the point sets grows. Larger datasets often lack distinct, easily identifiable

features, making manual point matching difficult. To address this issue, Iterative Closest

Point (ICP), introduced by Besl et McKay (1992) and later extended by Chen et Medioni

(2002), automates the matching process between two sets of points. Instead of manually

selecting corresponding points, ICP iteratively finds the closest points between the two

point sets and applies transformations to align them. Two key variants of ICP have been

developed: point-to-point ICP and point-to-plane ICP.

In point-to-point ICP [Besl et McKay (1992)], the algorithm minimizes the Euclidean

distance between corresponding points from the two sets. For each point in the moving

image, the closest point in the fixed image is identified, and a rigid transformation is com-

puted to minimize the sum of squared distances between these matched points. On the

other hand, point-to-plane ICP [Chen et Medioni (2002)] improves upon point-to-point

ICP by incorporating the local geometry of the surface. Instead of minimizing the distance

between corresponding points, point-to-plane ICP minimizes the distance between each

point in the moving set and the plane defined by the surface normal at the correspond-
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ing point in the fixed set. This approach leverages additional geometric information by

considering the orientation of the surface. Both ICP variants are widely used in various

applications, with the latter often preferred for datasets with smooth surfaces due to its

stability. However, ICP is inherently limited to rigid transformations, which makes it inad-

equate for registering images with non-linear deformations, such as those involving soft

tissues in medical imaging.

Non-rigid feature-based registration methods have been developed to address non-

linear deformations. One of the simpler approaches involves estimating point-wise trans-

formations, such as affine transformations, under smoothness regularization constraints

[Liao et al. (2009)]. Other methods, like Coherent Point Drift (CPD) [Hirose (2021); My-

ronenko et Song (2010)], use a Gaussian Mixture Model (GMM) to build a 3D displace-

ment field, ensuring coherent motion between nearby points. Another strategy is us-

ing deformation graphs, representing the scene as a sparse graph, and deformations are

propagated from graph nodes to the entire surface. This method captures deformations

while maintaining computational feasibility [Sumner et al. (2007)]. The Non-rigid Itera-

tive Closest Point (NICP) algorithm further extends ICP by simultaneously optimizing the

alignment and deformation regularized by a deformation graph [Li et al. (2008)]. Learning-

based approaches, such as FlowNet3D [Dosovitskiy et al. (2015)], use 3D neural networks

to predict displacement fields between point clouds, offering real-time solutions for non-

rigid registration. Although these methods are fast, they can struggle with large defor-

mations. More recent techniques, like Lepard [Li et al. (2022)], incorporate Transformers

[Vaswani et al. (2017)] to improve point-to-point mapping to guide non-rigid registration.

Spectral methods, such as functional map approaches [Ovsjanikov et al. (2012)], estimate

correspondence in the spectral domain but are often limited to connected surfaces.

While these methods have advanced non-rigid registration considerably, physics-based

registration techniques provide an even more anatomically accurate solution, particu-

larly for medical imaging [Cotin et al. (1999); Courtecuisse et al. (2010b)]. These meth-

ods employ biomechanical models that simulate the physical properties of tissues, al-

lowing for realistic deformation under breathing, surgical manipulation, or organ motion

[Plantefeve et al. (2016); Suwelack et al. (2014)]. By incorporating biomechanical con-

straints that mimic how soft tissues behave in real-world scenarios, these physics-based

approaches ensure that the registration aligns the images and respects the underlying

physical and anatomical structure [Brunet (2020); Plantefeve et al. (2016)]. These biome-

chanical models often employ the principles of continuum mechanics governed by phys-

ical laws such as conservation of momentum, mass, and energy. To solve the resulting

system of partial differential equations (PDEs), numerical methods like the finite element

method (FEM) are typically used.
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A common approach within these physics-based frameworks is using hyperelastic

formulations, which are well-suited to simulate the behavior of biological tissues [Cotin

et al. (1999)]. Hyperelastic materials can undergo large deformations, making them suit-

able to capture complex, nonlinear behavior of organs like the liver [Nikolaev et Cotin

(2020)]. These formulations model the tissues’ ability to stretch and compress in response

to forces, showing how organs deform under normal physiological conditions and during

medical interventions. A significant advantage of biomechanical models is their ability

to extrapolate the deformation of the organ even when intraoperative data is incomplete

or partial (e.g., Ultrasound). They can simulate the full behavior of the organ based on

partial information. This is particularly useful when only limited intraoperative data is

available, as the biomechanical model can predict the organ’s deformation in areas where

direct data might be missing while still adhering to realistic physical constraints [Brunet

(2020); Plantefeve et al. (2016); Tagliabue et al. (2021)].

1.5.4 Intraoperative Ultrasound registration

Ultrasound registration has seen many works proposed, particularly in the context of liver

surgeries where accurate real-time image alignment is essential due to the liver’s soft,

deformable nature. Depending on the clinical application, different types of ultrasound

transducers, LUS, standard (external), or IVUS, are employed, each influencing the com-

plexity and effectiveness of the registration methods.

For intensity-based methods, Banerjee et al. (2019) developed a block-matching frame-

work for affine registration of 3D external ultrasound to CT. This approach, akin to a form

of intensity-based Iterative Closest Point (ICP), samples both images into patches (blocks)

and matches those with the highest intensity variance using a specific similarity measure.

To handle the noisy correspondences between ultrasound and CT, they utilized a robust

outlier rejection method based on game theory, previously applied in mono-modal ultra-

sound registration [Dagon et al. (2008); Nam et al. (2012)]. The Multiple Correlation Co-

efficient (MCC) was introduced as a similarity metric and used for block correspondence.

The method was validated on 17 patients [Woods et al. (1992)]. Xu et al. (2013) used an

ultrasound simulation model to guide the registration and compared simulated images

with actual ultrasound using a combined intensity and gradient mutual information met-

ric [He et Gu (2011)]. Their method achieved rigid registration between tracked freehand

ultrasound and CT, validated with five clinical datasets. Wein et al. (2008, 2007) intro-

duced the Linear Correlation of Linear Combination (LC2) measure for affine registration

of freehand ultrasound volumes to CT. Their approach incorporated intensity signals from

both modalities and simulated ultrasound images derived from CT, which increased ro-
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bustness. The LC2 coefficients were calculated for small patches of the images, and the

method was tested on 25 patients. In the case of LUS, most ultrasounds to CT registration

methods face challenges due to the smaller sections of the liver captured, providing fewer

data to constrain the registration process. While transabdominal ultrasound typically ac-

quires complete liver sections [Penney et al. (2004); Wein et al. (2008)], LUS’s limited field

of view often requires manual selection of vessel bifurcations [Song et al. (2015)] or re-

lies on a fairly accurate initial alignment to ensure proper registration [Ramalhinho et al.

(2017)]. To address this limitation, Ramalhinho et al. (2019) introduced a globally optimal

registration method that employs a Content-Based Image Retrieval (CBIR) approach to

register untracked ultrasound slices. They create a discrete set of potential alignment so-

lutions by simulating a finite number of ultrasound planes within the preoperative model.

Feature-based registration methods for ultrasound images of the liver primarily de-

pend on the hepatic vascular trees [Aylward et al. (2003); Lange et al. (2003); Penney et al.

(2001); Porter et al. (2001)] and the liver surface [Dehghan et al. (2015); Penney et al.

(2001); Pohlman et al. (2019)]. For vessel surface features, Penney et al. (2001) proposed

adapting the ICP algorithm that incorporated Gaussian noise to achieve rigid registra-

tion. Similarly, Porter et al. (2001) maximized the normalized cross-correlation (NCC)

between segmented vessels from ultrasound and MRI images, while Aylward et al. (2003)

focused on maximizing the overlap between ultrasound vessel positions and vessels from

CT scans. However, all these approaches only address rigid registration. For non-rigid reg-

istration, Lange et al. (2003) developed an ICP method with an adapted correspondence

step for vessel matching and Multi-level B-splines. Additionally, Dagon et al. (2008) in-

troduced an elastic registration technique using mass-spring networks to model the soft

tissue deformations. For liver surface features, Dehghan et al. (2015) proposed a method

to maximize the overlap between the CT liver surface and the surface derived from an

enhanced ultrasound volume map; their approach is rigid. Pohlman et al. (2019) utilized

both vessel and liver surface features, employing a manual 2D plane setting as the initial-

ization for point-based 2D affine registration.

The current state of the art in IVUS registration primarily focuses on its application

in percutaneous coronary interventions (PCI), where methods aim to align IVUS images

with angiographic data. This registration enhances the assessment of coronary artery

disease (CAD) by enabling detailed visualization of the arterial wall while aiding in the

delineation of culprit lesions, plaque characteristics, and identification of stent under-

expansion. To cite a few, Hoffmann et al. (1999) highlighted the significance of assessing

coronary artery morphology, indicating a strong link between plaque distribution and un-

stable angina. Sonka et al. (1995) implemented an intensity-based method to fuse biplane

angiography with cross-sectional IVUS images, pointing out that the pullback path may
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not always coincide with the lumen axis. Cothren et al. (2000) discussed how the accurate

rotational alignment of the IVUS with the angiogram can be achieved through a "best-fit

angle" function, with synchronization relying on temporal data.

1.6 IVUS-guided augmented reality

1.6.1 Thesis objective

While Urade et al. (2021) highlighted the benefits of using IVUS in computer-assisted in-

terventions, as mentioned earlier in this chapter, no state-of-the-art research currently

develops an IVUS registration method to assist in hepatic surgery. This thesis addresses

this gap by developing an IVUS-guided AR system for minimally invasive liver surgery.

The goal is to enhance surgical precision by integrating real-time IVUS imaging with AR

technology, which overlays preoperative imaging data directly onto the surgical field. By

leveraging the synchronous and continuous imaging capabilities of IVUS, which provides

a comprehensive, full-thickness view of the liver intraoperatively through catheter rota-

tion, the system would offer a detailed perspective of the organ’s internal structures, in-

cluding vascular trees and tumors. Such an AR is possible by registering intraoperative

IVUS data with preoperative medical images such as CT or MRI. This registration process

enables dynamic adjustments to preoperative models, ensuring they accurately reflect

the liver’s current anatomical state, thus addressing challenges such as organ deformation

and limited visualization. To tackle the registration problem, we employ feature-based

registration to circumvent issues related to multi-modality and the choice of similarity

metrics. In addition, we utilize model-based registration by leveraging a biomechanical

model of the liver built with preoperative data. This choice is motivated by the ability

of such models to extrapolate effectively over sparse and noisy intraoperative data, like

that obtained from IVUS. The system aims to facilitate more accurate tumor localization,

improve navigation around vital structures, and optimize liver resections by equipping

surgeons with an interactive and up-to-date view of the liver’s internal anatomy. To the

best of our knowledge, this is the first study to propose using IVUS as an intraoperative

modality in the case of AR for liver surgery.

1.6.2 Contributions

1.6.2.1 First Author publications

1. S. El hadramy, A. Mazier, J. N .Brunet. J. S. Hale, S. Cotin, S. PA. Bordas. "SOniCS:

Develop intuition on biomechanical systems through interactive error controlled
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simulations". Engineering with Computers 40, 1857–1876 (2024)

2. S. El hadramy, A. Mazier, J. N .Brunet. J. S. Hale, S. Cotin, S. PA. Bordas. "SOniCS:

Interfacing SOFA and FEniCS for advanced constitutive models". FEniCS Confer-

ence, San Diego, 2022.

3. S. El hadramy, J. Verde, N. Padoy, S. Cotin. In: Greenspan, H., et al. "Intraoperative

CT augmentation for needle-based liver interventions". Medical Image Computing

and Computer Assisted Intervention – MICCAI 2023. Lecture Notes in Computer Sci-

ence, vol 14228.

4. S. El hadramy, J. Verde, KP. Beaudet, N. Padoy, S. Cotin. "Trackerless Volume Recon-

struction from Intraoperative Ultrasound Images" In: Greenspan, H., et al. Medi-

cal Image Computing and Computer Assisted Intervention – MICCAI 2023. Lecture

Notes in Computer Science, vol 14229.

5. S. El hadramy, J. Verde, N. Padoy, S. Cotin. "Towards Real-Time Vessel Guided Aug-

mented Reality for Liver Surgery" 2024 IEEE International Symposium on Biomedi-

cal Imaging (ISBI), Athens, Greece, 2024, pp. 1-5.

6. S. El hadramy, N. Padoy, S. Cotin. "HyperU-Mesh: Real-time deformation of soft-

tissues across variable patient-specific parameters". To appear - Computational

Biomechanics Workshop at MICCAI 2024.

7. S. El hadramy, B. Acidi, N. Padoy, S. Cotin. "Optimization in latent space for real-

time intraoperative characterization of digital twins". Under review - Engineering

with Computers.

8. S. El hadramy, N. Padoy, S. Cotin. "Deform Any Liver In Real-time". Under review -

ISBI 2025.

1.6.2.2 Other publications

9. KP. Beaudet, A. Karargyris, S. El hadramy, S. Cotin, JP. Mazier, N. Padoy, J. Verde.

"Towards Real-time Intrahepatic Vessel Identification in Intraoperative Ultrasound-

Guided Liver Surgery". To appear - Medical Image Computing and Computer As-

sisted Intervention – MICCAI 2024.

1.6.3 Communications

During my PhD program, I had the opportunity to present my research at several presti-

gious international conferences. I presented at MICCAI 2023 in Vancouver, MICCAI 2024
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in Marrakesh, and ISBI 2024 in Athens. At MICCAI 2023, I gave two poster presentations

at the main conference, while at ISBI 2024, I delivered an oral presentation. Addition-

ally, I presented my work at the Computational Biomechanics Workshop at MICCAI 2024

with an oral talk. Furthermore, I was invited by Prof. Gabor Fichtinger (Queen’s Univer-

sity) to serve as an instructor at the 3D Slicer tutorial during MICCAI 2024. The tutorial

aims to help new, intermediate, and seasoned 3D Slicer users harness the various image

segmentation and annotation tools effectively and, in doing so, open up the capabilities

of AI-assisted medical image computing technologies to a wider audience. Furthermore,

SOniCS, in chapter 4, was presented by my co-first author at the FEniCS 2022 Confer-

ence in San Diego USA, where it received an award. In addition to these international

conferences, I have presented my work at the Mimesis Inria and the CAMMA IHU team

meetings and seminars. Moreover, I have attended the Machine Learning for Healthcare

Summer School at the University of Oxford, furthering my expertise in applying machine

learning techniques to medical imaging. Finally, during the first two years of my PhD, I

actively contributed to teaching at the Department of Mathematics of the University of

Strasbourg.

1.7 Outlines

This thesis is organized according to the chapter structure outlined below:

• In chapter 2, we cover the fundamentals of deep learning and provide a detailed ex-

planation of key architectures necessary for understanding the concepts presented

in this thesis. This includes an overview of foundational techniques and specific

models that will be referenced throughout the work.

• In chapter 3, we present the fundamentals of continuum mechanics for soft tis-

sues. We focus on the relationship between stress and strain, explaining how these

concepts are linked. Additionally, we demonstrate how to formulate a mechanical

system and solve it using the finite element method (FEM). This foundation is es-

sential for modeling the behavior of soft tissues in the context of this thesis.

• In chapter 4, we introduce the first contribution of this thesis: SOniCS, a framework

designed to simplify the implementation of hyperelastic models. SOniCS integrates

FEniCS, a tool for solving partial differential equations, with SOFA, a framework for

real-time simulation of deformable objects. This integration allows for more effi-

cient and user-friendly development of complex hyperelastic models, streamlining

the simulation process for soft tissues and other applications.
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• In chapter 5, we present our method for reconstructing an IVUS volume from a

given sequence of frames. We present an AI-based method for volume reconstruc-

tion that eliminates the need for tracking, offering a flexible approach to recon-

structing 3D IVUS volumes directly from the image sequences.

• In chapter 6, we present the key contribution of this thesis: a novel registration

method that aligns preoperative CT data with intraoperative IVUS data. The intra-

operative data is derived from the volume reconstructed using the methods dis-

cussed in Chapter 5. Meanwhile, the preoperative CT data is utilized to build a

biomechanical model, which is crucial for the registration process. This model is

developed using SOniCS, the framework introduced in Chapter 4.

• In chapter 9, we focus on enhancing the accuracy of the biomechanical model used

for registration by proposing a novel method to identify patient-specific material

properties and boundary conditions. This approach aims to refine the model’s pre-

cision, ensuring a more accurate and personalized alignment between preoperative

and intraoperative data.

• In chapter 8, we conclude this thesis by outlining the limitations of the techniques

developed and discussing perspectives.

In appendix A, we present a work that is not directly related to the primary subject of this

thesis but was developed during the early stages of this PhD program, when IVUS data

was not yet available. This work contributed to our understanding of the state of the art

in registration techniques and led to a publication at MICCAI 2023.
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CHAPTER 2. DEEP NEURAL NETWORKS: FUNDAMENTALS

In this chapter, we lay the foundation of deep learning concepts necessary for un-

derstanding the techniques used throughout this thesis. We introduce the basic building

blocks of neural networks, starting with the perceptron, which serves as the simplest form

of a neural network. From there, we expand on this idea to discuss multilayer perceptrons

(MLPs), which form the backbone of more complex neural architectures by connecting

multiple layers of neurons to enable the network to model non-linear relationships in

data. Once the basics are covered, we move on to explore more advanced architectures

that are specifically employed in this thesis. First, we introduce Convolutional Neural

Networks (CNNs), which are particularly powerful for analyzing structured grid-like data,

such as images. Next, we discuss Long Short-Term Memory (LSTM) networks, a type of

recurrent neural network (RNN) designed to handle sequential data and maintain long-

term dependencies. We also introduce Convolutional LSTMs (ConvLSTMs), which com-

bine the strengths of both CNNs and LSTMs, allowing for the modeling of spatial and

temporal data simultaneously. We then cover Hypernetworks, an approach where one

neural network generates the weights for another network. This architecture is used to

dynamically adapt the parameters of the primary network based on context, allowing for

flexibility and adaptability in the learning process. Finally, we explain the process of train-

ing deep neural networks. By establishing a solid understanding of these deep learning

principles and methods, this chapter provides the theoretical grounding needed to com-

prehend and appreciate the advanced models and techniques applied in the later chap-

ters of the thesis.

2.1 Introduction

In the late 1980s, neural networks emerged as a pivotal focus in Machine Learning (ML)

and Artificial Intelligence (AI) domains. This surge in interest was largely driven by break-

throughs in developing more efficient learning algorithms and the design of sophisticated

network architectures, which significantly enhanced the capabilities of these systems. A

key milestone that further solidified the importance of neural networks was the devel-

opment of the universal approximation theorem [Cybenko (1989), Hornik (1991)]. This

theorem states that feedforward neural networks, composed of artificial neurons, can ap-

proximate any real-valued continuous function on compact subsets of Rn . This theoret-

ical foundation validated the potential of neural networks and paved the way for their

widespread adoption in solving complex problems across various fields [Sarker (2021)].

As a result, neural networks quickly became a cornerstone of modern AI, laying the ground-

work for the development of more advanced deep neural network techniques.
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An artificial neuron, also known as a perceptron, is the basic unit of a neural network,

designed to mimic the behavior of a biological neuron. As illustrated in Figure 2.1, an

artificial neuron receives multiple inputs, each representing a feature from the data be-

ing processed. These inputs are assigned weights that indicate their significance in the

neuron’s calculations. The neuron computes a weighted sum of these inputs and adds

a bias, an additional parameter added to the weighted sum, which allows the neuron to

shift the activation function, providing greater flexibility in learning. This sum is then

passed through an activation function, which determines the neuron’s output by deciding

whether it should be activated based on the input signals. The output of the neuron can

either be used as input for other neurons in subsequent layers of the network or serve as

the final output, depending on the architecture of the network. The interaction between

these components enables the neuron to learn and adapt, making it a critical element in

the functioning of neural networks.

Figure 2.1: Illustration of an artificial neuron, where the input data is processed through
a weighted sum, followed by the application of an activation function to introduce non-
linearity. This figure is adapted from Ghorbani et al. (2021).

In neural networks, the weighted sum of inputs plus a bias produces a linear com-

bination of these inputs. Without activation functions, each neuron would compute a

linear transformation of the input data, resulting in a model that can only learn linear re-

lationships. However, many real-world problems involve complex patterns that cannot

be captured by linear transformations alone. Activation functions add nonlinearity to the

model by transforming the linear combination of inputs into a non-linear output. This

nonlinearity allows the network to approximate a wide range of functions and capture

intricate patterns within the data. Some popular activation functions are:

• ReLU Function: The Rectified Linear Unit (ReLU) function applies a threshold op-

eration, where any negative input is set to zero, and positive input remains un-

changed. ReLU(x) = max(0,x).
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• Sigmoid Function: The sigmoid function maps the output to a range between 0 and

1, following the formula σ(x) = 1
1+e−x . Sigmoid introduces nonlinearity by com-

pressing the output to a bounded range, which is useful for binary classification

tasks.

• The tanh function: The tanh function, or hyperbolic tangent, maps the output to

a range between -1 and 1, following the formula tanh(x) = ex−e−x

ex+e−x . This function

introduces nonlinearity with a steeper curve than the sigmoid, and it centers the

output around zero, which can help with convergence during training.

Other activation functions have been proposed in the literature. More details can be

found in Dubey et al. (2022). Each activation function is designed to introduce nonlinear-

ity in different ways and is tailored to specific problems and data structures. By incorpo-

rating these diverse activation functions, neural networks can capture complex, nonlin-

ear relationships between inputs and outputs, thereby expanding their ability to address

a wider array of challenges compared to models that rely solely on linear transformations.

2.2 Deep Neural Network Architectures

Various neural network architectures exist in the literature, each developed to address

specific challenges and applications in different domains. For instance, Convolutional

Neural Networks (CNNs) are widely used for image processing tasks, Recurrent Neural

Networks (RNNs) and Long Short-Term Memory (LSTM) networks are applied in sequen-

tial data analysis, such as time-series prediction or natural language processing, while

Generative Adversarial Networks (GANs) are commonly used for tasks involving data gen-

eration. In this chapter, we focus on explaining the fundamental concepts of several ar-

chitectures that are relevant to the work presented in this thesis. The list of architectures

presented below is not exhaustive but serves as a foundation for the methods and models

used in the following chapters. For further details, readers are invited to consult Schneider

et Vlachos (2023).

2.2.1 Multi-Layer Perceptron

A Multi-Layer Perceptron (MLP) is the simpler architecture in artificial neural networks

designed to model complex relationships within data through a series of interconnected

layers of computational artificial neurons. The MLP architecture consists of three primary

types of layers: an input layer, one or more hidden layers, and an output layer. Each layer

serves a specific purpose: the input layer receives the raw data, the hidden layers process
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and transform the data to capture underlying patterns, and the output layer produces the

final predictions or classifications. Figure 2.2 illustrates an MLP architecture with an input

layer of size 4, one hidden layer of size 5, and an output layer of size 1.

Figure 2.2: Illustration of a Multi-Layer Perceptron network, including an input layer of
dimension 2, one hidden layer of dimension 3, and an output layer of dimension 1.In this
architecture, each neuron in a layer is fully connected to every neuron in the preceding
layer.

Within each layer, neurons are fully connected to every neuron in the adjacent layers,

forming a densely interconnected network. The connections between neurons are asso-

ciated with weights wi j , which are crucial parameters that determine the strength of the

signal passed from one neuron i in the previous layer to neuron j in the current layer.

When data is fed into the network, each neuron calculates a weighted sum of its inputs

following Equation 2.1.

z j =
n∑

i=1
wi j ·xi+bj (2.1)

In Equation 2.1, zj represents the weighted sum for neuron j , xi is the input from neu-

ron i , bj is the bias term, and n is the number of inputs. This linear combination is

then passed through an activation function f(zj) to introduce non-linearity following

the Equation below.

aj = f(zj) (2.2)

The output of the activation function aj is then passed to the neurons in the next layer.

This process of weighted summation, followed by non-linear activation, allows the MLP
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Figure 2.3: Example of a Convolutional Neural Network (CNN) incorporating convolu-
tional, pooling, and fully connected layers. This particular network is designed to execute
a classification task. The image is sourced from: www.towardsdatascience.com/

to model complex, non-linear relationships in the data. The final layer, the output layer,

produces the network’s predictions.

2.2.2 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a specialized deep learning architecture de-

signed to effectively process and analyze structured grid-like data, such as images or

videos. As illustrated in Figure 2.3, the architecture comprises several key components:

convolutional layers, pooling layers, and fully connected layers, each contributing to the

network’s ability to learn spatial hierarchies of features.

2.2.2.1 Convolutional layers

The convolutional layer is the core component of a CNN and is responsible for detecting

local patterns in the input data. It employs a set of learnable filters (or kernels), which are

matrices that slide over the input data, performing the convolution operation. This oper-

ation involves calculating a weighted sum of the input values within the filter’s receptive

field and producing a feature map highlighting specific patterns in the data. For 2D data,

the convolution operation at a specific location (i , j ,k) in the feature map is given by:
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Zi j = (X ∗W )i j =
k∑

m=1

k∑
n=1

Xi+m−1, j+m−1 ·Wmn +b (2.3)

In Equation 2.3, X is the input data expressed as a matrix, W is the filter (also known

as the kernel) matrix of size k ×k, Zi j is the resulting value in the feature map at position

(i , j ), and b is the bias term. The filter W slides over the input data, covering different

regions of size k × k. The sliding window process is known as striding. If the stride is

greater than 1, the filter moves by multiple pixels at a time, reducing the size of the output

feature map. For 3D data, the convolution operation at a location (i , j ,k) in the feature

map is written as:

Zi j k =
D∑

d=1

kh∑
m=1

kw∑
n=1

Xi+m−1, j+n−1,d ·Wmnd +b (2.4)

In Equation 2.4, X is the input data of dimension 3, with D being the size of its third di-

mension, W is the 3D filter with dimensions kh ×kw ×D , Zi j k is the feature map value at

position (i , j ,k), and kh and kw are the height and width of the filter. After each convolu-

tion layer, the resulting feature map is passed through an activation function to introduce

non-linearity. The most commonly used activation function is the Rectified Linear Unit

(ReLU), as explained previously.

2.2.2.2 Pooling layers

Pooling layers play a crucial role in CNNs by reducing the spatial dimensions of the fea-

ture maps generated by convolutional layers. This dimensionality reduction serves two

primary purposes: it decreases the network’s computational complexity, makes it more

efficient, and enhances the model’s robustness by making the learned features more in-

variant to small translations or distortions in the input data. Pooling operates over local

regions of the input feature maps, similar to convolutional operations, but instead of ap-

plying a filter to detect patterns, it performs a down-sampling operation. The most com-

mon types of pooling are max pooling and average pooling.

• Max pooling: selects the maximum value within each region, capturing the most

prominent feature within the region. For a p ×p pooling region, the operation can

be expressed as:

Pi j = max
(m,n)∈p×p

Ai+m−1, j+n−1 (2.5)

• Average pooling: computes the average of the values within the pooling region,
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providing a smoothed representation of the features, and is expressed as:

Pi j = 1

p ×p

p∑
m=1

p∑
n=1

Ai+m−1, j+n−1 (2.6)

In Equations 2.5 and 2.6, Pi j represents the pooled feature map value at position (i , j ),

and A is the input feature map. Pooling layers contribute to the network’s ability to gen-

eralize by reducing sensitivity to the exact location of features, enabling the CNN to ex-

tract patterns regardless of small shifts or variations in the input. By progressively down-

sampling the feature maps, pooling layers also help manage the complexity of the net-

work, allowing deeper architectures to be trained more efficiently.

2.2.2.3 Fully connected layers

After passing through multiple convolutional and pooling layers, the feature maps of these

layers generate increasingly abstract and high-level representations of the input data.

These feature maps, which still retain their spatial structure, must be converted into a

format suitable for the final classification or regression task. To achieve this, the multi-

dimensional feature maps are flattened into a one-dimensional vector. Flattening essen-

tially unrolls the 2D or 3D feature maps into a single long vector, where each element of

the vector corresponds to a specific feature detected in the previous layers. This vector is

passed through fully connected layers, similar to the MLP presented earlier, where each

neuron is connected to each neuron in the previous layer. These layers perform the final

classification or regression tasks.

2.2.3 Long-Short-Term Memory Networks

Long-short-term memory (LSTM) networks are a specific type of neural network designed

to capture long-range dependencies within sequential data. LSTMs are particularly effec-

tive in tasks where understanding temporal context is crucial, such as time series pre-

diction, natural language processing, and speech recognition. The LSTM architecture,

illustrated in Figure 2.4, incorporates a complex unit structure with three primary com-

ponents: the cell state, the input gate, the forget gate, and the output gate. These compo-

nents manage and retain information over extended sequences. An LSTM unit processes

three vectors at each time step. Two of these vectors, the cell state Ct−1 and the hidden

state Ht−1, are produced by the LSTM from the previous time step t −1. The third vector

is the input vector Xt, which is provided to the LSTM at the current time step t .
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Figure 2.4: Illustration of a Long Short-Term Memory (LSTM) network, where each LSTM
layer includes a cell state, hidden states, and three types of gates: input, forget, and out-
put.

2.2.3.1 Cell state

The cell state is a central element of an LSTM unit that carries information across the

sequence. It acts as a memory buffer, allowing information to flow through the network

without significant changes. The cell state Ct at time step t is updated according to the

following Equation:

Ct = ft⊗Ct−1 + it⊗C̃t (2.7)

In Equation 2.7, ft is the forget gate’s output, Ct−1 is the cell state from the previous time

step, it is the input gate’s output, and C̃t is the candidate cell state generated by the net-

work. Note that ⊗ is the point-wise multiplication.

2.2.3.2 Forget Gate

The forget gate decides which information from the cell state should be discarded. This is

computed using a sigmoid activation function, producing values between 0 and 1:

ft =σ(Wf · [ht−1,xt]+bf ) (2.8)

Where in Equation 2.8, Wf is the weight matrix for the forget gate, ht−1 is the hidden state

from the previous time step, xt is the current input, bf is the bias term, and σ denotes the

sigmoid function.
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2.2.3.3 Input Gate

The input gate controls the incorporation of new information into the cell state. It consists

of two parts: a sigmoid layer that determines which values to update and a tanh layer that

generates candidate values following Equations.

it =σ(Wi · [ht−1,xt]+bi) (2.9)

C̃i = tanh(WC · [ht−1,xt]+bc) (2.10)

In Equations 2.9 and 2.10, Wi and Wc are weight matrices for the input gate and candi-

date cell state, respectively. bi and bc are the respective biases. tanh denotes the hyper-

bolic tangent function.

2.2.3.4 Output Gate

The output gate determines the value of the hidden state outputted by the LSTM (in in-

stant t ) and received by the LSTM in the next instant (t +1) input set. The hidden state ht

is computed following Equation 2.11.

ht =σ(Wo · [ht−1,xt]+bo)⊗ tanh(Ct) (2.11)

Where Wt−1 and bo are the weight and bias matrices of the output gate, respectively.

LSTM networks are adept at capturing long-term dependencies in sequential data by

maintaining and updating cell states across extended time steps. Additionally, LSTMs

address the vanishing gradient problem [Pascanu et al. (2012)] through their gating mech-

anisms, which regulate the flow of gradients during training and enable effective learning

over long sequences. By employing forget, input, and output gates, LSTMs manage mem-

ory efficiently, allowing them to retain critical information while discarding less relevant

details.

2.2.4 Convolutional LSTM

A Convolutional Long Short-Term Memory (ConvLSTM) network (see Figure 2.5), intro-

duced by Shi et al. [Shi et al. (2015)], integrates convolutional operations with LSTM units

to capture spatial and temporal dependencies in sequential data. Unlike standard LSTM

networks operating on flat vectors, ConvLSTM applies convolutional layers within the

LSTM framework, allowing it to process and learn from spatial structures in data such

as images or video frames. In a ConvLSTM unit, the input data, which consists of mul-
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tiple frames or structured data, is processed through convolutional gates instead of fully

connected layers. This means that the forget, input, and output gates and the cell state

updates are performed using convolutional filters. Specifically, the input, cell state, and

hidden state are all represented as multi-dimensional matrices, and convolutional oper-

ations are used to update these terms. This approach enables ConvLSTM to model com-

plex spatial patterns and dynamic changes over time, making it suitable for tasks such as

video prediction, spatiotemporal forecasting, and other applications where both spatial

and temporal information are crucial.

Figure 2.5: Illustration of a ConvLSTM layer, which retains the core structure of a tra-
ditional LSTM layer while incorporating convolutional operations. This allows the Con-
vLSTM to learn spatial features from the data and capture temporal dependencies. The
Figure is sourced from: https://medium.com

2.2.5 HyperNetworks

Introduced by Ha et al. [Ha et al. (2017)], hypernetworks are a method where a network,

referred to as the hypernetwork, generates the weights for another network, known as the

primary network. The hypernetwork is trained to produce weights for the primary net-

work. Instead of learning a fixed set of weights, the hypernetwork outputs weight matrices

for each primary network layer based on its input. This can be represented as:

Wi =h(zi) (2.12)

In Equation 2.12, Wi denotes the weight matrix for the i -th layer of the primary network.

h is the hypernetwork that generates these weights, and zi is the input for the hypernet-
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work, which usually represents a conditioning parameter. The primary network utilizes

the weights generated by the hypernetwork to perform predictions. For a given input x,

the prediction of the target network can be expressed as:

ŷ = fWi (x) (2.13)

With ŷ being the output of the primary network, f represents the architecture of the pri-

mary network, and Wi are the weights of the primary network, which are predicted by

the hypernetwork h. Hypernetworks provide a way for generating adaptive and context-

sensitive parameters for neural networks, enhancing their flexibility and ability to gener-

alize across different tasks.

2.3 Training Deep Neural Networks

Training a neural network involves optimizing its parameters to minimize the difference

between predicted outputs and target values. The process begins with initializing the

network’s weights, typically using Gaussian distributions with small variance to ensure

that the weights start from a small and diverse range of values [Narkhede et al. (2022)].

The network performs a forward pass for each training iteration to compute the predicted

output y for a given input x. This prediction is compared to the true target ŷ using a

loss function L (y, ŷ), which quantifies the prediction error. The choice of loss function

depends on the problem’s nature and the data’s structure. For instance, Mean Squared

Error (MSE) is commonly employed for regression task, which is expressed as:

L (y, ŷ) = 1

N

N∑
i=1

||yi− ŷi )||22 (2.14)

The loss function may vary for classification tasks based on the specific problem. For

binary classification, Binary Cross-Entropy Loss is often used:

L (y, ŷ) =− 1

N

N∑
i=1

[ŷi log(yi )+ (1− ŷi ) log(1−yi )] (2.15)

In equations 2.14 and 2.15, N is the dimension of the output y. Other loss functions are

presented in the literature, each designed for specific types of problems and data. These

include both supervised and unsupervised loss functions [Terven et al. (2023)]. In the con-

text of medical imaging, particularly for segmentation tasks, the Dice Loss is frequently

employed to evaluate the overlap between predicted and ground truth segmentations:
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Dice Loss = 1− 2 · |A ∩ B|
|A+B| (2.16)

Where A and B are the predicted and actual segmentation masks, respectively.

After the loss computation, backpropagation is used to compute the gradient of the

loss function with respect to each weight w in the network. This gradient is computed

using the chain rule and can be expressed as:

∂L

∂wk
= ∂L

∂y
· ∂y

∂wk
(2.17)

These gradients are used to find the weight adjustments that best minimize the loss

function. An optimization algorithm, such as Stochastic Gradient Descent (SGD), updates

the weights w following:

w ←w−η∂L

∂w
(2.18)

Where η is the learning rate.

This Training iterative process continues over multiple epochs, with each epoch in-

volving passing the entire training dataset through the network. During training, tech-

niques such as learning rate scheduling, regularization (e.g., L2 regularization), and dropout

[Srivastava et al. (2014)] may be employed to enhance the network’s performance and pre-

vent overfitting.

2.4 Conclusion

This chapter has provided an overview of the fundamental concepts of deep learning,

laying the groundwork for understanding the core principles that underpin the neural

network architectures used throughout this thesis. We introduced the essential build-

ing blocks of deep learning, including the general structure of neural networks and their

training process. We explored several specialized architectures, such as CNNs and LSTMs,

emphasizing their suitability in structured and sequential data feature extraction. Partic-

ular attention was given to the specific architectures that form the backbone of the meth-

ods developed in this thesis. These architectures were selected based on their ability to

address the challenges posed by the research problems tackled in later chapters. By estab-

lishing a theoretical foundation and focusing on the architectures that play a pivotal role

in our work, this chapter sets the stage for the detailed exploration of novel methodologies

and experiments that follow.

39





C
H

A
P

T
E

R

3
SOFT-TISSUES COMPUTATIONAL

BIOMECHANICS

3.1 Continuum mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 The Deformation Gradient . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.2 Definition of the stress tensor . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.3 Definition of the strain tensor . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.4 Constitutive law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.5 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 The finite element method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 Domain discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.2 Building the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.3 Solving the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

41



CHAPTER 3. SOFT-TISSUES COMPUTATIONAL BIOMECHANICS

This chapter presents the fundamentals of soft-tissue computational biomechanics.

It begins with introducing the fundamental principles of continuum mechanics, focusing

on key concepts such as the representation of internal forces through the stress tensor

and the measurement of deformation using strain tensors. The chapter also outlines the

constitutive laws that relate these quantities and formulates the central problem to be

addressed. Following this, the finite element method (FEM) is introduced as a powerful

computational tool for solving complex biomechanical problems. The discussion covers

the discretization of the domain, the construction of shape functions, the assembly of the

system, and the numerical methods used to solve it. This chapter provides the require-

ments for understanding soft tissue simulation in the context of the thesis. Most of the

concepts and mathematical equations presented in this chapter are inspired by Wriggers

(2008).

3.1 Continuum mechanics

Continuum mechanics is a branch of mechanics that describes the behavior of materi-

als modeled as continuous rather than discrete entities. It provides a way to analyze how

materials deform and respond to internal and external forces. Internal forces are crucial

for maintaining a body’s structural integrity, preventing it from being stretched or com-

pressed indefinitely. When forces are applied to a deformable body, they induce inter-

nal constraints, known as stress, and result in deformations, referred to as strain. These

concepts are examined in detail in the subsequent sections. We first introduce the de-

formation gradient and then define and analyze stress and strain, exploring how they are

quantified and their roles in describing the internal behavior of materials under external

forces. Following this, we discuss how these concepts are applied in the formulation of

physical models and how they contribute to predicting a material’s response to various

loading conditions. Through this exploration, we develop a comprehensive understand-

ing of how internal forces and deformations interact to shape the behavior of deformable

bodies.

3.1.1 The Deformation Gradient

The deformation gradient is a fundamental tensor in continuum mechanics that describes

the local deformation of a material. It captures how a small region of a material body is

transformed from its initial (reference) configuration to its deformed (current) configu-

ration. The equations that describe deformation can be expressed using the Lagrangian

or Eulerian descriptions, each offering a different perspective on the material’s behav-
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ior. The Lagrangian description, also known as the material description, tracks individual

particles of the material as they move from their original (reference) configuration to their

deformed state. This approach focuses on the initial position of each particle, making it

particularly useful for studying how specific points in the material deform over time. On

the other hand, the Eulerian description, or spatial description, examines the deforma-

tion from the perspective of a fixed spatial coordinate system. This approach focuses on

specific locations in space, observing how material flows through these points as it de-

forms.

Given Ed , a space of dimension d , let E = {Ei ∈ Ed } with i = {1, ...,d} be the orthonormal

basis vectors of an Euclidean vector in the space Ed with origin O. The object of interest is

a subset domain Ω⊂ Ed . This domain can be seen as a region within the object’s bound-

ary. By incorporating the concept of time, we define the state of rest as the object’s shape

at time t = t0, representing the object’s initial configuration before any deformation be-

gins. The applied forces will deform the object throughout the simulation, causing the

domainΩ to vary over time. The position vector of a point within the initial domain is de-

noted as X ∈Ω0, with Ω0 =Ω(t0). The coordinate of X , known as material coordinates,

serves as the independent variable of the system. To determine the position vector of a

material point in the deformed domain at a given time t , noted xt, we define the linear

map ϕt :Ω0 →Ωt as a rigid transformation between the initial and deformed domainsΩ0

and Ωt respectively. This rigid transformation is represented as a rotation Rt and trans-

lation Tt components. The position vector of a deformed material point reads as:

xt =ϕt(X)=Rt ·X +Tt (3.1)

The displacement vector of a point from the domain Ω0 to Ωt is denoted by ut and is

expressed as:

ut(X)=xt−X =ϕt(X)−X (3.2)

From this point forward, the subscript t will be omitted, with the understanding that x,

ϕ and u are evaluated at a specific time t . The deformation gradient is defined as the

partial derivative of the transformation ϕ with respect to the material coordinate and is

expressed as:

F=∇X [ϕ(X)]=∇X [X +u] = Id +∇Xu (3.3)

Where ∇Xu is the displacement gradient tensor, the deformation gradient F provides a

comprehensive measure of how a material deforms from its original configuration to its
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current state. Id represents the identity matrix of dimension d . F is a fundamental tensor

that describes the local transformation of infinitesimal material elements due to applied

forces or boundary conditions. It relates tangent vectors of initial and current domains to

each other. For instance, it maps an infinitesimal segment from the initial (X ,X +dX)

to (x,x+dx) following the relation:

dx= FdX (3.4)

In the same manner, it maps a small area dA with a unit normal vector N to its corre-

sponding area da with a unit vector n. And a small volume element dV to its deformed

shape dv as follows:

dan=JdAF−T N (3.5)

dv =JdV (3.6)

In Equations 3.5 and 3.6, J is the determinant of F and indicates volume preservation,

which is influenced by the material’s compressibility. For an incompressible material, J

must equal 1.

3.1.2 Definition of the stress tensor

Stress is a physical quantity that represents the internal distribution of force per unit area

within a material, resulting from external loads, body forces, or changes in temperature.

Let dS be an infinitesimal area with normal n in a given volume V . at a point x of the

volume inside the dS. The stress vector σn is defined as the average force per unit area

and is expressed as:

σn = f

d S
(3.7)

In Equation 3.7, f is the force applied on the infinitesimal surface dS. This stress vector

depends on the normal of dS and thus only characterizes the stress on that particular

surface. However, this definition is insufficient to fully describe the stress at a point within

the volume. To define the stress at a point x, we need to consider the stress tensor, which

represents the stresses acting on surfaces of all possible orientations passing through that

point. Consider an infinitesimal tetrahedral volume element dV with outward-pointing

normal vectors on its surfaces, as illustrated in Fig 3.1. The force acting on the larger face

with a normal vector n is given by:
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Figure 3.1: An infinitesimal tetrahedral volume element illustrating the stress vectors σ1,
σ2, σ3 and σn, associated with the corresponding normal vector n1 = −x1, n2 = −x2,
n3 = −x3 and n, respectively. These stress vectors represent the internal forces per unit
area acting on the faces of the tetrahedron.

f =σndS (3.8)

In the Equation 3.8, dS is the area of the considered face. For each face of the tetrahedron,

the force is expressed following the Equation 3.9.

fi =−σidSi (3.9)

With i ∈ {1,2,3} and σi is the stress vector on the i th face of the tetrahedron noted dSi. We

apply the principle of conservation of linear momentum to the infinitesimal volume dV

of the tetrahedron, considering the volume force inside the tetrahedron, noted fvdV :

f +f1+f2+f3+fvdV =ρdV
d v

d t
(3.10)

Here, ρ is the mass density, and v is the velocity of the tetrahedron. To further develop

this, we express dV as d ·h ·c, where h is the height of the tetrahedron and c is a constant

depending on h. We also express the forces with the stress vectors following Equation 3.9.

Substituting this into Equation 3.10 gives:

σndS −t1n1dS −t2n2dS −t3n3dS +fvhcdS = ρhcdS
d v

d t
(3.11)

Devinding by dS in Equation 3.11 and tending h to zero leads to:
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tn =
(
t1 t2 t3

)
·


n1

n2

n3

=


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 ·


n1

n2

n3

=σc ·n (3.12)

This means that when the stress vectors on the tree faces of the tetrahedron are known, we

can compute the stress vector for any normal direction n. σc denotes the Cauchy stress

tensor, which measures the intensity of the internal forces acting on a material per unit

area in its deformed configuration. The second Piola-Kirchhoff tensor σp is another way

to define the stress. Unlike the Cauchy stress tensor, the Piola Kirchhoff tensor provides a

measure of the internal forces per unit area in the undeformed configuration. It reads as:

σs =JF−1 ·σc ·F−T (3.13)

Where F is the deformation gradient defined in the previous section and J = det(F) is the

jacobian matrix allowing to pass from the rest to the deformed configuration.

3.1.3 Definition of the strain tensor

In the previous section, we discussed how the forces applied to a material affect its inter-

nal structure through the stress tensor. We will now explore the mathematical definition

of deformation by introducing a concept known as strain, which quantifies this deforma-

tion. Strain quantifies how much a material deforms relative to its original configuration

when subjected to forces.

Considering a continuum body that occupies a domain Ω of boundary Γ. Let X and

X +dX be two points infinitesimally close in the rest configuration, x and x+dx, their

respective position after a given deformation of the solid. As seen in the section 3.1.2,

the segments (X ,X+dX) and (x,x+dx) are related with the deformation gradient with

the relation dx = FdX . With F := ∇u+ I being the deformation gradient and u the dis-

placement field. The gradient of the displacement field, ∇u, describes the relationship

between the segments connecting points in both the reference and deformed configura-

tions. When ∇u= 0, it indicates that the material has undergone only a rigid translation

with no deformation. However, ∇u is non-zero when the body experiences a rotation,

even in the absence of deformation. Therefore, to fully capture the deformation of the

material, measuring the change in angle between two vectors within the material is also

necessary. This allows us to distinguish between pure rotation and actual deformation,

ensuring that the material’s stretch and distortion are accurately quantified.
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To measure the change in angle between vectors due to deformation, we compute the

scalar product between two vectors before and after deformation. Let dX1 and dX2 be

two infinitesimal vectors starting at point X , and dx1 and dx2 be their deformed states.

The scalar product of the deformed vectors can be written as:

dx1.dx2 = (FdX1)T .(FdX2) =dXT
1 F

T FdX2 =dXT
1 ϵc dX2 (3.14)

In Equation 3.14, the term FT F is known as the right Cauchy-Green deformation tensor,

denoted by ϵc. It encapsulates the stretch and rotation of the material during deforma-

tion. However, when the angle remains unchanged, ϵc reduces to the identity matrix,

indicating that the deformation is purely a rigid body motion (i.e., a combination of rota-

tion and translation without stretching or distortion). To capture the actual deformation

(excluding any rigid body motion), we compute the angle difference between the vectors

in the rest and deformed configurations. This leads to the Green-Lagrange strain tensor

ϵg defined as:

ϵg = 1

2
(ϵc− I) (3.15)

The expression of the Green-Lagrange strain tensor in Equation 3.15 is obtained by mea-

suring the difference between the two scalar products (in rest and deformed configura-

tions), capturing the change in lengths and angles due to deformation, see Equation 3.16.

dx1.dx2−dX1.dX2 =dxT
1 ϵcdx2−dX1.dX2 =dxT

1 (ϵc− I)dx2 = 2dxT
1 ϵgdx2 (3.16)

The Green-Lagrange strain tensor ϵg quantifies the deformation by measuring how much

the squared lengths of infinitesimal vectors and the angles between them deviate from

their values in the rest configuration. It captures the linear and non-linear deformation

components and satisfies ϵg = 0 when the angle is unchanged between both configura-

tions. The linear and non-linear components of the strain ϵg can be expressed in terms of

the displacement field ∇u using the definition of the deformation gradient, as follows:

ϵg = 1

2
(FT F− I) = 1

2
((∇u+ I)T (∇u+ I)− I) = 1

2
(∇uT ∇u+∇uT +∇u) (3.17)

This shows that the linear and non-linear components of the strain are ϵl i near
g = 1

2 (∇uT +
∇u) and ϵnonl i near

g = 1
2 (∇uT ∇u) respectively. When the displacement gradients are

small, the non-linear component ϵnonl i near
g can be ignored. As a result, the strain tensor
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can be approximated following Equation 3.18, which is referred to as the infinitesimal

strain tensor.

ϵg ≈ ϵl i near
g = 1

2
(∇uT +∇u) (3.18)

3.1.4 Constitutive law

In the previous sections, we defined the concepts of stress and strain. Stress quantifies the

internal forces within a material per unit area, whereas strain measures the deformation

or change in shape resulting from these forces. This section will delve into the relation-

ship between stress and strain, known as the constitutive model. This model describes

how stress correlates with strain based on the material’s inherent properties, providing

the material’s response to applied forces. The simplest relationship between stress and

strain is linear, often described by Hooke’s Law. Hooke’s Law states that, within the elastic

limit of a material, the stress applied to a material is directly proportional to the resulting

strain. This can be expressed mathematically as:

σ =Kϵ (3.19)

Where σ denotes the stress applied to the material, ϵ represents the resulting strain, and

K is the stiffness matrix. It measures the material’s stiffness or rigidity and indicates how

much it will deform under a given stress. Hooke’s Law assumes that the material deforms

linearly, meaning that the deformation is directly proportional to the applied stress. The

material will return to its original shape once the load is removed. This linear relationship

holds if the material remains within its elastic limit and does not undergo permanent

deformation. When dealing with isotropic materials under the assumption of small de-

formations, the constitutive model simplifies the stress-strain relationship. In this case,

Hooke’s Law applies, and the relationship between stress and strain is linear in terms of

the strain tensor ϵ and the displacement gradient ∇u. This is because the linear approxi-

mation of the strain tensor in Equation 3.18 is used. For an isotropic material, the stress

tensor σ is related to the strain tensor ϵ by:

σ =λtr(ϵ)I+2µϵ (3.20)

Where λ and µ are the Lamé parameters, tr(ϵ) is the trace of the strain tensor, and I is the

identity matrix. However, this linear relationship is insufficient when the displacements

are not small. The material’s behavior becomes nonlinear, and the linearized strain tensor

no longer adequately describes the deformation. In such cases, hyperelastic models are
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commonly used to deal with large deformations, where the stress-strain relationship is

derived from a strain energy density function, denoted W . The following briefly presents

three examples of hyperelastic material models, each with its specific strain energy func-

tion.

3.1.4.1 Saint-Venant-Kirchhoff

The Saint Venant–Kirchhoff (SVK) material model is one of the simplest forms of hyper-

elastic models, serving as a direct extension of Hooke’s law from linear elasticity to the

realm of large deformations. It describes a homogeneous and isotropic material, mean-

ing that its mechanical response is uniform across all points and in every direction. The

material’s resistance to deformation does not vary with location or orientation. In this

model, the material properties are characterized by the Lamé parameters: λ and µ. These

parameters are related to Young’s modulus E and Poisson’s ratio ν as follows:

λ= Eν

(1+ν)(1−2ν)
, µ= E

2(1+ν)
(3.21)

The strain energy density function W for the SVK material is expressed as:

W = λ

2
[tr(E)]2 +µtr(E2) (3.22)

Where E is the Green-Lagrange strain tensor, tr(E) denotes the trace of E, and tr(E2) ac-

counts for the shear deformation. By taking the first and second derivatives of the strain

energy function W with respect to the Green-Lagrange strain tensor E, one can derive the

second-order Piola-Kirchhoff (PK2) stress tensor and the fourth-order material elasticity

tensor, respectively.

3.1.4.2 Neo-Hookean

The Neo-Hookean model is a nonlinear extension of the SVK approach. Initially, the re-

lationship between strain and stress in this model is linear, but as deformation increases,

it deviates from linearity and the stress-strain curve eventually flattens out. This model

overcomes the limitations of the SVK model, especially when dealing with large compres-

sive strains. The strain energy density function for a Neo-Hookean material is expressed

as:

W = µ

2
(tr(C)−3)−µ lnJ + λ

2
(lnJ )2 (3.23)
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Where C is the right Cauchy-Green deformation tensor defined in Equation 3.14, J is the

determinant of the deformation gradient F, λ and µ are the Lamé parameters expressed

in Equations 3.21.

3.1.4.3 MooneyRivlin

Mooney-Rivlin is a hyperelastic model characterized by uncoupled deviatoric and vol-

umetric behavior. It is designed to capture the complex, nonlinear elastic response of

nearly incompressible materials under large deformations. The strain-energy density

function W is expressed as:

W =C01(J− 2
3 IC −3)+C10(J−

4
3 IIC −3)+ lnJ

2D1
(3.24)

With C01, C10 and D1 being the material parameters, J is the jacobian matrix, while IC =
tr(C) and IIC = 1

2

(
(tr(C))2 − tr

(
C2

))
are the first and second invariants of the right Cauchy-

Green deformation tensor C, respectively. These invariants account for the deviatoric

(shear) deformations, which are independent of changes in volume. The uncoupled ap-

proach of this model allows for separate consideration of volumetric and deviatoric be-

haviors, making it suited for modeling materials that experience significant shear defor-

mations without corresponding changes in volume.

3.1.5 Problem formulation

In the earlier sections, we introduced the strain tensor, which links deformation to dis-

placement, and the stress tensor, which represents the internal forces within a material.

We also discussed the relationship between these two tensors with respect to the material

properties. To achieve equilibrium between internal and external forces within a compu-

tational domainΩ, we use the following equation.

div(σ)+fex t = ρü (3.25)

Where σ denotes the stress tensor, fex t represents the external forces applied to the ma-

terial, ρ is the density of the material, and ü is the acceleration vector. This equation,

known as the strong formulation of the equilibrium condition, expresses the fundamen-

tal principle of dynamics for every point in the body. We set the acceleration ü to zero for

the static case. This simplifies the equilibrium equation to:

div(σ)+fex t = 0 (3.26)
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Appropriate boundary conditions must be applied to ensure that this static equilib-

rium problem has a unique solution. Dirichlet boundary conditions are specified on a

subset ΓD of the boundary Γ of the domainΩ. These conditions dictate that:

u(x)=uD, ∀x ∈ ΓD (3.27)

Where uD is a known displacement value. Neumann boundary conditions are also ap-

plied on another subset ΓN of Γ. These conditions specify the surface forces as:

σ(x).n⃗(x) = fs, ∀x ∈ ΓN (3.28)

With n⃗(x) being the outward-pointing unit normal vector at the boundary point x, and

fs represents the external surface forces. Dirichlet and Neumann boundary conditions

ensure that the displacement and surface forces are properly accounted for, allowing for

a well-posed static equilibrium problem.

Various numerical methods can be employed to solve equilibrium problems effec-

tively. One crucial step in simplifying and solving these problems is transitioning from

the strong formulation to the weak formulation. This transition involves reformulating

the differential equation into a form that is more amenable to finite element methods

and other approximation techniques. The weak form allows us to distinguish the forces

applied at the domain’s boundary (denoted fs) from the volume forces (such as the grav-

ity), denoted fv. The process to obtain the weak form includes several key steps starting

from the strong formulation of static equilibrium in Equation 3.26, we multiply both sides

by a test function v. The test function v belongs to a function space V and is chosen to

satisfy specific boundary conditions appropriate to the problem. In finite element anal-

ysis, v is typically selected to be smooth and satisfy the problem’s boundary conditions,

such as being zero on Dirichlet boundaries. Then, we integrate both sides of the equation

over the domainΩ:

−
∫
Ω

div(σ).vdΩ=
∫
Ω

fex t .vdΩ (3.29)

Next, by applying Green’s formula and using the fact that v is chosen to be null on ΓD , we

simplify the Equation 3.29 to the following:∫
Ω

σ : ϵ(v)dΩ−
∫
ΓN

fs.vdΓ=
∫
Ω

fv.vdΩ (3.30)

Where σ : ϵ(v) denotes the double dot product between the stress tensor σ and the gradi-

ent of the test function v In this formulation, the test function v is required to satisfy the

boundary conditions, and be appropriately chosen from the function space V . This weak
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formulation is suitable for numerical solutions, such as the finite element method, which

we will present in the next section.

3.2 The finite element method

In the previous section, we introduced the weak formulation of the equilibrium prob-

lem defined on a continuous domain. This weak form is well-suited for numerical analy-

sis and provides a foundation for various computational techniques. Among these tech-

niques, the finite element method (FEM) is one of the most widely used approaches for

solving such problems. FEM discretizes the continuous domain into smaller, manageable

elements and approximates the solution using piece-wise functions. This method allows

for the efficient and accurate analysis of complex structures and materials. In this section,

we will delve deeper into the finite element method, exploring its principles, formulation,

and application to the weak formulation of equilibrium problems.

3.2.1 Domain discretization

In Section 3.1.5, we have reduced the order of the problem and explicitly formulated

boundary terms to impose traction conditions on our system. See Equation 3.30. How-

ever, performing the necessary integrations over a continuous 2D or 3D field, particularly

for complex and irregular shapes, can be challenging due to the lack of a precise numeri-

cal representation of the geometry. To overcome this, discretization is a crucial step of the

FEM. It involves dividing the complex shape of an object into smaller, simpler geometric

elements. As illustrated in Figure 3.2, these elements could be line segments in 1D, trian-

gles and quadrilaterals in 2D, or tetrahedrons and hexahedrons in 3D. This simplifies the

problem by breaking the global shape into trivial geometries, enabling easier numerical

integration.

Figure 3.2: Example of linear and quadratic elements in 1D, 2D and 3D.
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Additionally, the elements can vary in complexity. Linear elements are the simplest,

with nodes only at the corners, leading to a linear approximation of the solution within

each element, see Figure 3.2. In contrast, quadratic elements include additional nodes

along the edges, allowing for a quadratic approximation and a more accurate representa-

tion of the geometry and solution. This distinction between linear and quadratic elements

FEM impacts the accuracy and computational cost. The collection of these geometric el-

ements, which results from the discretization process, is commonly referred to as a mesh.

Inside each element of the mesh, shape functions are used to interpolate the value of a

given point with respect to the element values. The continuous terms in the weak from

(Equation 3.30) are substituted by a finite sum of piecewise continuous terms defined on

each element. The displacement u and the test function v are replaced by their respec-

tive approximations ue and ve , which are restricted to within an individual element e. As

a result, approximating the value of a field function at any position X within the initial

domain Ω involves identifying the element e that contains X and then computing the

approximation as:

uh
e (X) =

ne−1∑
i=0

Ni(X)ui (3.31)

With ui the displacement value at the node i , ne the number of nodes in the element

e and Ni(x) : Ω→ R is the i th shape function of the element. Despite the existence of

various types of shape functions, ranging from simple to highly complex definitions, for

the sake of clarity and simplicity, we will illustrate linear (or trilinear) shape functions.

For instance, first-degree polynomials. For linear triangular and tetrahedron elements,

the nodal shape function Ni at node i is expressed as:

Ni(x,y,z)= ∑
j+k+l≤1

α j kl x
j ykzl (3.32)

With α j kl being real coefficients that satisfy Ni = 1 at node i and Ni = 0 on other nodes.

In the case of linear quadrilateral and hexahedral elements, the shape function at node i

is written as follows:

Ni(x,y,z)= ∑
j ,k,l≤1

α j kl x
j ykzl (3.33)

3.2.2 Building the system

In this section, we will detail the process of transitioning from the weak formulation to

constructing a matrix system, which is essential for solving problems numerically. To
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simplify the discussion, we will assume small displacements. This assumption allows us

to approximate the stiffness matrix K explicitly, representing the relationship between

displacements and internal forces. In many practical scenarios, however, the problem

may involve material nonlinearity (a complex stress-strain relationship) or geometrical

nonlinearity (a nonlinear strain-displacement relationship). In such cases, decoupling

the material stiffness from the displacement field u becomes impossible. As a result, the

problem must be solved iteratively, often using the Newton-Raphson algorithm, with the

stiffness matrix K replaced by a tangent stiffness matrix updated at each iteration. When

dealing with small displacements, the stiffness matrix K remains constant over time, al-

lowing its inverse to be computed once at the beginning of the simulation, which signifi-

cantly accelerates the computation. However, K must be recalculated at each simulation

step for more complex materials or large deformations, capturing each point’s dynamic

influence on the mesh and the internal forces generated by their movements. Let uh be

the discretized version of the displacement u, at a given point X it reads as:

uh(X) =
N∑

i=1
Ni(p).uhi (3.34)

Let f s
h and f v

h be the discretized forms of the surface and volume, respectively. Using the

shape function, these quantities can be expressed as:

f s
h =

N∑
i=1

Ni(x).f s
hi f v

h =
N∑

i=1
Ni(x).f v

hi (3.35)

In Equations 3.34 and 3.35, uhi is the displacement at the node i , f s
hi and f v

hi are the

surface and volume forces at the node i , respectively. N the number of nodes in the mesh.

Let Vh,0 the discretization of the Hilbert space H 1
0 (Ω). Starting form the weak formulation

in Equation 3.30, the problem is formulated as:

∃?uh ∈Vh,0such that
∫
Ω

σ(uh) : ϵ(vh)dΩ−
∫
ΓN

f s
h.vhdΓ=

∫
Ω

f s
h.vhdΩ,∀vh ∈Vh,0 (3.36)

Aiming to build a matrix system out of the problem formulated in Equation 3.36, The

Galerkin theorem, which suggests replacing the test function with the shape function

Nn(X ), is applied. This leads to:
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N∑
i=1

uhi (
∫
Ω

σ(Ni (X ) : σ(Nn(X ))dΩ)−
N∑

i=1
f v

hi (
∫
ΓN

Ni (X ).Nn(X )dΓ) =
N∑

i=1
f v

hi (
∫
Ω

Ni (X ).Nn(X )dΩ)

(3.37)

In Equation 3.37, the domain is discretized, and the Galerkin theorem is applied to the

problem formulation illustrated in Equation 3.36. This allows us to write the following

system:

KUh =F s
h +F v

h (3.38)

With K, Uh, F s
h

and F v
h being, respectively, the stiffness matrix, the displacement vector,

the surface force vector, and the volume force vector. These quantities are expressed as:

K =


∫
Ωσ(N1(X)) : ϵ(N1(X))dΩ · · · ∫

Ωσ(N1(X)) : ϵ(NN (X))dΩ

...
...

...∫
Ωσ(NN (X)) : ϵ(N1(X))dΩ · · · ∫

Ωσ(NN (X)) : ϵ(NN (X))dΩ

 (3.39)

Uk =


uh1

...

uhN

 F s
h =


fs

h1

...

f s
hN

 F v
h =


fv

h1

...

f v
hN

 (3.40)

3.2.3 Solving the system

In the previous section, we have built a linear system that links the forces to the displace-

ment, as illustrated in Equation 3.38. Solving this system allows for determining the dis-

placement field where internal forces exactly counterbalance the external forces acting

on the material. For linear systems, where the stiffness matrix K is constant. This can

be straightforwardly solved using any direct solver. However, in the case of nonlinear sys-

tems—where either the stress-strain relationship is complex or large deformations lead

to significant changes in geometry—the problem becomes more intricate. To tackle these

nonlinearities, the Newton-Raphson method is commonly employed. This iterative algo-

rithm refines the displacement field through successive approximations until equilibrium

is achieved. This process involves linearizing the system by breaking down the overall dis-
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placement u into smaller, incremental displacements. At each iteration n, we aim to find

a correction δn
u that satisfies the linearized set of equations:

K̇n−1(un−1)δn
u = r(u0+δn−1

u )+f (3.41)

With K̇n−1 represents the tangent stiffness matrix from the previous iteration, r(u0 +
δn−1

u ) is the internal elastic force based on the initial displacement u0 and the correction

from the previous iteration, and f is the external force vector. The displacement is then

updated as follows:

un =un−1 +δn
u (3.42)

This iterative process continues until the correction δn
u becomes sufficiently small, ensur-

ing that the system has converged to a solution that accurately reflects the equilibrium

state of the problem.

3.3 Conclusion

In conclusion, this chapter has laid the groundwork for understanding the core principles

of continuum mechanics and the FEM, essential for simulating the behavior of biological

tissues. We began by introducing key concepts such as the deformation gradient, which

characterizes how a material deforms at a local level, and the stress and strain tensors,

which describe internal forces and the resulting deformations. The constitutive relations

that link these quantities and define the material response were discussed, focusing on

hyperelastic materials, which are critical for modeling soft tissues like the liver, where

large deformations can occur. Additionally, we transitioned from the strong to the weak

formulation of the governing equations, simplifying problem-solving. The weak formu-

lation is suitable for numerical methods, particularly the FEM. The process of discretiz-

ing the domain, constructing shape functions, and assembling the system of equations

was explained, along with the numerical methods required to solve these systems effec-

tively. The fundamentals presented in this chapter are required for a comprehensive un-

derstanding of the thesis. These principles will be directly applied to build a biomechan-

ical model of the liver where a hyperelastic material is employed for its nonlinear elastic

properties.
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CHAPTER 4. SONICS

In this chapter, we introduce the first contribution of this thesis: SOniCS, a frame-

work designed to simplify the implementation of hyperelastic models. SOniCS integrates

FEniCS, a tool for solving partial differential equations, with SOFA, a framework for real-

time simulation of deformable objects. This integration enables more efficient and user-

friendly development of complex hyperelastic models, streamlining the simulation pro-

cess for soft tissues and other deformable structures. The work presented here forms the

foundation for developing a biomechanical liver model using advanced hyperelastic laws

where the organ’s geometry is segmented from the preoperative CT data. This model plays

a crucial role in the thesis by enabling non-rigid registration between preoperative CT and

intraoperative IVUS data. The work presented in this chapter led to the following publi-

cations:

• S. El hadramy*, A. Mazier*, J. N .Brunet. J. S. Hale, S. Cotin, S. PA. Bordas. "SOniCS:

Develop intuition on biomechanical systems through interactive error controlled

simulations". Engineering with Computers 40, 1857–1876 (2024) [Mazier, Arnaud

and El Hadramy, Sidaty et al. (2024)].

• S. El hadramy*, A. Mazier*, J. N .Brunet. J. S. Hale, S. Cotin, S. PA. Bordas. "SOniCS:

Interfacing SOFA and FEniCS for advanced constitutive models". FEniCS Confer-

ence, San Diego, 2022. [Mazier, Arnaud and El Hadramy, Sidaty et al. (2022)].

4.1 Introduction

Designing efficient finite element (FE) simulation software is a challenging task. Indeed,

as FEM is a vast field, numerous pieces of software emerged to fill different gaps. For

instance, commercial software such as Abaqus [Smith (2009)] or Ansys [DeSalvo et Swan-

son (1985)] focus on user-friendly GUIs (Graphical User Interface) guiding the user from

pre-processing to post-processing. This has the advantage of allowing users to perform

complex simulations with a relatively basic theoretical knowledge of FE. Meanwhile, other

pieces of software focused on specific domains such as Gmsh [Geuzaine et Remacle (2009)]

for FE meshing, Paraview [Ahrens et al. (2005)] for FE visualization, OpenFoam [Jasak et al.

(2007)] for CFD (Computational Fluid Dynamic) simulations, OpenXFEM [Bordas et al.

(2006)] for extended finite elements [Jansari et al. (2019)], collocation methods [Jacquemin

et Bordas (2021)], meshfree methods [Nguyen et al. (2008)], multiscale problems [Talebi

et al. (2013)], or material point methods (MPM) [Sinaie et al. (2017)]. This historical per-

spective explains the countless FE solvers which makes an exhaustive state-of-the-art

review quasi-impossible. Before selecting one piece of FE software, user should con-

sider the benefits and disadvantages associated with each (i.e., meshing, parallel support,
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solvers, coding language, and visualization). However, generally, simplicity of use and the

ability to easily test modeling hypotheses appear like the most important considerations

in selecting such a computational tool.

In the medical simulation context, several specific aspects have to be considered.

• The material model complexity: Contrary to engineering materials such as steel

or copper, the mechanical properties of living organs were only recently quanti-

fied [Gibbons (1934); Payan et Ohayon (2017)] and show immense variability [Mihai

et al. (2017)]. Various models have been proposed, e.g., anisotropic [Elouneg et al.

(2021); Zhou et Fung (1997)], hyperelastic [Martins et al. (2006); Zeraatpisheh et al.

(2021)], viscoelastic [Ehlers et Markert (2001); Urcun et al. (2021b)], or poroelastic

[Lavigne et al. (2022); Simon (1992)] to accurately depict their complex mechan-

ical behaviors. Indeed, predicting the deformations of bio-materials can only be

achieved through complex material models (sometimes even multi-scale), which

are rarely implemented in commercial software. One major difficulty of this imple-

mentation remains the linearization of highly nonlinear equations. For instance,

hyperelasticity equations can be written as a minimization of a tensorial function.

In most cases, this minimization is solved using gradient-descent algorithms re-

quiring the first and second derivatives of the functional. Therefore, obtaining such

high-order nonlinear derivatives is not straightforward and can be prone to manual

errors.

• The complexity of the simulation: In addition to the complexity of the material

model, the simulation setup itself can be problematic. For instance, the mate-

rial parameters are patient-specific and require data-driven or inference methods

[Han et al. (2011); Urcun et al. (2021a)]. The simulations can also (partially) in-

volve unknown boundary conditions [Tagliabue et al. (2021)], contact with other

organs [Courtecuisse et al. (2014)], or surgical tools [Cotin et al. (1999)]. The prob-

lem can also require multi-physics models (such as FSI [Borazjani (2013)] (Fluid-

Structure Interactions)) or incompressibility [Mazier et al. (2022)], where classical

displacement-based finite elements are prone to locking.

• The error control and uncertainty of the solution: When dealing with biomechan-

ical simulations, several uncertainties always arise from the material parameters,

loads, geometry, or boundary conditions. This is mainly due to the difficulty in es-

timating the mechanical properties through ex-vivo methods or the topology of bi-

ological tissues using medical imaging. Similarly, error control and mesh adaptivity

are necessary to ensure homogeneous convergence of the solution over the domain
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and that the mesh is optimal given a quantity of interest [Allard et al. (2012)]. There-

fore, quantifying the uncertainty or controlling the error on quantities of interests

often requires making a very large number of simulations [Rappel et al. (2019)]

which is incompatible with surgical timing [Hauseux et al. (2017)]. Meanwhile,

those approaches could be functional in clinical settings by using accelerated simu-

lations [Bui et al. (2018)] to build surrogate models or/and machine learning models

for faster solutions of those highly non-linear parametric problems.

• The real-time aspect: In addition to the previous points, the numerical simula-

tion’s run time is crucial for clinical environments. When performing an operation,

the surgeon cannot, in general, spend minutes waiting for the model predictions.

Eventually, this aspect is also applicable to artificial intelligence. Indeed, in order

to build an efficient machine-learning model, a significant amount of data is nec-

essary. Using numerical simulations to create synthetic data is now standard and

directly dependent on the simulation time [Brunet et al. (2019)]. Consequently, the

run-time of the simulation can be considered a principal feature of biomechanics

simulations, and indeed, of any non-intuitive non-linear problems subject to sig-

nificant uncertainties in loading, boundary and initial conditions, and parameters.

• The interaction with the user: In a surgical simulation setting, external variables

can impact the simulation during the execution. For example, the exact movement

of the surgeon’s tool influences the simulation at run-time. Thus, the parameters of

the simulation must be tuned, "live", to integrate interactions between the user and

the simulation [Niroomandi et al. (2013); Wu et al. (2014)].

• The visual rendering: Depending on the research field, visualization can play a

critical role in understanding the results. For instance, in the computer graphics

community, photo-realistic visualization is one of the main objectives [Gilles et al.

(2011); Malgat et al. (2015)]. Contrastingly, in the mechanical engineering culture,

visualization is a manner of extracting and understanding a solution or data set (i.e.,

stress or displacement fields) quantitatively. For medical simulations, an optimal

solution must combine both the accuracy of the results and photo-realistic render-

ing citelecting the clinical ground truth all within clinical time frames [Guo et al.

(2021)].

According to the state-of-the-art, SOFA [Faure et al. (2012)] (Simulation Open Frame-

work Architecture) appears to be a suitable compromise. Indeed, SOFA employs efficient

rendering while providing the possibility to interact in real-time with the running simula-

tion. One can note that real-time computing is only possible depending on the complexity
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of the problem. Indeed, using excessive numbers of degrees of freedom (DOFs) or solving

a highly nonlinear problem cannot result in a real-time simulation (without using model

order reduction [Chinesta et al. (2013); Goury et al. (2016)] or machine learning [Brunet

et al. (2019))]. SOFA can also manage complex simulations through an efficient imple-

mentation of contact [Courtecuisse et al. (2010b); Duriez et al. (2004)], for example, or

enabling multi-physics coupling. At the time of writing, only a few finite elements are

available in SOFA. We remark that in this manuscript, the finite element depends on to

the choice of basis functions via the Ciarlet triple (cell topology, polynomial space, dual

basis) plus a specific choice of weak form. A similar issue is observed for material models

where numerous implementations only focused on a 3-dimensional isotropic behavior.

Therefore, coding a new finite element (Ciarler triple + weak form) in SOFA requires ad-

vanced C++ skills that may discourage individuals from using the software.

To alleviate the problem of complex material models, FEniCS [Alnaes et al. (2015)]

seems like an appropriate solution. Indeed, FEniCS may not possess all of SOFA’s fea-

tures, but definitely overcomes SOFA’s capabilities for material model complexity. With

FEniCS, the user can generate any material model, regardless of the element’s geome-

try or interpolation. Plus, it authorizes an export of the pertinent finite element tensors

in C code to be efficiently plugged into SOFA. The benefits of the synergy are consider-

able. By using SOFA’s interactivity and real-time features, the user can easily prototype a

real-time simulation. Indeed, by modifying "live" various boundary conditions, geome-

tries, or topologies, the user can effortlessly and rapidly verify modeling hypotheses for

a specific problem. Combined with the specificities of FEniCS, the user can addition-

ally smoothly prototype complex material models for modeling elaborate scenarios. Such

feature has already been used by coupling FEniCS and Acegen but with different objec-

tives [Lengiewicz et al. (2021)]. To the best of our knowledge, this work is the first to use

FEniCS code generation capabilities for such an endeavor and is the first coupling be-

tween FEniCS and SOFA.

This chapter has the following outline. We will first briefly introduce SOFA and FEn-

iCS, highlighting the relative advantages and design choices in each. Section 4.2 will de-

tail the plugin functionalities and a short tutorial for importing a Saint Venant-Kirchhoff

model from FEniCS in SOFA. Then, section 4.3 will focus on confirming our implementa-

tion for various numerical tests. We will use a manufactured solution in 4.3.1 as valida-

tion and compare our solutions for a cantilever beam problem with SOFA in 4.3.2. The

last test consists of implementing a new material model (Mooney-Rivlin) in SOFA and

benchmarking it with FEBio [Maas et al. (2012)] in section 4.3.3. Finally, in the last section

4.4, we will use our plugin in a complex haptic simulation that cannot be implemented in

FEniCS, using a custom material model inexistent in SOFA.
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4.1.1 SOFA

SOFA was created in 2007 by a joint effort from Inria, CNRS, USTL, UJF, and MGH. This

piece of software aims to provide an efficient framework dedicated to research, proto-

typing, and the development of physics-based simulations. It is an open-source library

distributed under the LGPL license, hosted on GitHub 1, and developed by an interna-

tional community. SOFA is modular. Users can create public or private plugins to include

additional features.

SOFA is a C++ library, including Python wrappers for a user-friendly prototyping inter-

face. It was originally designed for deformable solid mechanics but has been extended to

various domains such as robotics, registration, fluid simulations, model-order reduction,

and haptic simulations [Courtecuisse et al. (2010a); Duriez (2013); Duriez et al. (2006)].

SOFA exhibits many attractive features, but among them, the combination of multi-model

representations and mappings differentiate it from other software.

Multi-model representation: Most classical FE software uses an identical discretization

for the whole model. Consequently, if one user wants to use the mesh along a contact

surface, the FE mesh will undergo the same in the contact region. It can induce slow sim-

ulations for solving the FE system while the user was initially only interested in the con-

tact part. Conversely, utilizing a multi-model representation approach, users can split

the principal model into three distinct sub-models: deformation, collision, and visual.

Thus, the user can decide to have high-fidelity deformations with flawed contact detec-

tion while maintaining a fine rendering, or vice-versa. Similarly, an object can be made of

several deformation models. For example, one can model a muscle by the interaction of

FE 3D tetrahedra for the volume and 1D beams for modeling ligaments, using 2 different

solvers.

Mappings: In SOFA, the "mappings" are responsible for the communication between the

different models. The models have parent-child relationships constructing a hierarchy

(and a DOF hierarchy by extension). It enables propagating the positions, velocities, ac-

celerations, and forces across the different models. For example, if the contact model

calculates a force, it is mapped on the deformation model that will communicate back

the computed displacement.

Finally, by combining the multi-model representation with the mappings, SOFA can

build complex real-time simulations with high-fidelity rendering. In addition to a scene-

graph structure and visitors (responsible for going through the model hierarchy) imple-

mentation, it can account for interactivity with the users.

1https://github.com/sofa-framework/sofa
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Despite the advantages provided by SOFA, some drawbacks have to be acknowledged.

First, in terms of solid mechanics simulations, only a few elements and material models

are available. Indeed, SOFA only proposes Lagrange linear elements, and the cell topolo-

gies are limited to segments, triangles, quadrangles, tetrahedra, and hexahedra. The fol-

lowing material models are implemented: Boyce and Aruda [Arruda et Boyce (1993)],

Costa [Costa et al. (2001)], isotropic and anisotropic Hookean, Mooney Rivlin (2 invari-

ants) [Mooney (1940)], classical and stabilized Neo-Hookean, Ogden [Ogden (1972)], Saint

Venant-Kirchhoff, and Veronda Westman [Veronda et Westmann (1970)]. Despite a rea-

sonable number of mechanical models, a few of them are actually implemented for each

cell topology. Secondly, the benefits provided by the mappings can also turn out to be a

disadvantage when it comes to implementation. Indeed, the structure of the mappings

is usually complex for unexperimented C++ users, and the mechanical tensors such as

the Cauchy-Green or Piola-Kirchhoff are rarely computed. The two previous drawbacks

are associated with the same flaw: the strong coupling between the material models and

the topology of the element assumed within SOFA’s architecture. This coupling implies

that changing an element’s topology or interpolation will involve a new mapping or the

rewriting of the material model, even in the case of a similar material model.

4.1.2 The modular mechanics plugin (Caribou)

The initial goal of the plugin (called Caribou2 at the time of writing) was to quickly im-

plement new shape functions and their derivatives for different Immersed-Boundary and

meshless domain discretization while keeping the compatibility with the existing SOFA

surgical simulations [Brunet (2020)]. Besides, the plugin enabled to effortlessly imple-

ment different volumetric quadrature schemes and several hyperelastic material models.

Hence, the software design had to be generic enough to combine all the previous require-

ments. It also had to be efficient enough to avoid the creation of a bottleneck that would

prevent the biomechanical model from meeting its computational speed requirement.

Hence, the plugin was made as an extension to SOFA, bringing a redesigned software ar-

chitecture.

In the plugin, the authors implemented a compile-time polymorphism design using

generic C++ template programming. The idea is to write the code as close as possible to

equations found in traditional FE books. Then, the C++ compiler optimizes the set of op-

erations executed during the simulation while keeping an object-oriented code. In this

design, the "Element" concept was created as a generic computational class that would

be inherited by all element types. Similarly to OpenXFEM++ [Bordas et al. (2006)], it pro-

2https://github.com/mimesis-inria/caribou
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vides a flexible implementation to add interpolation and quadrature numerical proce-

dures quickly. Since standard isoparametric elements have a number of nodes, quadra-

ture points, and shape functions already known at compile-time, most modern compilers

will be able to aggressively inline the code to optimize the computation.

Finally, the plugin allows the creation of additional material models by simply defin-

ing three methods per material: the strain energy density function, the second Piola-

Kirchhoff stress tensor function, and its derivative functions. These three functions are

evaluated at a given integration point automatically provided by the plugin. This design

delivers an undeniable advantage: writing a new material model is now independent of

the topology and integration scheme. However, it comes with a non-negligible cost. The

author of the new material model has to manually differentiate the strain energy twice

and write it in C++. This manual intervention is error-prone and can quickly become a

substantial drawback for complex materials.

4.1.3 FEniCS

The FEniCS Project (FEniCS) [Alnaes et al. (2015)] is a collection of tools for the automated

solution of partial differential equations using the finite element method. Like SOFA, the

FEniCS components are distributed under open-source licenses (LGPL v3 or later, and

MIT) and development is hosted on GitHub3.

A distinguishing feature of FEniCS is the ability to allow the user to write variational

of weak formulations of finite element methods in a high-level Python-based domain-

specific language (DSL), the Unified Form Language (UFL) [Alnæs et al. (2014)]. Sub-

sequently, that high-level description can be compiled/transformed using the FEniCS

Form Compiler (FFC) [Kirby et Logg (2006)] into low-level and high-performance kernels.

These kernels can calculate the corresponding local finite element tensor for a given cell

in the mesh. UFL is also used by other finite element solvers with independently devel-

oped automatic code generation capabilities, notably Firedrake [Rathgeber et al. (2016)],

Dune [Bastian et al. (2021)]. The AceGen software also supports automatic differentia-

tion and support for automaticaly generating low-level code [Korelc (2002)]. Compared

with SOFA, FEniCS is limited in scope; its primary focus is the specification and solution

of partial differential equations via the finite element method, leaving difficult problems

like mesh generation, post-processing and visualization to leading third-party packages

such as Gmsh [Geuzaine et Remacle (2009)] and Paraview [Ahrens et al. (2005)].

In the context of implementing finite element models of hyperelastic materials, this

automatic approach has a number of advantages over the traditional route used by most

3https://github.com/fenics
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finite element codes (including, to some extent, SOFA); differentiating analytical expres-

sions for the residual (first derivative) and Jacobian (second derivative) of the energy func-

tional for the hyperelastic model, picking a suitable finite element basis, and then hand-

coding the corresponding finite element kernels in a low-level language (C, Fortran, C++)

for performance. Specifically:

1. The symbolic residual and Jacobian can be derived automatically using the sym-

bolic differentiation capabilities of UFL. By contrast taking these derivatives by hand

can be tedious and error-prone.

2. The compilation of the UFL description of the problem by FFC into the associated

low-level kernels is entirely automated. Again, this step is often time-consuming

and difficult to perform manually.

3. Because of the high-level description of the problem it is possible to experiment

quickly with different concrete finite element formulations (material models, ba-

sis functions, element topology, etc.) without manually modifying low-level kernel

code.

The potential of this high-level approach for solid mechanics were recognized early on

in the development of FEniCS, with two chapters in the FEniCS Book [Narayanan (2012);

Ølgaard et Wells (2012)] promoting this direction. Since then, FEniCS has been used in

a large number of publications on the topic of hyperelastic large-deformation elasticity

e.g. [Baroli et al. (2012); Nguyen-Thanh et al. (2019); Patte et al. (2022)]. Recently the FEn-

iCS Project has undergone a major redevelopment, resulting in the new FEniCSx com-

ponents; DOLFINx (the finite element problem solving environment, replacing DOLFIN),

FFCx (the FEniCSx Form Compiler, replacing FFC) and Basix [Scroggs et al. (2022)] (a finite

element basis function tabulator, replacing FIAT [Kirby (2004)]). UFL is largely unchanged

from the version used in the old FEniCS components and Firedrake.

In this work we do not use DOLFINx. DOLFINx contains the basic finite element data

structures and algorithms (e.g. meshes, function spaces, assembly, interfacing with lin-

ear algebra data structures in e.g. PETSc [Balay et al. (2022)]) and therefore there is a

significant overlap with the functionality already available in SOFA. Directly interfacing

DOLFINx and SOFA at the Application Programming Interface (API) level would be a sig-

nificant technical challenge due to the substantial differences in their internal data struc-

tures. Dedicated weak coupling libraries such as PreCICE [Rodenberg et al. (2021)] could

be an interesting alternative to API coupling, but it is not a path that we explore in this

work.
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Instead, the approach taken by SOniCS is to only use UFL and FFCx (which in turn

depends on Basix) to convert the high-level description of the finite element problem

into low-level C code, which are then called using SOFA’s existing C++ finite element data

structures and algorithms. Compared with coupling DOLFINx and SOFA directly, our ap-

proach creates a relatively light compile-time coupling between FEniCS (specifically, the

generated C code) and SOFA (a large complex C++ code with many dependencies). Con-

sequently, no additional runtime dependencies required for SOFA. This methodology will

be familiar to users of the DOLFINx C++ interface where C finite element kernels are gen-

erated in a first step using UFL and FFCx and are then integrated into the DOLFINx solver

in a second step through a standard compile/include/link approach. Without going into

excessive detail, three changes in the redeveloped FEniCSx components have made SOn-

iCS significantly easier to realize:

1. FFCx (and also DOLFINx) now support code generations using finite elements de-

fined on quadrilateral and hexahedral cells, the default in SOFA.

2. Basix and FFCx have full support for Serendipity finite elements of arbitrary poly-

nomial order following the construction of Arnold and Awanou [Arnold et Awanou

(2011)]. Serendipity elements are used in SOFA and there was a desire to continue

supporting Serendipity basis function due to their lower number of degrees of free-

dom per cell and generally lower number of local computations compared with

standard tensor-product Lagrange elements. We remark that despite the widespread

use of Serendipity elements in many solvers, they can only obtain optimal order

convergence on affinely-mapped meshes, see e.g. [Arbogast et al. (2022)] for more

details.

3. FFCx outputs C99 compliant code according to the UFCx interface, which is speci-

fied as a C header file included with FFCx. This is in contrast with FFC, which out-

puts C++03 compliant code conforming to an interface specified with a C++ header

file. This switch makes it significantly easier to call FFCx generated kernels from

libraries with a C Foreign Function Interface (FFI) such as Python and Julia, or any

language which can easily call functions with a C ABI (e.g. Fortran). Although SOFA

is a C++ libraries and could certainly call C++ generated kernels, the C interface

is simpler to use, consisting only of structs containing basic native data types and

functions.
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4.2 Implementation details

4.2.1 UDL: from Finite Element (FE) model to Python code

In this section, we present more in-depth the SOniCS (SOFA + FEniCS). The plugin is avail-

able on GitHub4. We first introduce the procedure for defining the material model, the

element, and the quadrature rule or degree using the UFL (Python) syntax. For simplicity,

we only focused on a Saint Venant-Kirchhoff model. But the method can be generalized

to all element types following the pipeline shown in figure 4.1. Secondly, we explain the

methodology for converting the UFL script into efficient C kernels. Finally, we show the

interface between the SOniCS plugin and SOFA, stating the conceptual and coding dif-

ferences. For simplicity and as the modular mechanics plugin’s name (Caribou) might

change, we use the name SOFA to denote the combination of SOFA and the modular me-

chanics plugin.

The first step is to define the FE model using the UFL syntax in a Python script. As an

example, in listing 4.1, we describe the 3D simplest hyperelastic model and element: Saint

Venant-Kirchhoff with linear Lagrange finite elements on tetrahedra. In the context of hy-

perelastic simulations, we will exclusively describe features that users could be interested

in customizing.

1 # material .py
2 from ufl import (Coefficient , Constant , Identity ,
3 TestFunction , TrialFunction , inner , ds ,
4 VectorElement , derivative , dx , grad ,
5 tetrahedron , tr , variable )
6

7 # Function spaces
8 cell = tetrahedron
9 d = cell. geometric_dimension ()

10 element = VectorElement (" Lagrange ", cell , 1)
11

12 # Trial and test functions
13 du = TrialFunction ( element ) # Incremental displacement
14 v = TestFunction ( element ) # Test function
15

16 # Functions

4https://github.com/mimesis-inria/caribou/tree/FeniCS-features
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Figure 4.1: Description of the SOniCS pipeline (on the right) and differences with SOFA
(on the left). In SOFA, each element has to be defined, embedding cell geometry, shape
functions (including derivatives), and the quadrature scheme and degree. In SOniCS, it
has been replaced by two Python lines of code for describing the element and its quadra-
ture. The same benefit applies to the material model description. In SOFA, each material
has to be created in a separate file stating its strain energy, derivating by hand the second
Piola Kirchhoff tensor (S) and its Jacobian. It was replaced in SOniCS by only defining
the strain energy of the desired material model in UFL. The derivative of the strain energy
will then be automatically calculated using the FFCX module. Finally, both plugins share
the same Forcefield methods for assembling the global residual vector (R) and stiffness
matrix (K).

17 u = Coefficient ( element ) # Displacement from previous
iteration

18 B = Coefficient ( element ) # Body forces
19 B = Coefficient ( element ) # Traction forces
20

21 # Kinematics
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22 I = Identity (d) # Identity tensor
23 F = variable (I + grad(u)) # Deformation gradient
24 C = variable (F.T * F) # Right Cauchy -Green tensor
25 E = variable (0.5 * (C - I)) # Green - Lagrange tensor
26

27 # Elasticity parameters
28 young = Constant (cell)
29 poisson = Constant (cell)
30 mu = young / (2 * (1 + poisson ))
31 lmbda = young * poisson / ((1 + poisson ) * (1 - 2 * poisson

))
32

33 # Stored strain energy density ( compressible Neo - Hookean
model)

34 psi = (lmbda / 2) * tr(E) ** 2 + mu * tr(E * E)
35

36 # Total potential energy
37 Pi = psi * dx(degree =1) - inner(B, u) * dx(degree =1) -

inner(T, u) * ds(degree =1)
38

39 # First variation of Pi ( directional derivative about u in
the direction of v)

40 F = derivative (Pi , u, v)
41

42 # Compute Jacobian of F
43 J = derivative (F, u, du)
44

45 # Export forms
46 forms = [F, J, Pi]

Listing 4.1: Python code example (material.py) of a Saint Venant-Kirchhoff material

model using Lagrange linear tetrahedron.

Element: After importing the necessary packages, we can define the element geome-

try. In listing 4.1, on line 10, we used a linear Lagrange tetrahedron. The user can easily

modify different parameters of the element, such as the geometry, the family type, or the

interpolation degree. For example, by only changing line 10 to

1 element = VectorElement (" Serendipity ", hexahedron , 2)
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the element is now a quadratic Serendipity hexahedron. Note that VectorElement cre-

ates by default a function space of vector field equal to the spatial dimension. A complete

list of the element available in the Basix documentation [Scroggs et al. (2022)].

Material model: By definition, boundary value problems for hyperelastic media can

be expressed as minimization problems. For a domain Ω ⊂ R3, the goal is to find the

displacement field u :Ω→ R3 that minimizes the total potential energy Π. The potential

energy is given by

Π(u) =
∫
Ω
ψ(u)dx −

∫
Ω

B ·udx −
∫
∂Ω

T ·uds, (4.1)

where ψ is the elastic stored energy density, B is a body force (per unit reference vol-

ume), and T is a traction force (per unit reference area) prescribed on a boundary ∂Ω (of

measure ds) of the domainΩ (of measure dx).

In listing 4.1, at line 37, we define the strain energy of a Saint Venant-Kirchhoff mate-

rial model as:

ψ= λ

2
tr(E)2 +µtr(E2), (4.2)

where λ and µ are Lamé material constants while E is the Green Lagrange strain tensor

defined as 1
2 (C −I) where I is the identity matrix and C the right Cauchy-Green tensor

C = F T F = (∇u+ I)T (∇u+ I). Therefore, we observe that tensor E is expressed with

respect to the displacement u, which is the unknown displacement field. Moreover, λ

and µ are a function of the Young’s modulus and of Poisson’s ratio that are assumed to be

known constants.

If the user would like to change the material model for Neo-Hookean with the strain

energy density

ψ= µ

2
(IC −3)−µln(J )+ λ

2
ln(J )2. (4.3)

It would only require in replacing line 31 with:

1 psi = (mu / 2) * (Ic - 3) - mu * ln(J) + (lmbda / 2) * (ln(
J)) ** 2

in addition to previously defining the corresponding kinematics variables J = det(F ) and

IC = tr(C).

1 J = det(F)
2 I_C = tr(C)

Quadrature rule: In listing 4.1, at line 37, when calculating the total potential en-

ergy it is also possible to choose the quadrature rule and the degree. In our example,

we selected a quadrature degree of 1, triggering by default the Zienkiewicz and Taylor

scheme [Zienkiewicz et al. (2014)] for tetrahedra. Hence, the user could also choose to
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use a Gauss-Jacobi quadrature of degree 2 [Ralston et Rabinowitz (2001)] by replacing line

37 with:

1 Pi = psi * dx(degree =2, scheme="Gauss -Jacobi") - inner(B,
u) * dx(degree =2, scheme="Gauss -Jacobi") - inner(T, u) *

ds(degree =2, scheme="Gauss -Jacobi")

4.2.2 FFCx: from Python code to efficient C kernels

In the particular case of static hyperelastic simulations, we solve the following non-linear

system of equation

K(u) ·du=R(u)− f (u). (4.4)

The R tensor is called the residual vector and is defined as the Gâteaux derivative of the

total potential energyΠwith respect to change in the displacement u in direction v

R= dΠ(u+ϵv)

dϵ
|ϵ=0. (4.5)

The tensor K is the Jacobian (also called stiffness in the context of mechanics) matrix and

corresponds to the derivative of R

K = dR(u+ϵdu)

dϵ
|ϵ=0. (4.6)

Solving the nonlinear system in equation 4.4 can be achieved using the Newton-Raphson

algorithm that will iteratively solve a set of linear systems, assuming an initial guess un

un+1 =un −du. (4.7)

The two tensors can be derived symbolically and exported using the UFL syntax with the

function derivative, as shown at lines 40 and 43 in listing 4.1. A simple call to ffcx will

create a .c and .h files containing the code for generating the local R and K tensors.

$ ffcx material .py

4.2.3 Integration in SOniCS

In SOFA, the definitions of the residual and stiffness tensors are carried out within a C++

file, HyperelasticForcefield.cpp. Each material model is in a separate file. So far, only

Saint Venant-Kirchhoff and Neo-Hookean models have been implemented. The users can

easily access those functionalities through Python wrappers:
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1 node. addObject (" SaintVenantKirchhoffMaterial ",
young_modulus =E, poisson_ratio =nu)

2 node. addObject (’HyperelasticForcefield ’)

Listing 4.2: Python definition of a hyperealstic forcefield in SOFA using a Saint Venant-

Kirchhoff material model.

The HyperelasticForcefield contains several functions, but we are particularly fo-

cusing on two of them. The addForce and assemble_stiffness functions are assem-

bling the global residual and stiffness tensors respectively. Algorithm 1 details the addForce
function, while algorithm 2 presents our reimplementation of the procedure. We did not

detail the assemble_stiffness as it involves the exact same differences between the two

implementations.

Algorithm 1: SOFA addForce function. The addForce function is in charge of as-
sembling the global residual vector.

1 for element in elements do
X ← element.positions ▷ return the current positions of the element

Rglobal ← 0 ▷ zero the global residual vector of dimension (DOFs ×3)

Rlocal ← 0 ▷ zero the local residual vector of dimension (element DOFs ×3)
for quadrature in quadratures do

detJ ← det(quadrature.nodes) ▷ return the Jacobian of the quadrature nodes

dN ← quadrature.nodes.shape_functions_derivatives ▷ return the
derivatives of the shape functions of the quadrature nodes

w ← quadrature.nodes.weights ▷ return the weights of the quadrature nodes

F ← X T ·dN

J ← det(F )

C ← F T ·F

S ← f(C ,MaterialParameters) ▷ return the second Piola-Kirchhoff depending
on the material parameters and kinematics tensors
for i in range(0, NumberOfNodesPerElement) do

dx ← dN [i]T

Rlocal [i ] ← (detJ ·w) ·F ·S ·dx ▷ allocate the result in the local residual vector
end

end
for i in range(0, NumberOfNodesPerElement) do

Rglobal[global(i )] ← Rglobal[global(i )]−Rlocal[i ] ▷ i indicates the element node
index while global(i ) denotes the global node index

end
2 end

The structure is similar but we can still observe a few differences.
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Algorithm 2: SOniCS addForce function. The addForce function is in charge of
assembling the global residual vector.

1 for element in elements do
X ← element.positions ▷ return the current positions of the element

X0 ← element.rest_positions ▷ return the initial positions of the element

B ← gravity ▷ return the body forces

T ← element.forces ▷ return the traction forces applied on the element

u ← X −X0

Rglobal ← 0 ▷ zero the global residual vector of dimension (DOFs ×3)

Rlocal ← 0 ▷ zero the local boundary conditions residual vector of dimension
(element DOFs ×3)

Rbc
local ← 0 ▷ zero the local residual vector of dimension (element DOFs ×3)

constants← MaterialParameters ▷ return the material parameters

Rlocal ← tabulate_tensor(Rlocal,u,B ,constants, X0)

Rbc
local ← tabulate_tensor(Rlocal,u,T,constants, X0) for

i in range(0, NumberOfNodesPerElement) do

Rglobal[global(i )] ← Rglobal[global(i )]− (Rlocal[i ]+Rbc
local[i ]) ▷ i indicates the

element node index while global(i ) denotes the global node index
end

2 end

• The new implementation of algorithm 2 is more concise and involves less visible

tensorial operations because all those operations are efficiently hard coded in the C

file provided by FFCx. For example, in algorithm 1, lines 5 to 17 were replaced in the

new algorithm 2 by solely line 11.

• Algorithm 2 needs to have access to the initial position of the object and to the dis-

placement vector. This was indeed not needed in the previous implementation

since the modular mechanics plugin takes advantage of writing the deformation

gradient only based on the current nodal coordinates x:

F = I +∇Ω0u= I +∇Ω0 (x−x0) =∇Ω0x. (4.8)

∇Ω0 and x0 respectively denote the gradient and the nodal coordinates in the initial

configuration, thus saving one extra vector operation.

• In the SOFA implementation, the boundary conditions and body forces are treated

in separate files. In the new implementation of the Forcefield 1, the boundary con-

ditions and body forces are now directly carried out in the Forcefield on lines 11
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and 12. It avoids calling another function to loop again through every element of

the object, thus speeding up the assembly of the residual vector.

Based on this new implementation, we created a new forcefield HyperelasticForcefield_FEniCS
as close as possible to the existing syntax of HyperelasticForcefield. We also needed

to tune the existing material definition to replace unnecessary calculations and allow us

to read the corresponding .c file.

1 node. addObject (" FEniCS_Material ", material ="
SaintVenantKirchhoff ", young_modulus =E, poisson_ratio =nu
)

2 node. addObject (’HyperelasticForcefield_FEniCS ’)

Listing 4.3: Python definition of a hyperelastic forcefield in SOniCS using a Saint Venant-

Kirchhoff material model.

Finally, the last hurdle was the element definitions. Indeed, SOFA and FEniCS do not

use the same vertices, edges, and facets ordering (as shown in figure 4.2). To avoid any

conflict with the existing users of SOFA and solve the ordering issue, we proposed rear-

ranging the topology indices, edges, and vertices and creating new elements. It ensured

an accurate integration over the elements (especially for quadratic Serendipity integrat-

ing over the edges) and preserved an appropriate visualization. Those elements have been

interfaced with the existing topology named CaribouTopology.

1 node. addObject (’CaribouTopology ’, name=’topology ’, template
=" Hexahedron ", indices =mesh. cells_dict [’hexahedron ’])

2

3 node. addObject (’CaribouTopology ’, name=’topology ’, template
=" Hexahedron_FEniCS ", indices =mesh. cells_dict [’
hexahedron ’][:, [4, 5, 0, 1, 7, 6, 3, 2]])

Listing 4.4: Python definition of hexahedron topology in SOFA and SOniCS.

4.3 Numerical Examples

In this section we describe three numerical examples used for the validation of our SOn-

iCS implementation. Every simulation described in this section can be reproduced and

are available on GitHub5. We use the same domain description for each example while

varying the boundary conditions and material parameters of each simulation.

5https://github.com/Ziemnono/SOniCS_validation
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(a) FFCx/Basix. (b) SOFA.

Figure 4.2: Local numbering of element vertices and edges in both FEniCS and SOFA

Let Ω be a domain represented by a squared-section beam of dimensions 80× 15×
15m3, considered fixed on the right side (u = 0 on ΓD ) while Neumann boundary condi-

tions are applied on the left side (ΓN ), as shown in figure 4.3a and 4.3b.

Ωwas discretized using two different geometrical elements using linear and quadratic

interpolations. P1 and P2 elements stand for linear or quadratic tetrahedra, while Q1 and

Q2 denote linear and quadratic hexahedra.

To solve each hyperelastic formulation described in equation 4.4, we used an identi-

cal implementation of the classical Newton Raphson (NR) solver for SOniCS, SOFA, and

FEBio. The solver had the following parameters: a maximum of 25 iterations with a resid-

ual and displacement tolerance of 10−10. In order to compare the running time of the

two implementations, we, therefore, introduced the mean NR iteration time. We defined

the NR iteration time as the duration for assembling and factorizing the system matrix,

solving and propagating the unknown increment, updating, and computing the force

and displacement residual. After checking that the same number of iterations have been

achieved, we averaged the total time over the number of iterations needed for the solver

convergence. All calculations were performed using an Intel® Core™ i5-6300HQ CPU @

2.30GHz × 4 processor with a 16GiB memory and a NV117 / Mesa Intel® HD Graphics 530

(SKL GT2) graphics card.

We evaluated the soundness of the SOniCS solution using SOFA, FEBio, or a manufac-

tured solution as the reference solution and computed the Euclidean relative L2 error for

the displacement and strain fields.

L2
u(u,v) = ||u−v||2

||v||2
, (4.9)

L2
E (u,v) = ||Eu−Ev||2

||Ev||2
, (4.10)

where u and v are the calculated displacement vectors for SOniCS and the reference im-

plementation, respectively, ||•|| the Euclidean norm, and Eu the Green-Lagrange strain
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(a) Hexahedral elements.

(b) Tetrahedral elements.

Figure 4.3: Cantilever beam domain discretization and displacement field. Ω is a domain
represented by a squared-section beam of dimensions 80×15×15m3, considered fixed on
the right side (u = 0 on ΓD ) while Neumann boundary conditions are applied on the left
side (ΓN ).
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tensor of the displacement u.

In this section, we first compare our solution with an analytical one: the manufactured

solution. Then, we consider a clamped cantilever beam subject to Neumann boundary

conditions and compare its deformation with the SOFA solution. Finally, using the same

cantilever beam, we implemented a Mooney Rivlin model (not implemented in SOFA)

using SOniCS and compared the solution with FEBio.

4.3.1 Manufactured solution

Aiming at code verification, the method of the manufactured solution consists in choos-

ing an exact solution to the problem as an analytical expression [Chamberland et al. (2010)].

The chosen analytical expression is then inserted into the Partial Differential Equation

(PDE) to determine the conditions that lead to this solution. In general, the manufactured

chosen solution is expressed in simple primitive functions like sin(),exp(), tanh(). In the

context of hyperelastic equations, we considered the following manufactured solution for

the displacement

u(x, y, z) =


10−2 · z ·ex

10−2 · z ·e y

10−2 · z ·ez

onΩ. (4.11)

Starting from the above-chosen displacement and using continuum mechanics laws,

the relative analytical forces are applied as Neumann boundary conditions and deduced

as follows.

F = Id+grad(u), (4.12)

P = ∂W

∂F
, (4.13)

f =−∇·P onΓN . (4.14)

Where F is the deformation gradient, Id is the identity matrix of dimension d , P is

the first Piola-Kirchhoff stress tensor and W is the strain energy density depending on

the material model constitutive law. We used a Saint Venant-Kirchhoff material (4.2) with

a Young’s Modulus of 3 kPa and a Poisson’s ratio of 0.3, the computation of this solution

was performed using Python Sympy package [Meurer et al. (2017)].

In this experiment, we generated 7 and 6 discretizations of P1 and P2 elements, re-

spectively, with a decreasing element size in both scenarios. For each discretization, we
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applied the relative analytical forces deduced from the manufactured solution (4.11) and

used SOniCS Saint Venant-Kirchhoff material implementation with the same parameters

as Sympy’s to fill the domain. The displacements obtained were compared to the chosen

analytical solution in equation (4.11) for each discretization. The results are presented in

figure 4.4, and the error metrics are the relative errors presented in equations 4.9 and 4.10.

Figure 4.4: Plot of the mesh convergence analysis of the manufactured solution. The
L2 errors (L2

u for displacement and L2
E for strain) between the analytical and the SOniCS

simulation is calculated for different number of DOFs with fixed parameters (E=3 kPa and
ν=0.3) for P1 linear tetrahedra (blue) and P2 quadratic tetrahedra (red) elements.

4.3.2 Benchmark with SOFA

The cantilever beam deflection is a classical mechanical test case, as you can smoothly

refine the mesh due to the simplicity of the geometry or modify its boundary conditions

to fit real-life experiments. In this context, the beam was still clamped on the right side

(natural Dirichlet condition on ΓD ) while Neumann boundary conditions were applied

on the left side (ΓN ). To compare our SOniCS implementation, we model the deforma-

tion of the beam with two hyperelastic material models: Saint Venant-Kirchhoff and Neo-

Hookean. We fixed the mechanical parameters and the Neumann boundary conditions

equal to −10 Pa in the y direction until reaching sufficient large deformations with the

same parameters as before: E = 3kPa and ν= 0.3.

This study aims at comparing the finite element solutions provided by SOniCS and

SOFA under the same constraints in terms of computational and running time perfor-

mances. To do so, we computed the relative L2 error for the displacement and strain
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fields (L2
u(uSOniCS,uSOFA) and L2

E (uSOniCS,uSOFA))between the SOniCS solution using SOFA

as the reference solution.

The results obtained are presented in tables 4.1 and 4.2 for Saint Venant-Kirchhoff and

Neo-Hookean materials, respectively.

Saint Venant-Kirchhoff material model

Element Number of
DOFs

SOniCS
mean NR
iteration
time (s)

SOFA
mean NR
iteration
time (s)

L2
u(uSOniCS,uSOFA) L2

E (uSOniCS,uSOFA)

P1 10935 0.387 0.438 4.10e-14 2.32e-16

P2 12705 0.810 0.808 3.49e-14 8.18e-15

Q1 10935 0.449 0.464 6.19e-13 3.76e-16

Q2 11772 0.839 0.942 3.81e-13 23.68e-14

Table 4.1: Relative error for displacement (L2
u(uSOniCS,uSOFA)) and strain

(L2
E (uSOniCS,uSOFA)) defined in equations 4.9 and 4.10 and mean NR (Newton-Raphson)

iteration time between SOniCS and SOFA for different element geometries and interpola-
tion schemes using Saint Venant-Kirchhoff material model. P1 and P2 elements stand for
linear or quadratic tetrahedra, while Q1 and Q2 denote linear and quadratic hexahedra.

Neo-Hookean material model

Element Number of
DOFs

SOniCS
mean NR
iteration
time (s)

SOFA
mean NR
iteration
time (s)

L2
u(uSOniCS,uSOFA) L2

E (uSOniCS,uSOFA)

P1 10935 0.391 0.428 2.17e-14 7.78e-14

P2 12705 0.826 0.852 1.40e-14 2.18e-20

Q1 10935 0.471 0.478 4.92e-13 5.77e-16

Q2 11772 0.826 0.864 1.64e-13 2.17e-14

Table 4.2: Relative error for displacement (L2
u(uSOniCS,uSOFA)) and strain

(L2
E (uSOniCS,uSOFA)) defined in equations 4.9 and 4.10 and mean NR (Newton-Raphson)

iteration time between SOniCS and SOFA for different element geometries and interpo-
lation schemes using Neo-Hookean material model. P1 and P2 elements stand for linear
or quadratic tetrahedra, while Q1 and Q2 denote linear and quadratic hexahedra.
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4.3.3 Benchmark with FEBio

FEBio is an open-source finite element package specifically designed for biomechanical

applications. It offers modeling scenarios, a wide range of constitutive material models,

and boundary conditions relevant to numerous research areas in biomechanics. In this

section, FEBio was used to compute the same scenarios as in section 4.3.2 to evaluate the

trustworthiness of SOniCS. A more advanced constitutive material model, Mooney Rivlin,

was introduced for this purpose

ψ=C01

(
IC −3

)
+C10

(
IIC −3

)
+ K

2
ln(J ). (4.15)

Where C01, C10, and K are the material constants in addition to the modified invari-

ants IC = J−
2
3 IC , IIC = J−

4
3 IIC defined based on the classic invariants IC = tr(C), IIC =

1
2

(
(tr(C))2 − tr

(
C2

))
. In order to obtain sufficiently large deformations, we chose the fol-

lowing material parameters: C01 = 2000Pa, C10 = 100Pa, and K = 1000Pa.

Tables 4.3, 4.4, 4.5 show the results obtained for Saint Venant-Kirchhoff, Neo-Hookean

and Mooney Rivlin material models and considering the four discretizations implemented

so far in SOniCS. The error evaluation is still based on the mean relative error defined in

equation 4.9 using FEBio as the reference while using a Newton Raphson solver with the

same characteristics in both cases.

Saint Venant-Kirchhoff material model

Element Number of
DOFs

SOniCS
mean NR
iteration
time (s)

FEBio
mean NR
iteration
time (s)

L2
u(uSOniCS,uFEBio) L2

E (uSOniCS,uFEBio)

P1 10935 0.387 0.401 6.01e-10 4.23e-7

P2 12705 0.810 0.991 0.08 0.117

Q1 10935 0.449 0.508 4.19e-10 2.96e-6

Q2 11772 0.839 0.102 0.13 0.189

Table 4.3: Relative error for displacement (L2
u(uSOniCS,uFEBio)) and strain

(L2
E (uSOniCS,uFEBio)) defined in equations 4.9 and 4.10 and mean NR (Newton-Raphson)

iteration time between SOniCS and FEBio for different element geometries and inter-
polation schemes using Saint Venant-Kirchhoff material model. P1 and P2 elements
stand for linear or quadratic tetrahedra, while Q1 and Q2 denote linear and quadratic
hexahedra.
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Neo-Hookean material model

Element Number of
DOFs

SOniCS
mean NR
iteration
time (s)

FEBio
mean NR
iteration
time (s)

L2
u(uSOniCS,uFEBio) L2

E (uSOniCS,uFEBio)

P1 10935 0.391 0.458 6.53e-10 7.33e-7

P2 12705 0.826 0.101 1.5e-2 3.16e-2

Q1 10935 0.471 0.523 8.08e-10 1.02e-6

Q2 11772 0.826 0.908 0.09 0.13

Table 4.4: Relative error for displacement (L2
u(uSOniCS,uFEBio)) and strain

(L2
E (uSOniCS,uFEBio)) defined in equations 4.9 and 4.10 and mean NR (Newton-Raphson)

iteration time between SOniCS and FEBio for different element geometries and interpo-
lation schemes using Neo-Hookean material model. P1 and P2 elements stand for linear
or quadratic tetrahedra, while Q1 and Q2 denote linear and quadratic hexahedra.

Mooney Rivlin material model

Element Number of
DOFs

SOniCS
mean NR
iteration
time (s)

FEBio
mean NR
iteration
time (s)

L2
u(uSOniCS,uFEBio) L2

E (uSOniCS,uFEBio)

P1 10935 0.662 0.804 2.49e-9 6.81-8

P2 12705 0.102 0.112 9.97e-3 8.28e-2

Q1 10935 0.818 0.910 10.92 14.71

Q2 11772 0.101 0.125 4.23e-2 1.229e-1

Table 4.5: Relative error for displacement (L2
u(uSOniCS,uFEBio)) and strain

(L2
E (uSOniCS,uFEBio)) defined in equations 4.9 and 4.10 and mean NR (Newton-Raphson)

iteration time between SOniCS and FEBio for different element geometries and interpo-
lation schemes using Mooney Rivlin material model. P1 and P2 elements stand for linear
or quadratic tetrahedra, while Q1 and Q2 denote linear and quadratic hexahedra. The
large errors obtained for Q1 elements are further discussed in section 4.5.
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4.4 Haptic simulation

In the context of numerical surgical simulations, robot haptic feedback has been shown

to be a consistent tool for drastically improving user interactions and opening up count-

less applications. Among them, haptic devices have mainly been used as training tools

for surgeons. Indeed prior to surgery, under the assumption of known geometry and me-

chanical properties of the patient’s organ, a surgeon would be able to plan and better

choose between specific surgical paths/approaches. In this work, we used the 3D Systems

Touch Haptic Device robot coupled with the SOFA plugin Geomagic to allow interactions

between the instrument and the simulations. For this hypothetical simulation, we virtu-

ally simulate the contact between a surgical tool and a liver during surgery. The liver was

described by an anisotropic Holzapfel Ogden model [Holzapfel et Ogden (2009); Pezzuto

et al. (2014)], with an existing FEniCS implementation [Hauseux et al. (2018)] validated

using the manufactured solution. Therefore, to assess the soundness of our implemen-

tation, we conducted a mesh convergence analysis on a beam and liver meshes provided

in figure 4.5. We prescribed natural Dirichlet boundary conditions on one side and Neu-

mann boundary conditions on the other side to obtain noticeable deformations. Such

material could be described using the following strain energy density function

ψ=ψiso (F )+ψvol(J ). (4.16)

ψiso and ψvol are the isochoric and volumetric part of the strain energy density function

respectively. The volumetric part can be evaluated as a function of the bulk modulus κ of

the material and J

ψvol (J ) = κ

4
(J 2 −1−2ln(J )), (4.17)

ψiso (F ) = a

2b
exp[b (I1 −3)]+

∑
i= f ,s

ai

2bi
exp

[
bi (I4i −1)2]+

afs

2bfs

(
exp

[
bfsI2

8fs

]−1
)

,
(4.18)

with

I4 f = f0 ·C ·f0, I4s = s0 ·C ·s0, and I8fs = f0 ·C ·s0. (4.19)

The transversely isotropic behavior can be obtained by removing the parameters a f s ,

b f s , as and bs , while the isotropic behavior is obtained by also suppressing the two pa-

rameters a f and b f . This kind of model is frequently used to model orthotropic materials
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(e.g. muscle with fibers or tendons). Vectors f0, s0 are the unit base vectors normal to the

planes of symmetry. For our application, we selected the following material properties

allowing to obtain sufficient deformation of the objects: κ = 102 MPa, a = 1.102 kPa,b =
5Pa, a f = 16kPa,b f = 12.8Pa, as = 18kPa,bs = 10Pa, a f s = 9kPa,b f s = 12 Pa.

Figure 4.5: Plot of the mesh convergence analysis applied to a beam and liver using the
Holzapfel and Ogden anisotropic material models with the parameters κ = 102 MPa, a =
1.102 kPa,b = 5Pa, a f = 16kPa,b f = 12.8Pa, as = 18kPa,bs = 10Pa, a f s = 9kPa,b f s = 12 Pa.
The maximum displacement of a beam ubeam

max and liver uliver
max meshes are respectively

computed in orange and blue for different mesh sizes increasing the number of DOFs.

Figure 4.6: Three different deformation states of a liver in contact with a surgical tool
connected to a haptic device. The surgical tool (in red) is guided by the user through the
3D Systems Touch Haptic Device to deform the liver from the initial configuration (green
wire-frame) to a deformed state (textured). The liver is modeled using the Holzapfel Og-
den anisotropic material with the following parameters κ = 102 MPa, a = 1.102 kPa,b =
5Pa, a f = 16kPa,b f = 12.8Pa, as = 18kPa,bs = 10Pa, a f s = 9kPa,b f s = 12 Pa. The maxi-
mum displacement of a beam ubeam

max and liver uliver
max . In the case of contact detection, the

contact forces are transmitted to the user through the haptic device. A video of the simu-
lation is available as supplementary materials.

The instrument is assumed to be a rigid body kinematically constrained by the haptic
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device position at each time step. The contact forces generated by the collision between

the instrument and the liver are calculated using frictional contact and an implicit Eu-

ler scheme to solve the dynamic system [Courtecuisse et al. (2013)]. Finally, the contact

forces are transmitted back to the user’s hand through the haptic device. The result is a

simulation running at 100 FPS (Frames Per Seconds) on average displayed in figure 4.6.

The real-time performance has been obtained by using a small number of DOFs (543).

4.5 Discussion

We show that the SOniCS plugin is an efficient implementation of material models for

hyperelastic simulations and enables the user to develop an intuitive understanding of

the impact of modeling choices on the accuracy and reliability of the predictions. We

first demonstrated a convergence study for Saint Venant-Kirchhoff material using P1 and

P2 elements with the manufactured solution in section 4.3.2. Indeed, as expected, by

refining the mesh, the L2 relative errors for strain and displacement fields almost follow

the theoretical slopes when increasing the number of DOFs (on a log-log plot), showing

the stability of our method.

Then, from section 4.3.2, two main results are noteworthy from tables 4.1 and 4.2.

First, the relative errors of the displacement and strain between SOniCS and SOFA, for

both material models, are close to machine precision for P1, P2, Q1, and Q2 discretiza-

tions. Secondly, the last comment concerns the mean NR iteration time. We observe

that the SOniCS implementation is slightly faster than SOFA for any elements using Saint

Venant-Kirchhoff or Neo-Hookean material model. The reason for this difference is the

need for SOFA to compute the shape functions and derivatives, then calculate the local

residual and Jacobian using multiple tensor operations. Conversely, SOniCS has all those

operations efficiently hard-coded in C kernels, thus performing faster than SOFA.

We compared the SOniCS and FEBio simulations for several material models: Saint

Venant-Kirchhoff, Neo-Hookean, and Mooney-Rivlin in section 4.3.3. For P1 elements,

the errors are close to machine precision for all 3 models. For P2 and Q2 elements, the 3

models display similar errors that still represent a minor error (less than 0.08 and 0.1, re-

spectively) which is of same magnitude between SOFA and FEBio, as well as FEniCS and

FEBio. The reasons for those minor errors could be the difference in the implementa-

tion of the elements or in the choice of solver parameters. For Q1 elements, we reached

an accuracy near machine precision for Saint Venant-Kirchhoff and Neo-Hookean. How-

ever, the relative error for displacement rose close to 11 for the Mooney-Rivlin model,

while similar behavior is observed for the relative strain errors. To further understand this
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divergence, we included a third open-source software AceGen [Korelc (2022)]. AceGen

similarly uses an automatic code generation package for the symbolic generation of new

finite elements. The cantilever beam scenario presented in section 4.3.3 was reproduced

using AceGen under the same conditions and with an identical Q1 discretization of the

domain. Using the same metric as defined in equation 4.9, the results are the following:

L2
u(uSOniCS,uAcegen) = 3.33 and L2

u(uFEBio,uAcegen) = 14.19. Even if SOniCS and Acegen

showed similar results, a more in-depth study would be needed to confirm the soundness

of our solution and explain the differences between FEBio and SOniCS solutions. Despite

using a finer mesh the error was slightly lower but still noticeable. Eventually, FEBio has

shown difficulty in converging with trivial parameter sets or when increasing the number

of DOFs. Thus, as shown in tables 4.3,4.4, and 4.5, on average, SOniCS is solving the equa-

tion system faster than FEBio. Several reasons could explain those differences, such as the

number of quadrature points used, the implementation of the Newton-Raphson scheme,

or the solver parameters.

Finally, we showed the capabilities of the SOniCS plugin in simulating complex mate-

rial models such as the Holzapfel Ogden anisotropic model coupled with a haptic device

in section 4.4. The material model was effortlessly implemented for several elements (P1,

P2, Q1, and Q2) without needing any manual derivation or coding. A manufactured so-

lution was used in [Hauseux et al. (2018)] to validate the FEniCS implementation, while

figure 4.5 demonstrates a convergence of the solution for a beam and liver shape using the

SOniCS implementation. Therefore, the absence of analytical solutions or experimental

data only proves the convergence to a numerical solution that is not necessarily a ground

truth. The final result is a real-time simulator functional for surgeons’ training or any

other biomechanics simulation replicating the behavior of a liver in contact with a surgi-

cal tool.

4.6 Conclusion

We performed several numerical experiments to develop intuitive understanding of new

material models in SOFA using the SOniCS plugin. First, we validated the most common

hyperelastic material models: Saint Venant-Kirchhoff and Neo-Hookean using a manu-

factured solution. Then, utilizing FEBio as a reference, we verified our implementation

of a Mooney-Rivlin material model using P1, P2, Q1, and Q2 elements. The final appli-

cation employed a haptic device to interact with an anisotropic Holzapfel Ogden liver

model in real-time. The study used our SOniCS plugin to generate optimized C code for

complex material models compatible with SOFA. On one side, we benefited from FEn-
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iCS automatic differentiation and code generation capabilities to bypass the difficulties

of deriving and implementing the consistent Jacobian in SOFA. On the user side, we im-

plemented compatible and user-friendly SOFA Forcefields to use the FEniCS C kernels. A

SOFA user can now easily define a new material model by specifying its strain energy func-

tion, element geometry or family, and the quadrature scheme and degree only in Python.

We made the open-source code and all data and test cases available as supplementary

material.

Despite its generic nature and potential to support a wide range of scenarios involving

the implementation of advanced hyperelastic laws, in this thesis, we will primarily use the

SOniCS framework to develop a biomechanical model of the liver. By focusing on hyper-

elastic material models tailored to the liver’s complex mechanical properties, this model

will play a crucial role in the registration process. While SOniCS is versatile for broader

applications, its primary use in this work is to provide an accurate liver biomechanical

model aiming to solve the registration problem.
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CHAPTER 5. ULTRASOUND VOLUME RECONSTRUCTION

5.1 Introduction

Typically, ultrasound volumes are reconstructed by tracking a sequence of frames, posi-

tioning them in space based on their corresponding tracking data, and then interpolat-

ing between them. Electromagnetic tracking systems are often employed for this task.

However, their use in laparoscopic surgery is constrained due to size limitations. These

systems can also introduce complexity and increase the cost of the surgical setup, while

their accuracy may be compromised by the presence of metallic instruments in the sur-

gical environment. In this section, we address the challenge of reconstructing IVUS vol-

umes without relying on any tracking systems. This volume reconstruction is essential

in the context of this thesis, as it serves as the intraoperative data. Once segmented, the

IVUS volume provides key intraoperative features critical for the feature-based registra-

tion method employed in later chapters. The work presented in this chapter led to the

following publication:

• S. El hadramy, J. Verde, KP. Beaudet, N. Padoy, S. Cotin. "Trackerless Volume Recon-

struction from Intraoperative Ultrasound Images" In: Greenspan, H., et al. Medi-

cal Image Computing and Computer Assisted Intervention – MICCAI 2023. Lecture

Notes in Computer Science, vol 14229 [El hadramy et al. (2023a)].

Several approaches have been proposed to address trackerless ultrasound volume re-

construction. Physics-based methods have exploited speckle correlation models between

different adjacent frames [Mercier et al. (2005); Mohamed et Vei Siang (2019); Mozaffari et

Lee (2017)] to estimate their relative position. With the recent advances in deep learning,

recent works have proposed to learn a higher-order nonlinear mapping between adjacent

frames and their relative spatial transformation. Prevost et al. (2017) first demonstrated

the effectiveness of a convolution neural network to learn the relative motion between a

pair of US images. Xie et al. (2021) proposed a pyramid warping layer that exploits the

optical flow features and the ultrasound features to reconstruct the volume. To enable a

smooth 3D reconstruction, a case-wise correlation loss based on 3D CNN and Pearson

correlation coefficient was proposed in [Guo et al. (2021); Xie et al. (2021)]. Li et al. (2022)

leverages past and future frames to estimate the relative transformation between each se-

quence pair; they used the consistency loss proposed in Miura et al. (2021). Recent work

[Luo et al. (2022); Ning et al. (2022)] proposed to exploit the acceleration and orientation

of an inertial measurement unit (IMU) mounted on the probe to improve the reconstruc-

tion performance and reduce the drift error. Despite the success of these approaches,

they still suffer significant cumulative drift errors and mainly focus on reconstructing vol-

umes from translation motion, as they are interested in standard ultrasound probes. This
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limits the use of their methods in the case of the IVUS, which mainly employs rotational

motion, as explained in chapter 1.

Motivated by the weakness of the state-of-the-art methods when it comes to large ro-

tational probe motions and the difficulty of integrating IMU and electromagnetic sen-

sors in the case of minimally invasive procedures, we introduce a new method for pose

estimation and volume reconstruction in the context of minimally invasive trackerless

ultrasound imaging. Our method uses a Siamese architecture based on a Sequence to

Vector(Seq2Vec) neural network that leverages ultrasound images and features computed

with the optical flow to learn relative transformation between a pair of images. Our method

improves upon previous solutions in terms of robustness and accuracy, particularly in the

presence of rotational motion. Such motion is predominant in the context highlighted

above and is the source of additional non-linearity in the pose estimation problem. To

the best of our knowledge, this is the first work that provides a clinically sound and effi-

cient 3D IVUS volume reconstruction during minimally invasive procedures.

5.2 Method

In this work, we assume that the IVUS probe does not induce any deformation on the

organ of interest during the volume acquisition. This assumption is realistic due to the

small size of the probe. In addition, the IVUS probe is inserted inside the organ, which

makes it move with the organ when human respiration occurs. Let I0, I1...IN−1 be a se-

quence of N frames. Our aim is to find the relative spatial transformation between each

pair of frames Ii and I j with 0 ≤ i ≤ j ≤ N −1. This transformation is denoted T(i , j ) and

is a six degrees of freedom vector representing three translations and three Euler angles.

To achieve this goal, we propose a Siamese architecture that leverages the optical flow in

the sequences in addition to the frames of interest in order to provide a mapping with the

relative frames’ spatial transformation. The overview of our method is presented in Fig

A.2.

We consider a window of 2k + 3 frames from the complete sequence of length N ,

where 0 ≤ k ≤ ⌊N−3
2 ⌋ is a hyper-parameter that denotes the number of frames between

two frames of interest. Our method predicts two relative transformations between the

pairs of frames (I1, Ik+2) and (Ik+2, I2k+3). The input window is divided into two equal se-

quences of length k +2 sharing a common frame. Both deduced sequences are used to

compute a sparse optical flow allowing to track the trajectory of M points. Then, Gaus-

sian heatmaps are used to describe the motion of the M points in an image-like format

(see section 5.2.2). Finally, a Siamese architecture based on two shared weights Seq2Vec
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Figure 5.1: Overview of the proposed method. The input sequence is split into two equal
sequences with a common frame. Both are used to compute a sparse optical flow. Gaus-
sian heatmaps tracking M points are then combined with the first and last frame of each
sequence to form the network’s input. We use a Siamese architecture based on Sequence
to Vector (Seq2Vec) network. The learning is done by minimising the mean square error
between the output and ground truth transformations.

network takes as input the Gaussian heatmaps in addition to the first and last frames and

predicts the relative transformations. In the following, we detail our pipeline.

5.2.1 Sparse Optical Flow

Given a sequence of frames Ii and Ii+k+1, our aim is to find the trajectory of a set of points

throughout the sequence. We choose the M most prominent points from the first frame

using the feature selection algorithm proposed in Shi et Tomasi (1994). Points are then

tracked throughout each pair of adjacent frames in the sequence by solving equation 5.1

which is known as the Optical flow equation. We use the pyramidal implementation of

Lucas-Kanade method proposed in Bouguet (2001) to solve the equation. Thus, yielding

a trajectory matrix A ∈RM×(k+2)×2 that contains the position of each point throughout the

sequence. Figure 5.2 illustrates an example where we track two points in a sequence of

frames.

Ii (x, y, t ) = Ii (x +d x, y +d y, t +d t ) (5.1)

5.2.2 Gaussian Heatmaps

After obtaining the trajectory of M points in the sequence {Ii |1 ≤ i ≤ k +2} we only keep

the first and last position of each point, which corresponds to the positions in our frames

of interest. We use Gaussian heatmaps H ∈RH×W with the same dimension as the ultra-
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(a) First frame in the sequence (b) Last frame in the sequence

Figure 5.2: Sparse Optical tracking of two points in a sequence, red points represent the
chosen points to track, while the blue lines describe the trajectory of the points through-
out the sequence.

sound frames to encode these points, they are more suitable as input for the convolutional

networks. For a point with a position (x0, y0), the corresponding heatmap is defined in the

equation 5.2.
H (x, y) = 1

σ2
p

2π
e− (x−x0)2+(y−y0)2

2σ2 (5.2)

Thus, each of our M points are converted to a pair of heatmaps that represent the

position in the first and last frames of the ultrasound sequence. These pairs concatenated

with the ultrasound first and last frames form the recurrent neural network sequential

input of size (M + 1, H ,W,2), where M + 1 is the number of channels (M heatmaps and

one ultrasound frame), H and W are the height and width of the frames and finally 2

represents the temporal dimension.

5.2.3 Network Architecture

The Siamese architecture is based on a sequence-to-vector network. Our network maps

a sequence of two images having M + 1 channel each to six degrees of freedom vector

(three translations and three rotation angles). The architecture of Seq2Vec is illustrated in

the Fig 5.3. It contains five times the same block composed of two Convolutional LSTMs

(ConvLSTM) [Shi et al. (2015)] followed by a Batch Normalisation. Their output is then

flattened and mapped to six degrees of freedom vector through linear layers; ReLU is the

chosen activation function for the first linear layer. We use an architecture similar to the

one proposed in Shi et al. (2015) for the ConvLSTM layers. Seq2Vec networks share the

same weights.
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Figure 5.3: Architecture of Seq2Vec network. We use five blocks that contain each two
ConvLSTM followed by Batch Normalisation. The output is flattened and mapped to a
six degree-of-freedom translation and rotation angles through linear layers. The network
takes as input a sequence of two images with M + 1 channel each, M heatmaps and an
ultrasound frame. The output corresponds to the relative transformation between the
blue and red frames.

5.2.4 Loss function

In the training phase, given a sequence of 2k +3 frames in addition to their ground truth

transformations T̂(1,k+2), T̂(k+2,2k+3) and T̂(1,2k+3), the Seq2Vec’s weights are optimized by

minimizing the loss function given in the equation 5.3. The loss contains two terms.

The first represents the mean square error (MSE) between the estimated transformations

(T(1,k+2), T(k+2,2k+3)) at each corner point of the frames and their respective ground truth.

The second term represents the accumulation loss that aims at reducing the error of the

volume reconstruction. The effectiveness of the accumulation loss has been proven in Li

et al. (2022). It is written as the MSE between the estimated T(1,2k+3) = T(k+2,2k+3)×T(1,k+2)

at the corner points of the frames and the ground truth T̂(1,2k+3).

L = ||T(1,k+2) − T̂(1,k+2)||2 +||T(k+2,2k+3) − T̂(k+2,2k+3)||2 +||T(1,2k+3) − T̂(1,2k+3)||2 (5.3)

5.3 Experiments

5.3.1 Dataset acquisition and Implementation details

Six tracked sequences were acquired from an ex vivo swine liver to validate our method.

A manually manipulated IVUS catheter was used (8 Fr lateral firing AcuNav™, 4–10 MHz)
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connected to an ultrasound system (ACUSON S3000 HELX Touch, Siemens Healthineers,

Germany), both commercially available. An electromagnetic tracking system (trakSTAR™,

NDI, Canada) was used along with a 6 DOFs sensor (Model 130) embedded close to the

tip of the catheter, and the PLUS toolkit [Lasso et al. (2014)] along with 3D Slicer [Fe-

dorov et al. (2012)] was used to record the sequences. The frame size was initially 480×
640. Frames were cropped to remove the patient and probe characteristics, then down-

sampled to a size of 128×128 with an image spacing of 0.22 mm per pixel. The first and

end stages of the sequences were removed from the six acquired sequences, as they were

considered largely stationary and aimed to avoid training bias. Clips were created by slid-

ing a window of 7 frames (corresponding to a value of k = 2) with a stride of 1 over each

continuous sequence, yielding a data set containing 13734 clips. The tracking was pro-

vided for each frame as a 4×4 transformation matrix. We have converted each to a vector

of six degrees of freedom corresponding to three translations in mm and three Euler an-

gles in deg r ees. For each clip, relative frame-to-frame transformations were computed

for the frames number 0, 3, and 6. The distribution of the relative transformation be-

tween the frames in our clips is illustrated in the figure 5.4. It is clear that our data mostly

contains rotations, in particular over the axis x. Heatmaps were calculated for two points

(M = 2) and with a quality level of 0.1, a minimum distance of 7, and a block size of 7 for

the optical flow algorithm (see Bouguet (2001) for more details). The number of heatmaps

M and the frame jump k were experimentally chosen among 0, 2, 4, 6. The data was split

into train, validation, and test sets by a ratio of 7:1.5:1.5. Our method is implemented in

Pytorch1 1.8.2, trained and evaluated on a GeForce RTX 3090. We use an Adam optimizer

with a learning rate of 10−4. The training process converges in 40 epochs with a batch size

of 16. The model with the best performance on the validation data was selected and used

for the testing.

5.3.2 Evaluation metrics and results

The test data was used to evaluate our method. It contains 2060 clips over which our

method achieved a translation error of ϵtr ansl ati on of 0.449±0.189 mm, and an orienta-

tion error of ϵor i ent ati on 1.3± 1.5 degrees. We have evaluated our reconstruction with a

commonly used state-of-the-art metric called final drift error, which measures the dis-

tance between the center point of the final frame according to the real relative position

and the estimated one in the sequence. On this basis, each of the following metrics was

reported over the reconstructions of our method. Final drift rate (FDR): the final drift di-

vided by the sequence length. Average drift rate (ADR): the average cumulative drift of all

1https://pytorch.org/docs/stable/index.html
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Figure 5.4: The distribution of the relative rotations and translations over the dataset

Models FDR(%) ADR(%)

CNN [Prevost et al. (2017)] 31.88(15.76) 39.71(14.88)

MoNet [Luo et al. (2022)] 15.67(8.37) 25.08(9.34)

Ours 23.11(11.6) 28.71(12.97)

Table 5.1: The mean and standard deviation FDR and ADR of our method compared with
state-of-the-art models MoNet [Luo et al. (2022)] and CNN [Prevost et al. (2017)]

frames divided by the length from the frame to the starting point of the sequence. Table

A.1 shows the evaluation of our method over these metrics compared to the state-of-the-

art methods MoNet Luo et al. (2022) and CNN Prevost et al. (2017). Both state-of-the-art

methods use IMU sensor data as additional input to estimate the relative transformation

between two relative frames. Due to the difficulty of including an IMU sensor in our IVUS

catheter, the results of both methods were reported from the MoNet paper, where the

models were trained on arm scans. See Luo et al. (2022) for more details.

As the table A.1 shows, our method is comparable with state-of-the-art methods in

terms of drift errors without using any IMU and with rotational probe motion as one may

notice in our data distribution in the Fig 5.4. Fig 5.5 shows the volume reconstruction of

two sequences of different sizes with our method in red against the ground truth slices.

Despite the rotational motion of the probe, the relative pose estimation results obtained

by our method remain accurate. However, one may notice that the drift error increases

with respect to the sequence length. This remains a challenge for the community even in

the case of linear probe motions.
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(a) Sequence of length 50 frames (b) Sequence of length 300 frames

Figure 5.5: The reconstruction of two sequences of lengths 50 and 300 respectively with
our method in red compared with the ground truth sequences.

5.4 Conclusion

In this work, we proposed the first method for trackerless ultrasound volume reconstruc-

tion in the context of minimally invasive surgery. Our method does not use any addi-

tional sensor data and is based on a Siamese architecture that leverages the ultrasound

image features and the optical flow to estimate relative transformations. Our method

was evaluated on ex vivo porcine data and achieved translation and orientation errors

of 0.449± 0.189 mm and 1.3± 1.5 degrees, respectively, with a fair drift error. In future

work, we will extend our work to further improve the volume reconstruction and use it to

register a pre-operative CT image to provide guidance during interventions.
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In the two previous chapters, we laid the foundation for the work presented in this

chapter. In Chapter 4, we introduced SOniCS, a framework designed to develop advanced

hyperelastic material models by integrating the computational power of FEniCS with the

real-time simulation capabilities of SOFA. In our context, this framework simplifies the

process of implementing complex material laws and is essential for creating liver biome-

chanical models. In Chapter 5, we developed a method for reconstructing a 3D volume

from an IVUS sequence without tracking, allowing intraoperative visualization of internal

liver structures, such as the portal and hepatic veins. This 3D volume serves as intraop-

erative data. In this chapter, we present the core contribution of this thesis: a method

for real-time registration of the intraoperative IVUS volume with preoperative CT data.

This is achieved using a neural network trained on data generated by the biomechanical

liver model. The proposed method enables registration between the intraoperative and

preoperative data. The work presented in this chapter led to the following publication:

• S. El hadramy, J. Verde, N. Padoy, S. Cotin. "Towards Real-Time Vessel Guided Aug-

mented Reality for Liver Surgery" 2024 IEEE International Symposium on Biomedi-

cal Imaging (ISBI), Athens, Greece, 2024, pp. 1-5 [S. et al. (2024a)].

6.1 Introduction

As previously outlined in Chapter 1, numerous studies have demonstrated the benefits

of incorporating AR into operating rooms to assist with liver surgeries [Haouchine et al.

(2013)]. This AR relies on effective registration between preoperative and intraoperative

data. This thesis considers IVUS as the intraoperative modality for several reasons dis-

cussed in Chapter 1. In this chapter, we propose a patient-specific non-rigid registration

method that utilizes biomechanical models for their capability to extrapolate from sparse

and noisy data, as noted earlier. Given a preoperative CT scan, we segment the liver and

its internal structures to create a patient-specific digital twin using biomechanical mod-

els. This digital twin is used to simulate IVUS data by introducing deformations, remov-

ing branches, and adding noise to the vessel tree. Through this process, we generate a

training and validation dataset. For the non-rigid registration, we employ a U-Net archi-

tecture to learn the mapping between the intraoperative vascular tree centerlines and the

corresponding displacement field, enabling non-rigid registration between the preoper-

ative model and the intraoperative vascular tree. Additionally, we leverage the graph-like

structure of the vascular tree to match the main portal veins in both their preoperative

and intraoperative configurations, thereby allowing for rigid registration. Details about

the method are explained in the following sections. It is important to note that we validate
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our method using simulated IVUS data due to the lack of available real IVUS datasets. This

chapter is organized as follows: Section 6.2 details the method, including constructing the

biomechanical model, the neural network responsible for non-rigid registration, and the

approach for rigid registration. Section 6.3 presents the experimental results, demonstrat-

ing the efficacy of our proposed method. We conclude this work in section 6.4.

6.2 Method

6.2.1 Overview

The proposed method is patient-specific and works under the assumption that during

the IVUS acquisition, the root portal vein (i.e., main trunk) and its branches are visible.

This assumption is in line with the clinical workflow, as clinicians use such branches as

anatomic landmarks to guide the intervention. The method is made of three essential

steps (Figure 6.1). First, an initial registration to bring preoperative and intraoperative

data onto the same reference. Then, we create a digital twin of the organ from the pre-

operative data. Finally, we train a neural network on the non-rigid registration task using

data generated with the biomechanical model.

Figure 6.1: A liver digital twin is used to train a network on the non-rigid registration
task. The initial registration is performed thanks to the graph-like structure of the vascular
trees.

6.2.2 Digital Twin

6.2.2.1 Biomechanical model of the parenchyma

We formulate a boundary value problem to compute the deformation of an elastic ma-

terial under both Dirichlet and Neumann boundary conditions. The geometry of the or-
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gan, known a priori, occupies a volume Ω with boundary Γ. The Dirichlet and Neumann

boundary conditions are on ΓD and ΓN , two subsets of Γ. See illustration in Figure 6.2.

The elastic properties of soft tissues can be characterized using principles from contin-

uum mechanics.

Figure 6.2: Illustration of the domain

By employing the Lagrangian formulation, the relationship between the deformed (x) and

undeformed (X) states, at each point along the geometry can be expressed as

x = X+u (6.1)

Where u is the displacement field. The deformation gradient tensor F= I+∇Xu, provides

a local description of the deformation and the Green-Lagrange strain tensor E ∈ R3×3 as

expressed following equation 6.2

E = 1

2
(C− I) (6.2)

Where C = FT F is called the right Cauchy-Green deformation tensor and I the iden-

tity matrix. Hyperelastic material is often employed to describe the behavior of soft tis-

sues that undergo large deformations. According to the chosen hyperelastic material, the

strain-energy density function, noted W, can be expressed using a set of parameters that

describe the material stiffness. The stress-strain relationship, also known as constitutive

law, is obtained by differentiating W with respect to C, see equation 6.3

S = 2
∂W

∂C
(6.3)

With S being the second Piola-Kirchhoff stress tensor. The boundary value problem is

then formulated as in equation 6.4, where b represents the body forces, n the unit normal

to ΓN , and t the traction forces applied on ΓN domain.
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
∇(F S) = b on Ω

u(X ) = 0 on ΓD

(F S) ·n = t on ΓN

(6.4)

The weak form of Equation 6.4, brings forward the boundary term and is expressed fol-

lowing Equation 6.5. Readers are invited to refer to chapter 3 for more details.

∫
Ω

(F S) : δE dΩ=
∫
Ω

bηdΩ+
∫
ΓN

tηdΓ (6.5)

With δE = 1
2 (F T ∇η ∇T ηF ) being the variation of the strain, and η = {η ∈H1(Ω) | η=

0 on ΓD } is any vector-valued test function in an Hilbert space H1(Ω). In this work,

we choose Saint-Venant-Kirchhoff material for the parenchyma model. In addition, ΓD

corresponds to the intersection between the parenchyma and the portal vein (Fig 6.4.)

6.2.2.2 Finite Element solution

For a given set of loads, which could include traction forces t and body force b, the equa-

tion 6.5 is solved using a finite element simulation to retrieve the relative displacement

field u, based on a set of patient-specific parameters λ that describe the material proper-

ties or the location of Dirichlet boundary conditions. The domain Ω is discretized either

using triangle elements or with an Immersed Boundary method (IBM) [Brunet (2020)], as

shown in the left and right images of Figure 6.3 respectively. Using an IBM on a regular

grid makes it compatible with the inputs and outputs of CNN architectures (See section

7.2.2). Given the equation’s nonlinearity, a nonlinear system of equations must be solved

to approximate the unknown displacement. Starting from an initial displacement u0, an

iterative Newton-Raphson method is employed to find a correction δn
u after n iterations,

which satisfies the linearized set of equations, see Equation 6.6.

K̇ n−1δn
u = r (u0 +δn−1

u )+b (6.6)

In this context, K̇ represents the tangent stiffness matrix, while r denotes the internal

elastic force vector. At each iteration, it is necessary to compute both K̇ and r and solve

the resulting linear system. The Newton-Raphson method converges effectively only when

the initial displacement u0 is close to the actual solution. Therefore, large loads must be

applied incrementally in small steps, which can necessitate a significant number of itera-

tions to achieve convergence.
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Figure 6.3: Left: Discretization of the domain Ω using triangle elements. Right: Dis-
cretization of the domain Ω using an Immersed Boundary Method, the geometry is dis-
cretized using regular elements, and the yellow cells are selected as part of the domain.

Figure 6.4 illustrates an example of a discretization of the parenchyma domain Ω with

boundaries ΓN and ΓD .

Figure 6.4: Formulation of the problem. The parenchyma occupies a domain Ω, We con-
sider both Dirichlet and Neuman boundaries ΓD and ΓN respectively. The domain Ω is
discretized using hexahedron elements.

6.2.2.3 Internal Structures mapping

Now that we have established a biomechanical model of the parenchyma, we constrain

the internal structures, such as the vessel trees, to this parenchyma model. This is done

by interpolating the displacement field of the parenchyma model, allowing us to compute

the relative displacement field for the internal structures. By applying this interpolation,

we ensure that the movement of the vessel trees and other internal elements remains

consistent with the overall deformation of the parenchyma, maintaining accurate spatial

relationships within the tissue model. The parenchyma model acting as a master imposes

its displacements to the slaves, i.e, internal structures. We use a linear operator between
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the slave (xs) and the master (xm) discretization, where J is the Jacobian matrix written as

follows:

J = ∂xs

∂xm
(6.7)

6.2.3 Initial registration

We recall that the root portal vein is assumed to be visible in the intraoperative data. Given

two vascular trees, we identify and match the root branch of both. This allows for the first

global registration by matching those branches. Then, the affine registration is performed

through an ICP [Besl et McKay (1992)] algorithm between both vessel trees surface points.

The global registration ensures a precise and fast convergence of the ICP, which is known

to be a local registration method and rely on a rough alignment as initialization. The iden-

tification of the root branch is done by considering a graph structure originating from the

portal vein. The graph is constructed from the vessel tree centerlines, where nodes and

edges correspond respectively to bifurcations and branches in the tree. From an arbitrary

orientation of the graph, we identify branches with either no parent or no children in the

oriented graph. The root branch of the portal vein is determined as the one with the high-

est radius. This strategy aligns with the gross anatomy of the portal vein, and its branching

pattern. We demonstrate in the results section that this approach is robust to partial and

noisy intraoperative vessel trees.

6.2.4 Non-rigid registration

For an intraoperative IVUS volume, we perform segmentation of the portal vein to extract

its structure from the surrounding tissues. Once the portal vein is segmented, we compute

its centerlines, which provide a simplified representation of the vein’s geometric path.

These centerlines are crucial for subsequent processing, as they serve as a key feature

for aligning the intraoperative data with preoperative imaging during registration tasks.

Given these centerlines, in this section, we aim to update the preoperative data in order

to match the intraoperative liver state. For the sake of clarity, in the following, let pp be

the preoperative parenchyma, pi the intraoperative parenchyma and ci the intraoperative

vessels centerlines. We aim to find a function f that minimizes the following objective

function:

J = ||pp ◦ f (ci )−pi ||22 (6.8)

In the equation 6.8, given a set of points ci , representing the centrelines of the intra-

operative vessel tree, f outputs a displacement field that allows a non-rigid registration
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between pp and pi discretized domains. We approximate f using the U-Net architecture,

similar to the one proposed by Brunet et al. (2019). The neural network takes as input a

regular grid in which we encode the intraoperative centerlines. This grid has a high reso-

lution and encodes the position of the closest points of the centerlines at each of its nodes.

The output of the neural network, which describes the displacement field, has the same

shape as the input.

The training set is synthetically generated from the biomechanical model. Each sam-

ple of the training set corresponds to a deformed state of the model. This deformation

is obtained by applying a set of forces at several local locations of the liver surface. The

forces are sampled from a prior distribution. The locations are chosen by considering

random points on the liver surface and a sphere of radius r for each point. The intersec-

tions between these spheres and the liver surface are the local locations where the forces

are applied. Figure 6.5 illustrates this process: the rest state of the liver is in gray, the blue

spheres are the locations where the forces are applied, and the red parenchyma is the

resulting deformation.

Figure 6.5: Example of a training set generation sample. The spheres (in blue) centers are
randomly chosen on the surface’s rest state (in gray). Forces are applied at their intersec-
tion with the surface. The resulting deformation is shown in red.

Once the parenchyma is deformed, the linear interpolation described in section 6.2.2.3

is employed to get the relative vessel trees’ deformation. We use the method proposed by

Antiga et al. (2003) to extract the centerlines of these vessel trees. The process of gener-

ating deformations of the liver parenchyma and the vessel tree using the biomechanical

model is iterated multiple times to create a robust dataset with realistic deformations. For

each sample in this dataset, we treat the deformed vessel tree as if it were intraoperative

data derived from an IVUS volume. To simulate a realistic IVUS segmentation, we fur-

ther process the deformed vessel tree by removing some branches and introducing noise.

This simulated IVUS segmentation is then used to compute the centerlines, which are the

input of the neural network.
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During training, the network predicts the relative displacement field, for which we

have a ground truth, as the deformation was generated by the biomechanical model. The

network is trained to minimize the MSE between the predicted displacement fields and

the ground truth, ensuring that the model learns to accurately predict the deformations

that align intraoperative data with preoperative imaging.

6.3 Experiments and results

6.3.1 Dataset and implementation details

To assess our method, the liver parenchyma, portal vein, and tumor are segmented from

real patient data from Soler et al. (2010). We build a biomechanical model considering

4000 Pa for the Young modulus and 0.4 for the Poisson’s ratio. We then generate train-

ing and validation datasets. The applied forces are sampled from a uniform distribution

over [0,30] N, to ensure we cover both small and large organ deformations. The gener-

ated dataset contains 3600 different deformations, 3200 are used for training and 400 for

validation. We consider two cases related to the IVUS acquisition. First, when the full vas-

cular tree is observed during the acquisition, this corresponds to the case where the IVUS

catheter was rotated 360°. The second scenario corresponds to the case where only a par-

tial vascular tree was observed during the IVUS acquisition. We recall that in both cases,

we assume the main portal vein is observed as it serves for the initial rigid registration.

The following subsections describe the validation of our method in both cases. We use

the biomechanical model as a baseline and validate our networks’ prediction using tar-

get registration error (TRE) metric on the tumors’ localization. The biomechanical model

is implemented through SOFA Framework [Faure et al. (2012)] with the SOniCS plugin

presented in Chapter 4. The neural network is implemented with PyTorch 1.

6.3.2 Full vascular tree

In this case, we consider a scenario in which the full intraoperative vascular tree can be

observed with a 360° rotation of the IVUS catheter. The network was trained on the 3200

training samples during 100 epochs with a batch size of 16 and tested on the 400 validation

samples. The results of the network of the validation set are presented in table 6.1. The

target registration error is computed over the tumor’s location inside the parenchyma. We

achieve a mean target registration error of 0.6 mm with a maximum error of 2.97 mm over

1https://pytorch.org/docs/stable/index.html
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Figure 6.6: Visualization of a validation sample with a full intraoperative vascular tree. In
gray is the rest state of the liver, corresponding to the preoperative liver shape. In green,
the ground truth deformation is generated with the biomechanical model. In orange, the
deformation is predicted by the neural network.

emean(mm) emax(mm) er el at i ve
mean (%) er el at i ve

max (%)

U-Mesh [Brunet et al. (2019)] 0.83±0.42 3.01 0.22±0.11 0.78

Ours (30%) 0.59±0.37 2.36 0.16±0.10 0.63

Ours (50%) 0.63±0.24 1.28 0.17±0.06 0.33

Ours (full) 0.60±0.37 2.97 0.16±0.09 0.81

Table 6.1: Results of our method in terms of TREs for the scenarios: Full, Partial (50%) and
Partial (30%) vessel tree. The errors are calculated by comparing the network’s prediction
with the biomechanical model deformation for the same intraoperative deformation.

the 400 validation samples. We also report the relative errors, which correspond to a per-

centage of the deformation magnitude for each sample. The predictions are computed in

34 ms. Figure 6.6 shows the results of a validation sample, where the matching between

prediction and ground truth can be observed. In gray is the rest state of the organ (preop-

erative state); in green is the ground truth deformation (from the biomechanical model);

and in orange is the prediction of the network.

Moreover, we have compared our results to the U-Mesh approach proposed by Brunet

et al. (2019). Their intraoperative modality is laparoscopic video, where a 3D point cloud

on the organ’s surface is reconstructed from the video frames. We used their implementa-

tion to synthesize the point clouds and train and validate the network; the results are also

shown in the table 6.1.

6.3.3 Partial vascular tree

Using the same process as the previous scenario, we have generated a dataset that corre-

sponds to a scenario in which only a partial vascular tree is visible during the IVUS acqui-

sition. In this scenario, we have considered two cases where 50% and 30% of the vascular
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tree are observed, respectively. In both cases, the vascular branches are chosen in the

areas where the tumors are located. This is because, surgeons know in which anatomi-

cal segment of the liver the tumors are located and usually acquire data in these areas. A

dataset is generated for each of these scenarios and the network was trained on the 3200

training samples during 100 epochs with a batch size of 16. The results of the network

on the validation dataset of size 400 samples are reported in Table 6.1 for both cases. Re-

sults show that the network still performs in terms of TRE at the tumors’ locations. With a

mean TRE of 0.59 mm and 0.63 mm for 50% and 30% intraoperative vascular tree, respec-

tively. With a maximum TRE of 1.28 mm and 2.36 mm over the 400 validation samples.

The computation time is 34 ms.

6.3.4 Initial registration

In this section, we present qualitative results of the initial rigid registration between the

preoperative vascular tree and various simulated scenarios of segmented intraoperative

IVUS data. Let vp and vi be two vessel trees surface points, located in the same refer-

ence frame, with a non-rigid deformation between them. A random rigid transformation

is applied to vp to obtain a third vessel tree surface points, denoted vT
p . Following our ini-

tial registration method explained in section 6.2.3, we register vT
p to vi and compare the

obtained result to vp . To simulate different IVUS scenarios, we consider four cases of vi ,

denoted respectively "Full and clean", "full and noisy", "partial and clean" and "partial

and noisy". Figure 6.7 illustrates the results of our initial registration approach in each of

these cases. Our experiments show that the initial registration is robust to intraoperative

partial/full and/or clean/noisy vascular trees.

6.3.5 Segmentation sensibility

The accuracy of centerlines is highly dependent on the quality of the segmentation from

intraoperative ultrasound images. Despite recent advances in medical image segmen-

tation, ultrasound-based vascular segmentation remains particularly challenging due to

the noisy and low-contrast nature of ultrasound data. It is often highly dependent on

the operator or the software used for segmentation. To account for this variability, we

introduced random noise with a maximum magnitude of 1 mm along the x, y, and z di-

rections during network training, simulating segmentation uncertainty. We then tested

the network using centerlines with higher noise levels of 1.5 mm and 2 mm, which were

not encountered during training. Fig 6.8 shows the results on partial intraoperative vas-

cular trees, and as demonstrated, the variability introduced during training enabled the

network to remain robust even to these unseen noise levels, with a mean TRE below 2
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(a) full to full and clean (b) full to full and noisy

(c) full to partial and clean (d) full to partial and noisy

Figure 6.7: Results of the initial registration.
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Figure 6.8: Segmentation sensibility results for full, 30% and 50% partial intraoperative
vascular trees

mm across all noise scenarios. This highlights the robustness of our method in handling

segmentation errors from ultrasound imaging.
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6.4 Conclusion

In this work, we proposed a method for real-time non-rigid registration of preoperative

CT data with simulated intraoperative IVUS data. The method was trained on syntheti-

cally generated datasets from real human cases and validated against the FEM solution of

a biomechanical liver model. The intraoperative data were simulated from CT segmen-

tations by considering partial vessel trees and adding noise to replicate the challenges

associated with IVUS segmentation. Our approach demonstrated strong performance,

achieving a mean and maximum TRE of less than 3 mm across 400 synthetic samples.

Additionally, our method outperformed U-Mesh on synthetic data. U-Mesh uses laparo-

scopic camera views of the surface as the intraoperative modality which makes the initial

rigid registration challenging, while our method leverages the graph-like structure of the

intraoperative vascular tree, allowing for both rigid and non-rigid registration. Although

we did not validate our method with real intraoperative IVUS data due to a lack of avail-

able datasets, the results highlight the robustness of our approach, particularly in han-

dling partial and noisy data. This, combined with our superior performance on synthetic

data, makes our method highly promising for future validation with real intraoperative

IVUS data.
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In the previous chapter, we presented a patient-specific registration method that lever-

ages U-Mesh to align intraoperative centerlines with the preoperative liver model. The

network was trained using data generated from a biomechanical model of the liver. How-

ever, when constructing this biomechanical model, we assumed knowledge of patient-

specific characteristics such as material stiffness and organ boundary conditions. These

assumptions are strong since these quantities are often difficult to estimate from preop-

erative data. In this chapter, we extend the U-Mesh framework so that it can predict dis-

placement for a range of patient-specific characteristics, including material stiffness and

boundary conditions. Moreover, we show that by leveraging this extended version of U-

Mesh, we can estimate these patient-specific characteristics in real-time from intraopera-

tive observations. This is achieved through an optimization loop, which iteratively refines

the material properties and boundary conditions based on the observed data, ensuring

that the model dynamically adapts to the individual patient’s anatomical and mechanical

variations during the procedure. The work presented in this chapter led to the following

publications:

• S. El hadramy, N. Padoy, S. Cotin. "HyperU-Mesh: Real-time deformation of soft-

tissues across variable patient-specific parameters". Computational Biomechanics

Workshop at MICCAI 2024. [S. et al. (2024b)]

• S. El hadramy, B. Acidi, N. Padoy, S. Cotin. "Optimization in latent space for real-

time intraoperative characterization of digital twins". Under review

7.1 Introduction

Digital twins can play a major role in healthcare by leveraging real-time data integra-

tion and virtual simulations to enhance patient care, enable predictive analytics, opti-

mize medical devices, and facilitate planning and intraoperative guidance [Servin et al.

(2024)]. Several studies have demonstrated the benefits of physics-based digital twins

(PBDTs) [Brunet (2020); Haouchine et al. (2013)] for their accuracy and predictive abil-

ity over sparse and noisy data. PBDTs rely on computational models that simulate the

behavior of physical systems using fundamental principles from physics (e.g., elasticity,

thermodynamics), where the finite element method (FEM) is often employed to solve the

underlying partial differential equations (PDEs) [Suwelack et al. (2014)]. It is essential

to prioritize their accuracy and real-time responsiveness to fully benefit from the advan-

tages of physics-based digital twins in computer-assisted interventions. Accurate models

ensure the simulations reflect true-to-life scenarios, leading to more reliable and effective
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outcomes. Meanwhile, real-time capabilities allow these digital twins to provide imme-

diate feedback and adjustments during interventions, enhancing their practical utility in

dynamic and critical environments.

7.1.1 Accuracy

The accuracy of PBDTs relies on patient-specific characteristics. These characteristics,

which are model-dependent, include a range of properties such as density, stiffness, ther-

mal conductivity, and other parameters essential for simulating the behavior of an organ

or system [Servin et al. (2024)]. Additionally, boundary conditions (BCs) are critical for

the accuracy of PBDTs, as they define the interactions between the organ and its envi-

ronment, significantly influencing the simulation outcomes. Despite their importance,

obtaining precise measurements of these model parameters is challenging. Traditional

imaging and other non-invasive techniques often fall short of accurately capturing the

necessary details of these properties. For instance, properties like tissue stiffness or ther-

mal conductivity are not readily measurable through standard imaging modalities. Sim-

ilarly, accurately defining boundary conditions involving complex interactions between

tissues and their surrounding environment is often infeasible without invasive proce-

dures.

7.1.1.1 Material properties

As outlined in chapter 3, hyperelastic formulations are commonly employed in the liter-

ature to describe the behavior of soft tissues that experience deformations. St. Venant-

Kirchhoff, Neo-Hookean, and Mooney-Rivlin are among Hyperelastic models that have

been used to characterize soft-tissue. Traditionally, parameter sets for various models

are determined through uniaxial tests, where researchers identify the parameters that

align with the experimentally observed stress-strain relationship according to their strain

energy model [Veronda et Westmann (1970)]. This method, while effective, can be lim-

ited by its reliance on straightforward experimental setups. To address these limitations,

a more advanced approach involving iterative parameter identification using inverse fi-

nite element analysis has been proposed [Boonvisut et Cavuşoğlu (2013)]. This method

enhances accuracy by refining parameter estimates through successive approximations.

For instance, [Mehrabian et Samani (2009)] utilized this technique to estimate tissue pa-

rameters modeled with the Veronda-Westmann model. Additionally, [Han et al. (2011)]

applied this approach to develop a patient-specific biomechanical model of the breast,

demonstrating its potential for creating highly personalized and accurate tissue models.
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However, the iterative nature of these methods means that numerous simulations must

be performed to converge on a precise set of patient-specific characteristics. Each sim-

ulation can be computationally intensive, especially when modeling complex, nonlinear

behaviors typical of soft tissues. Consequently, the time required to reach a solution can

hinder the practical application of these methods in dynamic and time-sensitive scenar-

ios, such as surgical procedures or real-time diagnostics.

7.1.1.2 Boundary conditions

BCs are crucial for the accuracy of PBDTs as they define the interactions between an organ

and its surrounding environment. In the literature, zero-displacement boundary condi-

tions are often characterized using priors. For instance, in the case of the liver, the points

of attachment with the ligaments are usually considered [Brunet (2020)]. However, only a

few studies have tackled the challenge of estimating these conditions from intraoperative

data. Plantefeve et al. (2016) used a statistical atlas to estimate liver-ligament connec-

tivity, but their method lacks robustness due to inter-patient variations. Another study

estimated BCs by registering two preoperative scans under different deformations. While

effective, this approach does not align with clinical settings or real-time requirements [Pe-

terlik et al. (2014)]. Tagliabue et al. (2021) proposed a pipeline that estimates BCs from

intraoperative point clouds of the visible surface. Their method utilizes nearest-neighbor

pairing combined with the ZoomOut [Melzi et al. (2019)] technique to estimate the in-

traoperative displacement field, which is then mapped to the BCs via neural networks.

Nikolaev et Cotin (2020) introduced a reduced-order unscented Kalman filter for BC esti-

mation, but their approach is computationally expensive and requires multiple intraoper-

ative samples. These various methods highlight the ongoing challenge of accurately and

efficiently estimating boundary conditions from intraoperative data, with each approach

offering different trade-offs in terms of robustness and real-time applicability.

7.1.2 Computational Speed

Significant efforts are being directed toward optimizing PBDTs to enhance their computa-

tional speed. Various trade-offs between the speed and accuracy of PBDTs have been pro-

posed [Brunet (2020); Haouchine et al. (2013); Niroomandi et al. (2008, 2013)]. Haouch-

ine et al. (2013) suggested using a co-rotational model to handle large deformations with

small strain. Yet, their approach significantly loses accuracy when advanced biomechani-

cal laws are considered. Depending on the acceptable level of accuracy loss, reducing the

model’s degrees of freedom is a viable strategy to meet real-time constraints. Methods
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such as Proper Orthogonal Decomposition (POD) [Niroomandi et al. (2008)] and Proper

Generalized Decomposition (PGD) [Niroomandi et al. (2013)] have been proposed for

this purpose. Another category of methods leverages the high number of cores available

in Graphics Processing Units (GPUs) for parallel computing, which enables significant

speedups in handling computationally intensive problems [Johnsen et al. (2015)]. Deep

neural network architectures have recently demonstrated strong capabilities in learning

complex, high-level nonlinear relationships between diverse input-output data [LeCun et

Bengio (1998); Scarselli et al. (2009)]. One of the strengths of these networks is their abil-

ity to perform inference in real-time when trained with sufficient data accurately. Sev-

eral works have proposed to train deep neural networks on simulated (using FEM) data

[Brunet (2020); Roewer-Despres et al. (2018); Tonutti et al. (2017)], aiming to learn the

behavior of PBDTs. U-Mesh, introduced by Brunet (2020), stands out as a simple yet

effective solution. U-Mesh is a data-driven approach based on a U-Net [Ronneberger

et al. (2015)] architecture, designed to approximate the nonlinear relationship between

forces and displacement fields. It is trained in a patient-specific manner using simulated

data generated by FEM and achieves real-time performance during inference. U-Mesh

[Brunet (2020)] has shown strong performance on real-world data, making it a promising

approach in terms of both accuracy and speed. However, U-Mesh is designed assum-

ing that patient-specific characteristics, such as material properties and domain bound-

ary conditions, are known before the intervention. This assumption limits its application

in computer-assisted interventions, as these characteristics, when available, are typically

only accessible during the interventions. To address this limitation, we propose an ex-

tension of U-Mesh that integrates a Hypernetwork [Ha et al. (2017)] to condition U-Mesh

[Brunet (2020)] based on the prior distribution of patient characteristics. Therefore, the

proposed extension is used upon training in an optimization loop to determine in real-

time patient-specific characteristics given intraoperative observations.

7.1.3 Contributions and outlines

In this work, we build on U-Mesh [Brunet et al. (2019)] and introduce a novel approach to

enhance the precision of PBDTs by accurately estimating patient-specific characteristics,

including material properties and domain boundary conditions. Our contributions are as

follows:

• Flexible Method: We develop a method adaptable to unknown variables and dy-

namically adjusts to the underlying physics model, ensuring high precision in vari-

ous scenarios.
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• Hypernetwork Architecture: We employ a neural network conditioned on patient-

specific characteristics through a hypernetwork architecture, allowing the network

to adapt to patient characteristics automatically.

• Training on Simulation Data: The neural network is initially trained on simulation

data generated using an accurate biomechanical model. This enables it to learn

complex relationships between applied forces and relative displacement fields for a

given distribution of patient-specific characteristics.

• Robust and Fast Optimization Process: After training, given an intraoperative ob-

servation, the network identifies the real patient-specific characteristics through a

robust and fast gradient-based optimization process that leverages the neural net-

work’s learned representations. The architecture incorporates dimensionality re-

duction for high-dimensional unknown patient-specific characteristics by optimiz-

ing over a latent space representation, thereby accelerating the optimization pro-

cess.

• Fast and accurate surrogate model Once estimated, the patient-specific character-

istics are injected through the hypernetwork, allowing for a fast and accurate surro-

gate model of the PBDT.

The chapter is organized as follows: after describing our method in Section 7.2, we

illustrate our approach in Section 7.3 by demonstrating its effectiveness across various

scenarios involving different physics models, geometries, and patient characteristics. Fi-

nally, we discuss our findings in Section 7.5 and conclude in Section 7.6.

7.2 Method

Without loss of generality, we consider the case where a patient-specific PBDT of an or-

gan is needed to assist in surgery. The geometry of the organ can be segmented from a

preoperative CT or MRI scan, while the patient-specific properties, denoted by λ, are un-

known. These properties, λ, could include material properties and boundary conditions

of the geometry. Let fλ represent the patient-specific PBDT of the organ for a given set

of properties λ. For a set of applied forces to the organ, we have denoted F , the rela-

tive displacement field is given by u = fλ(F ). Our method consists of three steps. First,

we build a biomechanical PBDT by employing the FEM, denoted as f F E M
λ

. Then, using

this biomechanical model, we generate a dataset comprising pairs of forces and displace-

ments, considering a range of distributions for the patient-specific parameters λ. This
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dataset is used to build a surrogate model, denoted f N N
λ

, which corresponds to an ap-

proximation of f F E M
λ

with a neural network-based model. We use a hypernetwork to con-

dition the neural network on the patient-specific parameters λ. The network is trained

on the dataset generated with the biomechanical model. After training, leveraging the

gradient flow of the neural network and its real-time capabilities, we use an optimiza-

tion process to estimate the patient-specific parameters λ based on given observations,

denoted y .

7.2.1 Biomechanical model

The biomechanical model denoted f F E M
λ

, is constructed using the same strategy outlined

in Section 6.2.2.1 of the previous chapter. This approach involves applying the same prin-

ciples of continuum mechanics to build the system, which is solved using the FEM. The

material properties and boundary conditions will be defined for each of the experiments,

see Sections 7.3.1 and 7.3.2.

7.2.2 Surrogate model

This section describes the proposed neural network for learning the PBDT, also called the

surrogate model. Our approach involves learning a nonlinear function, denoted f N N
λ

,

to map the applied forces F to the displacement field u with respect to a set of patient-

specific parameters λ. To achieve this, we rely on a hypernetwork architecture. As previ-

ously explained in chapter 2, hypernetworks are a class of neural networks that generate

the weights of another neural network (usually called target, main, or primary network).

They have emerged as a way to enhance the flexibility and performance of deep neural

networks [Chauhan et al. (2024)]. Besides their added adaptability, we are primarily inter-

ested in the specific gradient flow of such an architecture since both networks are trained

in an end-to-end differentiable manner [Ha et al. (2017)]. Training hypernetworks is of-

ten challenging, mainly due to the proportionality between input and output magnitudes,

which leads to very slow convergence. Ortiz et al. (2023) identified and resolved this issue

by treating the predicted weights as additive changes for the primary network. For a given

training iteration n, the weights dθn predicted by the hypernetwork h are used to update

the weights of the primary network ( f N N
λ

) following the equation below:

θn = θ0 +dθn (7.1)

With θ0 the initial weights of the fλ. Unlike traditional hypernetworks Ha et al. (2017),

the weights θ0 are also trainable parameters. The weights dθn influence the predictions
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of f N N
λ

by incorporating knowledge of the patient-specific characteristics λ. This strategy

permits a better initialization of the primary network weights, which leads to a fast and

efficient training of f N N
λ

. Typically, the training time of our hypernetwork is comparable

to the training time of the primary network on its own.

Figure 7.1 illustrates the proposed neural-network-based method for learning a PBDT

conditioned on patient-specific parameters λ. The dimension of the unknown param-

eters λ can vary: it may be low, such as for stiffness parameters, or very high, such as

when determining the Dirichlet boundary condition location on the organ, in which case

λ would have a dimension equal to the number of nodes on the organ’s mesh. Depend-

ing on the dimensionality of λ, we propose two architectures. For low-dimensional λ

(leftmost architecture in Figure 7.1), it is directly input into the hypernetwork to gener-

ate the additive weights for the primary network f N N
λ

(the surrogate model). For high-

dimensional λ (rightmost architecture in Figure 7.1), an encoder E is used to reduce the

dimensionality to z. The reduced representation z is then input into the hypernetwork h

to generate the additive weights and decoded by D to retrieve the patient parameters λ.

The role of dimensionality reduction is significant, as it accelerates the optimization pro-

cess described in section 7.2.3. The following subsections detail the architecture of the

neural networks.

Figure 7.1: Overview of the proposed architecture for learning a PBDT conditioned on
patient-specific parameters λ. Depending on the dimensionality of λ, we propose two
architectures. Left: For low-dimensional λ, it is directly input into the hypernetwork h to
generate the additive weights for the primary network f N N

λ
. Right: For high-dimensional

λ, an encoder E is used to reduce the dimensionality. The reduced representation z is
then input into the hypernetwork h to generate the additive weights and decoded by D
to retrieve the patient parameters λ. Reducing the dimensionality of λ speeds up the op-
timization process for finding λ. In both architectures, the primary network is U-Mesh
[Brunet (2020)], which takes the applied forces as input and predicts the relative displace-
ment field. h, E and D are multi-layer perceptron.
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7.2.2.1 Primary network

U-Mesh, a CNN, proposed by Brunet (2020), has shown strong performance in learning

Physics-based biomechanical models on real-world data, making it a promising approach

in terms of both accuracy and speed. However, U-Mesh is trained on a single value of

material properties and Dirichlet boundary conditions. Hence, its accuracy at inference

time depends on precise knowledge of patient-specific parameters during training. In this

work, by using U-Mesh as a primary network, we provide the knowledge of the patient-

specific parameters λ through the hypernetwork h. U-Mesh takes as input the applied

forces as a tensor of size 3×nx ×ny ×nz , where nx , ny and nz are the number of nodes

in the FEM mesh along the axes x, y and z, respectively. The forces are encoded at each

node as a tensor of dimension 3. The network outputs the relative displacement field of

the same size. The encoding and decoding paths of the U-Net consist of 3 and 4 layers,

respectively. A layer includes a 3 × 3 × 3 convolution filter followed by a 2 × 2 × 2 max

pooling operation and ReLU activation function. The number of channels is [8,16,32]

and [32,16,8,3] for the encoding and decoding paths respectively.

7.2.2.2 Other networks

The hypernetwork h is a Multi-layer perceptron of 4 layers. The last layer is of dimension

equal to the number of weights in the U-Mesh, while the first layer’s dimension is equal

to λ’s when λ is for low dimension; otherwise, the input dimension of h is equal to the

dimension of λ’s latent representation z. A ReLU activation function follows each of h’s

layers. E and D are also MLPs of four layers each, and they serve as an autoencoder for

λ when it has a high dimensionality. A ReLU activation function follows each of their

layers. The dimension of the latent space z is experimentally determined based on λ’s

dimension.

7.2.2.3 Training

The networks f N N
λ

, h, E and D are trained end-to-end and supervised using data gen-

erated with the physics-based biomechanical model f F E M
λ

explained in Sections 7.2.1.

We utilize an IBM to discretize the domain, resulting in a regular grid, as shown in the

right-hand image of Figure 6.3. This approach is chosen due to its favorable convergence

characteristics and regular structure, making it compatible with CNN’s architecture cho-

sen for the primary network f N N
λ

. Using f F E M
λ

, we build a dataset of distinct (F , u, λ)

triples, where F represents the applied forces on the organ, u the relative displacement
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field, and λ the chosen patient-specific parameters. Since λ corresponds to physical

quantities (such as soft tissue stiffness or boundary condition location) in our physics-

based problem, we often have statistical data on these parameters from the literature.

This knowledge is utilized during dataset generation when available, and otherwise, we

choose a range of λ values to encompass its variability, thereby capturing diverse patient

characteristics. Section 7.3 presents detailed examples of this process.

The weights of fλ, E , D and h are optimized by minimizing the loss L defined in the

following Equation:

L = ||u − û||22 +Lλ . (7.2)

In this loss, the first term represents the mean square error between the prediction of

the surrogate model u = f N N
λ

(F ) and the ground truth û = f F E M
λ

(F ) computed with the

biomechanical model. The second term Lλ corresponds to a measure of error between

λ and D(E(λ)) and is included only for the architecture shown in the rightmost image of

Figure 7.1, which applies when λ is of high dimensionality.

7.2.3 Patient-specific parameter estimation

Once trained, the surrogate model f N N
λ

can predict the displacement field of the organ

given the applied forces F and the patient-specific parameters λ. However, λ is usually

unknown. In this section, we propose using an optimization process that relies on the

trained model f N N
λ

to estimate the patient-specific parameters λ. Consider a case where

the applied forces are known through an appropriate sensor, typically when using surgical

robots like the Da Vinci robot. An observation y of the deformation can also be obtained

through an intraoperative (imaging) sensor. For instance, laparoscopic camera, LiDar,

ultrasound, IVUS, or CBCT. The observation y may be full or partial imaging of the organ.

Given the observation y of the deformation, we rely on advanced segmentation and

reconstruction techniques [El hadramy et al. (2023b); Wasserthal et al. (2023)] to recon-

struct the surface of the observation. For instance, point clouds serve as a common rep-

resentation of any intraoperative observation from the imaging modalities mentioned

above. Alongside the applied forces F , the observation y is used to solve an optimiza-

tion problem to determine the patient-specific parameters λ. This optimization process

leverages the trained networks ( f N N
λ

, h, E and D) and a gradient-based optimizer, such

as Stochastic Gradient Descent (SGD), to identify the optimal value λ∗ that minimizes an

objective function J (described in Equation 7.3 and 7.4), hence maximizing the accuracy

of the surrogate model f N N
λ

on matching the observation y .
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λ∗ = argmin
λ

J (7.3)

J =µ(g ◦u, y) with u = f N N
λ (F ) (7.4)

In equation 7.4, g is the preoperative geometry, u the predicted displacement field for

a given value of λ and F , y is the point cloud observed intraoperatively, and µ denotes the

Euclidean distance between the observed point cloud and the deformed organ. Figure

7.2 illustrates the Euclidean distance µ between an observation y of the ground truth de-

formed geometry G̃ and the deformation G computed with the surrogate model whenλ is

incorrectly estimated. For each point in y , its projection on the surface of G is measured

to compute the Euclidean distance.

Figure 7.2: Illustration of the distance measure µ described in Equation 7.4. Here, y rep-
resents an observation of the deformation G̃ , while G denotes the prediction from the sur-
rogate model when λ is misestimated. The objective function is computed as the mean
Euclidean distance (µ) between the observed points (y) and the surface of G .

Algorithm 3: Optimization Process
Input : The preoperative geometry G , the applied forces F , the intraoperative

observation y , and a prior distribution P

Output: An estimation of λ
1 λ∼U (P )
2 optimizer ← SGD(λ, l r )
3 J ← 1×109

4 while J > threshold do
5 uλ← f N N

λ
(F )

6 G ← g ◦uλ
7 J ←µ(G , y)
8 λ← optimizer(J )

9 end
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Algorithm 3 shows the optimization process aiming to find the parametersλ that min-

imizes the objective function in equation 7.4. We begin by setting an initial guess for λ by

sampling from a uniform distribution P , the same distribution used for training. Dur-

ing each iteration, the estimation of λ and the applied forces F are used to predict the

displacement field u. This displacement field is used to compute G , a deformation of

the preoperative geometry g . Therefore, the objective function, defined as the Euclidean

distance between G and y , is minimized to estimate the optimal λ. The gradient compu-

tation is possible thanks to the chain rule described in equation 7.5 and the automatic dif-

ferentiation of neural networks. This gradient is the dot product of two terms: (1), which

represents the gradient of J with respect to f N N
λ

weights, and (2), which corresponds to

the gradient of h with respect to its input, note that the first term is identical to the gradi-

ent used during training.

∂J

∂λ
= ∂J

∂θ
· ∂θ
∂λ

= ∂J

∂θ
· ∂(θ0 +dθ)

∂λ
= ∂J

∂θ︸︷︷︸
(1)

· ∂(dθ)

∂λ︸ ︷︷ ︸
(2)

(7.5)

In equation 7.5, the initial weights θ0 of f N N
λ

vanish from the second term as they are inde-

pendent of the parameters λ. This proposed gradient computation remains robust to any

initial guess of λ, as gradient computation is consistently feasible due to the automatic

differentiation property of neural networks.

When λ has high dimensionality, we use the architecture on the right-hand side of

Figure 7.1. In this scenario, the optimization is performed over the latent-space vector z,

which has a lower dimension, thereby reducing the problem’s complexity and accelerating

the convergence of the optimization algorithm. Upon convergence, the parameter vector

λ∗ = D(z∗) is estimated using the trained decoder D .

7.3 Experiments and results

To evaluate our method, we conducted two experiments to estimate parameters across

various scenarios. All experiments involved implementing the neural network and opti-

mization processes using PyTorch1. We utilized the Adam optimizer for the neural net-

work training and the optimization process. The FEM simulations were performed using

the SOFA Framework [Faure et al. (2012)] with the SOniCS plugin for soft-tissue biome-

chanics presented in chapter 4. Computation was carried out using an Nvidia Titan RTX

GPU. We use the Hausdorff distance in the following experiments to measure the error

between the predicted and ground truth meshes. This choice is necessary because the

1https://pytorch.org/docs/stable/index.html
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predicted and ground truth meshes do not share the same topology. The Hausdorff dis-

tance is a suitable metric in this context as it measures the maximum distance between

points on one surface and the closest points on the other surface, accurately assessing

how well the predicted mesh aligns with the ground truth, even when their structures

differ.

7.3.1 Experiment 1: Estimation of soft-tissue characteristics

Accurately identifying the material properties is crucial for developing a precise PBDT

model. One of the most challenging aspects is determining the stiffness of the tissue,

which is often difficult to acquire and can introduce significant errors in physics-based

models. This is due to the inherent variability in biological tissues and the complexity of

capturing their mechanical behavior accurately. In this first experiment, we aim to esti-

mate the stiffness of an ex-vivo human liver. By accurately determining the liver’s stiff-

ness, we aim to improve the fidelity of the PBDT model, leading to better predictions of

tissue deformation under various conditions.

7.3.1.1 Experimental data

An ex-vivo human liver was used for this experiment. Two CT scans were acquired from

the liver under two different deformations. As illustrated in Figure 7.3, the first configura-

tion corresponds to a rest state of the organ while in the second configuration a force of

5.1 N was applied on the left lobe. The stiffness of the liver was estimated at 7 kPa using

the FibroScan® technique. Additionally, a LiDAR camera captured a partial surface point

cloud of the organ in the second configuration.

Figure 7.3: Rest and deformed states of the ex-vivo human liver.
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7.3.1.2 Biomechanical model ( f F E M
λ

)

We follow the boundary value formulation described in Section 7.2.1 to build f F E M
λ

. The

geometry was segmented from the CT scan, representing the ex-vivo organ’s rest config-

uration. The liver occupies a volume Ω with boundary Γ. The Dirichlet and Neumann

boundary conditions are on ΓD and ΓN . Figure 7.4 illustrates the simulation domain. The

Dirichlet boundary conditions are assumed to be known and fixed at the interface be-

tween the let parenchyma and the portal vein. The material behavior is approximated by

using a Saint-Venant Kirchhoff model. See chapter 7.2.1 for the expression of the strain-

energy density function.

Figure 7.4: The liver occupies a volume Ω with boundary Γ. The Dirichlet and Neumann
boundary conditions are on ΓD and ΓN . We use an IBM to discretize the domain; this is
motivated by its compatibility with U-Mesh’s CNN architecture.

7.3.1.3 Data Generation

Using the biomechanical model, denoted f F E M
λ

, we generated 3,000 synthetic deforma-

tions of the organ. For each deformation, we randomly selected a location on the liver sur-

face to apply traction forces, sampled from a uniform distribution over [2 N, 10 N]. More-

over, Young’s modulus was sampled from a uniform distribution over [5000 Pa, 12000 Pa],

and the Poisson ratio was set at 0.49 for each generated sample. Consequently, a sample

from the dataset includes the applied forces F as input for f N N
λ

, the chosen Young’s mod-

ulus as the input λ of the hypernetwork h, and the relative displacement field obtained

through f F E M
λ

, which serves as the ground truth to supervise f N N
λ

’s prediction u.

7.3.1.4 Network training

In this experiment, the unknown parameter λ = E is a scalar representing the material’s

stiffness. Given the low dimensionality of λ, we use the simpler architecture shown on the
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left-hand side of Figure 7.1. The first layer of h is of size 1, h predicts the additive weights

dθ for f N N
λ

. These additive weights provide f N N
λ

with information about the stiffness. The

networks were trained end-to-end on 3,000 generated samples during 400 epochs with a

batch size of 1. The loss function is the MSE between the displacement field predicted by

the surrogate model ( f N N
λ

) and the one computed with the biomechanical model f F E M
λ

as expressed in Equation 7.2. Note that this experiment has no reconstruction loss Lλ as

λ is of dimension 1. Hence, no need for dimensionality reduction.

7.3.1.5 Network results

After training, we evaluated the performance of f N N
λ

by applying forces of 5.1 N to the

left lobe and comparing the predicted deformation with the ground truth value of the

Young’s Modulus. We assessed the obtained deformation in terms of Hausdorff distance,

and the results are summarized in Table 7.1. Additionally, we reported the Relative Haus-

dorff distance, which represents the percentage error relative to the deformation ampli-

tude. Our results were compared with those from f F E M
λ

and U-Mesh [Brunet (2020)],

where U-Mesh was trained with a constant stiffness value. The comparison shows that

the surrogate model, f N N
λ

, achieves comparable accuracy to both methods while being

faster than f F E M
λ

and accommodating a range of stiffness values, unlike U-Mesh. Figure

7.5 (left image) displays the deformation predicted by the surrogate model f N N
λ

super-

imposed on an image of the actual deformation. To further assess the robustness of our

method, we compared f N N
λ

predictions with f F E M
λ

solutions across 100 synthetic defor-

mations, yielding a Mean Absolute Error (MAE) of 1.77 mm ± 0.82 mm. The rightmost

image of Figure 7.5 shows a comparison between the predictions of the surrogate ( f N N
λ

)

and biomechanical ( f F E M
λ

) models for a given applied forces and value ofλ. The heatmap

represents the error at each location of the geometry.

7.3.1.6 Optimization results

In this section, we evaluate the optimization method for estimating the stiffness of the ex-

vivo liver. Given the applied forces at the left lobe, a point cloud of the liver surface was

captured using LiDAR. This point cloud is the observation y in the optimization method

described in Section 7.2.3. The Adam optimizer efficiently converged after 10 iterations,

with an average computation time of 46 ms per iteration. The estimated stiffness value

obtained was λ= 6.8 kPa, leading to an error within 3% of the ground truth value (equals

7 kPa). This result demonstrates the effectiveness of our optimization approach in ac-

curately estimating material properties. The Adam optimizer’s efficiency and the esti-

125



CHAPTER 7. MODEL PARAMETRIZATION

Figure 7.5: Left: In the wireframe visualization, the prediction of f N N
λ

is shown when
applying to the rest state (left image of Figure 7.3) the same loads that produced the de-
formed state (right image of Figure 7.3). The predicted result is superimposed over the
ground truth deformation image for comparison. Right: The wireframe illustrates the
liver’s rest shape. The surface mesh represents a f N N

λ
prediction when specific loads are

applied to this rest shape. The heatmap shows the errors of f N N
λ

compared to the f F E M
λ

’s
solution under the same loads.

Hausdorff (mm) Relative Hausdorff (%) Time (ms)

f F E M
λ

15.1 11.6 500

U-Mesh [Brunet (2020)] 16.6 12.7 4

f N N
λ

16.5 12.6 4

Table 7.1: Results of the liver experiments compare the predictions of standard FEM, U-
Mesh, and f N N

λ
against the ground truth deformation. f N N

λ
achieves results comparable

to both state-of-the-art methods while being significantly times faster than standard FEM
and more versatile than U-Mesh [Brunet (2020)] in handling a range of material proper-
ties.

mated value’s accuracy underscore our method’s robustness in handling real-world data

and providing reliable parameter estimation.

7.3.2 Experiment 2: Boundary condition estimation for soft tissue

biomechanics

The BCs play a crucial role in the PBDT accuracy as they define the interactions between

the organ and its environment. The problem of estimating zero-displacement boundary

conditions is challenging since it requires identifying which nodes of the finite element

model are constrained. Consequently, the vector λ, over which the optimization takes

place, is very large and can contain tens of thousands of unknowns depending on the
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mesh’s size. In such a case, many optimization methods would fail or be time-consuming.

In this section, we propose to estimate the zero-displacement boundary conditions using

the proposed method.

7.3.2.1 Experimental data

: For this experiment, we use data from Mazier et al. (2022). The dataset consists of a cylin-

der PolyDiMethylSiloxane (PDMS) beam that deforms under gravity with its left extremity

fixed to a vertical support. The non-deformed geometry is provided, and the material be-

havior is approximated by a nearly incompressible Mooney-Rivlin [Rivlin (1948)] model

with parameters C01 = 101 kPa and C10 = 151 kPa. This approximation was performed

by Mazier et al. (2022) using the Mach-1™ mechanical testing system (Biomomentum,

Canada). Additionally, an image of the deformation was captured, as illustrated in the

left-hand image of Figure 7.8.

7.3.2.2 Mechanical model ( f F E M
λ

)

We follow the boundary value formulation in 7.2.1 to build the biomechanical PBDT, de-

noted f F E M
λ

, for the PDMS beam. The beam occupies a volume Ω with boundary Γ. The

Dirichlet and Neumann boundary conditions are on ΓD and ΓN , two subsets of Γ. ΓD is

the unknown to be determined. Figure 7.6 illustrates these domains.

Figure 7.6: The beam occupies a volumeΩwith boundary Γ. The Dirichlet and Neumann
boundary conditions are on ΓD and ΓN .

The material behavior is approximated with a nearly incompressible Mooney-Rivlin

[Rivlin (1948)], see chapter 3 for the expression of the strain-energy density function W .
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7.3.2.3 Data generation

We generated 6,000 training samples using the finite element simulation described ear-

lier. For each sample, body forces, denoted F, were selected from a uniform distribution

over [15 N, 7 N], and a section of the cylinder was randomly chosen to represent ΓD . The

relative displacement field is u = f F E M
λ

(F ), with λ a discrete representation of ΓD over the

beam’s mesh. This representation is a vector where the dimension equals the number of

nodes in the FEM mesh (1088 in our case). Each element of the vector is set to 1 if the

corresponding node is in the ΓD domain, and 0 otherwise. We illustrate an example of

generated deformations for different chosen locations of ΓD in Figure 7.7.

Figure 7.7: Illustration of three examples of deformations generated for training. The
Dirichlet section is set in the middle, left, and right, respectively.

7.3.2.4 Network training

In the case of this experiment, the parameter λ is a discrete representation of the Dirich-

let boundary condition over the beam’s mesh, resulting in a high dimensionality of 1088.
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Hausdorff (mm) Relative Hausdorff (%) Time (ms)

f F E M
λ

5.8 4.4 3000

U-Mesh [Brunet (2020)] 6.2 4.7 4

f N N
λ

6.4 4.9 4

Table 7.2: Results from the beam experiments, shows comparisons between predictions
made by the biomechanical model ( f F E M

λ
), U-Mesh, and the surrogate model ( f N N

λ
)

against the ground truth deformation. f N N
λ

achieves results comparable to both state-
of-the-art methods while operating 750 times faster than the biomechanical model and
offering greater flexibility than U-Mesh [Brunet (2020)] in handling diverse patient char-
acteristics.

Therefore, we use the architecture shown on the right-hand side of Figure 7.1, which in-

cludes a dimensionality reduction of λ. The input size of E and the output size of D equal

1088, the latent space representation z having a dimension of 3 (Experimentally chosen).

The networks were trained end-to-end during 400 epochs on the 6,000 generated sam-

ples, with a batch size of 1. We used a Binary Cross Entropy for the reconstruction loss of

λ, denoted as Lλ in equation 7.2.

7.3.2.5 Network results

Aiming for comparison with real data, upon training, we have evaluated the surrogate

model ( f N N
λ

) when the body forces are the gravity and the Dirichlet domain is on the

left extremity of the beam. The resulting deformation was compared with the real from

Mazier et al. (2022) and is illustrated in the right-hand image of Figure 7.8. Similar to

the previous experience, we use Hausdorff metrics to compare the predictions and the

ground truth geometries. Table 7.2 presents the numerical results of f N N
λ

, we also report

the performances of the biomechanical model f F E M
λ

and U-Mesh [Brunet (2020)] both

compared with the ground truth deformation from Mazier et al. (2022). Here, U-Mesh

was trained on constant Dirichlet boundary conditions. Results show that f N N
λ

achieves

comparable results with both f F E M
λ

and U-mesh, while operative 750 times faster than

f F E M
λ

and being more versatile than U-Mesh in terms of Dirichlet boundary condition

location.

To further assess the robustness of f N N
λ

, we have compared its results with f F E M
λ

over 100 deformations with various locations of Dirichlet boundary conditions. Results

achieved a MAE of 0.67± 0.57mm with a maximum and minimum MAE of 2.7mm and
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0.12mm, respectively. We illustrate in Fig. 7.9 three results, where we compare the pre-

diction of f F E M
λ

and f N N
λ

on cases where the Dirichlet boundary conditions are fixed on

the left, middle, and right cross sections respectively.

Figure 7.8: Left: the observed deformation of the beam, fixed on the left side and deform-
ing under gravity. Right: prediction of the neural network fλ (in green) overlaid onto the
ground truth beam.

Figure 7.9: Comparison of the surrogate ( f N N
λ

) and biomechanical ( f F E M
λ

) models un-
der various deformations and different Dirichlet boundary conditions: In gray, the non-
deformed shape of the geometry, the errors between f F E M

λ
and f N N

λ
are displayed on the

deformed beam. Two examples are illustrated. Left: The Dirichlet boundary conditions
are on the left extremity. Right: The Dirichlet boundary conditions are on a cross-section
in the middle of the geometry.

7.3.2.6 Optimization results

An important contribution of this work is the ability to leverage the surrogate model ( f N N
λ

)

to determine the parameters λ that best fit an observation y . In this experiment, we use
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the image of the deformation shown in Figure 7.8 (left image) as an observation. Mazier

et al. (2022) reconstructed and scaled the deformed geometry from this image. We used

a point cloud of the visible surface as an observation y for the optimization process de-

scribed in Section 7.2.3. This point cloud is a constraint for the deformation predicted

by f N N
λ

during the optimization process. The optimization over z is performed using the

Adam optimizer with a learning rate of 2.9 and a random initial guess of z. Convergence

was achieved after 10 iterations, yielding estimations z∗ decoded using D to estimate λ.

This estimation was input into E and used to predict the deformation of the beam under

gravity. Comparison with the ground truth resulted in a Hausdorff of 5.8 mm. The opti-

mization over the trained neural network takes, on average, 49 ms per iteration (40 ms for

the forward step and 9 ms for the backward step)

7.4 Ablation study

7.4.1 Dimensionality reduction

In cases where the patient characteristics λ have a high dimension, we use an autoen-

coder (comprising encoder E and decoder D) to reduce the dimension to a latent repre-

sentation z. This approach was applied in Experiment 1. The optimization is then per-

formed over the latent representation z, accelerating the optimization algorithm’s con-

vergence. To justify this, we ran the optimization process in Experiment 2 over the native

vector λ without dimensionality reduction, where λ had a dimension of 1088. In this

scenario, the optimization algorithm converged after 150 iterations, compared to just 10

iterations when dimensionality reduction was used. Each iteration takes 49 ms. Thus,

the total time for estimating the boundary conditions without dimensionality reduction

is 7350 ms, whereas it is only 490ms when the optimization is performed over the latent

representation.

7.4.2 HyperNetwork architecture

The proposed architecture uses a special type of Hypernetworks, as explained in Section

7.2.2. Unlike traditional Hypernetworks [Ha et al. (2017)], where the predicted weights

completely replace the primary network’s weights, our approach uses the predicted weights

as additive adjustments to the primary network’s weights. This strategy enables faster

and more stable training. To support this, we conducted Experiment 1 using both ap-

proaches and reported the training losses in Figure 7.10. The Additive Weights Hypernet-

works training has a higher convergence speed and is more stable.
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Figure 7.10: Comparison of training losses using two hypernetwork strategies. In orange,
the traditional hypernetwork strategy is employed, where the primary network’s weights
are fully predicted by the hypernetwork. In blue, the hypernetwork predicts additive
changes to the primary network’s weights. In this work, we adopt the second strategy,
as it enables faster and more stable training.

7.5 Discussion

Results show that the proposed method is effective in scenarios involving complex mate-

rial properties and anatomical structures. The experiments demonstrated that the surro-

gate model f N N
λ

achieves comparable accuracy to both biomechanical model f F E M
λ

and

U-Mesh while operating significantly faster than the biomechanical model f F E M
λ

. More-

over, unlike U-Mesh, which assumes knowledge of patient characteristics before training,

f N N
λ

demonstrates versatility over a distribution of patient characteristics. This flexibil-

ity allows f N N
λ

to adapt to patient-specific characteristics intraoperatively, enhancing its

robustness and reliability in clinical applications where such variations are prevalent.

The optimization process was effective across both scenarios tested, showcasing its

ability to identify patient-specific characteristics that improve the surrogate model’s pre-

dictive accuracy. Since our primary goal is to ensure the surrogate model’s precision, we

validated the optimization process based on its ability to find characteristics that yield ac-

curate predictions when used in the surrogate model. This validation confirmed that the

proposed approach maintains high accuracy and offers a robust and efficient solution for

real-time, patient-specific modeling in clinical settings. Moreover, we utilized point cloud

data as intraoperative observations. However, in some scenarios, point clouds may not
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fully capture the deformation of a 3D geometry, as they only describe the surface of the

geometry. We could explore using 3D data from advanced imaging modalities like ultra-

sound for more comprehensive representation. These in-depth modalities could provide

more detailed insights into the internal deformations and characteristics, potentially en-

hancing the accuracy of the optimization process and, hence, providing more accurate

patient characteristics for the surrogate model.

It is worth noting that our architecture is not limited to a specific choice of primary

network. While we have chosen U-Mesh for its efficiency, we have also explored other

architectures, including Physics-Informed Neural Networks (PINNs) [Raissi et al. (2019)],

and found them to integrate well as a primary network within the proposed framework.

This demonstrates that our method’s flexibility extends beyond a specific choice of the

primary network, making it adaptable to various neural network architectures suited for

different clinical applications.

7.6 Conclusion

In this chapter, we present a novel method to improve the accuracy of physics-based dig-

ital twins (PBDTs) by precisely estimating patient-specific characteristics based on intra-

operative observations. Our approach utilizes a hypernetwork architecture to condition

neural network-based surrogate models on patient-specific properties, including mate-

rial characteristics and boundary conditions. Initially, the network is trained using simu-

lation data from a biomechanical model, accommodating a range of patient characteris-

tics. After training, we employ a gradient-based optimization process to refine the surro-

gate model, thereby determining the optimal patient-specific parameters that align with

the given intraoperative observation. The proposed optimization algorithm converges in

real-time, a crucial feature for effective integration into clinical settings.
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8.1 Contributions

This thesis develops a novel IVUS-guided augmented reality (AR) system for minimally

invasive hepatic procedures. In fact, despite the recognized advantages of intravascular

ultrasound (IVUS) in providing intraoperative imaging, to our knowledge, there has been

no method to integrate IVUS data into surgical guidance systems for liver surgery until

now. The system developed in this thesis aims to enhance surgical precision by integrat-

ing real-time IVUS data with preoperative imaging, offering surgeons an augmented view

of the liver’s internal structures. This can be achieved by registering IVUS data with preop-

erative CT scans, providing an up-to-date and anatomically accurate visualization during

surgery, which adapts to organ deformation.

In Chapter 1, we presented a comprehensive review of registration methods, focusing

on intensity- and feature-based techniques. While intensity-based registration is often

used in medical imaging, it poses challenges in multi-modality scenarios, such as register-

ing IVUS data with CT. To overcome this, we employed feature-based registration meth-

ods in this thesis. In conjunction with biomechanical models, feature-based approaches

allow us to address the registration problem by circumventing multi-modality issues and

taking advantage of the biomechanical model’s ability to extrapolate over sparse and noisy

intraoperative data, like that from IVUS. This decision forms the backbone of our regis-

tration process.

Throughout this work, several key contributions have been made to advance the use of

IVUS-based augmented reality in surgery. Early chapters provided the theoretical ground-

work necessary to understand the technologies employed in this thesis. Chapter 2 ex-

plored the fundamentals of deep learning, beginning with basic concepts like percep-

trons and multilayer perceptrons (MLPs), and progressing to advanced architectures such

as Convolutional Neural Networks (CNNs), Long Short-Term Memory networks (LSTMs),

and Hypernetworks. These models are central to the methods developed in this thesis,

enabling the analysis and interpretation of IVUS data and its integration with preopera-

tive imaging. Chapter 3 introduced the essential principles of soft-tissue computational

biomechanics, focusing on the finite element method (FEM) as a tool for simulating com-

plex biomechanical problems. This knowledge allowed for the construction of a detailed

biomechanical liver model that plays a crucial role in the non-rigid registration process

between preoperative CT data and intraoperative IVUS imaging in the context of this the-

sis.

One of the core technical contributions is the development of SOniCS, a framework in-

troduced in Chapter 4 that simplifies the implementation of hyperelastic material mod-
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els for simulating soft tissues. By integrating FEniCS, a tool for solving partial differen-

tial equations, with SOFA, a framework for real-time simulation of deformable objects,

SOniCS enables efficient and accurate modeling of complex tissue behavior. This biome-

chanical model, derived from preoperative CT data, provides the necessary framework

for registering the intraoperative IVUS data, ensuring accurate alignment and adaptabil-

ity to intraoperative conditions. In Chapter 5, we tackled the challenge of IVUS volume

reconstruction without relying on external tracking systems. Traditional tracking systems

are limited in minimally invasive surgeries due to size constraints. In addition, they can

be expensive and prone to interference from surgical instruments. To overcome these

limitations, we developed a novel AI-driven method for reconstructing 3D IVUS volumes,

eliminating the need for electromagnetic tracking systems. This approach simplifies the

surgical setup and reduces the costs of the intraoperative imaging system, making it more

practical for real-world use. Chapter 6 presented the thesis’s primary contribution: a

method for real-time registration of intraoperative IVUS volumes with preoperative CT

data. This method leverages deep learning, specifically a neural network trained on data

generated by the biomechanical liver model, to align intraoperative data with the pre-

operative model. This enables dynamic adjustments to the preoperative models during

surgery. In Chapter 9, we extended this registration framework further by adapting it to ac-

count for patient-specific variations. Recognizing that biomechanical models often rely

on assumptions about material properties and boundary conditions that can vary be-

tween patients, we enhanced the neural network to predict these variables in real-time.

This process incorporates an optimization loop that identifies the material properties and

boundary conditions that best match the intraoperative observations. This allows the

biomechanical model to adapt to each patient’s unique mechanical characteristics dy-

namically.

In the appendix A, we present a work that, while not directly related to the primary

subject of this thesis, was developed during the early stages of the PhD program when

IVUS data was not yet available. This work aimed to improve CT guidance during needle-

based liver procedures, such as tumor ablation while reducing the need for contrast agent

injections during these interventions. The approach involved augmenting intraoperative

CT images with a preoperative vascular network, deformed to match the current acquisi-

tion.
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8.2 Limitations and future work

While this thesis has developed the core components of an IVUS-guided AR system for

liver surgery, certain limitations must be acknowledged. The primary limitation is the fact

that the full pipeline has not yet been validated with real IVUS data. In Chapter 6, the vali-

dation was performed using fully synthetic data generated from preoperative CT scans by

introducing deformations, partiality, and noise to mimic intraoperative conditions. This

synthetic data was important for testing the developed methods in the absence of real

IVUS datasets but did not fully replicate the complexities of real intraoperative imaging.

Despite this, our results on synthetic data showed promise. In Chapter 6, we com-

pared our method against the U-Mesh framework proposed by Brunet et al. (2019), which

has been validated on real clinical data. Our approach achieved better results in terms of

accuracy on synthetic datasets, demonstrating its potential effectiveness. However, it is

important to note that U-Mesh’s validation on real data adds significant credibility to its

performance. The fact that our method outperforms U-Mesh in synthetic tests suggests

that it is highly promising for real-world applications. However, this hypothesis remains

to be confirmed with real IVUS data.

To validate the proposed method, a specific protocol for data acquisition is required.

First, a preoperative CT scan of the liver under an initial deformation must be obtained.

Intraoperatively, an IVUS sweep is needed to capture a sequence of ultrasound images

corresponding to the liver’s intraoperative deformation. Additionally, an intraoperative

CT scan should be acquired to serve as the ground truth for validation. After applying the

registration between the preoperative CT and the intraoperative IVUS images, the result-

ing deformation of the preoperative CT will be compared to the intraoperative CT. There-

fore, it is crucial that both the intraoperative IVUS and the intraoperative CT are captured

under the same deformation of the organ to ensure an accurate comparison.

This acquisition protocol presents several challenges. First, the IVUS probe is not

commonly used in liver surgery, as it is not a standard tool in real human interventions for

this type of procedure. As a result, its integration into clinical workflows is still in devel-

opment. When considering animal models, additional difficulties arise, such as the chal-

lenge of acquiring an intraoperative IVUS sequence and an intraoperative ground truth

CT under the same deformations. Animal respiration and movement between the two ac-

quisitions often result in variations in the liver’s deformation, making it difficult to capture

consistent and reliable data for validation purposes. These factors make the acquisition

protocol complex, but essential for validating the effectiveness of the method.

Moving forward, the next step is clear: to validate the full pipeline with real intraop-
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erative IVUS data. This will allow for a more comprehensive evaluation of our system’s

performance under true clinical conditions, where factors such as noise, tissue variabil-

ity, and the presence of surgical instruments can introduce new challenges. Acquiring real

IVUS data for liver surgeries and validating the system in a clinical setting will be crucial to

demonstrating its robustness for practical use. Once the full pipeline is validated on real

IVUS data, an important direction for future work will focus on refining the augmented

reality (AR) display system. After successfully registering the preoperative model with the

intraoperative IVUS volume, the next step involves accurately overlaying the deformed

preoperative model onto the laparoscopic view. This AR overlay is crucial for providing

real-time, visual guidance to surgeons, helping them precisely track tumors and navi-

gate critical anatomical structures during surgery. However, this additional registration

step between the laparoscopic view and the deformed preoperative model is expected

to be rigid. Since the preoperative model undergoes deformation through its alignment

with the IVUS data, no further non-rigid adjustments to the model are necessary at this

stage. The key challenge is ensuring that the deformed model, which already accounts

for anatomical changes, is rigidly aligned with the laparoscopic camera’s field of view. By

achieving this, the augmented reality system can display a synchronized, real-time view

that accurately reflects the patient’s anatomy.

If the available laparoscopic images contain depth information, this rigid registration

can be performed by registering a point cloud computed from the laparoscopic view with

the 3D deformed preoperative model. A rigid registration method like Iterative Closest

Point (ICP) can align the two datasets. In cases where depth information is not directly

available, alternative methods exist to extract a point cloud from monocular images. One

such method is Simultaneous Localization and Mapping (SLAM) [Campos et al. (2021)],

which uses the motion of a single camera to map the environment and generate a point

cloud. Another approach is to leverage deep neural networks, such as MiDaS [Ranftl et al.

(2022)], which compute depth directly from monocular images. SLAM and MiDaS provide

feasible ways to generate point clouds from standard 2D laparoscopic images, enabling

the required data to solve a rigid registration problem, even without dedicated depth-

sensing equipment.

While the natural future work of this thesis is the validation of the full pipeline using

real intraoperative IVUS data, other directions for improvement can also be pursued by

focusing on individual components of the pipeline. For instance, the developed registra-

tion method in this thesis is patient-specific, relying on a neural network trained on data

generated from a patient-specific biomechanical model built using preoperative data. As

a result, the network is tailored to work only for the specific geometry of the patient. Fu-

ture work could address this limitation by incorporating neural network architectures that
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can be trained on a variety of patient anatomies, making the system more robust to dif-

ferences in geometry across patients. One potential approach could involve using graph

neural networks or transformers, which are well-suited to handle variations in geometries

and topologies, allowing for training across multiple liver anatomies. Another promis-

ing idea would be to condition the current neural network with the patient’s geometry

through a hypernetwork. In this approach, the hypernetwork would take a representa-

tion of the patient’s geometry as input and generate the weights that enable the primary

network to register intraoperative data for that specific patient. This method would be

similar to the hypernetwork proposed in Chapter 9, where it was used to adapt to mate-

rial properties and boundary conditions. Incorporating these advanced techniques could

significantly enhance the versatility and applicability of the registration system across a

wider range of patients.

Finally, In Chapter 9, we utilized a hypernetwork to condition the primary neural net-

work on either the material properties or the boundary conditions of the biomechani-

cal liver model. This approach allows the network to adapt to variations in one patient-

specific characteristic, ensuring it can effectively register intraoperative data within that

specific context. However, this means the network is trained to handle only one type of

variation at a time. In future work, we could extend this approach by conditioning the net-

work on both material properties and boundary conditions simultaneously. To achieve

this, we could introduce a heterogeneous parameter λ, representing multiple patient-

specific quantities, such as tissue stiffness and organ boundary conditions. By condition-

ing the network on λ, we could create a more robust model capable of handling complex,

multi-factor variations, thus improving the generalizability of the method across different

patient anatomies.
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9.1 Introduction

La chirurgie du foie est une procédure complexe et délicate en raison de l’anatomie com-

plexe de cet organe et de sa proximité avec des structures vasculaires critiques. Les in-

terventions hépatiques nécessitent une précision extrême pour éviter les saignements,

minimiser les dommages aux tissus sains et assurer une résection efficace. De plus, le

foie est un organe mou et mobile, se déplaçant avec la respiration, ce qui complique en-

core la planification et la navigation chirurgicale en temps réel. L’identification précise

des structures internes, telles que les veines et les artères hépatiques, est cruciale mais

difficile à réaliser avec les techniques d’imagerie conventionnelles seules, surtout en la-

paroscopie où la visibilité est réduite.

L’intégration de la réalité augmentée (RA) dans la chirurgie hépatique pourrait ap-

porter des avantages significatifs pour surmonter ces défis. La RA permet de superposer

des images préopératoires en temps réel, comme des scans CT, directement sur la vue

chirurgicale. En fournissant un guide visuel amélioré, cette technologie aide les chirurgiens

à localiser précisément les structures critiques et les lésions tumorales, tout en réduisant

la dépendance aux imageries intermittentes. La RA permettrait d’améliorer la précision

des gestes, et de minimiser les risques de complications, contribuant ainsi à la sécurité et

à l’efficacité globales de l’intervention.

Cependant, le foie se déforme continuellement pendant l’intervention en raison de

la respiration, de l’interaction avec les instruments chirurgicaux, ainsi que d’autres fac-

teurs liés à la manipulation et à la physiologie du patient. Par conséquent, l’imagerie CT

préopératoire, bien qu’initialement précise, ne reflète plus ces déformations dynamiques

du foie une fois l’intervention commencée. Cette discordance entre l’image préopéra-

toire et la réalité anatomique en temps réel compromet la précision de la RA au cours de

la chirurgie.

Pour maintenir une RA fiable et précise tout au long de l’intervention, il est essentiel

de combiner les données CT préopératoires avec une modalité d’imagerie intraopératoire

en temps réel. Cette fusion se réalise grâce à un processus de recalage entre les données

préopératoires et intraopératoires, permettant d’aligner et de mettre à jour le CT avec la

déformation actuelle du foie en continu. Ce recalage en temps réel fournit aux chirurgiens

une vue augmentée toujours fidèle à l’état anatomique du patient, et leur permet ainsi de

naviguer avec une plus grande précision et de réduire les risques d’erreur tout au long de

l’intervention.

Parmi les modalités d’imagerie intraopératoire et en temps réel, on trouve la caméra

laparoscopique et l’échographie. La caméra laparoscopique offre une vue en surface des
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Figure 9.1: Gauche : cathéter IVUS positionné dans le lumen de la veine cave inférieure
à la surface postérieure de l’organe, avec un exemple d’images obtenues par émission
latérale et formation de faisceau longitudinal; Centre : vue antérieure du foie montrant les
mouvements de rotation du cathéter permettant des images en coupe complète; Droite :
vue inférieure illustrant les acquisitions ultrasonores par rotation.

organes, mais elle ne permet pas de visualiser les structures internes du foie, ce qui limite

son utilité pour une navigation précise à l’intérieur de l’organe. L’échographie, en re-

vanche, se révèle plus adaptée, car elle permet une exploration interne du foie et une

meilleure visualisation des structures vasculaires et tumorales. L’échographie laparo-

scopique (LUS) est souvent utilisée, mais elle présente des limitations importantes dans le

cadre d’interventions mini-invasives : elle occupe en continu un des trocarts nécessaires

à l’intervention, mobilise une main du chirurgien, et sa position en contact direct avec

la surface du foie entraîne une déformation de l’organe. Cette déformation peut com-

primer les vaisseaux et perturber l’interprétation des images, rendant l’utilisation de la

LUS moins optimale pour une assistance chirurgicale en temps réel dans des conditions

mini-invasives.

Bien que l’intravascular ultrasound (IVUS) soit principalement utilisé dans les inter-

ventions cardiovasculaires, cette technologie pourrait également offrir des avantages sig-

nificatifs dans le cadre de la chirurgie hépatique. L’IVUS se compose d’une sonde ultra-

sonore montée à l’extrémité d’un cathéter, permettant de naviguer à l’intérieur du lumen

de la veine cave inférieure (VCI) (voir Figure 9.1). En positionnant le cathéter dans la

VCI et en le dirigeant vers les principales structures vasculaires, l’IVUS permet une visu-

alisation interne des vaisseaux hépatiques et de l’architecture interne du foie, sans né-

cessiter un accès direct ou une pression sur la surface de l’organe. Urade et al. (2021)

ont démontré la faisabilité de cette approche lors d’expériences menées sur des cochons,

montrant que l’IVUS permet de naviguer et d’observer l’ensemble des structures internes

du foie. Cette technique pourrait ainsi fournir aux chirurgiens une solution pour obtenir

une imagerie continue et non déformante des structures hépatiques en temps réel, ce qui

améliorerait la précision et la sécurité des interventions mini-invasives sur le foie.
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Cette thèse comble un manque en développant un système de RA guidé par IVUS pour

la chirurgie mini-invasive du foie. L’objectif est d’améliorer la précision chirurgicale en in-

tégrant l’imagerie IVUS en temps réel avec la technologie de RA, superposant les données

d’imagerie préopératoire directement sur le champ opératoire. En exploitant les capac-

ités d’imagerie synchrones et continues de l’IVUS, qui fournissent une vue complète et

en profondeur du foie en rotation du cathéter, ce système offrirait une perspective détail-

lée des structures internes de l’organe, y compris l’arbre vasculaire et les tumeurs. Une

telle RA est rendue possible par le recalage des données IVUS intraopératoires avec des

images médicales préopératoires comme le scanner ou l’IRM. Ce processus de recalage

permet des ajustements dynamiques des modèles préopératoires, garantissant qu’ils re-

flètent avec précision l’état anatomique actuel du foie, et répond ainsi aux défis tels que la

déformation de l’organe et les limitations de visualisation. Pour aborder le problème de

recalage, nous utilisons un recalage basé sur des caractéristiques afin de contourner les

problèmes liés à la multi-modalité et au choix des métriques de similarité. En outre, nous

employons un recalage basé sur un modèle en tirant parti d’un modèle biomécanique

du foie construit à partir des données préopératoires, un choix motivé par la capacité

de ces modèles à extrapoler efficacement à partir de données intraopératoires limitées et

bruitées, comme celles obtenues par IVUS.

Cette thèse est structurée comme suit : le chapitre 2 couvre les bases de l’apprentissage

profond et présente les architectures essentielles pour la compréhension des concepts

développés dans cette thèse. Chapitre 3 présente les fondements de la mécanique des

milieux continus appliquée aux tissus mous, en expliquant notamment la relation entre

contraintes et déformations, ainsi que la formulation de systèmes mécaniques résolus par

la méthode des éléments finis (FEM). Ensuite, chapitre 4 introduit SOniCS, un cadre per-

mettant d’intégrer FEniCS, dédié à la résolution d’équations différentielles, avec SOFA,

utilisé pour la simulation en temps réel d’objets déformables, ce qui facilite le développe-

ment de modèles hyperélastiques. Le chapitre suivant propose une méthode de recon-

struction volumique basée sur l’intelligence artificielle, permettant de reconstruire un

volume IVUS 3D à partir d’une séquence d’images sans nécessiter de suivi. La contri-

bution principale de cette thèse est détaillée dans le chapitre 6, avec une nouvelle méth-

ode de recalage permettant d’aligner les données CT préopératoires aux données IVUS

intraopératoires en utilisant un modèle biomécanique construit avec SOniCS. Chapitre 9

introduit une méthode permettant d’augmenter la précision de ce modèle en identifiant

des propriétés spécifiques au patient pour améliorer l’alignement des données. Enfin,

la thèse se conclut par une discussion sur les limites des méthodes développées et des

perspectives pour les travaux futurs. En annexe, un travail parallèle mené au début de

cette thèse est présenté; bien que non directement lié au sujet principal, ce projet a con-
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tribué à une meilleure compréhension des techniques de recalage et a donné lieu à une

publication à MICCAI 2023.

9.2 SOniCS

Dans le cadre de cette thèse, nous avons développé le plugin SOniCS (SOFA + FEniCS)

pour créer un modèle biomécanique du foie qui puisse répondre aux exigences de préci-

sion nécessaires pour le recalage des données intra-opératoires d’IVUS avec les données

préopératoires. Ce modèle biomécanique intègre des matériaux hyperélastiques com-

plexes permettant de capturer la déformation et les propriétés mécaniques réalistes du

foie, essentielles pour assurer un recalage durant l’intervention. Le plugin SOniCS a été

conçu pour offrir une compréhension intuitive des systèmes biomécaniques complexes,

tout en permettant aux utilisateurs d’explorer facilement différents choix de modèles hy-

perélastiques sans nécessiter une expertise approfondie. Ainsi, les modèles de comporte-

ment des tissus peuvent être modifiés en une seule ligne de code. Cette simplicité dans

la construction de nouveaux modèles fait de SOniCS un outil pour développer des mod-

èles réduits ou de substitution et pour entraîner des algorithmes d’apprentissage automa-

tique, en vue de simulations en temps réel spécifiques au patient.

Une description du fonctionnement de SOniCS est illustrée sur la figure 9.2. Dans

SOFA, chaque élément doit être défini, incluant la géométrie de la cellule, les fonctions

de forme (y compris leurs dérivées), ainsi que le schéma et le degré de la quadrature.

Dans SOniCS, cela a été remplacé par seulement deux lignes de code Python pour décrire

l’élément et sa quadrature. Le même avantage s’applique pour la description du modèle

de matériau. Dans SOFA, chaque matériau doit être créé dans un fichier séparé, pré-

cisant son énergie de déformation, en dérivant manuellement le second tenseur de Piola-

Kirchhoff (S) et sa Jacobienne. Cela a été remplacé dans SOniCS par une simple défini-

tion de l’énergie de déformation du modèle de matériau souhaité en UFL. La dérivée de

l’énergie de déformation sera ensuite calculée automatiquement en utilisant le module

FFCX. Enfin, les deux plugins partagent les mêmes méthodes Forcefield pour assembler

le vecteur résiduel global (R) et la matrice de rigidité (K).

Nous avons validé SOniCS à l’aide de simulations numériques, y compris des solu-

tions manufacturées, des simulations de poutres en porte-à-faux et des benchmarks four-

nis par FEBio. Nous avons ainsi atteint une précision de l’ordre de celle de la machine

et démontré l’utilisation de SOniCS dans une simulation haptique en temps réel, où un

instrument chirurgical contrôlé par l’utilisateur interagit avec un foie hyperélastique. En-

fin, des exemples complets de l’utilisation de notre plugin pour des simulations reposant
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Figure 9.2: Description du pipeline SOniCS (à droite) et des différences avec SOFA (à
gauche)

sur les modèles de Saint Venant-Kirchhoff, Neo-Hookean, Mooney-Rivlin et Holzapfel-

Ogden sont fournis en tant que matériel complémentaire. Pour valider SOniCS, nous

avons mené des benchmarks en comparant ses résultats avec ceux de SOFA sur un cas

de test classique : la déflexion d’une poutre en porte-à-faux. Ce cas permet de raffiner

facilement le maillage en raison de la simplicité de la géométrie et de modifier les condi-

tions aux limites pour simuler des expériences réelles. Dans ce cadre, la poutre était fixée

du côté droit (condition de Dirichlet naturelle sur ΓD ), tandis que des conditions aux lim-

ites de type Neumann étaient appliquées du côté gauche (ΓN ). Nous avons modélisé la

déformation de la poutre avec deux modèles hyperélastiques : Saint Venant-Kirchhoff et

Neo-Hookéen, en fixant les paramètres mécaniques et les conditions aux limites de Neu-

mann égales à −10 Pa dans la direction y , jusqu’à ce que des déformations suffisantes

soient atteintes, avec les paramètres suivants : E = 3kPa et ν= 0.3.

L’objectif de cette étude était de comparer les solutions obtenues par éléments finis
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avec SOniCS et SOFA, sous les mêmes contraintes, en termes de performances de calcul

et de temps d’exécution. Pour ce faire, nous avons calculé l’erreur relative L2 pour les

champs de déplacement et de déformation (L2
u(uSOniCS,uSOFA) et L2

E (uSOniCS,uSOFA)) en-

tre la solution SOniCS et la solution de référence obtenue avec SOFA. Les résultats sont

présentés dans les tableaux 9.1 et 9.2 pour les matériaux Saint Venant-Kirchhoff et Neo-

Hookéen, respectivement.

Modèle Saint Venant-Kirchhoff

Element Nombres de
DOFs

SOniCS
temps
moyen
d’itération
NR (s)

SOFA
temps
moyen
d’itération
NR (s)

L2
u(uSOniCS,uSOFA) L2

E (uSOniCS,uSOFA)

P1 10935 0.387 0.438 4.10e-14 2.32e-16

P2 12705 0.810 0.808 3.49e-14 8.18e-15

Q1 10935 0.449 0.464 6.19e-13 3.76e-16

Q2 11772 0.839 0.942 3.81e-13 23.68e-14

Table 9.1: Erreur relative pour le déplacement (L2
u(uSOniCS,uSOFA)) et la déformation

(L2
E (uSOniCS,uSOFA)), ainsi que le temps moyen d’itération NR (Newton-Raphson) entre

SOniCS et SOFA pour différentes géométries d’éléments et schémas d’interpolation, en
utilisant le modèle de matériau Saint Venant-Kirchhoff. Les éléments P1 et P2 correspon-
dent à des tétraèdres linéaires ou quadratiques, tandis que les éléments Q1 et Q2 désig-
nent des cubes linéaires et quadratiques.

Nous avons réalisé plusieurs expériences numériques afin de développer une com-

préhension intuitive des nouveaux modèles matériels dans SOFA en utilisant le plugin

SOniCS. Tout d’abord, nous avons validé les modèles hyperélastiques les plus courants

: Saint Venant-Kirchhoff et Neo-Hookean à l’aide d’une solution théorique. Ensuite, en

utilisant FEBio comme référence, nous avons vérifié notre implémentation d’un modèle

de matériau Mooney-Rivlin en utilisant des éléments P1, P2, Q1 et Q2. L’application fi-

nale a utilisé un dispositif haptique pour interagir en temps réel avec un modèle de foie

anisotrope de Holzapfel Ogden. L’étude a utilisé notre plugin SOniCS pour générer du

code C optimisé pour des modèles matériels complexes compatibles avec SOFA. D’une

part, nous avons bénéficié des capacités de différentiation automatique et de génération

de code de FEniCS pour contourner les difficultés liées à la dérivation et à l’implémentation

du jacobien consistant dans SOFA. D’autre part, nous avons mis en œuvre des champs de

force SOFA compatibles et conviviaux pour utiliser les noyaux C de FEniCS. Un utilisateur

de SOFA peut désormais définir facilement un nouveau modèle matériel en spécifiant
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Modèle Neo-Hookean

Element Nombres de
DOFs

SOniCS
temps
moyen
d’itération
NR (s)

SOFA
temps
moyen
d’itération
NR (s)

L2
u(uSOniCS,uSOFA) L2

E (uSOniCS,uSOFA)

P1 10935 0.391 0.428 2.17e-14 7.78e-14

P2 12705 0.826 0.852 1.40e-14 2.18e-20

Q1 10935 0.471 0.478 4.92e-13 5.77e-16

Q2 11772 0.826 0.864 1.64e-13 2.17e-14

Table 9.2: Erreur relative pour le déplacement (L2
u(uSOniCS,uSOFA)) et la déformation

(L2
E (uSOniCS,uSOFA)), ainsi que le temps moyen d’itération NR (Newton-Raphson) entre

SOniCS et SOFA pour différentes géométries d’éléments et schémas d’interpolation, en
utilisant le modèle de matériau Neo-Hookéen. Les éléments P1 et P2 correspondent à
des tétraèdres linéaires ou quadratiques, tandis que les éléments Q1 et Q2 désignent des
cubes linéaires et quadratiques.

uniquement sa fonction d’énergie de déformation, la géométrie de l’élément ou la famille,

ainsi que le schéma et le degré de quadrature en Python. Le code open-source, ainsi que

toutes les données et cas de test, sont disponibles en tant que matériel complémentaire.

Dans le cadre de cette thèse, SOniCS a permis de créer des modèles biomécaniques précis

du foie, essentiels pour la simulation réaliste des déformations organiques. Ces modèles

sont basés sur des matériaux hyperélastiques complexes, adaptés à la mécanique du foie,

et ont été utilisés pour effectuer un recalage des données intraopératoires obtenues par

IVUS.

9.3 La reconstruction de volume IVUS

En général, les volumes d’échographie sont reconstruits en suivant une séquence d’images,

en les positionnant dans l’espace en fonction de leurs données de suivi correspondantes,

puis en interpolant entre elles. Des systèmes de suivi électromagnétique sont souvent

utilisés pour cette tâche. Cependant, leur utilisation en chirurgie laparoscopique est lim-

itée en raison de contraintes de taille. De plus, ces systèmes peuvent introduire de la

complexité et augmenter le coût de l’installation chirurgicale, tandis que leur précision

peut être compromise par la présence d’instruments métalliques dans l’environnement

chirurgical. Dans cette section, nous abordons le défi de la reconstruction des volumes

IVUS sans recourir à des systèmes de suivi. Cette reconstruction de volume est essen-
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Figure 9.3: Vue d’ensemble de la méthode proposée

tielle dans le cadre de cette thèse, car elle constitue les données 3D intraopératoires. Une

fois segmenté, le volume IVUS fournit des caractéristiques intraopératoires clés, cruciales

pour la méthode de recalage basée sur les caractéristiques utilisée dans cette thèse.

Nous proposons une méthode de reconstruction de volumes échographiques sans

suivi, spécifiquement adaptée à la chirurgie mini-invasive. Cette approche repose sur

une architecture de type Siamese, incluant un réseau neuronal récurrent qui exploite les

caractéristiques des images échographiques et le flux optique pour estimer la position

relative des différentes images. Notre méthode ne nécessite aucun capteur additionnel,

ce qui la rend particulièrement adaptée aux environnements chirurgicaux où l’espace et

les ressources sont limités. La figure 9.3 présente un aperçu général de notre méthode,

illustrant les principales étapes de la reconstruction du volume échographique sans suivi.

La séquence d’entrée est divisée en deux sous-séquences égales, partageant une image

commune. Ces deux séquences sont utilisées pour calculer un flux optique sparse. Des

cartes thermiques gaussiennes suivant M points sont ensuite combinées avec la première

et la dernière image de chaque sous-séquence pour former l’entrée du réseau. Nous

utilisons une architecture Siamese basée sur un réseau Sequence to Vector (Seq2Vec).

L’apprentissage se fait en minimisant l’erreur quadratique moyenne entre la sortie et les

transformations de vérité terrain.

La méthode a été évaluée sur des données ex vivo provenant de porcs, obtenant des er-

reurs de translation et d’orientation respectivement de 0.449±0.189 mm et 1.3±1.5 degrés

pour l’estimation de la position relative. En dépit des mouvements de rotation prédomi-

nants dans notre contexte, notre méthode parvient à une bonne reconstruction, avec un

taux de dérive final et moyen de 23.11% et 28.71% respectivement. La figure 9.4 montre la

reconstruction du volume de deux séquences de tailles différentes avec notre méthode en

rouge, comparée la reconstruction vérité terrain. Malgré le mouvement de rotation de la
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sonde, les résultats d’estimation de la position relative obtenus par notre méthode restent

très précis. Toutefois, on peut noter que l’erreur de dérive augmente avec la longueur de

la séquence. Cela demeure un défi pour la communauté, même dans le cas de mouve-

ments de translation de la sonde. Ce travail constitue, à notre connaissance, la première

tentative de reconstruction de volumes dans le contexte de l’échographie intravasculaire,

un système complexe où les techniques de suivi traditionnelles, souvent basées sur des

systèmes électromagnétiques, ne sont pas toujours applicables.

(a) Séquence de 50 images (b) Séquence de 300 images

Figure 9.4: La reconstruction de deux séquences de longueurs respectives de 50 et 300
avec notre méthode en rouge, comparée aux séquences de vérité terrain.

9.4 Une réalité augmentée guidée par les vaisseaux

Après avoir mis en place un modèle biomécanique du foie à partir des données préopéra-

toires et reconstruit un volume à partir des données IVUS intraopératoires, nous nous

concentrons désormais sur le recalage entre ces données préopératoires et intraopéra-

toires. Cette étape est cruciale pour garantir une précision optimale lors de l’intégration

des informations dans un système de RA pour la chirurgie. De nombreuses études ont dé-

montré les avantages de l’intégration de la RA dans les salles d’opération pour assister les

chirurgies du foie. Cette RA repose sur un recalage efficace entre les données préopéra-

toires et intraopératoires. Cette thèse considère l’IVUS comme modalité intraopératoire

pour plusieurs raisons, détaillées plus haut. Une vue d’ensemble de notre méthode est

illustrée sur la figure 9.5. Nous proposons une méthode de recalage non rigide spéci-

fique au patient, utilisant des modèles biomécaniques en raison de leur capacité à ex-

trapoler à partir de données rares et bruitées, comme mentionné précédemment. À par-

tir d’un scanner CT préopératoire, nous segmentons le foie et ses structures internes pour

créer un jumeau numérique spécifique au patient à l’aide de modèles biomécaniques. Ce

jumeau numérique est utilisé pour simuler les données IVUS en introduisant des défor-

mations, en supprimant des branches et en ajoutant du bruit à l’arbre vasculaire. Grâce
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Figure 9.5: Un jumeau numérique du foie est utilisé pour entraîner un réseau neuronal
sur la tâche de recalage non rigide. Le recalage rigide en faisant un appariement entre les
branches correspondantes des arbres vasculaires provenant des deux modalités.

à ce processus, nous générons un ensemble de données d’entraînement et de validation.

Pour le recalage non rigide, nous utilisons une architecture U-Net pour apprendre la cor-

respondance entre les lignes centrales de l’arbre vasculaire intraopératoire et le champ

de déplacement correspondant, permettant ainsi un recalage non rigide entre le mod-

èle préopératoire et l’arbre vasculaire intraopératoire. De plus, nous exploitons la struc-

ture en graphes de l’arbre vasculaire pour appairer les veines porte principales dans leurs

configurations préopératoire et intraopératoire, permettant ainsi un recalage rigide. Il

est important de noter que nous validons notre méthode en utilisant des données IVUS

simulées en raison de l’absence de jeux de données IVUS réels.

Pour évaluer notre méthode, nous avons segmenté le parenchyme hépatique, la veine

porte et la tumeur à partir de données réelles de patients issues de l’étude de Soler et al.

(2010). Nous avons construit un modèle biomécanique en prenant un module de Young

de 4000 Pa et un coefficient de Poisson de 0,4. Ensuite, nous avons généré des jeux de

données d’entraînement et de validation. Les forces appliquées ont été échantillonnées

à partir d’une distribution uniforme sur l’intervalle [0, 30] N, afin de couvrir des défor-

mations organiques à la fois petites et grandes. Le jeu de données généré contient 3600

déformations différentes, dont 3200 pour l’entraînement et 400 pour la validation. Nous

avons considéré deux scénarios liés à l’acquisition IVUS. Dans le premier, l’arbre vascu-

laire complet est observé lors de l’acquisition, ce qui correspond à un balayage de 360° du

cathéter IVUS. Le deuxième scénario correspond à un cas où seule une partie de l’arbre

vasculaire est observée. Dans les deux cas, nous supposons que la veine porte principale

est visible, car elle sert de référence pour le recalage rigide initial. Les sous-sections suiv-

antes décrivent la validation de notre méthode pour ces deux scénarios, en utilisant le

modèle biomécanique comme base et en évaluant la prédiction des réseaux à l’aide de
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Figure 9.6: Caption

l’erreur de localisation de la tumeur (TRE). Les résultats du réseau pour le jeu de valida-

tion sont présentés dans le tableau. Dans le cas ou tout les vaisseaux sont visibles sur

les données IVUS. Nous obtenons une erreur TRE moyenne de 0,6 mm avec une erreur

maximale de 2,97 mm sur les 400 échantillons de validation. Nous rapportons également

les erreurs relatives, qui correspondent à un pourcentage de la magnitude de la défor-

mation pour chaque échantillon. Les prédictions sont calculées en 34 ms. La figure 9.6

montre les résultats d’un échantillon de validation, où l’on peut observer l’alignement

entre la prédiction et la vérité terrain. En gris, l’état initial de l’organe (état préopératoire)

; en vert, la déformation de la vérité terrain (issue du modèle biomécanique) ; et en or-

ange, la prédiction du réseau. De plus, nous avons comparé nos résultats à l’approche

U-Mesh proposée par Brunet et al. (2019). Leur modalité intraopératoire est la vidéo la-

paroscopique, où un nuage de points 3D de la surface de l’organe est reconstruit à partir

des images vidéo. Nous avons utilisé leur implémentation pour synthétiser les nuages de

points et entraîner et valider le réseau. Voir le tableau 9.3.

En utilisant le même processus que pour le scénario précédent, nous avons généré

un jeu de données correspondant à un scénario dans lequel seul un arbre vasculaire par-

tiel est visible lors de l’acquisition IVUS. Dans ce scénario, nous avons considéré deux

cas où respectivement 50% et 30% de l’arbre vasculaire sont observés. Dans les deux cas,

les branches vasculaires sont choisies dans les zones où se trouvent les tumeurs. En ef-

fet, les chirurgiens savent dans quel segment anatomique du foie les tumeurs sont local-

isées et acquièrent généralement des données dans ces zones. Un jeu de données a été

généré pour chacun de ces scénarios et le réseau a été entraîné sur les 3200 échantillons

d’entraînement. Les résultats du réseau sur le jeu de validation de 400 échantillons sont

rapportés dans le tableau 9.3. Les résultats montrent que le réseau reste performant en

termes d’erreur TRE au niveau des localisations des tumeurs. Nous obtenons une TRE

moyenne de 0,59 mm et 0,63 mm pour les cas respectifs de 50% et 30% d’arbre vasculaire

intraopératoire, avec une TRE maximale de 1,28 mm et 2,36 mm sur les 400 échantillons

de validation. Le temps de calcul est de 34 ms.
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emean(mm) emax(mm) er el at i ve
mean (%) er el at i ve

max (%)

U-Mesh [Brunet et al. (2019)] 0.83±0.42 3.01 0.22±0.11 0.78

Ours (30%) 0.59±0.37 2.36 0.16±0.10 0.63

Ours (50%) 0.63±0.24 1.28 0.17±0.06 0.33

Ours (full) 0.60±0.37 2.97 0.16±0.09 0.81

Table 9.3: Les résultats de notre méthode en termes d’erreurs TRE pour les scénarios :
arbre vasculaire complet, partiel (50%) et partiel (30%). Les erreurs sont calculées en
comparant la prédiction du réseau avec la déformation du modèle biomécanique pour
la même déformation intraopératoire.

9.5 Conclusion

Cette thèse vise à développer un nouveau système de réalité augmentée (RA) guidé par

une sonde d’échographie intravasculaire (IVUS) pour les interventions hépatiques mini-

invasives. En effet, malgré les avantages reconnus de l’échographie IVUS pour fournir des

images peroperatoires, à notre connaissance, aucune méthode n’a été proposée jusqu’à

présent pour intégrer les données IVUS dans les systèmes de guidage chirurgical pour

la chirurgie du foie. Le système développé dans cette thèse vise à améliorer la préci-

sion chirurgicale en intégrant les données IVUS en temps réel avec les images préopéra-

toires, offrant ainsi aux chirurgiens une vue augmentée des structures internes du foie.

Cela peut être réalisé en reconstituant et en recalant les données IVUS avec des scans

CT préopératoires, fournissant ainsi une visualisation anatomiquement précise et à jour

pendant l’opération, qui s’adapte à la déformation de l’organe. Dans la première partie de

ce travail, nous avons présenté une revue des méthodes existantes de recalage, en nous

concentrant sur les techniques basées sur l’intensité et les caractéristiques. Bien que le

recalage basé sur l’intensité soit souvent utilisé en imagerie médicale, il pose des défis

dans les scénarios de multimodalité, tels que le recalage des données IVUS avec le CT.

Par conséquent, nous avons utilisé dans cette thèse des méthodes de recalage basées sur

les caractéristiques. Associées à des modèles biomécaniques, ces approches permettent

de résoudre le problème de recalage en évitant les difficultés liées à la multimodalité et

en exploitant la capacité des modèles biomécaniques à extrapoler à partir de données

peropératoires bruitées, telles que celles provenant de l’IVUS.

L’une des principales contributions techniques de cette thèse est le développement

de SOniCS, une méthode qui simplifie la mise en œuvre de modèles de matériaux hy-

perélastiques pour simuler les tissus mous. En intégrant FEniCS, un outil pour résoudre

les équations aux dérivées partielles, avec SOFA, un logiciel pour la simulation en temps
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réel d’objets déformables, SOniCS permet une modélisation efficace et précise du com-

portement complexe des tissus. Celui-ci a permis le developpement d’un modèle biomé-

canique du foie avec les données préopératoires. Ce modèle biomécanique constitue la

base nécessaire pour recaler les données IVUS peropératoires, assurant un alignement

précis et une adaptabilité aux conditions peropératoires.

Nous avons également relevé le défi de la reconstruction du volume IVUS sans avoir

recours à des systèmes de capteursexternes. Les systèmes de capteurs traditionnels sont

limités dans les chirurgies mini-invasives en raison de contraintes de taille. En outre, ils

peuvent être coûteux et sujets aux interférences des instruments chirurgicaux. Pour sur-

monter ces limitations, nous avons développé une nouvelle méthode basée sur l’intelligence

artificielle pour reconstruire des volumes 3D IVUS, éliminant ainsi la nécessité de sys-

tèmes de suivi basés sur des capteurs externes. Cette approche simplifie la configuration

chirurgicale, réduit les coûts du système peropératoire, en le rendant plus pratique pour

une utilisation en conditions réelles. Enfin, la contribution majeure de cette thèse est

le développement d’une méthode pour le recalage en temps réel des volumes IVUS per-

opératoires avec les données CT préopératoires. Cette méthode s’appuie sur l’apprentissage

profond, plus précisément un réseau de neurones entraîné sur des données générées

par le modèle biomécanique du foie, afin d’aligner les données pré et intra opératoires.

Cela permet des ajustements dynamiques du modèle préopératoire pendant la chirurgie.

Nous avons également étendu ce cadre de recalage pour l’adapter aux variations spéci-

fiques à chaque patient. En reconnaissant que les modèles biomécaniques reposent sou-

vent sur des hypothèses concernant les propriétés matérielles et les conditions aux lim-

ites qui peuvent varier entre les patients, nous avons amélioré celui-ci en ayant une valeur

précise des characteristiques du patient. Ce processus intègre une boucle d’optimisation

qui identifie les propriétés matérielles et les conditions aux limites correspondant le mieux

aux observations intraopératoires. Cela permet au modèle biomécanique de s’adapter dy-

namiquement aux caractéristiques mécaniques uniques de chaque patient.
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APPENDIX A. INTRAOPERATIVE CT AUGMENTATION FOR NEEDLE-BASED
LIVER INTERVENTIONS

This appendix presents work conducted at the very beginning of my PhD, at a time

when I had no Ultrasound data related to the main subject of this thesis. It focuses on im-

proving CT guidance during needle-based liver procedures, such as tumor ablation, while

minimizing the need for contrast agent injections. The approach involves augmenting

intraoperative CT scans by integrating the preoperative vascular network, which is de-

formed to align with the current scan. The augmented CT is generated by fusing this

vascular network with the non-contrasted intraoperative CT. Although this work is not di-

rectly related to the core topic of my PhD, it contributes in advancing RFA intervention

accuracy. It led to the following publication:

• S. El hadramy, J. Verde, N. Padoy, S. Cotin. In: Greenspan, H., et al. "Intraoperative

CT augmentation for needle-based liver interventions". Medical Image Computing

and Computer Assisted Intervention – MICCAI 2023. Lecture Notes in Computer Sci-

ence, vol 14228 [El hadramy et al. (2023b)].

A.1 Introduction

Needle-based liver tumor ablation techniques (e.g., radiofrequency, microwave, laser, cryoab-

lation) have a great potential for local curative tumor control [Izumi et al. (2001)], with

comparable results to surgery in the early stages for both primary and secondary can-

cers. Furthermore, as it is minimally invasive, it has a low rate of major complications

and procedure-specific mortality and is tissue-sparing. Thus, its indications are growing

exponentially and extending the limits to more advanced tumors [Schullian et al. (2020)].

CT guidance is a widely used imaging modality for placing needles, monitoring the treat-

ment, and following up with patients. However, it is limited by exposure to ionizing radia-

tion and the need for intravenous injection of contrast agents to visualize the intrahepatic

vessels and the target tumor(s).

In standard clinical settings, the insertion of each needle requires multiple check-

points during its progression, fine-tuning maneuvers, and eventual repositioning. This

leads to multiple CT acquisitions to control the progression of the needle with respect to

the vessels, the target, and other sensible structures [Arnolli et al. (2018)]. However, in-

trahepatic vessels (and some tumors) are only visible after contrast enhancement, which

has a short lifespan and dose-related deleterious kidney effects. It makes it impossible to

perform each control CT acquisition under contrast injection. A workaround to shortcut

these limitations is to perform an image fusion between previous contrasted and intra-

operative non-contrasted images. However, such a solution is only available in a limited

number of clinical settings, and the registration is only rigid, usually deriving in bad re-
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sults. In this work, we propose a method for visualizing intrahepatic structures after organ

motion and needle-induced deformations in non-injected images by exploiting image

features that are generally not perceivable by the human eye in common clinical work-

flows.

Two main strategies could be considered to address this challenge: image fusion and

image processing techniques. Image fusion typically relies on the estimation of rigid or

non-rigid transformations between 2 images to bring into the intraoperative image struc-

tures of interest only visible in the preoperative data. This process is often described as

an optimization problem [Avants et al. (2011); Klein et al. (2010)], which can be compu-

tationally expensive when dealing with non-linear deformations, making their use in a

clinical workflow limited. Recent deep learning approaches [Cao et al. (2018); Sokooti

et al. (2017); Yang et al. (2017)] have proved to be a successful alternative to solve im-

age fusion problems, even when a large non-linear mapping is required. When ground-

truth displacement fields are not known, state-of-the-art methods use unsupervised tech-

niques, usually an encoder-decoder architecture [Balakrishnan et al. (2019)], to learn the

unknown displacement field between the 2 images. However, such unsupervised meth-

ods fail at solving our problem due to the lack of similar image features between the con-

trasted (CCT) and non-contrasted (NCCT) image in the vascular tree region (see section

A.4).

On the other hand, deep learning techniques have proven to be very efficient at solv-

ing image processing challenges [Suganyadevi et al. (2022)]. For instance, image seg-

mentation [Ramesh et al. (2018)], image style transfer [Gatys et al. (2015)], or contrast-

enhancement to cite a few. Yet, segmenting vessels from non-contrasted images remains

a challenge for the medical imaging community[Ramesh et al. (2018)]. Style transfer aims

to transfer the style of one image to another while preserving its content [Gatys et al.

(2015)]. However, applying such methods to generate a contrasted intraoperative CT is

not a sufficiently accurate solution for the problem that we address. Contrast-enhancement

methods could be an alternative. In the method proposed by Seo et al. [Seo et al. (2021)],

a deep neural network synthesizes contrast-enhanced CT from non-contrast-enhanced

CT. Nevertheless, results obtained by this method are not sufficiently robust and accurate

to provide an augmented intraoperative CT on which needle-based procedures can be

guided.

In this work, we propose an alternative approach, where a neural network learns local

image features in a NCCT image by leveraging the known preoperative vessel tree geome-

try and topology extracted from a matching (undeformed) CCT. Then, the augmented CT

is generated by fusing the deformed vascular tree with the non-contrasted intraoperative

CT. Section A.2 presents the method and its integration in the medical workflow. Section
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A.3 presents and discusses the results, and finally we conclude in section A.5 and highlight

some perspectives.

A.2 Method

In this section, we present our method and its compatibility with current clinical work-

flows. A few days or a week before the intervention, a preoperative diagnostic multi-

phase contrast-enhanced image (MPCECT) is acquired (Fig. A.1, yellow box). The day

of the intervention, a second MPCECT image is acquired before starting the needle in-

sertion, followed by a series of standard, non-injected acquisitions to guide the needle

insertion (Fig. A.1, blue box). Using such a non-contrasted intraoperative image as input,

our method performs a combined non-rigid registration and augmentation of the in-

traoperative CT by adding anatomical features (mainly intrahepatic vessels and tumors)

from the preoperative image to the current image. To achieve this result, our method

only requires to process and train on the baseline MPCECT image (Fig. A.1, red box). An

overview of the method is shown in the Fig A.2 and the following sections describe its

main steps.

Figure A.1: Integration of our method in the clinical workflow. The neural network trained
on preoperative MPCECT avoids contrast agent injections during the intervention.

Figure A.2: The neural network takes as input the preoperative vessel map (VM) and the
intraoperative NCCT, and outputs the intraoperative vessel map (VM) from which we ex-
tract the deformed vascular tree. Finally, the augmented CT is created by fusing the seg-
mented image and labels with the intraoperative NCCT.
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A.2.1 Vessel map extraction

We call Vessel Map (VM) the region of interest defining the vascular tree in the NCCT.

Since vascular structures are not visible in non-contrasted images, the extraction of this

map is done by segmenting the CCT and then using this segmentation as a mask in the

NCCT. Mathematical morphology operators, in particular a dilation operation [Haralick

et al. (1987)], are performed on the segmented region of interest to slightly increase its di-

mensions. This is needed to compensate for segmentation errors and the slight anatomi-

cal motion that may exist between the contrasted and non-contrasted image acquisitions.

In practice, the acquisition protocols limit the shift between the NCCT and CCT acquisi-

tions, and only a few sequential dilation operations are needed to ensure we capture the

true vessel fingerprint in the NCCT image. Note that the resulting vessel map is not a

binary mask but a subset of the image limited to the volume covered by the vessels.

A.2.2 Data augmentation

The preoperative MPCECT provides a couple of registered NCCT and CCT images. This

is obviously not sufficient for training purposes, as they do not represent the possible

soft tissue deformation that may occur during the procedure. Therefore, we augment

the data set by applying multiple random deformations to the original images. Random

deformations are created by considering a predefined set of control points for which we

define a displacement field with a random normal distribution. The displacement field of

the full volume is then obtained by linearly interpolating the control points’ displacement

field to the rest of the volume. All the deformations are created using the same number of

control points and characteristics of the normal distributions.

A.2.3 Neural Network Architecture

Predicting the vascular tree location in the deformed intraoperative NCCT is done using a

U-net [Ronneberger et al. (2015)] architecture. The neural network takes as input the pre-

operative vessel map and the intraoperative NCCT, and outputs the intraoperative vessel

map. Our network learns to find the image features (or vessel fingerprint) present in the

vessel map, in a given NCCT assuming the knowledge of its geometry, topology, and the

distribution of contrast from the preoperative MPCECT. The architecture of our network

is illustrated in figure A.3. It consists of a four-layer analysis (left side) and synthesis (right

side) paths that provide a non-linear mapping between low-resolution input and output

images. Both paths include four 3x3x3 unpadded convolutions, each followed by a Leaky

Rectified Linear Unit (LeakyReLU) activation function. The analysis includes a 2x2x2 max
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pooling with a stride of 1, while the synthesis follows each convolution by a 2x2x2 up-

convolution with a stride of 1. Shortcut connections from layers of equal resolution in

the analysis path provide the essential high-resolution features of the synthesis path. In

the last layer, a 1x1x1 convolution reduces the number of output channels to one, yield-

ing the vessel map in the intraoperative image. Our network is trained by minimizing the

mean square error between the predicted and ground truth vessel map. Training details

are presented in section 3.

Figure A.3: Our neural network uses a four-path encoder-decoder architecture and takes
as input a two-channel image corresponding to the intraoperative NCCT image concate-
nated with the preoperative vessel map. The output is the intraoperative vessel map.

A.2.4 CT augmentation

Once the network has been trained on the patient-specific preoperative data, the next

step is to augment and visualize the intraoperative NCCT. This is done in 3 steps:

• The dilatation operations introduced in section A.2.1 are not reversible (i.e. the seg-

mented vessel tree cannot be recovered from the VM by applying the same number

of erosion operations). Also, neighboring branches in the vessel tree could end up

being fused, thus changing the topology of the vessel map. Therefore, to retrieve the

correct segmented (yet deformed) vascular tree, we compute a displacement field

between the preoperative and intraoperative VMs. This is done with the Elastix li-

brary [Klein et al. (2010)]. The resulting displacement field is applied on the preop-

erative segmentation to retrieve the intraoperative vessel tree segmentation. This is

illustrated in figure A.4.

• The augmented image is obtained by fusing the predicted intraoperative segmenta-

tion with the intraoperative NCCT image. The augmented vessels are displayed in

green to ensure the clinician is aware this is not a true CCT image (see Fig. A.5).
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• It is also possible to add anatomical labels to the intraoperative augmented CT to

further assist the clinician. To achieve this objective, we compute a graph data

structure from the preoperative segmentation. We first extract the vessel center-

lines as described in [Antiga et al. (2003)]. To define the associated graph struc-

ture, we start by selecting all branches with either no parent or no children. The

branch with the highest radius is then selected as the root edge. An oriented graph

is created using a Breadth First Search algorithm starting from the root edge. Nodes

and edges correspond respectively to vessel tree bifurcations and branches. We use

the graph structure to associate each anatomical label (manually defined) with a

Strahler [Devroye et Kruszewski (1996)] graph ordering. The same process is ap-

plied to the predicted intraoperative segmentation. This makes it possible to cor-

rectly map the preoperative anatomical labels (e.g. vessel name) and display them

on the augmented image.

Figure A.4: This figure illustrates the different stages of the pipeline adopted to generate
the VM and show how the vessel tree topology is retrieved from the predicted intraoper-
ative VM by computing a displacement field between the preoperative VM and the pre-
dicted VM. This field is applied to the preoperative segmentation to get the intraoperative
one.
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A.3 Results and Discussion

A.3.1 Dataset and implementation details

To validate our approach, four couples of MPCECT abdominal porcine images were ac-

quired from 4 different subjects. For a given subject, each couple corresponds to a pre-

operative and an intraoperative MPCECT. We recall that an MPCECT contains a set of

registered NCCT and CCT images. These images are then cropped and down-sampled

to 256x256x256, and the voxels intensities are scaled between 0 and 255. Finally, we

extracted the VM from each MPCECT sample and applied 3 dilation operations, which

demonstrated the best performance in terms of prediction accuracy and robustness of

our data. We note that public data sets such as DeepLesion [Yan et al. (2018)], 3Dircadb-

01 [Soler et al. (2010)] and others do not fit our problem since they do not include the

NCCT images. Aiming at a patient-specific prediction, we only train on a "subject" at a

time. For a given subject, we generate 100 displacement fields using the data augmen-

tation strategy explained above with 50 voxels for the control points spacing in the three

spatial directions and a standard deviation of 5 voxels for the normal distributions. The

resulting deformation is applied to the preoperative MPCECT and its corresponding VM.

Thus, we end up with a set of 100 triplets (NCCT, CCT and VM). Two out of the 100 triplets

are used for each training batch, where one is considered as the pre-operative MPCECT

and the other as the intraoperative one. This makes it possible to generate up to 4950

training and validation samples. The intraoperative MPCECT of the same subject is used

to test the network. Our method is implemented in Tensorflow 2.4, on a GeForce RTX

3090. We use an Adam optimizer (β1 = 0.001, β2 = 0.999) with a learning rate of 10−4. The

training process converges in about 1,000 epochs with a batch size of 1 and 200 steps per

epoch.

A.3.2 Results

To assess our method, we use a dice score to measure the overlap between our predicted

segmentation and the ground truth. Being a commonly used metric for segmentation

problems, Dice aligns the nature of our problem as well as the clinical impact of our so-

lution. We ha performed tests on 4 different (porcine) data sets. Results are reported in

table A.1. The method achieved a mean dice score of 0.81. An example of a subject in-

traoperative augmented CT is illustrated in figure A.5, where the three images correspond

respectively to the initial non injected CT, the augmented CT without and with labels. Fig-

ure A.6 illustrates the results of our method for Subject 1. The green vessels correspond to
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Dice score Subject 1 Subject 2 Subject 3 Subject 4 Mean Std

Ours 0.8 0.77 0.79 0.90 0.81 0.04

Expert clinician 0.52 0.45 0.53 0.52 0.51 0.03

Table A.1: This table presents our results over 4 subjects in terms of dice score. For each
subject the network was trained on the preoperative MPCECT and tested on the intraop-
erative MPCECT. We achieve a mean dice score of 0.81 vs. 0.51 for the clinical experts.

the ground truth intraoperative segmentation, the orange ones to the predicted intraop-

erative segmentation and finally the gray vessel tree corresponds to the preoperative CCT

vessel tree. Such results demonstrate the ability of our method to perform very well even

in the presence of large deformations.

Figure A.5: In this figure we show the original NCCT on the left. The middle image shows
the augmented CT with the predicted vessel tree (in green). The rightmost image shows
the augmented image with anatomical labels transferred from the preoperative image
segmentation and labelling.

Figure A.6: Assessment of our method for Subject 1. We show 3 different views of the
intraoperative vessel prediction (in orange), the ground truth (in green) and the preoper-
ative vessels (in grey).

Qualitative assessment: To further demonstrate the value of our method, we have asked

two clinicians to manually segment the NCCT images in the intraoperative MPCECT data.

Their results (mean and standard deviation) are reported in table A.1. Our method out-
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performs the results of both clinicians, with an average dice score of 0.81 against 0.51 as a

mean for the clinical experts.

A.4 Ablation study and additional results

Vessel map: We have removed the VM from the network input to demonstrate its impact

on our results. Using the data of the Subject 1, a U-net was trained to segment the vessel

tree of the intraoperative NCCT image. The network only managed to segment a small

portion of the main portal vein branch. Thus, achieving a dice score of 0.16 vs 0.79 when

adding the preoperative VM as additional input. We also studied the influence of the

diffusion kernel applied to the initial segmentation. We have seen, on our experimental

data, that 3 dilation operations were sufficient to compensate for the possible motion

between NCCT and CCT acquisitions.

Comparison with VoxelMorph: The problem that we address can be seen from differ-

ent angles. In particular, we could attempt to solve it by registering the preoperative

NCCT to the intraoperative one and then applying the resulting displacement field to

the known preoperative segmentation. However, state-of-the-art registration methods

such as VoxelMorph [Balakrishnan et al. (2019)] and others do not necessarily guarantee

a diffeomorphic [Cao et al. (2005)] displacement field that ensures the continuity of the

displacement field inside the parenchyma where the intensity is quite homogeneous on

the NCCT. To assess this assumption, a VoxelMorph1 network was trained on the Subject

1 of our porcine data sets. We trained the network with both MSE and smoothness losses

during 100 epochs and given a batch of size 4. Results are illustrated below in Figure A.7.

While the VoxelMorph network accurately registers the liver shape, the displacement field

is almost null in the region of vessels inside the parenchyma. Therefore, the preoperative

vessel segmentation is not correctly transferred into the intraoperative image.

Figure A.7: Illustration of Voxelmorph registration between NCCT preoperative and in-
traoperative images. The prediction is the output of VoxelMorph method. DF stands for
the displacement fields on x and y predicted by VoxelMorph method.

1https://github.com/voxelmorph/voxelmorph
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A.5 Conclusion

In this work, we proposed a method for augmenting intra-operative NCCT images as

a means to improve needle CT-guided techniques while reducing the need for contrast

agent injection during tumor ablation procedures or other needle-based procedures. Our

method uses a U-net architecture to learn local vessel tree image features in the NCCT by

leveraging the known vessel tree geometry and topology extracted from a matching CCT

image. The augmented CT is generated by fusing the predicted vessel tree with the NCCT.

Our method is validated on several porcine images, achieving an average dice score of

0.81 on the predicted vessel tree location. In addition, it demonstrates robustness even in

the presence of large deformations between the preoperative and intraoperative images.

Our future steps will essentially involve applying this method to patient data and perform

a small user study to evaluate the usefulness and limitations of our approach.
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