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General Introduction

0.1 Complex Economics

Whenever I introduce first-year undergraduates to classical consumer theory in microeconomics,

I stumble upon generalized perplexity in the classroom. Questions arise: Why are consumers

depicted as always wanting more goods? In the work-leisure model, why is there an assumption

that agents freely choose their optimal amount of work? And why is work evaluated solely

through its monetary benefits, ignoring jobs that o↵er intrinsic value beyond financial gain?

Of course there are reasons for these models — whether or not they’re satisfactory—rooted in

their objectives or simplifications for analytical tractability.

But interestingly, by the time students reach their final undergraduate year, presenting

them with models where firms opt out of production or models incorporating knowledge of a

competitor’s reaction function in a duopoly scarcely prompts questions. Does this indicate a

deeper understanding of economics, or a resignation to the abstraction from reality inherent in

these models?

A peculiar shift seems to occur during economics education. As highlighted by Etzioni

(2015), economics students develop a ”debased” moral compass. What factors contribute to

this transformation?

A growing segment of the field argues that the root issue lies in the foundational assumptions

of economics (Kirman (1989, 1992); Arthur (2009)). Since Herbert Simon’s critique in 1955 of

the rational, utility-maximizing agent model (Simon (1955)), a significant debate has arisen over

the realism of these assumptions. Simon pointed out the fallacy of assuming perfect rationality, a

critique that resonates through to macroeconomics where the notion of equilibrium can obscure

significant issues, as evidenced by the 2008 financial crisis shortly after Olivier Blanchard’s

optimistic assessment about the state macroeconomic theory (Blanchard (2009)).

This acknowledgment of the limitations inherent in traditional economic models has spurred

interest in alternative approaches. These approaches reconsider the behavior of economic agents,

acknowledging the bounded rationality that characterizes human decision-making, as Simon

21
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suggested, and further explored in the realm of behavioral economics (Gigerenzer and Selten

(2002)). Agents, influenced by cognitive biases and without the computational prowess as-

sumed in classical models, often opt for ”satisficing” strategies over optimizing ones (Kahneman

(2003)).

Additionally, economic behavior is not uniform but varies according to cultural, socioeco-

nomic, and other factors, underscoring the heterogeneity of agents. Moreover, agents learn

and adapt based on their experiences, with their preferences and behaviors evolving over time.

This dynamism contradicts the static nature of utility functions or demand curves in classical

models.

Interactions among agents further complicate the picture. An individual’s behavior is often

influenced by their social network, leading to changes in preferences and behaviors that classical

models, with assumptions about independant consumers, fail to capture. This social dimen-

sion can lead to behaviors like consumption shifts based on peer influence or di↵erentiation

e↵orts. An agent might pick a good not only for its intrinsic value, but sometimes because it

became desirable seen consumed by others, or sometimes because its consumption will permit

to di↵erentiate from others. Consumption is a social act that extends our identity.

The implication is that macroeconomic phenomena cannot be fully explained by aggregating

the behaviors of isolated agents; instead, the interactions and adaptations among agents play

a crucial role. Schelling’s segregation model vividly illustrates this point (Schelling (1969)).

The author envisions a population living on a grid, divided into two classes of agents. Each

agent observes the class of its neighbors and has a certain desire to be surrounded by agents of

the same class. If the number of similar neighbors is too low, the agent relocates randomly to

an empty space on the grid. The model and its result became famous because Schelling shows

that even with a population that has a weak desire to be surrounded by peers — only moving

if more than two thirds of his neighbors are of a di↵erent type — the global outcome ends-up

being a segregated grid, with large neighborhoods containing only one class of agents.

This does not imply that the ghettos or highly segregated neighborhoods witnessed through-

out history and today can be completely explained by this model and the individual drive of

local agents, as numerous variables are at play, including significant political actions. Nonethe-

less, it shows that even with agents being fairly open to diversity, segregation can arise.

The core idea of complex economics, illuminated by Schelling’s segregation model and Si-

mon’s adage that “the whole is di↵erent from the sum of its parts,” emphasizes that the behavior

of individual agents, when combined through interactions, leads to collective outcomes that may

not be intuitive based on individual actions alone. This principle reveals that the aggregate

dynamics of a system, such as the segregation levels within a city, cannot be accurately inferred

just from analyzing the preferences of its residents in isolation. The unexpected patterns of
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segregation arise from the nuanced interplay of individual choices, highlighting the need for

economic modeling to incorporate the complexities of human behavior and social interaction

more deeply. It underscores that understanding the macroscopic phenomena of economies or

societies requires a careful consideration of the micro-level interactions that drive these systems,

challenging us to rethink traditional approaches to economic theory.

0.2 Social Networks to Understand Social Heterogeneity

As stated earlier, to achieve the enriched understanding of economic agents advocated by pro-

ponents of the complex economics school of thought, we must acknowledge that while individual

behavior — such as heterogeneous decision-making relying on heuristics, for example — is one

piece of the puzzle, there is at least one equally important piece concerning social interactions.

In what follows, we define social interactions among economic agents as all the processes that

cause an agent to behave di↵erently due to its interactions with others. This broad definition

can account for many di↵erent situations and intentions, whether the influence is exerted by

individuals or groups, or received by them. It is important to acknowledge that the social

influence that results form interactions can either be conscious or unconscious.

At the core of the idea of social influence is the tendency of humans to imitate and integrate

what others do. This can be driven by the desire to fit into a group and belong, to di↵erentiate

by doing the opposite, to demonstrate contrasting values towards a group, or simply to achieve

success. It can seem rational to imitate successful agents in order to become successful.

Social influences are evident in the consumption of many types of goods. We refer to ”fash-

ion” as the ongoing process of trends, which can be observed in clothing, furniture, architecture,

cultural goods, and which essentially represents a process of social validation or the highlighting

of certain features and characteristics that are currently deemed desirable by the mass market.

Most of us, whether intentionally or not, participate in this type of consumption. We may

strive to be trendsetters, deliberate followers of the trend, or even unconsciously choose goods

that are in vogue.

Furthermore, we may seek to signal our belonging to a certain social class. We purchase

high-end goods to showcase our financial success, or at least to demonstrate our aspiration to

join that particular social group (Veblen (2017); Leibenstein (1950); Bourdieu (1979); Johnson

et al. (2018)).

While this type of social influence may seem uncoordinated, albeit partially driven by brands,

in other domains, social influence is much more explicit. In his famous book, ”The Protestant

Ethic and the Spirit of Capitalism,” Max Weber directly links Protestantism, a branch of Chris-

tianity that embodies a set of values, to the work behavior of its believers, thereby contributing



24 Contents

to the emergence of capitalist Western societies in Europe in the 19th century (Weber and

Kalberg (2013)).

Such institutions, which are partially defined by written guidance and rules, as well as

hierarchies, also cultivate close-knit communities among their members. These communities

can serve as either pressure for individuals who may not wish to comply with all the rules, or

as aspiration for those who strive to adhere more closely (Carvalho (2019)).

Furthermore, recent advances in science reveal that some behaviors are influenced by ac-

quaintances, although we may not fully understand the mechanisms through which this occurs.

Health behaviors such as obesity or smoking, for instance, have been shown to positively corre-

late with similar behaviors among peers (Christakis and Fowler (2007, 2008); Centola (2010)).

Therefore, to think that we can analyze the behavior of economic actors such as workers,

consumers, or entrepreneurs without considering the social milieu they inhabit and the social

interactions they engage in is to only see half of the picture.

Modeling or quantifying social interactions is easier said than done, which likely explains why

the field of economics was slow to deeply engage with it until recently. This change occurred as

network science began to gain greater recognition and visibility within the scientific community.

Networks formalize and allow for the visualization of the connections that bind various nodes

together. In the context of social interactions, nodes can represent individuals or groups, while

ties can represent various types of connections between two nodes, from family ties to formal

work relationships, for example.

Constructing a network is therefore the explicit enumeration of all the agents we wish to

incorporate, along with all the existing connections among them, based on the significance we

attribute to those links.

The existence and study of networks—also known as graphs in the mathematical field from

which they originated—can be traced back at least to the 18th century and Euler’s famous

resolution of the“Seven Bridges of Königsberg” problem (Euler (1953)).

But the emergence of its existence as a field in itself - ‘Network Science’ - is much more

contemporary, and is explained by at least two main factors according to Barabasi:

1. To establish the complex maps of the networks we want to study, a lot of data is needed. A

social network requires accurate information about your friends, your friends’ friends, and

so on. If we want to build the map of the internet, we need to know every web page and

every link on web pages that redirects to others. It’s precisely the internet revolution that

has facilitated the creation of these maps, with e↵ective and fast data-sharing methods

and cheap digital storage. Researchers are now able to collect, assemble, and analyze real

and complex networks.
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2. While networks were partially studied in di↵erent fields such as biology, chemistry, or

social sciences, it’s the universality of network properties that made the emergence of

the field possible. As Barabasi writes (Barabási (2016)): ”The architectures of networks

emerging in various domains of science, nature, and technology are similar to each other,

a consequence of being governed by the same organizing principles. Consequently, we can

use a common set of mathematical tools to explore these systems.”

On the eve of the 21st century, two important models began to explain some of the universal

characteristics of network structures. The first one, proposed by Barabasi and Albert, identifies

the ’scale-free’ nature of many di↵erent networks such as the Internet, power grids, or social

interactions. Here, the characteristic highlighted is the distribution of connections for the nodes

of the graph. Specifically, while the majority of nodes will have a low and similar number of

connections, a small group will have a significantly higher number of connections Barabási and

Albert (1999).

The second model proposes to demonstrate that most of our interaction schemes occur in

’Small-Worlds’, where even in systems with many nodes, reaching any of these nodes can be

accomplished through small ’leaps’ on the network, while the structure of the network remains

tightly knit, implying clustering among small groups of nodes (Watts and Strogatz (1998)).

This model explains phenomena such as Milgram’s famous experiment, where he asked

individuals to reach others (who were unknown and geographically far) (Milgram (1967)). The

results showed that any agent can reach any other in about six steps, coining the idea of the

’Small-World’ in which we live.

Beyond demonstrating the shared structural properties of a wide diversity of networks, from

technological to biological and social ones, these models also shed light on the measurement

tools that any scientist can use to analyze a network.

Scale-Free structures highlight the importance of the degree distribution at the global scale,

but also of degree centrality at the local level. A network is therefore useful for understanding

the dynamics of global phenomena, such as the speed of di↵usion, for example, but also for

understanding the role of specific actors in these structures. Does the most central agent in a

network have the same opportunities or knowledge as the least central, for example?

The same can be said about the Small-World model. It shows that we can measure graphs at

the global level using concepts such as path length, whether we want to measure its average or

shortest, and with the concept of embeddedness, which can measure the existence and strength

of communities in networks. But it also applies at the individual level: Small-Worlds emphasize

the idea of betweenness centrality and the importance of nodes that can act as bridges among

di↵erent and remote communities.
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While models emerging from mathematics and physics have allowed Network Science to

emerge as a distinct field, some of the intuitions of network science were already present and

the subject of works in other disciplines.

The notion of social capital — which could be described as the ability to mobilize resources

from social connections — has existed in sociology since the 19th century and has been pro-

gressively used and developed throughout the 20th century.

Many authors have utilized this concept, such as Bourdieu (2021), who analyzes its e↵ects

and interdependence with other forms of capital; Putnam (2015), who shows its importance for

altruism and democratic institutions; and Coleman (1998), who hypothesizes that social capital

acts as a vector of conformity within societies.

Although none of these authors use networks as a tool to study social capital directly, the

very idea of social networks is already present and useful in their analysis of society and its

individuals.

More recently, network objects have become central in the works of Granovetter (1973) in

the seventies and Burt (2018) in the nineties. Both authors highlight the importance of the

structure of the graph at both global and individual levels, whether it is to generate ’good ideas’

or to find jobs.

With the tools formalized in mathematics and physics, and the concept increasingly used

in social science, Networks naturally became a tool and an object of study in Economics in the

early 2000s with the development of models studying its impact on the job market matching

performance, how it can be used to study production networks or how it helps to study the

di↵usion of knowledge, technology or behaviour (Jackson (2010)).

The present thesis will also utilize networks, but to underscore their significance in the

learning process of individuals, within frameworks where interactions and the structure of those

interactions have important implications at both individual and global levels.

0.3 Learning in Social Networks

Networks became particularly important in the study of di↵usion. Whether we talk about

the di↵usion of knowledge, information, viruses, or electricity, using networks to describe the

process is convenient as it generates a map describing all the roads a given object can use to

reach the existing nodes, hence the points of interest of this map.

Having a map is a departure from the unknown. It allows us to understand, and sometimes

predict, the scope or speed of a di↵usion process because it explicitly shows the existing routes

or the non-reachable nodes of the system. It can also serve as a method to identify the important



Contents 27

nodes, the ones that are essential for di↵usion, and the ones that can be disconnected without

impeding the di↵usion process.

In turn, a di↵usion process takes place only if the network on which it happens is non-

empty (at least two nodes are connected), and being able to represent this network is crucial

to understanding the dynamics of di↵usion.

As mentioned above, we can study the di↵usion of ”real” objects such as people moving

from one subway station to another, viruses from one body to another, or Wi-Fi signals from

operators to houses and computers. Still, we can also study the di↵usion of beliefs, emotions,

information, and knowledge among the individuals of a society. As these factors are at the heart

of many of our decisions and behaviors, they are likely to explain (some aspects of) economic

processes.

The case of di↵usion among individuals can be categorized as social learning, wherein the

way agents send, accept, and internalize information or ideas responds to di↵erent rules de-

pending on the nature of what is exchanged, on the identity of the people or group that sends

it, but also on the nature of the individual recipient and on the culture of the society from

which the recipient originates.

We don’t react the same way to information about the evolution of a company’s stock value

as we do to the latest presidential poll. Similarly, we value information di↵erently depending on

who gave it to us. Was it an informed friend, or a partisan media source? Lastly, our personal

background shapes how we deal with the information received. Will it lead us to invest in the

company or to demonstrate against the rise of an extreme political party?

Social learning is therefore a complex mechanism, and its outcome, its e�ciency, can depend

on many cognitive and emotional variables such as trust, belief, or fear - to name just a few -

depending on the scenario being studied. However complex and di�cult to understand exactly

how it works, social learning can be described as a di↵usion process, on a network where nodes

are individuals, and ties represent possible routes for pieces of information, knowledge, but also

beliefs to be exchanged.

Foundational models that aim to represent social learning, or at least observational learning,

are mostly based on two mechanisms: using weighted averages or using Bayes’ rule (See Goyal

(2011) for an extensive review).

In the first scenario, originating from DeGroot (1974), agents placed on a network structure

can observe the behavior or beliefs of their direct neighbors (the ones with whom they share a

tie), and adapt their own behavior or beliefs accordingly. In this framework, an agent gives fixed

weights to its neighbors, expressing the value it gives to each neighbor. Then, its behavior over

time is the weighted average of what its neighbors are believing/choosing, which are themselves

following the same process with their own neighbors.
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This type of observational learning can be useful to represent opinion dynamics where agents’

beliefs evolve as they consider the opinions of others, whether it is through communication or

observation. Several questions can be asked by studying this kind of model. Do we observe

convergence of opinions? Under what conditions on the initial distribution of beliefs? What is

the role of the network structure?

Although it is a useful model, it also has several limitations. For example, it assumes that

at each round, an agent collects information about all of its neighbors’ opinions. This kind of

ubiquitous knowledge is contestable in itself.

The second major limitation arises from the updating mechanism. The scenario in which

agents compile opinions and adopt the weighted average from their circle of influence is ques-

tionable. This approach may not be suitable or applicable in various contexts.

For example, we study opinion dynamics partially to understand democratic elections. Sup-

pose that an agent has two opposed neighbors on the political spectrum. This agent gives equal

weights to those two friends, making itself a centrist voter. Now, when the election arrives and

no centrist candidate is on the line, to whom will the agent’s vote go? What it chooses will

reveal the actual weights it puts on its two friends because the outcome is binary; it won’t be

the weighted average of those two opinions. If the goal was to understand election outcomes,

the model was ill-suited because the weighted average does not fit the final decisions agents

would have to make during the election (although they can still have some predictive power).

Of course, while there are many cases where the model is limited, there are just as many

scenarios where this kind of modeling can be useful, since not all processes end with a binary

decision.

The second scenario, where agents use Bayes’ rule, like in Acemoglu et al. (2011), mostly

uses a model where agents are also placed on a network structure that limits their interactions to

their neighborhoods and allows them to observe the actions and payo↵s only of those neighbors.

This then allows them to update their prior beliefs on the outcomes of a given event. In these

kinds of models, agents are trying to find the ”truth” or the maximizing behavior, which can

be viewed as an action to undertake or not, but also an opinion to have or not.

In both streams of literature, and in most of the economic literature that takes an interest in

social learning, there is mostly a common vision that agents learn from others by observing - and

not through one-to-one communication, for example - the entirety of a set of neighbors at each

period. Moreover, those agents use complex methods to determine their actions, whether it is

computing a weighted average of their friends’ decisions or updating a probability distribution

based on the outcomes of those friends. Of course, we can choose to believe that those models

work not because we’re behaving this way - doing complex calculations - but because whatever

we do, this can be approximated by those calculations.
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Other papers have tried to use a perhaps more realistic approach by endowing agents in

their models with ”rules of thumb,” which are simple heuristics. This is the case in Ellison

and Fudenberg in the context of adopting di↵erent technologies (Ellison and Fudenberg (1995,

1993)). Their rules of thumb also involve a population observing the choices and payo↵s of all

neighbors, but now only a fraction of them revise their decisions at each round, and instead of

complex calculations, they use simple rules such as: Use what was the most rewarding in the

last round, or use what was the most popular in the last round.

In the same spirit, W.B. Arthur builds an interesting model, the ”El-Farol Bar” problem,

where agents want to avoid going to a bar if it’s too crowded. Each time they go, they can

observe if it’s indeed too crowded or not and adapt their behavior accordingly for the next time

they must decide to go or not (Arthur (1994)).

While not using network tools, each agent of this model is learning by observing the behavior

of its geographical neighbors - the ones who also go to this particular bar. Arthur proposes that

while agents are using rules of thumb to decide what to do, they are heterogeneous in which

rule of thumb to use, therefore creating an ”ecology” of rules.

Outside of economics, some authors have developed models of social learning. Notably in

sociology, Granovetter (1978) develops a model of collective action where agents must decide

whether they join or not a movement, depending on the decision of their neighbors that they

can observe. It highlights an interesting rule of thumb where agents, instead of doing as the

majority or doing the average of neighbors, decide to engage only if a precise proportion of their

neighborhood has already joined the collective action.

In his paper, Granovetter use the example of a riot. Say that every agent in a crowd must

decide whether to engage or not in a riot. Its a risky behavior that can have repercussions, thus,

most of the people that would be ready to engage in it also need to observe that they’re not

alone in the movement. Depending on how strongly they believe in the cause for which they’re

ready to riot, they need to observe a di↵erent proportion of the population already engaged

in it. Thus the riot is started by the most convinced agents, which spurs the involvement of

the people that needed to witness those few rioters to engage themselves, and so on until every

agent that had even the slightest willingness to riot — the ones that need to observe a very large

proportion of the population participating — engage in the riot. There is therefore a cascading

dynamics from the strongest believers to the weakest ones. The model is quite di↵erent than

ones where agents engage if they observe a majority of agents already engaged. With the same

crowd and the same distribution of willingness to engage in the riot, only the most convinced

will participate, because every other agent in the crowd will observe a minority of rioters (its

important to note that this configuration makes the assumption that every agent observe the

behavior of every other one in the crowd, which is not so common).
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Overall, understanding and accurately depicting social learning is complex and highly context-

dependent. There is not one canonical model that would suit all kinds of information exchanges

among individuals.

Our ambition with this thesis is to deepen some of the existing models by adding variables

that can make them more suitable for specific contexts, but also to propose our own mechanisms

of interactions that can lead to social learning.

For example, most of the existing models about social learning cast away the possibility for

individuals not to use the actions of their peers. But in reality, agents have di↵erent reactions

given their observations of their neighbors’ actions. Even further, they might be learning about

what type of behavior rewards them the most in the long run. And if they choose to be

influenced by their neighbors, perhaps they are also learning about the best neighbors to listen

to. These kinds of issues will be at the heart of our first chapter.

Another important idea that we use throughout the thesis is endogenously built networks.

As they represent interactions among agents, a link between two nodes is likely to represent more

than just a channel of communication. Instead, the existence of those links can be constructed

using the processes that we know are at the basis of social interactions. Homophily, for example,

can be used to represent agents connecting out of similarity; triadic closure for friends of friends

becoming friends themselves; or preferential attachment when individuals choose to connect to

popular agents on the network.

These concepts can be used to allow agents to form and break connections, leading to

realistic network structures such as Scale-free or Small-World graphs, which will be used as the

architecture of interactions of our populations. As we will show, interactions can lead to very

di↵erent outcomes depending on which structure individuals are placed in.

Altogether, our models of social learning encapsulate many human processes — although

they are not always at the center of the model, and thus discussed heavily — depending on the

context. These include trust, attraction, repulsion, imitation, as well as honesty and dishon-

esty. Additionally, interactions may be bound by memory or driven by motives that are either

interested or disinterested.

In addition to being centered around the notion of social learning, this thesis aims to explore

the changes that the Internet and social media have brought with them. Most of the models

developed here are set in the context of social media, encompassing the changes it brings to

the way people communicate, but also to the new actors it creates, from Influencers to Online

Social Network (OSN) platforms.
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0.4 Internet and the Networked Era

A recent report from Pew Research indicates that more than 40% of TikTok users are using

the platform to get news (Matsa (2023)). With around 150 millions American monthly active

users (Statista (2023)), its thus safe to say that a significant part of the American society is

partially informed by an online social network which algorithms are unknown and determined

by its Chinese company.

As online social media becomes ubiquitous in our lives, it is important that our models

adapt to this new paradigm. Specifically, social interactions are profoundly changed by OSNs.

Firstly, they modify the number of interactions one can have. They allow us to send messages

to any neighbor of that network, and even to communicate with a whole neighborhood at once

by sharing posts. This illustrates that not only are online platforms modifying the scope of our

interactions, but also their nature. Posting a status on Facebook or Twitter, visible to everyone

connected to you, has no equivalent in the pre-Internet era, except perhaps at very specific

events such as weddings or funerals, during which the content of the speech is very controlled.

This radical departure from traditional communication necessarily impacts our understanding

of global opinions or trends because we were never confronted with such forms of communication

before.

Additionally, OSNs are not neutral places; they are firms that compete among themselves

for your attention, for the time that you will spend using them. This leads them to develop

algorithms that can distort your vision of the world.

Online social platforms also become the playground of Influencers, opinion leaders who seek

revenues from their audience.

This new landscape is particularly suited to be studied through the lens of Network Science

because OSNs are essentially network objects. What the platforms propose to their users is

simply to create a profile (a node) online and to be able to connect to other individuals present

on the OSN (thus creating a tie between two nodes). The value of a particular OSN then

stems from two primary elements: the people that are already using it - how many people,

but also what kind of people - and the rules, or policies (that we define later in the thesis as

the protocols), that the OSN undertakes to provide the best experience possible, the one that

will keep its users on its website for longer. The most common example is the algorithms that

dictate what publications appear on the user’s feed.

The first source of competitive advantage is commonly called Network E↵ects in the liter-

ature and has been the subject of research by many authors since the mid-eighties (Katz and

Shapiro (1985); Arthur (1989); Cowan (1991)). This type of e↵ect is not restricted to OSNs

and can be found in many industries, particularly in markets where the value of an object or
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a technology relies on its existing user base. This can occur because the value stems from the

fact that others are also using it - like the telephone - or from people’s reluctance to incur tran-

sition costs. For example, you might prefer to use Excel, Python, or a QWERTY keyboard not

because they’re the best options on the market, but mostly because they have become standard

in society, and if you were to move from one job to another, there’s a high probability that

the new company will also ask you to work with those products (David (1985)). This second

case mostly implies goods where there’s a learning phase - such as learning to code in Python,

learning to use shortcuts and functions, or learning your muscle memory to know where the

keys are on the keyboard.

By contrast, the second explanation for the success of an OSN, or at least the levers it can

actually use to di↵erentiate itself from its competitors, is less studied in economics, mainly

because it is a relatively new method of di↵erentiation that emerged with OSNs in the late

2000s. We will show that most of the choices an OSN makes to define the rules of its platform

can be translated into the rules that generate the network object itself. Therefore, we can study

many policies the firms are taking by showing how they impact the network structure of the

OSN, and then studying the impacts of the network structure on processes such as information

di↵usion or coordination to engage in a collective action. This, in turn, helps understand which

OSNs could be more attractive because, from an objective viewpoint, they are more e�cient

for certain tasks. This work will be the subject of the last chapter of this thesis.

Lastly, it’s important to recognize that some OSNs have specialized in specific purposes.

LinkedIn is used to share about work-life, while Instagram focuses on pictures. These specifici-

ties give rise to di↵erent behaviors from individuals depending on which OSN they are using.

Our models will aim to adapt accordingly.

As social learning adapts to new frameworks, with people communicating and observing

others online as much - if not more - than o✏ine, we aim at adapting accordingly, by proposing

a nuanced and detailed vision of online social learning, mostly by allowing social networks to

form endogenously under the constraints of platforms, and by acknowledging the existence of

powerful forces such as recommendation algorithms or influencers.

0.5 Outline of the Thesis

Chapter 2 begins the thesis by asking whether social learning is the best behavior available in

a context of uncertainty where agents are consuming experience goods. Chapter 3 adapts the

model to online problems such as the existence of advertising from influencers or collaborative

rating scale systems. Chapter 4 attempts to capture the role of influencers and algorithms in
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OSNs for the dynamics of opinions, with a focus on polarization. Finally, Chapter 5 demon-

strates how network protocols modify network structures and, consequently, social learning

dynamics on those structures.

The subsequent sections will provide a comprehensive overview of each chapter and the

methodologies employed throughout this thesis.

0.6 Chapter 2

This chapter explores the challenges of modeling consumer behavior, particularly when choosing

among unfamiliar options through repeated trials. We argue that individuals employ diverse

learning methods, and a single ”optimal” strategy may not exist.

Focusing on experiential goods, where consumption itself provides learning, we propose a

multi-dimensional reinforcement learning model. This model captures how agents not only

learn to choose e↵ective products but also to refine their decision-making processes over time.

Thus agents have the choice between learning about the best product through individual

reinforcement learning, or through social learning, by using their social networks to get recom-

mendations, and choosing accordingly.

We therefore propose a di↵erent vision of social learning. Here the idea is similar to a

simple rule of thumb: agents increase the probability to choose again high-rewarding options

more than low-rewarding ones. But to choose among the alternatives, we allow individuals

to choose either between individual or social learning. The influence of peers is thus not an

obligation for our agents, who will decide to use recommendations from their neighborhoods

only if they come to believe that it is a more e�cient way to get the best goods. Moreover,

our agents are not observing the entirety of their neighbors decisions or outcomes, instead they

choose only one.

Our findings reveal that a model incorporating both individual and social learning signifi-

cantly outperforms a model limited to individual learning. This highlights the positive impact

of social learning, even when individuals lack prior knowledge about the available options.

The benefit of social learning appears to stem from recommendations carrying implicit infor-

mation about preferred options. However, individual learning also holds advantages, allowing

some agents to discover good choices quickly. Nonetheless, individual learning comes with

higher risk, as individuals may get stuck on sub-optimal options.

Therefore, while social learning may not lead to perfect choices for all agents, it ensures

consistent performance at a high level. We further explore the role of optimal curiosity levels,

which allow agents to su�ciently explore before committing to a choice.

Finally, the model incorporates a trust element, where agents learn to identify reliable



34 Contents

sources of advice within their social network. This element enhances overall performance and

leads to interesting network structures, with certain agents becoming central figures for advice.

0.7 Chapter 3

This chapter investigates the impact of the internet on decision-making, particularly when

choosing experience goods – products whose value is uncertain until after purchase. We focus

on how online interactions, including online review systems and influencers, influence individual

choices and outcomes in such situations. Here we use the same model as in chapter 2, with

individuals having the opportunity of learning about choosing the best goods either through

social or individual learning. We extend it by adding the presence of influencers, by modifying

the network structure, and by comparing it to a model with aggregated online reviews.

The research explores the potential advantages of social learning, where individuals learn

from the experiences of others, compared to individual learning through trial and error. The

internet facilitates social learning by fostering online communities and platforms like review

systems. However, the e↵ectiveness of these systems can be limited by diverse user preferences.

Aggregated reviews may not accurately reflect individual needs, highlighting the importance of

considering the structure of online interactions and the potential limitations of relying solely

on aggregated information.

Furthermore, this chapter delves into the role of online social networks and online influencers.

These networks can connect individuals with similar tastes, potentially leading to more informed

decisions. However, the action of online influencers can be detrimental, particularly for average-

quality goods. Individuals may be swayed by endorsements without fully exploring alternative

options, potentially missing out on superior choices. This e↵ect is most pronounced in networks

with structures exhibiting preferential attachment, whether in extreme cases (star networks) or

more realistic setting such as scale-free networks (common in online platforms). We also found

that some structure are much less impacted by influencers. This is the case for Small-World

networks, structures exhibiting low average path length and high cliquishness.

Overall, this chapter suggests that while the internet o↵ers promising tools for improving

decision-making, critical evaluation and a cautious approach towards online influence are crucial

for navigating the complexities of choosing experience goods in the digital age. Ultimately,

social interactions with trusted individuals might be the most e↵ective strategy for making

informed decisions in such contexts. However, the e↵ectiveness of these interactions, and the

Internet’s influence as a whole, depends on factors like user preference distribution and the

ethical conduct of online influencers, which may not always be ideal in real-world scenarios. This

research contributes to a deeper understanding of these challenges and the potential benefits
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and drawbacks of online interactions in the realm of decision-making for experience goods.

0.8 Chapter 4

This chapter examines the complex interactions between di↵erent user groups on online social

networks (OSNs), particularly focusing on the relationship between aspiring influencers and the

general user population. We reveal a dynamic system where both groups influence each other’s

behavior.

Regular users primarily share and discuss their opinions, potentially leading to increased

polarization or greater consensus on specific topics. Aspiring influencers, on the other hand,

strategically share content to maximize their online success. Interestingly, their presence seems

to counteract the formation of extreme viewpoints, hindering both complete consensus and

complete polarization.

We move beyond the traditional understanding of success in online networks by identifying

key factors that drive success for aspiring influencers. The most significant factor appears to be

a combination of two elements: strong word-of-mouth e↵ects among regular users, where they

share information about the influencers they follow, and a limited number of influencers that

each user follows. This unique combination creates a ”path dependence” for early success.

Using our model, we explored the potential e↵ects of various platform algorithms on user

engagement. In the ongoing debate regarding the role of OSNs in societal polarization, some

argue that algorithms intentionally curate content aligned with users’ existing opinions. How-

ever, our model demonstrates that such algorithms could potentially reduce polarization and

even lead to a more homogeneous distribution of beliefs within the population, assuming users

remain open to diverse viewpoints.

This finding aligns with recent studies examining polarization on platforms like Facebook

during the 2020 U.S. election, which showed minimal algorithmic influence on polarization.

This suggests the need to explore alternative explanations for the observed rise in societal

polarization. Studies by Bakshy et al. (2015) and Andris et al. (2015), for example, highlight

the role of user behavior itself in limiting exposure to divergent viewpoints, regardless of the

platforms’ algorithms.

We acknowledge potential areas for future research, including incorporating elements related

to the spread of misinformation and allowing for dynamic connections between regular users to

increase the model’s complexity and reflect real-world scenarios more accurately. This research

contributes significantly to our understanding of the multifaceted interactions within online

social settings and provides valuable insights for further investigations.
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0.9 Chapter 5

In this final chapter, we aim to elucidate the correlation between the policies and rules set

by online social networks - termed network protocols - and users’ experiences. We contend

that, beyond the network e↵ects that partially determine a platform’s success, the protocols

shaping the network architecture play a significant role in various user-driven processes on those

networks.

To test this hypothesis, we begin by defining the network protocols. We focus on three

di↵erent aspects: the nature of the ties allowed by the platform, which can be either directed

or undirected; the users’ ability to create and utilize sub-communities on the platform; and the

type of recommendation algorithms that determine connections (real friends, individuals with

similar interests, or highly connected agents). We then generate the various combinations of

these rules, which translate into network-generating rules.

We observe significant variations when comparing these structures in terms of average path

length or clustering - as expected from the generating rules. The next step is to test whether

these variations lead to di↵erent user experiences. To do so, we focus on experiences likely to

occur on an OSN and for which users can have an objective preference function. Specifically,

we examine the e�ciency of the network for information di↵usion, the dynamics of collective

action, and the e↵ectiveness of the network in connecting job seekers with job providers.

Overall, the hypothesis that the network protocols, which influence the network structure

of OSNs, also have an impact on common processes occurring in these media, is theoretically

validated by our models and simulations.

There is high heterogeneity in the most and least performing structures, whether we examine

the di↵usion of information, the leverage of collective actions, or the performance of a job

market. What’s even more interesting is that an enhancing characteristic for one process might

not be for another.

This research highlights an opportunity for OSN platforms to re-evaluate their goals and

revise network protocols accordingly. Users benefit even more from this approach, as they can

then choose the right platform for their specific needs. Strategic selection can significantly in-

crease success rates. For instance, our models suggest that platforms like Instagram or Twitter,

with structures closer to DSN, might not be ideal for job searches. Conversely, platforms like

Facebook or Reddit, which facilitate the formation of sub-communities, can be powerful tools

for mobilizing collective action.
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0.10 Methodology

Apart from Network analysis, which is both an object of study, and a set of tools to understand

the structure of interactions, all four chapters use numerical simulations, also called Agent-

Based Models (ABMs) to study the models we imagine.

An agent-based model defines a population of autonomous agents who are given a set of

rules defining their behavior, thus their responses to the possible situations they might be

confronted with. Agents can represent individuals, institutions, firms, or any entity that will

act independently. Furthermore, an ABM is not restricted to one type of agent, but allows

study the co-existence of di↵erent type of entities, such as firms and states, or consumers and

firms for example.

Moreover, ABMs allow our agents to interact among themselves, and thus we can study

the implications of those interactions for individuals, but also for population-level variables.

The final important ingredient for an ABM is its allowance for the simulation of time, which is

crucial if we wish to understand dynamics.

An ABM is therefore a definition of a population, a set of rules that defines the goals,

behaviors, reactions and consequences of interactions of each agent of this population — with

each agent’s set of rules potentially di↵erent than the ones of the others — but also of the

existing (or potential) interactions among the agents, and of the time-sequence in which our

population evolves.

Those type of models are very convenient to establish a bridge from the individual to the

aggregate behavior. This interaction from the micro to the macro-level can lead ABMs to be

constructed with di↵erent objectives in mind.

We can use them either to make sense of the world we witness — our data — by looking for

the fitting behaviors and interactions of our individual agents, or we can build them to observe

the world that arises when we hypothesize about the likely behaviors and interactions of agents

in a given context.

Imagine that you can either have a collection of bones or the image of a body in motion and

must recreate the working skeleton of that body. In the first philosophy, you pick the image

of the body in motion and deduce the right place and interactions of the bones in a manner

that would fit your image. This mirrors the approach of creating ABMs based on empirical

observations, where each ‘bone’ or agent behavior is positioned to match the dynamics we

observe in the real world. In the second one, you pick the collection of bones and arrange them

in the most coherent way without having the image of the body in motion in mind. This is

akin to developing ABMs grounded in theoretical frameworks, arranging agent behaviors and

interactions logically to explore potential emergent phenomena.



In both methods, you’re playing with bones. In the first one, so they fit the body. In the

second one, so they articulate logically. Both methods are useful, and both methods have perils.

You might want so hard for your bones to fit your picture that you’re not thinking enough about

the logical articulations of them, and your body might not walk for long. But with the other

philosophy, you might exclude too much of the real body for the sake of the respect of logic,

and the body you create might walk, but it might be out of this world, not representing the

real body.

The models of this thesis were mostly built by picking bones and articulating them logically,

aiming to strike a balance between theoretical coherence and empirical fidelity, endeavoring

to reflect the familiar yet uncovering insights that might not be immediately apparent from

observation alone, hopefully representing a body that is familiar to us.
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Introduction Générale

0.11 Économie de la Complexité

Chaque fois que je présente aux étudiants de première année en économie la théorie classique

du consommateur en microéconomie, je rencontre une perplexité généralisée dans la salle de

classe. Des questions surgissent : Pourquoi les consommateurs sont-ils décrits comme désirant

toujours plus de biens ? Dans le modèle travail-loisir, pourquoi suppose-t-on que les agents

choisissent librement leur quantité optimale de travail ? Et pourquoi le travail est-il évalué

uniquement à travers ses bénéfices monétaires, en ignorant les emplois qui o↵rent une valeur

intrinsèque au-delà du gain financier ? Bien sûr, il y a des raisons pour ces modèles — qu’elles

soient satisfaisantes ou non — enracinées dans leurs objectifs ou leurs simplifications pour la

facilité analytique.

Mais, chose intéressante, lorsque les étudiants atteignent leur dernière année de licence, leur

présenter des modèles où les entreprises choisissent de ne pas produire ou des modèles intégrant

la connaissance de la fonction de réaction d’un concurrent dans un duopole suscite à peine des

questions. Cela indique-t-il une compréhension plus profonde de l’économie, ou une résignation

à l’abstraction de la réalité inhérente à ces modèles ?

Un changement particulier semble se produire au cours de l’enseignement de l’économie.

Comme l’a souligné Etzioni en 2015 Etzioni (2015), les étudiants en économie développent une

“boussole morale dégradée”. Quels facteurs contribuent à cette transformation ?

Un segment croissant du domaine soutient que le problème fondamental réside dans les

hypothèses de base de l’économie Kirman (1989, 1992); Arthur (2009). Depuis la critique

d’Herbert Simon en 1955 du modèle de l’agent rationnel maximisant l’utilité Simon (1955),

un débat important a surgi sur le réalisme de ces hypothèses. Simon a souligné l’erreur de

supposer une rationalité parfaite, une critique qui résonne jusqu’à la macroéconomie où la notion

d’équilibre peut masquer des problèmes significatifs, comme en témoigne la crise financière de

2008 peu de temps après l’évaluation optimiste d’Olivier Blanchard sur l’état de la théorie

macroéconomique Blanchard (2009).

41
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Cette reconnaissance des limites inhérentes aux modèles économiques traditionnels a suscité

un intérêt pour des approches alternatives. Ces approches reconsidèrent le comportement des

agents économiques, en reconnaissant la rationalité limitée qui caractérise la prise de décision

humaine, comme l’a suggéré Simon, et explorée plus avant dans le domaine de l’économie

comportementale Gigerenzer and Selten (2002). Les agents, influencés par des biais cognitifs

et sans la puissance de calcul supposée dans les modèles classiques, optent souvent pour des

stratégies de “satisficing” plutôt que d’optimisation Kahneman (2003).

De plus, le comportement économique n’est pas uniforme mais varie selon des facteurs

culturels, socio-économiques, et autres, soulignant l’hétérogénéité des agents. En outre, les

agents apprennent et s’adaptent en fonction de leurs expériences, avec des préférences et des

comportements évoluant au fil du temps. Cette dynamique contredit la nature statique des

fonctions d’utilité ou des courbes de demande dans les modèles classiques.

Les interactions entre les agents compliquent encore le tableau. Le comportement d’un

individu est souvent influencé par son réseau social, ce qui conduit à des changements de

préférences et de comportements que les modèles classiques, avec leurs hypothèses sur des

consommateurs indépendants, ne parviennent pas à capturer. Cette dimension sociale peut

conduire à des comportements tels que des changements de consommation basés sur l’influence

des pairs ou des e↵orts de di↵érenciation. Un agent peut choisir un bien non seulement pour

sa valeur intrinsèque, mais parfois parce qu’il est devenu désirable en le voyant consommé par

d’autres, ou parfois parce que sa consommation permettra de se di↵érencier des autres. La

consommation est un acte social qui étend notre identité.

L’implication est que les phénomènes macroéconomiques ne peuvent pas être entièrement

expliqués en agrégant les comportements des agents isolés ; au contraire, les interactions et

les adaptations entre les agents jouent un rôle crucial. Le modèle de ségrégation de Schelling

illustre vivement ce point Schelling (1969).

L’auteur imagine une population vivant sur une grille, divisée en deux classes d’agents.

Chaque agent observe la classe de ses voisins et a un certain désir d’être entouré d’agents de

la même classe. Si le nombre de voisins similaires est trop faible, l’agent se déplace au hasard

vers un espace vide sur la grille. Le modèle et son résultat sont devenus célèbres car Schelling

montre que même avec une population ayant un faible désir d’être entourée de pairs — ne se

déplaçant que si plus des deux tiers de ses voisins sont d’un type di↵érent — le résultat global

finit par être une grille ségréguée, avec de grands quartiers ne contenant qu’une seule classe

d’agents.

Cela n’implique pas que les ghettos ou les quartiers fortement ségrégués observés à travers

l’histoire et aujourd’hui peuvent être entièrement expliqués par ce modèle et la volonté individu-

elle des agents locaux, car de nombreuses variables sont en jeu, y compris des actions politiques
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significatives. Néanmoins, cela montre que même avec des agents assez ouverts à la diversité,

la ségrégation peut survenir.

L’idée centrale de l’économie complexe, mise en lumière par le modèle de ségrégation de

Schelling et l’adage de Simon selon lequel “le tout est di↵érent de la somme de ses par-

ties”, souligne que le comportement des agents individuels, lorsqu’il est combiné à travers

des interactions, conduit à des résultats collectifs qui peuvent ne pas être intuitifs sur la

base des seules actions individuelles. Ce principe révèle que les dynamiques globales d’un

système, comme les niveaux de ségrégation au sein d’une ville, ne peuvent pas être précisément

déduites simplement en analysant les préférences de ses résidents isolément. Les schémas de

ségrégation inattendus résultent de l’interaction nuancée des choix individuels, soulignant la

nécessité pour la modélisation économique d’incorporer plus profondément les complexités du

comportement humain et de l’interaction sociale. Cela souligne que comprendre les phénomènes

macroéconomiques ou sociétaux nécessite une considération minutieuse des interactions au

niveau micro qui conduisent ces systèmes, nous défiant de repenser les approches tradition-

nelles de la théorie économique.

0.12 Les Réseaux Sociaux pour Comprendre l’Hétérogénéité

Sociale

Comme mentionné précédemment, pour parvenir à une compréhension enrichie des agents

économiques préconisée par les partisans de l’école de pensée de l’économie complexe, nous

devons reconnâıtre que, bien que le comportement individuel - tel que la prise de décision

hétérogène reposant sur des heuristiques, par exemple - soit une pièce du puzzle, il y a au

moins une pièce tout aussi importante concernant les interactions sociales.

Dans ce qui suit, nous définissons les interactions sociales entre agents économiques comme

tous les processus qui poussent un agent à se comporter di↵éremment en raison de ses inter-

actions avec les autres. Cette définition large peut rendre compte de nombreuses situations et

intentions di↵érentes, que l’influence soit exercée par des individus ou des groupes, ou reçue

par eux. Il est important de reconnâıtre que l’influence sociale qui résulte des interactions peut

être consciente ou inconsciente.

Au cœur de l’idée d’influence sociale se trouve la tendance des humains à imiter et intégrer

ce que font les autres. Cela peut être motivé par le désir de s’intégrer dans un groupe et

d’appartenir, de se di↵érencier en faisant le contraire, de démontrer des valeurs contrastantes

envers un groupe, ou simplement de réussir. Il peut sembler rationnel d’imiter les agents à

succès pour devenir soi-même couronné de succès.
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Les influences sociales sont évidentes dans la consommation de nombreux types de biens.

Nous appelons ”mode” le processus continu des tendances, qui peut être observé dans les

vêtements, les meubles, l’architecture, les biens culturels, et qui représente essentiellement

un processus de validation sociale ou la mise en avant de certaines caractéristiques jugées

actuellement désirables par le marché de masse.

La plupart d’entre nous, que ce soit intentionnellement ou non, participons à ce type de

consommation. Nous pouvons chercher à être des pionniers de tendances, des suiveurs délibérés

de la tendance, ou même choisir inconsciemment des biens qui sont à la mode.

En outre, nous pouvons chercher à signaler notre appartenance à une certaine classe sociale.

Nous achetons des biens haut de gamme pour montrer notre succès financier, ou du moins pour

démontrer notre aspiration à rejoindre ce groupe social particulier Veblen (2017); Leibenstein

(1950); Bourdieu (1979); Johnson et al. (2018).

Bien que ce type d’influence sociale puisse sembler non coordonné, bien qu’en partie poussé

par les marques, dans d’autres domaines, l’influence sociale est beaucoup plus explicite. Dans

son célèbre livre, ”L’éthique protestante et l’esprit du capitalisme”, Max Weber lie directement

le protestantisme, une branche du christianisme qui incarne un ensemble de valeurs, au com-

portement au travail de ses croyants, contribuant ainsi à l’émergence des sociétés capitalistes

occidentales en Europe au XIXe siècle Weber and Kalberg (2013).

Ces institutions, qui sont partiellement définies par des directives écrites et des règles, ainsi

que par des hiérarchies, cultivent également des communautés soudées parmi leurs membres.

Ces communautés peuvent servir de pression pour les individus qui ne souhaitent pas se con-

former à toutes les règles, ou d’aspiration pour ceux qui s’e↵orcent de s’y conformer plus

étroitement Carvalho (2019).

De plus, les avancées récentes en science révèlent que certains comportements sont influencés

par les connaissances, bien que nous ne comprenions peut-être pas entièrement les mécanismes

par lesquels cela se produit. Les comportements de santé tels que l’obésité ou le tabagisme, par

exemple, ont montré une corrélation positive avec des comportements similaires chez les pairs

Christakis and Fowler (2007, 2008); Centola (2010).

Par conséquent, penser que nous pouvons analyser le comportement des acteurs économiques

tels que les travailleurs, les consommateurs ou les entrepreneurs sans tenir compte du milieu

social dans lequel ils évoluent et des interactions sociales qu’ils entretiennent revient à ne voir

que la moitié du tableau.

Modéliser ou quantifier les interactions sociales est plus facile à dire qu’à faire, ce qui explique

probablement pourquoi le domaine de l’économie a tardé à s’y engager profondément jusqu’à

récemment. Ce changement s’est produit lorsque la science des réseaux a commencé à gagner
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en reconnaissance et en visibilité au sein de la communauté scientifique.

Les réseaux formalisent et permettent la visualisation des connexions qui lient divers nœuds

entre eux. Dans le contexte des interactions sociales, les nœuds peuvent représenter des indi-

vidus ou des groupes, tandis que les liens peuvent représenter divers types de connexions entre

deux nœuds, allant des liens familiaux aux relations de travail formelles, par exemple.

Construire un réseau est donc l’énumération explicite de tous les agents que nous souhaitons

incorporer, ainsi que de toutes les connexions existantes entre eux, en fonction de l’importance

que nous attribuons à ces liens.

L’existence et l’étude des réseaux - également connus sous le nom de graphes dans le domaine

mathématique dont ils sont issus - remontent au moins au XVIIIe siècle et à la célèbre résolution

par Euler du problème des ”Sept ponts de Königsberg” Euler (1953).

Mais l’émergence de son existence en tant que champ à part entière - la ”science des réseaux”

- est beaucoup plus contemporaine et s’explique par au moins deux facteurs principaux selon

Barabasi :

1. Pour établir les cartes complexes des réseaux que nous voulons étudier, beaucoup de

données sont nécessaires. Un réseau social nécessite des informations précises sur vos

amis, les amis de vos amis, et ainsi de suite. Si nous voulons construire la carte d’Internet,

nous devons connâıtre chaque page web et chaque lien sur les pages web qui redirige vers

d’autres. C’est précisément la révolution Internet qui a facilité la création de ces cartes,

avec des méthodes de partage de données e�caces et rapides et un stockage numérique bon

marché. Les chercheurs sont maintenant capables de collecter, d’assembler et d’analyser

des réseaux réels et complexes.

2. Bien que les réseaux aient été partiellement étudiés dans di↵érents domaines tels que la

biologie, la chimie ou les sciences sociales, c’est l’universalité des propriétés des réseaux

qui a rendu possible l’émergence de ce champ. Comme l’écrit Barabasi Barabási (2016) :

”Les architectures des réseaux émergents dans divers domaines de la science, de la nature

et de la technologie sont similaires entre elles, conséquence d’être régies par les mêmes

principes d’organisation. Par conséquent, nous pouvons utiliser un ensemble commun

d’outils mathématiques pour explorer ces systèmes.”

À la veille du XXIe siècle, deux modèles importants ont commencé à expliquer certaines

des caractéristiques universelles des structures de réseau. Le premier, proposé par Barabasi

et Albert, identifie la nature ”sans échelle” de nombreux réseaux di↵érents tels qu’Internet,

les réseaux électriques ou les interactions sociales. Ici, la caractéristique mise en avant est la

distribution des connexions pour les nœuds du graphe. Plus précisément, tandis que la majorité



46 Contents

des nœuds auront un nombre de connexions faible et similaire, un petit groupe aura un nombre

de connexions significativement plus élevé Barabási and Albert (1999).

Le deuxième modèle propose de démontrer que la plupart de nos schémas d’interaction se

produisent dans des ”petits mondes”, où même dans des systèmes avec de nombreux nœuds,

atteindre l’un de ces nœuds peut être accompli par de petits ”sauts” sur le réseau, tandis que la

structure du réseau reste étroitement liée, impliquant un regroupement parmi de petits groupes

de nœuds Watts and Strogatz (1998).

Ce modèle explique des phénomènes tels que la célèbre expérience de Milgram, où il de-

mandait à des individus d’atteindre d’autres personnes (qui étaient inconnues et géographiquement

éloignées) Milgram (1967). Les résultats ont montré que tout agent peut atteindre un autre en

environ six étapes, ce qui a donné naissance à l’idée du ”petit monde” dans lequel nous vivons.

Au-delà de la démonstration des propriétés structurelles partagées par une grande diversité

de réseaux, des technologiques aux biologiques et sociaux, ces modèles éclairent également les

outils de mesure que tout scientifique peut utiliser pour analyser un réseau.

Les structures sans échelle mettent en lumière l’importance de la distribution des degrés à

l’échelle globale, mais aussi de la centralité des degrés à l’échelle locale. Un réseau est donc

utile pour comprendre les dynamiques des phénomènes globaux, tels que la vitesse de di↵usion,

par exemple, mais aussi pour comprendre le rôle des acteurs spécifiques dans ces structures.

Est-ce que l’agent le plus central dans un réseau a les mêmes opportunités ou connaissances

que le moins central, par exemple ?

Il en va de même pour le modèle des petits mondes. Il montre que nous pouvons mesurer

les graphes à l’échelle globale en utilisant des concepts tels que la longueur de chemin, que nous

voulons mesurer sa moyenne ou son plus court, et avec le concept d’enracinement, qui peut

mesurer l’existence et la force des communautés dans les réseaux. Mais il s’applique aussi au

niveau individuel : les petits mondes mettent en avant l’idée de la centralité d’intermédiarité et

de l’importance des nœuds qui peuvent agir comme des ponts entre di↵érentes communautés

éloignées.

Bien que des modèles issus des mathématiques et de la physique aient permis à la science

des réseaux d’émerger en tant que champ distinct, certaines des intuitions de la science des

réseaux étaient déjà présentes et faisaient l’objet de travaux dans d’autres disciplines.

La notion de capital social — qui pourrait être décrite comme la capacité à mobiliser des

ressources à partir des connexions sociales — existe en sociologie depuis le XIXe siècle et a été

progressivement utilisée et développée tout au long du XXe siècle.

De nombreux auteurs ont utilisé ce concept, tels que Bourdieu Bourdieu (2021), qui analyse

ses e↵ets et son interdépendance avec d’autres formes de capital ; Putnam, qui montre son
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importance pour l’altruisme et les institutions démocratiques Putnam (2015) ; et Coleman,

qui hypothèse que le capital social agit comme un vecteur de conformité au sein des sociétés

Coleman (1998).

Bien qu’aucun de ces auteurs n’utilise les réseaux comme outil pour étudier le capital social

directement, l’idée même de réseaux sociaux est déjà présente et utile dans leur analyse de la

société et de ses individus.

Plus récemment, les objets de réseau sont devenus centraux dans les travaux de Granovetter

dans les années soixante-dix Granovetter (1973) et de Burt dans les années quatre-vingt-dix

Burt (2018). Les deux auteurs soulignent l’importance de la structure du graphe aux niveaux

global et individuel, que ce soit pour générer des ”bonnes idées” ou pour trouver des emplois.

Avec les outils formalisés en mathématiques et en physique, et le concept de plus en plus

utilisé en sciences sociales, les réseaux sont naturellement devenus un outil et un objet d’étude

en économie au début des années 2000 avec le développement de modèles étudiant son impact

sur la performance de correspondance sur le marché du travail, comment il peut être utilisé pour

étudier les réseaux de production ou comment il aide à étudier la di↵usion des connaissances,

de la technologie ou des comportements Jackson (2010).

La présente thèse utilisera également des réseaux, mais pour souligner leur importance dans

le processus d’apprentissage des individus, dans des cadres où les interactions et la structure

de ces interactions ont des implications importantes aux niveaux individuel et global.

0.13 Apprendre au Sein des Réseaux Sociaux

Les réseaux sont devenus particulièrement importants dans l’étude de la di↵usion. Que l’on

parle de la di↵usion des connaissances, de l’information, des virus ou de l’électricité, utiliser

des réseaux pour décrire le processus est pratique car cela génère une carte décrivant toutes

les routes qu’un objet donné peut utiliser pour atteindre les nœuds existants, d’où les points

d’intérêt de cette carte.

Avoir une carte est un départ de l’inconnu. Cela nous permet de comprendre, et parfois

de prédire, l’ampleur ou la vitesse d’un processus de di↵usion car cela montre explicitement

les routes existantes ou les nœuds non atteignables du système. Cela peut également servir de

méthode pour identifier les nœuds importants, ceux qui sont essentiels pour la di↵usion, et ceux

qui peuvent être déconnectés sans entraver le processus de di↵usion.

En retour, un processus de di↵usion a lieu uniquement si le réseau sur lequel il se produit

n’est pas vide (au moins deux nœuds sont connectés), et être capable de représenter ce réseau

est crucial pour comprendre les dynamiques de la di↵usion.
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Comme mentionné ci-dessus, nous pouvons étudier la di↵usion d’objets ”réels” tels que les

personnes se déplaçant d’une station de métro à une autre, les virus d’un corps à un autre, ou

les signaux Wi-Fi des opérateurs vers les maisons et les ordinateurs. Cependant, nous pouvons

aussi étudier la di↵usion des croyances, des émotions, de l’information et des connaissances

parmi les individus d’une société. Comme ces facteurs sont au cœur de nombreuses décisions et

comportements, ils sont susceptibles d’expliquer (certains aspects) des processus économiques.

Le cas de la di↵usion parmi les individus peut être catégorisé comme apprentissage social,

où la façon dont les agents envoient, acceptent et intériorisent des informations ou des idées

répond à di↵érentes règles en fonction de la nature de ce qui est échangé, de l’identité des

personnes ou du groupe qui l’envoie, mais aussi de la nature du destinataire individuel et de la

culture de la société d’où il provient.

Nous ne réagissons pas de la même manière aux informations sur l’évolution de la valeur

d’une action d’une entreprise qu’aux derniers sondages présidentiels. De même, nous valorisons

di↵éremment l’information selon qui nous l’a donnée. Était-ce un ami informé ou une source

médiatique partisane ? Enfin, notre parcours personnel façonne notre manière de traiter les

informations reçues. Cela nous amènera-t-il à investir dans l’entreprise ou à manifester contre

la montée d’un parti politique extrême ?

L’apprentissage social est donc un mécanisme complexe, et son résultat, son e�cacité, peut

dépendre de nombreuses variables cognitives et émotionnelles telles que la confiance, la croyance

ou la peur - pour n’en nommer que quelques-unes - en fonction du scénario étudié. Cependant

complexe et di�cile à comprendre exactement comment il fonctionne, l’apprentissage social peut

être décrit comme un processus de di↵usion, sur un réseau où les nœuds sont des individus,

et les liens représentent des routes possibles pour échanger des morceaux d’information, de

connaissances, mais aussi des croyances.

Les modèles fondamentaux visant à représenter l’apprentissage social, ou du moins l’apprentissage

par observation, sont principalement basés sur deux mécanismes : l’utilisation de moyennes

pondérées ou l’utilisation de la règle de Bayes (voir Goyal (2011) pour une revue approfondie).

Dans le premier scénario, provenant de DeGroot DeGroot (1974), les agents placés sur une

structure de réseau peuvent observer le comportement ou les croyances de leurs voisins directs

(ceux avec qui ils partagent un lien), et adapter leur propre comportement ou croyances en

conséquence. Dans ce cadre, un agent donne des poids fixes à ses voisins, exprimant la valeur

qu’il accorde à chaque voisin. Ensuite, son comportement au fil du temps est la moyenne

pondérée de ce que croient/choisissent ses voisins, qui suivent eux-mêmes le même processus

avec leurs propres voisins.

Ce type d’apprentissage par observation peut être utile pour représenter la dynamique des

opinions où les croyances des agents évoluent à mesure qu’ils considèrent les opinions des autres,
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que ce soit par communication ou par observation. Plusieurs questions peuvent être posées en

étudiant ce genre de modèle. Observons-nous une convergence des opinions ? Sous quelles

conditions sur la distribution initiale des croyances ? Quel est le rôle de la structure du réseau

?

Bien que ce soit un modèle utile, il présente également plusieurs limitations. Par exemple,

il suppose qu’à chaque tour, un agent collecte des informations sur les opinions de tous ses

voisins. Ce genre de connaissance ubiquitaire est contestable en soi.

La deuxième grande limitation réside dans le mécanisme de mise à jour. Le scénario

dans lequel les agents compilent des opinions et adoptent la moyenne pondérée de leur cer-

cle d’influence est discutable. Cette approche peut ne pas être adaptée ou applicable dans

divers contextes.

Par exemple, nous étudions la dynamique des opinions en partie pour comprendre les

élections démocratiques. Supposons qu’un agent ait deux voisins opposés sur le spectre poli-

tique. Cet agent donne des poids égaux à ces deux amis, se faisant ainsi un électeur centriste.

Maintenant, lorsque l’élection arrive et qu’aucun candidat centriste n’est en lice, vers qui ira le

vote de l’agent ? Ce qu’il choisira révélera les poids réels qu’il accorde à ses deux amis parce que

le résultat est binaire ; ce ne sera pas la moyenne pondérée de ces deux opinions. Si le but était

de comprendre les résultats des élections, le modèle était mal adapté car la moyenne pondérée

ne correspond pas aux décisions finales que les agents devraient prendre lors de l’élection (bien

qu’elles puissent toujours avoir un certain pouvoir prédictif).

Bien sûr, bien qu’il y ait de nombreux cas où le modèle est limité, il existe autant de scénarios

où ce type de modélisation peut être utile, car tous les processus ne se terminent pas par une

décision binaire.

Le deuxième scénario, où les agents utilisent la règle de Bayes, comme dans Acemoglu et al.

(2011), utilise principalement un modèle où les agents sont également placés sur une structure

de réseau qui limite leurs interactions à leurs quartiers et leur permet d’observer les actions

et les résultats uniquement de ces voisins. Cela leur permet ensuite de mettre à jour leurs

croyances antérieures sur les résultats d’un événement donné. Dans ce genre de modèles, les

agents essaient de trouver la ”vérité” ou le comportement optimal, ce qui peut être vu comme

une action à entreprendre ou non, mais aussi une opinion à avoir ou non.

Dans les deux courants de la littérature, et dans la plupart de la littérature économique qui

s’intéresse à l’apprentissage social, il y a principalement une vision commune selon laquelle les

agents apprennent des autres en observant - et non par une communication en tête-à-tête, par

exemple - l’ensemble de leurs voisins à chaque période. De plus, ces agents utilisent des méthodes

complexes pour déterminer leurs actions, qu’il s’agisse de calculer une moyenne pondérée des

décisions de leurs amis ou de mettre à jour une distribution de probabilité basée sur les résultats
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de ces amis. Bien sûr, nous pouvons choisir de croire que ces modèles fonctionnent non pas

parce que nous nous comportons de cette manière - en faisant des calculs complexes - mais

parce que quoi que nous fassions, cela peut être approximé par ces calculs.

D’autres articles ont essayé d’utiliser une approche peut-être plus réaliste en dotant les

agents de leurs modèles de ”règles empiriques”, qui sont des heuristiques simples. C’est le

cas d’Ellison et Fudenberg dans le contexte de l’adoption de di↵érentes technologies Ellison

and Fudenberg (1995, 1993). Leurs règles empiriques impliquent également une population

observant les choix et les résultats de tous les voisins, mais maintenant seule une fraction

d’entre eux révise leurs décisions à chaque tour, et au lieu de calculs complexes, ils utilisent des

règles simples telles que : Utiliser ce qui était le plus rémunérateur au dernier tour, ou utiliser

ce qui était le plus populaire au dernier tour.

Dans le même esprit, W.B. Arthur construit un modèle intéressant, le problème du ”El-

Farol Bar”, où les agents veulent éviter de se rendre dans un bar s’il est trop bondé. Chaque

fois qu’ils y vont, ils peuvent observer s’il est e↵ectivement trop bondé ou non et adapter leur

comportement en conséquence pour la prochaine fois qu’ils doivent décider d’y aller ou non

Arthur (1994).

Bien que n’utilisant pas d’outils de réseau, chaque agent de ce modèle apprend en observant

le comportement de ses voisins géographiques - ceux qui se rendent également dans ce bar

particulier. Arthur propose que, bien que les agents utilisent des règles empiriques pour décider

quoi faire, ils sont hétérogènes quant à la règle empirique à utiliser, créant ainsi une ”écologie”

de règles.

En dehors de l’économie, certains auteurs ont développé des modèles d’apprentissage social

Granovetter (1978). Notamment en sociologie, Granovetter développe un modèle d’action col-

lective où les agents doivent décider s’ils rejoignent ou non un mouvement, en fonction de la

décision de leurs voisins qu’ils peuvent observer. Il met en avant une règle empirique intéressante

où les agents, au lieu de faire comme la majorité ou de faire la moyenne des voisins, décident de

s’engager uniquement si une proportion précise de leur quartier a déjà rejoint l’action collective.

Dans son article, Granovetter utilise l’exemple d’une émeute. Disons que chaque agent dans

une foule doit décider s’il participe ou non à une émeute. C’est un comportement risqué qui

peut avoir des répercussions, donc, la plupart des gens prêts à s’y engager ont également besoin

de voir qu’ils ne sont pas seuls dans le mouvement. En fonction de la force de leur croyance en

la cause pour laquelle ils sont prêts à se révolter, ils doivent observer une proportion di↵érente

de la population déjà engagée. Ainsi, l’émeute est déclenchée par les agents les plus convaincus,

ce qui incite les personnes qui devaient voir ces quelques émeutiers à s’engager elles-mêmes,

et ainsi de suite jusqu’à ce que chaque agent ayant même la moindre volonté de se révolter

— ceux qui ont besoin d’observer une très grande proportion de la population participant —



Contents 51

s’engagent dans l’émeute. Il y a donc une dynamique de cascade des croyants les plus forts

aux plus faibles. Le modèle est assez di↵érent de ceux où les agents s’engagent s’ils observent

une majorité d’agents déjà engagés. Avec la même foule et la même distribution de la volonté

de s’engager dans l’émeute, seuls les plus convaincus participeront, car chaque autre agent de

la foule observera une minorité d’émeutiers (il est important de noter que cette configuration

suppose que chaque agent observe le comportement de chaque autre dans la foule, ce qui n’est

pas si courant).

En général, comprendre et représenter avec précision l’apprentissage social est complexe et

hautement dépendant du contexte. Il n’existe pas de modèle canonique qui conviendrait à tous

les types d’échanges d’informations entre individus.

Notre ambition avec cette thèse est d’approfondir certains des modèles existants en ajoutant

des variables qui peuvent les rendre plus adaptés à des contextes spécifiques, mais aussi de

proposer nos propres mécanismes d’interactions qui peuvent conduire à l’apprentissage social.

Par exemple, la plupart des modèles existants sur l’apprentissage social écartent la possibilité

pour les individus de ne pas utiliser les actions de leurs pairs. Mais en réalité, les agents

réagissent di↵éremment en fonction de leurs observations des actions de leurs voisins. De plus,

ils pourraient apprendre quel type de comportement les récompense le plus à long terme. Et

s’ils choisissent d’être influencés par leurs voisins, ils pourraient également apprendre quels sont

les meilleurs voisins à écouter. Ces types de questions seront au cœur de notre premier chapitre.

Une autre idée importante que nous utilisons tout au long de la thèse est celle des réseaux

construits de manière endogène. Comme ils représentent les interactions entre les agents, un

lien entre deux nœuds est susceptible de représenter plus qu’un simple canal de communication.

Au lieu de cela, l’existence de ces liens peut être construite en utilisant les processus que nous

savons être à la base des interactions sociales. L’homophilie, par exemple, peut être utilisée

pour représenter des agents se connectant par similitude ; la fermeture triadique pour que les

amis d’amis deviennent eux-mêmes amis ; ou l’attachement préférentiel lorsque les individus

choisissent de se connecter à des agents populaires sur le réseau.

Ces concepts peuvent être utilisés pour permettre aux agents de former et de rompre des

connexions, conduisant à des structures de réseau réalistes telles que les graphes sans échelle ou

les petits mondes, qui seront utilisés comme l’architecture des interactions de nos populations.

Comme nous le montrerons, les interactions peuvent mener à des résultats très di↵érents selon

la structure dans laquelle les individus sont placés.

Dans l’ensemble, nos modèles d’apprentissage social encapsulent de nombreux processus

humains - bien qu’ils ne soient pas toujours au centre du modèle, et donc lourdement discutés

- en fonction du contexte. Cela inclut la confiance, l’attraction, la répulsion, l’imitation, ainsi
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que l’honnêteté et la malhonnêteté. De plus, les interactions peuvent être liées à la mémoire ou

motivées par des intérêts soit intéressés, soit désintéressés.

En plus d’être centrée sur la notion d’apprentissage social, cette thèse vise à explorer les

changements apportés par Internet et les médias sociaux. La plupart des modèles développés

ici se situent dans le contexte des médias sociaux, englobant les changements qu’ils apportent

à la façon dont les gens communiquent, mais aussi aux nouveaux acteurs qu’ils créent, des

influenceurs aux plateformes de réseaux sociaux en ligne (OSN)

0.14 Internet et l’Ère des Réseaux

Un récent rapport de Pew Research indique que plus de 40 % des utilisateurs de TikTok utilisent

la plateforme pour s’informer Matsa (2023). Avec environ 150 millions d’utilisateurs actifs

mensuels aux États-Unis Statista (2023), il est donc sûr de dire qu’une partie significative de la

société américaine est partiellement informée par un réseau social en ligne dont les algorithmes

sont inconnus et déterminés par son entreprise chinoise.

À mesure que les médias sociaux en ligne deviennent omniprésents dans nos vies, il est im-

portant que nos modèles s’adaptent à ce nouveau paradigme. Plus précisément, les interactions

sociales sont profondément modifiées par les OSN (Online Social Networks). Premièrement, ils

modifient le nombre d’interactions que l’on peut avoir. Ils nous permettent d’envoyer des mes-

sages à n’importe quel voisin de ce réseau, et même de communiquer avec tout un quartier en

partageant des publications. Cela illustre que non seulement les plateformes en ligne modifient

la portée de nos interactions, mais aussi leur nature. Publier un statut sur Facebook ou Twitter,

visible par tous ceux qui sont connectés à vous, n’a pas d’équivalent à l’ère pré-Internet, sauf

peut-être lors d’événements très spécifiques tels que les mariages ou les funérailles, où le con-

tenu du discours est très contrôlé. Cette rupture radicale avec la communication traditionnelle

impacte nécessairement notre compréhension des opinions ou des tendances globales car nous

n’avons jamais été confrontés à de telles formes de communication auparavant.

De plus, les OSN ne sont pas des lieux neutres ; ce sont des entreprises qui se font concurrence

pour attirer votre attention, pour le temps que vous passerez à les utiliser. Cela les pousse à

développer des algorithmes qui peuvent déformer votre vision du monde.

Les plateformes sociales en ligne deviennent également le terrain de jeu des influenceurs, des

leaders d’opinion qui cherchent à tirer des revenus de leur audience.

Ce nouveau paysage est particulièrement adapté pour être étudié à travers le prisme de

la science des réseaux, car les OSN sont essentiellement des objets de réseau. Ce que les

plateformes proposent à leurs utilisateurs est simplement de créer un profil (un nœud) en ligne

et de pouvoir se connecter à d’autres individus présents sur l’OSN (créant ainsi un lien entre
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deux nœuds). La valeur d’un OSN particulier découle alors de deux éléments principaux : les

personnes qui l’utilisent déjà - combien de personnes, mais aussi quel type de personnes - et les

règles, ou politiques (que nous définissons plus loin dans la thèse comme les protocoles), que

l’OSN adopte pour fournir la meilleure expérience possible, celle qui retiendra ses utilisateurs

plus longtemps sur son site. L’exemple le plus courant est les algorithmes qui dictent quelles

publications apparaissent dans le fil d’actualités de l’utilisateur.

La première source d’avantage concurrentiel est communément appelée e↵ets de réseau dans

la littérature et a fait l’objet de recherches par de nombreux auteurs depuis le milieu des années

80 Katz and Shapiro (1985); Arthur (1989); Cowan (1991). Ce type d’e↵et n’est pas restreint

aux OSN et peut être trouvé dans de nombreuses industries, en particulier sur les marchés

où la valeur d’un objet ou d’une technologie dépend de sa base d’utilisateurs existante. Cela

peut se produire parce que la valeur découle du fait que d’autres l’utilisent aussi - comme le

téléphone - ou de la réticence des gens à supporter les coûts de transition. Par exemple, vous

pourriez préférer utiliser Excel, Python ou un clavier QWERTY non pas parce qu’ils sont les

meilleures options sur le marché, mais principalement parce qu’ils sont devenus des standards

dans la société, et si vous deviez passer d’un emploi à un autre, il y a de fortes chances que

la nouvelle entreprise vous demande également de travailler avec ces produits David (1985).

Ce second cas implique principalement des biens où il y a une phase d’apprentissage - comme

apprendre à coder en Python, apprendre à utiliser les raccourcis et les fonctions, ou apprendre

la mémoire musculaire pour savoir où se trouvent les touches sur le clavier.

En revanche, la deuxième explication du succès d’un OSN, ou du moins les leviers qu’il peut

e↵ectivement utiliser pour se di↵érencier de ses concurrents, est moins étudiée en économie,

principalement parce qu’il s’agit d’une méthode de di↵érenciation relativement nouvelle qui a

émergé avec les OSN à la fin des années 2000. Nous montrerons que la plupart des choix qu’un

OSN fait pour définir les règles de sa plateforme peuvent être traduits en règles qui génèrent

l’objet réseau lui-même. Par conséquent, nous pouvons étudier de nombreuses politiques que

les entreprises prennent en montrant comment elles impactent la structure du réseau de l’OSN,

puis en étudiant les impacts de la structure du réseau sur des processus tels que la di↵usion de

l’information ou la coordination pour s’engager dans une action collective. Cela, à son tour, aide

à comprendre quels OSN pourraient être plus attractifs parce que, d’un point de vue objectif,

ils sont plus e�caces pour certaines tâches. Ce travail fera l’objet du dernier chapitre de cette

thèse.

Enfin, il est important de reconnâıtre que certains OSN se sont spécialisés dans des objectifs

spécifiques. LinkedIn est utilisé pour partager sur la vie professionnelle, tandis qu’Instagram

se concentre sur les photos. Ces spécificités donnent lieu à des comportements di↵érents de la

part des individus en fonction de l’OSN qu’ils utilisent. Nos modèles viseront à s’adapter en
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conséquence.

À mesure que l’apprentissage social s’adapte à de nouveaux cadres, avec des personnes

communiquant et observant les autres en ligne autant - sinon plus - qu’hors ligne, nous visons

à nous adapter en conséquence, en proposant une vision nuancée et détaillée de l’apprentissage

social en ligne, principalement en permettant aux réseaux sociaux de se former de manière

endogène sous les contraintes des plateformes, et en reconnaissant l’existence de forces puissantes

telles que les algorithmes de recommandation ou les influenceurs.

0.15 Plan de la thèse

Le chapitre 2 commence la thèse en se demandant si l’apprentissage social est le meilleur

comportement disponible dans un contexte d’incertitude où les agents consomment des biens

d’expérience. Le chapitre 3 adapte le modèle aux problèmes en ligne tels que l’existence de

publicités d’influenceurs ou les systèmes de notation collaborative. Le chapitre 4 tente de cap-

turer le rôle des influenceurs et des algorithmes dans les OSN pour la dynamique des opinions,

en mettant l’accent sur la polarisation. Enfin, le chapitre 5 démontre comment les protocoles

de réseau modifient les structures de réseau et, par conséquent, les dynamiques d’apprentissage

social sur ces structures.

Les sections suivantes fourniront un aperçu complet de chaque chapitre et des méthodologies

employées tout au long de cette thèse.

0.16 Chapitre 2

Ce chapitre explore les défis de la modélisation du comportement des consommateurs, en par-

ticulier lorsqu’ils choisissent parmi des options inconnues à travers des essais répétés. Nous

soutenons que les individus utilisent diverses méthodes d’apprentissage et qu’il peut ne pas

exister de stratégie ”optimale” unique.

En nous concentrant sur les biens d’expérience, où la consommation elle-même procure un

apprentissage, nous proposons un modèle d’apprentissage par renforcement multidimensionnel.

Ce modèle capture la manière dont les agents apprennent non seulement à choisir des produits

e�caces, mais aussi à a�ner leurs processus de prise de décision au fil du temps.

Ainsi, les agents ont le choix entre apprendre à propos du meilleur produit par apprentissage

par renforcement individuel ou par apprentissage social, en utilisant leurs réseaux sociaux pour

obtenir des recommandations et choisir en conséquence.

Nous proposons donc une vision di↵érente de l’apprentissage social. Ici, l’idée est similaire

à une simple règle empirique : les agents augmentent la probabilité de choisir à nouveau des
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options fortement rémunératrices par rapport à celles faiblement rémunératrices. Mais pour

choisir parmi les alternatives, nous permettons aux individus de choisir entre l’apprentissage

individuel ou social. L’influence des pairs n’est donc pas une obligation pour nos agents, qui

décideront d’utiliser les recommandations de leurs voisins uniquement s’ils en viennent à croire

que c’est un moyen plus e�cace d’obtenir les meilleurs biens. De plus, nos agents n’observent

pas l’intégralité des décisions ou des résultats de leurs voisins, mais choisissent seulement l’un

d’entre eux.

Nos résultats révèlent qu’un modèle intégrant à la fois l’apprentissage individuel et social

surpasse de manière significative un modèle limité à l’apprentissage individuel. Cela met en

évidence l’impact positif de l’apprentissage social, même lorsque les individus manquent de

connaissances préalables sur les options disponibles.

Le bénéfice de l’apprentissage social semble provenir des recommandations portant des in-

formations implicites sur les options préférées. Cependant, l’apprentissage individuel présente

également des avantages, permettant à certains agents de découvrir rapidement de bons choix.

Néanmoins, l’apprentissage individuel comporte un risque plus élevé, car les individus peuvent

se retrouver coincés sur des options sous-optimales.

Ainsi, bien que l’apprentissage social ne conduise pas à des choix parfaits pour tous les

agents, il assure une performance constante à un niveau élevé. Nous explorons également le

rôle des niveaux de curiosité optimale, qui permettent aux agents d’explorer su�samment avant

de s’engager dans un choix.

Enfin, le modèle intègre un élément de confiance, où les agents apprennent à identifier les

sources de conseils fiables au sein de leur réseau social. Cet élément améliore la performance

globale et conduit à des structures de réseau intéressantes, certains agents devenant des figures

centrales pour les conseils.

0.17 Chapitre 3

Ce chapitre examine l’impact d’Internet sur la prise de décision, en particulier lors du choix de

biens d’expérience - des produits dont la valeur est incertaine jusqu’après l’achat. Nous nous

concentrons sur la manière dont les interactions en ligne, y compris les systèmes de notation en

ligne et les influenceurs, influencent les choix individuels et les résultats dans de telles situations.

Ici, nous utilisons le même modèle que dans le chapitre 2, avec des individus ayant la possibilité

d’apprendre à choisir les meilleurs biens soit par apprentissage social, soit par apprentissage

individuel. Nous l’étendons en ajoutant la présence d’influenceurs, en modifiant la structure du

réseau et en le comparant à un modèle avec des avis en ligne agrégés.

La recherche explore les avantages potentiels de l’apprentissage social, où les individus ap-
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prennent des expériences des autres, par rapport à l’apprentissage individuel par essais et er-

reurs. Internet facilite l’apprentissage social en favorisant les communautés en ligne et les

plateformes comme les systèmes de notation. Cependant, l’e�cacité de ces systèmes peut être

limitée par la diversité des préférences des utilisateurs. Les avis agrégés peuvent ne pas refléter

fidèlement les besoins individuels, soulignant l’importance de considérer la structure des inter-

actions en ligne et les limitations potentielles de s’appuyer uniquement sur des informations

agrégées.

En outre, ce chapitre se penche sur le rôle des réseaux sociaux en ligne et des influenceurs

en ligne. Ces réseaux peuvent connecter des individus ayant des goûts similaires, ce qui peut

conduire à des décisions plus éclairées. Cependant, l’action des influenceurs en ligne peut

être préjudiciable, en particulier pour les biens de qualité moyenne. Les individus peuvent

être influencés par des endorsements sans explorer pleinement les options alternatives, risquant

ainsi de passer à côté de choix supérieurs. Cet e↵et est le plus prononcé dans les réseaux avec

des structures présentant une attache préférentielle, que ce soit dans des cas extrêmes (réseaux

étoilés) ou dans des contextes plus réalistes comme les réseaux sans échelle (courants sur les

plateformes en ligne). Nous avons également constaté que certaines structures sont beaucoup

moins impactées par les influenceurs. C’est le cas des réseaux de type ”Small-World”, des

structures présentant une faible longueur de chemin moyenne et une forte cohésion.

Dans l’ensemble, ce chapitre suggère que, bien qu’Internet o↵re des outils prometteurs

pour améliorer la prise de décision, une évaluation critique et une approche prudente vis-à-

vis de l’influence en ligne sont cruciales pour naviguer dans les complexités du choix des biens

d’expérience à l’ère numérique. En fin de compte, les interactions sociales avec des individus

de confiance pourraient être la stratégie la plus e�cace pour prendre des décisions éclairées

dans de tels contextes. Cependant, l’e�cacité de ces interactions, et l’influence d’Internet dans

son ensemble, dépend de facteurs tels que la distribution des préférences des utilisateurs et

la conduite éthique des influenceurs en ligne, ce qui peut ne pas toujours être idéal dans des

scénarios du monde réel. Cette recherche contribue à une compréhension plus approfondie de

ces défis et des avantages et inconvénients potentiels des interactions en ligne dans le domaine

de la prise de décision pour les biens d’expérience.

0.18 Chapitre 4

Ce chapitre examine les interactions complexes entre di↵érents groupes d’utilisateurs sur les

réseaux sociaux en ligne (OSN), en se concentrant particulièrement sur la relation entre les

aspirants influenceurs et la population générale des utilisateurs. Nous révélons un système

dynamique où les deux groupes influencent le comportement de l’autre.
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Les utilisateurs réguliers partagent et discutent principalement de leurs opinions, ce qui peut

potentiellement conduire à une polarisation accrue ou à un plus grand consensus sur des sujets

spécifiques. Les aspirants influenceurs, quant à eux, partagent stratégiquement du contenu pour

maximiser leur succès en ligne. Fait intéressant, leur présence semble contrer la formation de

points de vue extrêmes, empêchant à la fois le consensus complet et la polarisation complète.

Nous allons au-delà de la compréhension traditionnelle du succès dans les réseaux en ligne

en identifiant les facteurs clés qui le favorisent pour les aspirants influenceurs. Le facteur le

plus significatif semble être une combinaison de deux éléments : des e↵ets de bouche-à-oreille

forts parmi les utilisateurs réguliers, où ils partagent des informations sur les influenceurs qu’ils

suivent, et un nombre limité d’influenceurs que chaque utilisateur suit. Cette combinaison

unique crée une ”dépendance au sentier” pour le succès précoce.

En utilisant notre modèle, nous avons exploré les e↵ets potentiels de divers algorithmes de

plateforme sur l’engagement des utilisateurs. Dans le débat en cours sur le rôle des OSN dans

la polarisation sociétale, certains soutiennent que les algorithmes sélectionnent intentionnelle-

ment du contenu aligné avec les opinions existantes des utilisateurs. Cependant, notre modèle

démontre que de tels algorithmes pourraient potentiellement réduire la polarisation et même

conduire à une distribution plus homogène des croyances au sein de la population, à condition

que les utilisateurs restent ouverts à des points de vue diversifiés.

Cette découverte s’aligne avec des études récentes examinant la polarisation sur des plate-

formes comme Facebook lors de l’élection américaine de 2020, qui ont montré une influence

algorithmique minimale sur la polarisation. Cela suggère la nécessité d’explorer des explications

alternatives pour la montée observée de la polarisation sociétale. Des études de Bakshy et al.

(2015) et Andris et al. (2015), par exemple, soulignent le rôle du comportement des utilisateurs

eux-mêmes dans la limitation de l’exposition à des points de vue divergents, indépendamment

des algorithmes des plateformes.

Nous reconnaissons les domaines potentiels pour de futures recherches, notamment en incor-

porant des éléments liés à la propagation de la désinformation et en permettant des connexions

dynamiques entre les utilisateurs réguliers pour augmenter la complexité du modèle et refléter

plus précisément les scénarios du monde réel. Cette recherche contribue de manière significative

à notre compréhension des interactions multiples dans les environnements sociaux en ligne et

fournit des informations précieuses pour des investigations ultérieures.

0.19 Chapitre 5

Dans ce dernier chapitre, nous visons à élucider la corrélation entre les politiques et règles

établies par les réseaux sociaux en ligne - appelées protocoles de réseau - et les expériences des
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utilisateurs. Nous soutenons qu’au-delà des e↵ets de réseau qui déterminent en partie le succès

d’une plateforme, les protocoles qui façonnent l’architecture du réseau jouent un rôle significatif

dans divers processus pilotés par les utilisateurs sur ces réseaux.

Pour tester cette hypothèse, nous commençons par définir les protocoles de réseau. Nous

nous concentrons sur trois aspects di↵érents : la nature des liens autorisés par la plateforme,

qui peuvent être dirigés ou non dirigés ; la capacité des utilisateurs à créer et utiliser des sous-

communautés sur la plateforme ; et le type d’algorithmes de recommandation qui déterminent

les connexions (amis réels, individus ayant des intérêts similaires ou agents très connectés).

Nous générons ensuite les diverses combinaisons de ces règles, qui se traduisent par des règles

de génération de réseau.

Nous observons des variations significatives en comparant ces structures en termes de longueur

de chemin moyenne ou de regroupement - comme prévu par les règles de génération. L’étape

suivante consiste à tester si ces variations conduisent à des expériences utilisateur di↵érentes.

Pour ce faire, nous nous concentrons sur des expériences susceptibles de se produire sur un

OSN et pour lesquelles les utilisateurs peuvent avoir une fonction de préférence objective. Plus

précisément, nous examinons l’e�cacité du réseau pour la di↵usion de l’information, les dy-

namiques d’action collective et l’e�cacité du réseau à connecter les chercheurs d’emploi avec

les o↵reurs d’emploi.

Dans l’ensemble, l’hypothèse selon laquelle les protocoles de réseau, qui influencent la struc-

ture du réseau des OSN, ont également un impact sur les processus courants se produisant dans

ces médias, est théoriquement validée par nos modèles et simulations.

Il y a une forte hétérogénéité dans les structures les plus performantes et les moins perfor-

mantes, que nous examinions la di↵usion de l’information, l’e↵et de levier des actions collectives

ou la performance d’un marché du travail. Ce qui est encore plus intéressant, c’est qu’une car-

actéristique améliorante pour un processus peut ne pas l’être pour un autre.

Cette recherche met en évidence une opportunité pour les plateformes OSN de réévaluer leurs

objectifs et de réviser les protocoles de réseau en conséquence. Les utilisateurs en bénéficient

encore plus, car ils peuvent alors choisir la bonne plateforme pour leurs besoins spécifiques.

Une sélection stratégique peut augmenter considérablement les taux de réussite. Par exemple,

nos modèles suggèrent que les plateformes comme Instagram ou Twitter, avec des structures

plus proches des DSN, pourraient ne pas être idéales pour les recherches d’emploi. À l’inverse,

des plateformes comme Facebook ou Reddit, qui facilitent la formation de sous-communautés,

peuvent être des outils puissants pour mobiliser l’action collective.
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0.20 Méthodologie

En plus de l’analyse de réseau, qui est à la fois un objet d’étude et un ensemble d’outils

pour comprendre la structure des interactions, les quatre chapitres utilisent des simulations

numériques, également appelées modèles basés sur les agents (ABM), pour étudier les modèles

que nous imaginons.

Un modèle basé sur les agents définit une population d’agents autonomes à qui l’on donne un

ensemble de règles définissant leur comportement, donc leurs réponses aux situations possibles

auxquelles ils pourraient être confrontés. Les agents peuvent représenter des individus, des

institutions, des entreprises ou toute entité agissant indépendamment. De plus, un ABM n’est

pas limité à un type d’agent, mais permet d’étudier la coexistence de di↵érents types d’entités,

comme les entreprises et les États, ou les consommateurs et les entreprises, par exemple.

De plus, les ABM permettent à nos agents d’interagir entre eux, et ainsi nous pouvons

étudier les implications de ces interactions pour les individus, mais aussi pour les variables au

niveau de la population. L’ingrédient final important pour un ABM est la possibilité de simuler

le temps, ce qui est crucial si nous voulons comprendre les dynamiques.

Un ABM est donc une définition d’une population, un ensemble de règles qui définissent les

objectifs, les comportements, les réactions et les conséquences des interactions de chaque agent

de cette population - avec l’ensemble des règles de chaque agent pouvant être di↵érent de celui

des autres - mais aussi des interactions existantes (ou potentielles) entre les agents, et de la

séquence temporelle dans laquelle notre population évolue.

Ces types de modèles sont très pratiques pour établir un pont entre le comportement in-

dividuel et le comportement agrégé. Cette interaction du niveau micro au niveau macro peut

amener les ABM à être construits avec di↵érents objectifs en tête.

Nous pouvons les utiliser soit pour comprendre le monde que nous observons - nos données

- en cherchant les comportements et interactions adéquats de nos agents individuels, soit pour

les construire afin d’observer le monde qui se manifeste lorsque nous émettons des hypothèses

sur les comportements et interactions probables des agents dans un contexte donné.

Imaginez que vous ayez soit une collection d’os, soit l’image d’un corps en mouvement et

que vous deviez recréer le squelette fonctionnel de ce corps. Dans la première philosophie, vous

choisissez l’image du corps en mouvement et déduisez la place et les interactions correctes des

os de manière à correspondre à votre image. Cela reflète l’approche consistant à créer des ABM

basés sur des observations empiriques, où chaque ”os” ou comportement d’agent est positionné

pour correspondre à la dynamique que nous observons dans le monde réel. Dans la seconde,

vous choisissez la collection d’os et les arrangez de la manière la plus cohérente sans avoir

l’image du corps en mouvement en tête. Cela revient à développer des ABM basés sur des



cadres théoriques, arrangeant les comportements et interactions des agents de manière logique

pour explorer les phénomènes émergents potentiels.

Dans les deux méthodes, vous jouez avec les os. Dans la première, pour qu’ils correspondent

au corps. Dans la seconde, pour qu’ils s’articulent logiquement. Les deux méthodes sont utiles,

et les deux méthodes ont des dangers. Vous pourriez vouloir tellement que vos os correspondent

à votre image que vous ne pensez pas assez aux articulations logiques de ceux-ci, et votre corps

pourrait ne pas marcher longtemps. Mais avec l’autre philosophie, vous pourriez exclure trop

du vrai corps pour le respect de la logique, et le corps que vous créez pourrait marcher, mais il

pourrait être hors de ce monde, ne représentant pas le vrai corps.

Les modèles de cette thèse ont été principalement construits en choisissant les os et en les

articulant logiquement, visant à trouver un équilibre entre la cohérence théorique et la fidélité

empirique, s’e↵orçant de refléter le familier tout en découvrant des idées qui pourraient ne pas

être immédiatement apparentes à partir de l’observation seule, espérant représenter un corps

qui nous est familier.
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Chapter 1

Experience goods, Reinforcement

Learning & social networks

This paper explores decision-making processes in experience goods markets, emphasizing how

agents learn to choose in situations where value is uncertain until after consumption. The study

examines agents employing individual and social learning strategies within a multi-dimensional

reinforcement learning framework, particularly in scenarios of repeated choices. Agents in

our model gather insights from personal experiences and through recommendations within

their social networks. The simulation results highlight the benefits of combining individual

and social learning. While social learning yields consistent outcomes across agents, individual

learning o↵ers the possibility of higher rewards but also greater risks.

A notable finding of this research is the development of asymmetrical influence patterns in

social networks. This phenomenon refers to a tendency where certain agents become dispro-

portionately influential in guiding others’ choices, leading to a centralization in how advice is

sought and followed within the network. This aspect of the model sheds light on the nuances of

social dynamics in decision-making processes. The study enhances our understanding of con-

sumer behavior in markets for experience goods, providing insights into the complex interplay

of individual experiences and social influences in shaping economic decisions.

1.1 Introduction

Economic environments often require agents to make decisions in the face of uncertainty. Choos-

ing optimally in these circumstances poses a significant challenge, and agents may adopt various

strategies to cope. In instances where the situation occurs only once, opportunities for learning

from experience are minimal. However, in contexts where agents repeatedly encounter uncer-
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tainty, it is reasonable to assume that they will engage in a learning process. This process

encompasses not only the strategies employed to acquire knowledge — such as consulting peers

or using personal experience — but also the progressive refinement of decision quality. As the

agent learns, they become more adept at discerning the most e↵ective actions to take.

To make our point clearer, let’s consider the example of experience goods. These goods are

unique because their intrinsic value cannot be assessed until after they have been consumed.

Consequently, when an agent faces the decision to purchase an experience good, there is inherent

uncertainty regarding the optimal choice. In a scenario involving repeated purchases, while the

consumer may opt for the familiar item, thereby knowing its expected value, the agent remains

unaware of potentially better alternatives that may be available. This situation is often referred

as a multi-armed bandit. However, as the details of our model will point out later, the situation

described is slightly di↵erent in the way agents behave.

Therefore, there is a trade-o↵ between choosing a known option and exploring unknown

alternatives that might lead to greater utility than the familiar choice. The assumption of this

work is that in such scenarios, individuals are learning not only to select the right option from

a pool of alternatives but are also discerning which decision-making method yields the most

utility. Consider the example of choosing a doctor. In countries with a universal healthcare

system, all doctors charge the same consultation fee; thus, price cannot serve as an indicator of

quality. There is no definitive method for making the best choice under these circumstances,

and people might employ various approaches: selecting the nearest doctor, choosing the first

one that appears in an internet search, or asking acquaintances for recommendations, to name

a few. Then, once a doctor is chosen, the patient evaluates the medical consultation based on

the utility received. This feedback prompts two questions: Am I satisfied enough to continue

seeing this doctor? And do I believe that the method I used to choose the doctor was the

most e↵ective? These two questions initiate two learning processes: one about finding the best

doctor, and the other about determining the most e↵ective method to find the best doctor.

Three foundational assumptions underpin the model presented: interactions are without

prices and without strategic games, and are conducted by individuals with bounded rationality

(Simon (1955)).

As discussed, many economic scenarios cannot be resolved through pricing mechanisms

alone, particularly when alternatives are priced similarly. This situation is common for many

experience goods, such as cultural products (books, cinema tickets, records), education, health-

care, or restaurants within the same market segment.

By ‘interactions without games,’ we mean situations where the agents, in this context con-

sumers, have no incentive to deceive or engage in behavior that would diminish the utility of

others. This scenario aligns with many experience goods due to the inherent nature of these
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products. An interaction between two consumers typically involves one recommending a prod-

uct to the other, based on their own experience. Consequently, there is little to no incentive to

recommend anything but the best option, as the recommending agent has already consumed the

good. Furthermore, in scenarios of repeated consumption, there usually exists a delay before

the good is consumed again. Thus, consumers recommend doctors or restaurants because they

have already patronized them and do not foresee an immediate need to do so again.

The bounded rationality of our agents is manifested in the way they make decisions and,

consequently, how they learn within this model. We propose that agents utilize reinforcement

learning in this environment. Reinforcement learning embodies the Law of E↵ect’ (Thorndike

(1927), which posits that behaviors yielding favorable outcomes are likely to be repeated in the

future, whereas those with detrimental outcomes are avoided. In our scenario, agents begin with

no prior knowledge about the available alternatives and gradually learn to identify the optimal

behavior (in this case, a consumption choice) over time. They improve by being a↵orded

opportunities to repeat choices, thereby exploring di↵erent alternatives. This form of learning

has been extensively examined by the behaviorist school of psychology. The significance of

reinforcement in non-conscious learning has been established, notably by Thorndike (1927) and

Skinner (1965), for both animals and humans. Unlike conscious learning, where individuals are

aware of the learning process, reinforcement learning occurs without conscious awareness that

one’s actions are being influenced by past reinforcements. While humans are capable of various

conscious learning mechanisms, these processes are cognitively demanding, and many of our

actions are still largely governed by reinforcement learning (Brenner (2006)).

In the field of economics, reinforcement learning has primarily been applied in the context

of game theory (Erev and Roth (1998)) and to explore social dilemmas and cooperation (Macy

and Flache (2002)). Significant contributions that incorporate this assumption about agents’

economic behaviors include the work of Cross et al. (2008), which develops a model where firms

are depicted as learners; Arthur (1991), who uses a similar principle to devise economic agents

that act like human agents’; and Kirman and Vriend (2000), who models the Marseille fish

market with both buyers and sellers engaging in reinforcement learning.

As previously mentioned, our objective extends beyond merely observing the outcomes

when agents are endowed with a learning mechanism to select from a range of options. We are

equally interested in exploring the consequences of agents learning about their decision-making

methods.

To this end, we introduce an alternative method for selection: social learning. Social learning

entails situating the agents within a network that captures their social interactions.

More specifically, agents will have the opportunity to select a good based on the recommen-

dations of direct neighbors—essentially, their acquaintances—during each iteration.
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Social learning in the literature mainly involves DeGroot learning or Bayesian learning (see

Golub and Sadler (2017) and Bikhchandani et al. (2021) for extensive and recent literature

reviews). Both methods are di↵erent than what we propose here. DeGroot learning involve

summing information from plural neighbors, and Bayesian learning updating prior beliefs, which

therefore imply having an initial belief to begin with. By contrast in the scenario we study here,

we define social learning as following the recommendation of one neighbor at a time.

The influence of social networks on behavior has been a subject of interest in various fields

starting from the middle of the 20th century with the work of Katz and Lazarsfeld (2017)

exploring the role of influencers on voter’s decisions. Since then much progress has been made

on finding where these influences take place and on quantifying them. Notably, Christakis

and Fowler (2007, 2008) have shown that health behaviors were strongly related to our social

networks. The way these behaviours propagate through our social networks has then been the

subject of interest of Centola (2010) who highlights the complexity of this di↵usion process,

often requiring more than one neighbor.

Regarding the ties between consumption and social networks, we can highlight the work

on path dependence and increasing returns (Arthur (1989), David (1985), Cowan (1991), Katz

and Shapiro (1985)) which explain how the adoption of some technologies can be closely related

to the number of consumers already using the technology. This stream of literature directly

involves a consumption behavior modified by other buyers, hence implying a network e↵ect. It

is nevertheless limited in the way consumers interact and are influenced by others. It does not

address the role of individual position or global structure on technology adoption.

Otherwise mainstream economics has generally assumed consumers with fixed tastes un-

correlated to other’s consumption. Some authors have however noticed it might not be totally

true. Leibenstein (1950) states that some activities are more desirable when shared with others.

Smith (1937) and Veblen (2017) observe that wealthy agents enjoy a consumption behavior that

makes them recognizable as such and Marshall (1890) points out that agents in general do wish

for a consumption behavior that makes them di↵erent than others.

We should also notice works made on conformity and fad behavior (See, for example Baner-

jee (1992), Bernheim (1994)) and on the evolution of patterns of consumption (Granovetter and

Soong (1983)). It led Cowan et al. (1997, 2004) to develop a model of demand with interde-

pendence among consumers where we can distinguish three groups of reference for consumers:

a peer group, a contrast group, and an aspirational group. The idea that consumers make

choices to di↵erentiate or to send signals to others has been confirmed by Gasana (2009) for

consumption of clothes and automobiles in the US market and by Burgiel et al. (2017) with

Polish consumers. Overall, there is more and more empirical evidence for network e↵ects on

consumption (see Bailey et al. (2022),De Giorgi et al. (2020),Agarwal et al. (2021)).
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All of these di↵erent approaches involve one agent’s decisions, behaviour or utility being

a↵ected by the actions of others.

Our model will then approach the case of repeated choice in experience markets when agents

are allowed to use either their own learning mechanism, which will be modelled as reinforcement

learning, or through the use of their social networks. They then also learn, again through a

reinforcement mechanism, about which method yields the most utility. There are thus two

layers of reinforcement learning.

Therefore, we place agents on a network structure and allow them to interact with their

neighbors to make repeated choices in experience goods market. Through repeated choices and

learning from experience, agents learn which products are the best to pick. Our model also

allows agents to choose between individual and social learning, allowing them to explore the

benefits of both approaches and learn about how to learn in general. By combining these two

types of learning, our model o↵ers a novel approach to studying consumer decision making in

markets with multiple similarly priced options.

The simulations of the model described below give results about whether individual or social

learning is preferable and about the naturally emerging proportion of each type of learners.

We also explore the role of curiosity and trust for optimal decisions both at individual and

population levels.

1.2 The Model

1.2.1 Agents & Products

We treat a fixed population of N agents each of which is repeatedly choosing which of 10

products to consume. Consumption lasts one period so at each period every agent repeats the

decision. While the 10 alternatives all answer the same need, they don’t all produce the same

payo↵/amount of satisfaction. Each product is associated with a given payo↵, which remains

the same for the whole simulation. Payo↵s vary on a discrete scale from 1 to 10 and we call

products by the level of payo↵s they reward (so product 6 gives a payo↵ of 6 to the agent for

example). Tastes are homogeneous so each product delivers the same payo↵ for everyone in the

population and everyone prefers product i to product i�1. Initially, agents have no information

on the utility each product delivers; they only know that there are 10 products. Consequently,

at the start of the simulation, agents have no way of discerning which product could give the

best payo↵s.
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1.2.2 Interaction

Agents of our population will be able to interact among themselves. By interaction, we mean

asking or giving advice on which product to choose for the current stage of the simulation.

When giving advice, the agent will simply tell which product it would have chosen for the

current round. Agents always answer solicitations from other agents. An agent who receive

advice always follows it.

The interaction process takes place on a network structure that we define as follows. We

use an undirected graph G(V,N) that represents the ties between individuals. The nature of

these ties captures the possibility for any of two connected agents to advise on buying a good or

service. So this type of tie can involve friendship, family, or colleagues but it might be harder

to exist between an employer and its employee for example.

Here V = {1, ..., n} is the set of agents and N = {Ni, i 2 S} the correspondence specifying,

for each i 2 V , the neighborhood Ni of i. Formally Ni = {j 2 V � {i}|d(i, j) = 1} and d(i, j)

is the length of the shortest path between node i and j. A direct connection implies d(i, j) = 1

and is the unique configuration that allows interaction between the two nodes.

To keep a coherent interaction scheme, advice always comes from someone who is, at least

for the current round, using its own experience to choose a good. We want to avoid a situation

where i asks neighbor j about which doctor to visit, j answers doctor A, but itself asks k

and, following k’s advice, visits doctor B. Instead, if i asks j, and j itself asks k, and k is an

individual learner, then k’s advice flows back to both j and i. The rare but problematic case

where i asks j, who asks k, who itself asks i (creating a cycle) is resolved by forcing one among

the three to become an individual learner for the round.

1.2.3 Learning

As agents initially have no information and will have to repeat consumption choices, they need

to be able to learn through time. To this end, we implement a version of the Bush & Mosteller

Bush and Mosteller (1955) model of reinforcement learning and its specification in Brenner

Brenner (2006).

We write A = {1, ..., 10} the set of available products from which agents will have to choose.

At any time an agent’s opinions are represented by a vector of probabilities upon the set

of alternative products. Formally we give a probability p(a, t, i)(0  p(a, t, i)  1) to each

alternative a 2 A at each time step t for every agent i 2 N . We write the vector p(t, i)(=

(p(a, t, i))a2A,i2N ) with
P

a2A p(a, t, i) = 1.

The probability vector will evolve through the simulation as the agent experiences di↵erent

alternatives and revises the probability of being picked of each product. The way it evolves
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is through positive reinforcement so payo↵s increase the chance of choosing the product again

in the future, with increases proportional to the value of payo↵s. Formally the change in

probability p(a, t, i) to choose the same product as in t at time-step t+ 1 is given by :

p(a, t+ 1, i) = p(a, t, i) +

8
><

>:

⌫(
Q
(a, t, i)) ⇤ (1� p(a, t, i)) if a = a(t)

�⌫(
Q
(a, t, i)) ⇤ p(a, t, i) if a 6= a(t)

with a(t) the product selected in t, ⇧(a, t, i) the payo↵ of product a and ⌫ a parameter that

controls how fast agents respond to new experience. Therefore, the idea is that each product

chosen by the agent has a positive impact on the probability to choose it again1, and since

the sum of all probabilities is equal to 1, it also hurts the probability of choosing every other

product. Information about past choices are only contained in the probability vector which is

both the only element of “memory” and the only element used to make decisions 1.

We use the model with ⌫(⇧) = ⌫ ⇤ ⇧ and only positive values of ⇧. Alternatives with low

payo↵s will only marginally modify the probability vector in contrast to high payo↵s alternatives

which can greatly modify the vector. The level of impact of each alternative depends on the

level of the ⌫ parameter. ⌫ is a critical parameter in this model as it controls the strength

of reinforcement at each time step. Very high levels of ⌫ will imply high modification in the

probability vector and choosing an alternative only a few times can produce a lock-in e↵ect to

this alternative. By contrast very low levels of ⌫ will never allow the agent to learn. It should

also be noticed that in order to keep probabilities between 0 and 1, ⌫ must not be set higher

than 1/(maximum payo↵).

For example if we have four alternatives, each equally considered by the agent i at t = 0.

Each rewarding 10, and ⌫ = 0.08. The reinforcement for any of the four options if picked after

the first round will be of : p(a, t + 1, i) = 0.25 + 0.08 ⇤ 10 ⇤ (1 � 0.25) = 0.85 and every other

options that was not picked : p(a, t + 1, i) = 0.25 � 0.08 ⇤ 10 ⇤ 0.25 = 0.05. In only one time

step, the chance to pick an other alternative than the firstly picked is already very small. If

picked a second time, the probability would increase to 0.97. Hence we can see that lock-in can

happen quite fast if the level of ⌫ is too high. At the other end, setting ⌫ to a very low level

has the opposite e↵ect : the probability vector is only slightly impacted when an alternative

is picked, and the learning process either doesn’t happen or happens too slowly for agents to

1
We know that negative reinforcement could exist in a consumption perspective. In this model, we assume

that all alternatives at least minimally answer the need motivating the buying act from the consumer. One way

to understand it is that even if you’re buying something and you’re not totally satisfied, you still don’t know

what the other alternatives could give you. So the probability to choose it again increase because you’re now

familiar with this product compared to the others. We did test the model with negative reinforcement learning,

and it only slightly slowed down the process that we describe later.
1
The learning mechanism is therefore di↵erent than in the multi-armed bandit where the prior of each product

is only a↵ected when the given product is selected and experienced. With reinforcement learning, each time you

pick an alternative, the probability to choose again this good is modified, but so as the probabilities to choose

every other goods.
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benefit. Figure 1 an illustration of the learning process for both very high and very low levels

of ⌫. When its too low (in blue), agents keep moving from one alternative to an other. By

contrast when its too high (in red), the agent settles on one option too fast to learn about

better options. These opposite e↵ects are both cases we want to avoid in our model.

Figure 1.1: evolution of product choice for one agent other two runs. A run with a very low
level of ⌫ (in blue), and one with a very high level of ⌫ (in red).

1.2.4 Dynamics & Learning methods

At first, agents are placed on a network structure that defines their neighborhoods. Each agent

must choose a product at each round. To do so, in the general model, they can either use their

product choice probability vector and so rely on their own experience (which will be limited in

the early phase of the simulation) or ask advice at random from one of their neighbors. When

they receive advice, they follow it blindly to choose.

Once everyone has picked a product, they get the associated payo↵ and can learn and gain

experience following the reinforcement learning process described above. They learn about

products, (and slightly or strongly increase the chance of choosing them again in the future

depending on the level of payo↵) but they also learn about their social behaviors.

The idea is that because agents have chosen either to rely on their experience or to ask a

neighbor, they can now learn about which behavior is the most rewarding. If each time I took

a decision on my own I was badly rewarded, I might start to ask my neighborhood about what

they would pick. If my payo↵s then increase, I will reinforce the pro-social behavior instead of
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remaining an individual learner.

We then have a set Bi = {individual, network} of possible social behaviors to adopt for agent

i. As for the products, we give a probability p(b, t, i)(0  p(b, t, i)  1) to each behavior b 2 Bi at

each time step t. We also write the vector p(t, i)(= (p(b, t, i))b2B,i2N ) with
P

b2B p(b, t, i) = 1.

Finally, the change in probability p(b, t, i) to pick the same behavior as in t in t+1 is given by :

p(b, t+ 1, i) = p(b, t, i) +

8
><

>:

⌫(
Q
(b, t, i)) ⇤ (1� p(b, t, i)) if b = b(t, i)

�⌫(
Q
(b, t, i)) ⇤ p(b, t, i) if b 6= b(t, i)

With ⇧(b, t, i) the reward associated with the social behavior adopted in t, which is equal to

the payo↵ of the product picked at that round: ⇧(a, t, i). As for the product reinforcement

process, ⌫(⇧(b, t, i)) = ⌫ ⇤⇧(b, t, i)1.

Once all agents have updated both product-choice and social behavior vectors, a new time-

step starts and the model runs until the desired number of rounds.

1.3 Results

1.3.1 The role of Interaction

The initial outcome we examine is the contrast between two scenarios: one where agents can

take their decisions based on social or individual learning and another where they operate in

isolation, basing decisions solely on individual experience.

In the interactive scenario, agents are embedded within a stochastic network structured

according to the Erdős-Rényi model Erdős et al. (1960) with a connectivity density of 10

percent, meaning each agent has a 10 percent chance of being connected to any other agent2

For both the interactive and non-interactive models, our simulations incorporate a total of 500

agents. The learning parameter ⌫ is consistently set at 0.02 for both models corresponding to

20% of its maximal possible strength.

1⌫ is not necessarily the same in the two learning processes. We could imagine setting a high level of ⌫ in

the product choice process but a low level of ⌫ for the social learning process for example.
2
We only display results for random network but changing the structure to ones with fat-tail degree distri-

butions, or to ones with high cliquishness and low average path length has no e↵ect on the dynamics observed.
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Figure 1.2: Left: Distribution of product choices at last round (150) over 10 simulations of the
model. Right: Evolution of mean aggregate payo↵s for each round, over 10 simulations.

Yellow represent results for the model with social and individual learning and red the model
with only individual learning.

In the comparative analysis, the model permitting both social and individual learning

exhibits a marked advantage, as a substantial proportion of the population learns to select

the highest-reward options, outperforming the model that restricts agents to individual learn-

ing. Dynamically, both models display analogous trajectories: a rapid and e↵ective learning

phase initially, which then tapers o↵ to a slower learning rate. Despite these similarities, the

interaction-enabled model achieves higher levels of aggregate payo↵s from the outset, specifi-

cally within the first 20 rounds. This advantage is evident in the final round, where over 3
5 of

the agents successfully identify the optimal choice, compared to approximately 2
5 in the model

without interaction. Consequently, a larger fraction of the population, when interaction is not

present, settles for less optimal selections.

In the model without interaction, agents initially make random product selections due to

a lack of information to guide their choices. In the early stages, they explore di↵erent options

and can quickly dismiss the five least rewarding products because the reinforcement received

is insu�cient for any one of them to become a dominant choice. However, for the five most

rewarding options, the reinforcement is significant enough that some agents might start to

consistently choose less optimal products like the fourth or fifth most rewarding ones, due to

stochastic repetition. This phenomenon, known as the ‘lock-in e↵ect,’ varies in its onset with

the level of the ⌫ parameter. With ⌫ = 0.02, the model balances exploration and exploitation:

agents explore at the start but are still likely to settle on a particular choice eventually. Con-

sequently, a significant number of agents fail to identify the most rewarding product, settling
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instead for sub-optimal choices.

The interactive framework markedly promotes the spread of recommendations for the best

products, allowing a significant number of agents to circumvent lock-in on sub-optimal goods.

The reason recommendations for the best products propagate first warrants a closer look. For

instance, if agent i fortuitously selects A, the top doctor in town, on their first try, the rewarding

experience increases the likelihood that A will be i’s recommendation to agent j in the next

round. This is because A’s high reward has substantially raised its standing in i’s probability

vector, indicating a recognition of A’s quality. In contrast, if i’s initial choice had been B, an

average doctor, the slight increase in B’s vector probability is reflective of an unremarkable

experience, making it less likely for i to recommend B again.

This creates a contamination e↵ect,’ where exposure to the best goods substantially increases

their promotion over others. As a result, more agents are introduced to these high-quality

options, reducing the chances of settling for less. Thus, the outcomes at an aggregate level are

considerably better than in models without interaction.

The reinforcement mechanism that operates within the recommendation system is crucial

for enabling agents to convey information about high-quality goods. When an agent makes a

recommendation to a neighbor, the suggestion is not based on their most recent selection or even

the one they have chosen most frequently in the past n rounds. Instead, the recommendation

reflects the choice they would likely make at that moment, which is determined by a probability

vector. Thus when an agent i is asked to recommend a good to j, it draws a good using the

probabilities in its vector and gives the result to j. This vector is continually adjusted through

reinforcement, ensuring that it represents the agent’s up-to-date preferences. It is this dynamic

aspect of the recommendation system that facilitates the spread of the most advantageous

alternatives.

1.3.2 Social and Individual Learners

Once we’ve established that the social interaction model was performing better than the no-

interaction one, we wish to understand the e↵ects of being either a social or individual learner

within the interaction model. Mainly we want to understand if one behavior is more rewarding

than the other, and whether one behavior gains more popularity than the other through the

simulation. To address this issue we stick with a random network structure, inside which 500

agents are allowed to communicate among their neighborhoods. The ⌫ parameter is still at a

20% level of its maximum potential.

Regarding the dynamics of the two behaviors, the population is split in two at the start,

with half starting as individual learners and half as social learners. This is logical as agents

don’t have any information at the beginning and choose randomly between the two. There is
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then a bit of variation within the first time-steps but only to, on average (for a few hundreds of

simulations), return to a 50-50% split of the population between the two types of learning. The

minimum number of social learners in the final round we found was 230 and a maximum of 270.

On average, agents switch learning methods 15 times during a simulation before locking-in one.

The mean standard deviation is around 10, indicating a fairly high heterogeneity in switching

behaviors from the agents.

Figure 1.3: Aggregate individual payo↵s for the total simulation, 150 rounds in each
simulation. the greatest achievable payo↵ being choosing product 10 at every round, yielding
an aggregate payo↵ of 1500. In red the density for individual learners, in yellow the one for
social learners 3. The plot display the distributions for one representative simulation of the

model

There’s a more interesting fact when we look at the distribution of individual aggregate

payo↵s over a whole simulation for both types of learners.1 As Figure 3 shows, the two dis-

tributions are quite di↵erent and this is confirmed with a Kolmogorov-Smirnov test (D =

0.496, p < 2.2e� 16).

What we see is that potentially, being an individual learner can permit an agent to reach

higher aggregate payo↵s, but also lower ones than with the social learning method. For in-

dividual learners, this behavior is easily explained by the lock-in e↵ect of the reinforcement

1
We define social and individual learners with the behavior they picked in the last round. As people lock-in

in one of both early in the simulation, this is equivalent to using the behavior they have chosen the most over

time.
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mechanism. If you’re able to find product 10 early in the simulation and lock in to it, you will

be able to reach almost the highest possible level of payo↵s during the simulation. But if you

lock in to least-rewarding alternatives, your payo↵s will be harmed for the rest of the simula-

tion. By contrast, social learners are all reaching very similar levels of payo↵s, but not as high

as the best performing individual learners. This can be explained by the process of di↵usion

of the best alternatives that take a bit of time to propagate to all social learners. Meanwhile,

social learners are sometimes being recommended low-rewarding goods.

It explains why, while the two sub-populations reach equivalent average aggregate payo↵s

(around 1340 for both), individual learning can be seen as a riskier behavior than social learning

from an individual point of view.

1.3.3 Curiosity

We have so far assumed a certain level of ‘curiosity’ in our agents. The issue they face—

navigating a pool of alternatives with unknown values—necessarily involves a trade-o↵ between

exploration and exploitation. This means agents must balance the search for better options

against the choice to settle for an alternative that appears to be satisfactory.

In this framework, ‘curiosity’ refers to the duration dedicated to exploring unfamiliar alter-

natives as opposed to exploiting those already known. This includes selecting previously untried

goods and reconsidering goods that didn’t initially seem optimal, even after encountering better

options.

To model varying degrees of curiosity, we manipulate the ⌫ parameter. As detailed in the

model description, the magnitude of ⌫ influences the reinforcement strength, thereby controlling

the exploration phase’s length before an agent commits to a specific good.

Thus, a low ⌫ value equates to weaker reinforcement, prompting agents to explore longer

before settling on a particular good. Conversely, a high ⌫ value results in stronger reinforcement,

leading to a quicker transition from exploration to exploitation of a chosen alternative.

Considering the reinforcement learning algorithm and the valuation of goods which span

from 1 to 10, the upper limit for the parameter ⌫ is set at 0.1. This represents the maximum

reinforcement strength. On the opposite end of the spectrum, the minimum level of curiosity

is equivalent to an absence of exploration, which would correspond to ⌫ = 0. In such a case,

agents would make their choices randomly in every round, essentially eliminating the learning

component of the model.
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Figure 1.4: Population Payo↵ levels at last round when we vary the level of ⌫. Maximum
possible being 5000. We do it for both the interaction and no-interaction model. N = 500,

R = 100.

The results show the clear benefits of learning and a certain level of curiosity. When we move

from 0 to 0.005, there is a steep increase in payo↵s, highlighting the importance of learning over

random choices. The peak value of ⌫ is relatively low, at around 0.015 for the model without

interaction and 0.025 for the model with interaction. Both models exhibit similar reactions to

variations of the strength parameter. Once the peak is reached, there is a gradual decline in

population-level payo↵s in the last round as the level of ⌫ increases.

There is no level at which the model without interaction outperforms the interaction model.

This graph also suggests the hypothesis that the interaction model is not simply a means

to ‘open’ social learners to new alternatives through interactions, which would imply a kind

of forced’ curiosity that distinguishes it from the no-interaction model. Rather, it involves the

elicitation of the best alternatives that propagate through the network of agents, enabled by

the reinforcement mechanism.

If interaction were merely adding a bonus level of curiosity to agents, then at the optimum

level of curiosity in this model, both interaction and no-interaction models should roughly

reach the same amount of payo↵s, but at di↵erent levels of ⌫. Instead, the peak performance
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reached by the interaction model is never attained by the no-interaction one, clearly indicating

a di↵erent mechanism at play.

1.3.4 Trust-based social interactions

So far we’ve only considered unweighted network interactions. Thus, a social learner will ask

any of its neighbor with an equal probability. Since our model makes the assumption of learning

agents, both about which alternative to pick and which method of learning to use, it would be

natural to also enable them to reinforce the probability to ask neighbors that have been giving

good advice in the past.

Introducing this third layer of reinforcement will raises two primary questions: Will it allow

social learners to perform better? And how will the network of interactions evolve once it’s

established that some connections are more utilized than others?

The method by which we enable agents to identify which neighbors to consult is consistent

with the approach taken for the other two layers of reinforcement learning. Specifically, agent i

increases its probability of consulting neighbor j based on the reward for that action, denoted

by the value of the good (ranging from 1 to 10). As a result, poor advice has minimal impact on

the probability vector representing the likelihood of choosing any direct neighbor. In contrast,

good advice significantly boosts the probability of selecting j in subsequent rounds.

While we don’t allow for agents to create or delete ties, this mechanism modifies the initial

network by leading it to become a directed and weighted one. In this network, the weight of

each connection can vary between 0 and 1, with these values indicating either a nonexistent

or maximum probability of the tie being activated, from the originating agent to the receiving

one.

This approach to curating social connections for guidance in uninformed scenarios can be

conceptualized as a form of trust formation, grounded in experience and feedback. As previously

discussed, the reinforcement learning equation from Bush & Mosteller has the potential to result

in a lock-in to a single alternative. In this context, such a process can be interpreted as trust

formation. Once an agent solidifies its choice on a neighbor j, it will unconditionally follow j’s

recommendations, even if j alters the advice it provides to i.

Performance

We first evaluate the performance of this model regarding aggregate payo↵s at last rounds, but

also from an individual perspective, mainly asking if social learners, now able to choose among

their neighbors, perform better than before.
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Figure 1.5: At each round we plot the aggregate payo↵s of the population for a representative
run. We show the evolution for 150 rounds in 3 di↵erent models: When there is no social
learning (in yellow), when there is social learning without weighting neighbors’ ties (in red) and
when we include the reinforcement of neighbors mechanism (in blue). ⌫ = 0.02, N = 500.

Figure 5 gives the aggregate payo↵s at each round, for 150 rounds, for 3 di↵erent models.

We mainly want to compare a model with (in blue) and without (in red) the third layer of

reinforcement. We don’t see a remarkable improvement from the simpler model both regarding

the payo↵s levels or dynamics of learning inside populations.

What’s more interesting is the evolution of density from the initial model (with 2 layers of

reinforcement) and the one with trust (3 layers).
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Figure 1.6: We show the density of individual aggregate payo↵s for 150 rounds and di↵erentiate
between agents mostly choosing to be individual learners or social learners. We compare the
initial model (in dashed lines) with the one with trust (solid lines). ⌫ = 0.02, N = 500.

Comparison between the two models shows the distribution for social learners moves to the

right, implying an improved average total payo↵ for a social learner. The mean total payo↵

of a social learner increases by around 50 points. There would therefore be an utility for a

social learner to choose a neighbor based on a reinforcement mechanism instead of choosing at

random. There is however an increased dispersion of total individual payo↵s for social learners,

reflecting the same process as for individual learners: reinforcement learning can lead to lock-in

on sub-optimal options, here on sub-optimal neighbors.

Regarding the proportions of each type of learners, there is only a slight increase in the

proportion of social learners from the 2-layer to 3-layer model. The mean number of social
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learners over 10 simulations for each model only shows a 1% increase.

Network structure

By allowing agents to modify the probability to choose a neighbor over an other, the network

evolves to become weighted and directed. In the initial model, the network is random which

imply that the distribution of degree is normally distributed, far from real social network

evidences.

We want to understand the in-degree distribution di↵erence with the initial model. Mainly

we’re interested at whether some agents become more central than others, which would imply

that they are more solicited than the rest of the population to give advice. Or, if the distribution

remains normal.
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Figure 1.7: We show the density of in-degree centrality for both model with two and three
layers of reinforcement. ⌫ = 0.02, N = 500.

We define in-degree centrality of an agent i as the sum of the weights that each of its

neighbors j give to the tie (from j to i). Say that agent i has n neighbors. The maximum value

for in-degree is n, which would imply that each neighbors always ask advice from i rather than

their other connections. At the other extreme if the in-degree is equal to 0, all neighbors have

made the choice to never ask i about which product to choose. Results from figure 3 show a

very di↵erent distribution for the model with and without reinforcement of neighbors. While

the distribution is symmetric for the two layer model, adding neighbors’ reinforcement leads to

a fat right tail distribution. There are therefore a few agents that will be highly seek for by

their neighbors. We don’t find correlation between having a higher number of neighbors on the
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initial random network and being central in the final one. It seems that there is a correlation

between being successful and being highly central.

This might tell something interesting about the emergence of influence and opinion leaders

in social networks. Here there is no preferential attachment mechanism since agents don’t know

the weights other agents use.

0 1 2 3 4

10
00

11
00

12
00

13
00

14
00

15
00

correlation beteen individual performance and in−degree centrality

in−degree centrality

in
di

vi
du

al
 a

gg
re

ga
te

 p
ay

of
fs

Figure 1.8: Scatter plot for individual aggregate payo↵s over 150 rounds and in-degree centrality
at round 150. Corr 0.28, p-value < 0.01. ⌫ = 0.02, N = 500.

1.4 Conclusion

Modeling agents’ behaviors when they are learning to choose among multiple alternatives with-

out prior information, and through repeated choice sequences, can be challenging. This is

because individuals might employ di↵erent methods, none of which can be definitively assessed

as the optimal one by observers.

We posit that in the context of consuming experiential goods, much of the learning is

unconscious, implying that agents are not necessarily building elaborate strategies to choose.

Furthermore, the methods they employ for learning are also subject to unconscious adaptation.

This has led us to model consumer behavior as a multi-dimensional reinforcement learning



process. In this framework, agents are not only learning to select the right products over time

but are also refining their decision-making methods to yield better outcomes.

We discovered that a model facilitating both social and individual learning significantly

outperforms a model limited to individual learning at the population level. Consequently,

there is a discernible positive impact from social learning, even in the absence of superior prior

knowledge among the population members.

The advantage of social learning appears to stem from the reinforcement mechanism inherent

in the recommendation system. When an agent seeks advice on which good to select, the

response is informed by the recommending agent’s own probability vector, which e↵ectively

disseminates information about options with higher utility.

Nonetheless, there are advantages to individual learning as well. Fortunate agents may

rapidly converge on choices that yield higher rewards, while less fortunate ones may become

fixated on less rewarding options.

Therefore, individual learning presents a higher level of risk compared to social learning,

which does not allow agents to achieve perfect scores but ensures that all social learners con-

sistently perform at a high level with more uniform payo↵s.

We also demonstrate the critical role of optimal curiosity levels, which enables agents to

su�ciently explore di↵erent alternatives before settling on the most suitable one for exploitation.

Finally, by integrating a third dimension of reinforcement at the level of neighbor selection,

we simulate a form of trust development wherein social learners hone their ability to identify

the most reliable network peers for guidance. Incorporating this trust element allows social

learners to enhance their overall performance. Additionally, we observe interesting emergent

patterns within the social network’s structure. Predominantly, certain agents become pivotal,

evidenced by their disproportionate frequency in being consulted for advice, thus indicating a

form of centralization in the advice-seeking process. It thus creates fat-tail degree distributions

which are commonly found in networks of all kinds Barabási and Albert (1999).

There is therefore great benefits from learning through social interactions, and so even when

no one is better informed than the others at the beginning.

This work has concentrated on the conventional methods by which agents select goods, yet

the advent of the internet has transformed the ways in which individuals access information

for decision-making in markets for experience goods. This transformation is especially pro-

nounced with the emergence of online social networks and rating systems, which aggregate and

disseminate information widely.

Future research could, therefore, extend the model to address these modern dynamics to

more accurately capture the nuances of learning and decision-making in contemporary experi-

ence good markets.
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Chapter 2

Internet and experience goods:

The role of Influencers and

rating-scale systems

With the advent of the Internet, consumers of experience goods have gained new methods for

determining which product to choose. Primarily, we identify Influencers and Review Systems

as predominant in this new landscape. We investigate whether these new methods of choice can

enhance consumer utility, both at the individual and population levels. To this end, we con-

structed several models and analyzed them using computer simulations. Notably, we find that

influencers negatively impact users’ utility, especially when they exert their influence within

scale-free network structures and promote average products rather than the lowest-quality op-

tions. As for review systems, our findings suggest that they are significantly less e↵ective than

learning from private information, particularly when tastes are heterogeneous, which is often

the case for many experience goods.

2.1 Introduction

In 2023, France enacted a landmark law to regulate social media influencers, e↵ective from

June 1 (Mondaq (2023); Foley (2023); Euronews (2023); Enigma (2023)). This first-of-its-kind

legislation in Europe aims to protect younger consumers from the promotion of harmful products

and trends. It includes prohibitions on advertising cosmetic surgery and sports betting, and

mandates clear labeling of altered images and videos.

These kind of laws are needed because online influencers do influence their followers, and

87
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without regulations, it is a double-edge sword. While they can have positive impacts when

promoting healthy behaviors like getting vaccinated for the flu (Bonnevie et al. (2020)), there

is much more concern about influencers promoting dangerous practices such as gambling, as

the new french law now prohibits.

Javed et al. (2022) research demonstrated the significant impact of fashion influencers on

Instagram in guiding consumer decisions and extending content reach. Megane et al. (2019),

found that influencers mold consumer purchasing intentions through their endorsements, though

their authenticity is sometimes questioned by followers. Wang et al. (2022) study delved into

the e↵ects of influencer-led live streaming marketing, revealing that factors like influencers’

expertise, negotiation skills, and after-sales services influence consumer trust and impulsiveness,

ultimately swaying purchase decisions. Lu and Seah (2018) underscored the importance of social

media influencers in managing consumer online engagement, noting that di↵erent influencer

types elicit varying engagement levels based on social proximity and product traits. Collectively,

these studies underscore the pivotal role of online influencers in directing consumer behaviors

and shaping consumption trends.

Influential figures have always played a significant role in societies, but the advent of the

internet and online social networks has dramatically amplified their reach and influence. This

modern landscape o↵ers more individuals the opportunity to exert influence over larger audi-

ences and for extended periods.

When considering how consumers choose experience goods, it’s essential to acknowledge

influencers’ role, as research indicates that consumers often rely on them for making decisions.

Our study aims to explore the dynamics of this influence in a population that can either indepen-

dently research their choices or rely on their social networks, which are increasingly populated

with influencers—these highly connected nodes in the network. Importantly, influencers’ im-

pact extends beyond mere network connectivity, as their motivations often di↵er from those of

the general population.

In particular, influencers may use their platforms to promote products, sometimes incen-

tivized by financial gains, potentially leading them to endorse lower-quality alternatives. Our

model aims to demonstrate how, within both simple and complex network structures, individu-

als are adversely a↵ected by the promotion of subpar products. Intriguingly, the model suggests

a heightened vulnerability to average-quality products, as consumers can more easily identify

very low-quality options but may struggle to distinguish among average ones, which they are

more likely to adopt.

This research also endeavors to unravel the complexities surrounding the review systems

employed by numerous websites and platforms. These systems, essentially aggregating consumer

reviews, are intended to guide users through uncertainty, particularly when selecting experience
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goods.

While these review systems initially appear highly e↵ective in mitigating uncertainty through

the accumulation of past customer experiences, they are not without their drawbacks. A signif-

icant concern is the presence of fake reviews, which have been shown to harm consumer welfare

(He et al. (2022); Akesson et al. (2023)). Moreover, even in the absence of fake reviews, these

systems face challenges when addressing a population with diverse tastes.

Therefore, the objective of this chapter is to comprehend the significance of the public infor-

mation that has become accessible recently with the advent of the internet. While Chapter One

explored the private options available to individuals for making choices among a set of unknown

alternatives, this chapter identifies and analyzes the role of two phenomena: Influencers and

Review Systems.

While influencers are proactive actors online, driven by economic self-interest, review sys-

tems are supposedly a public asset shaped by the truthfulness of its users.

Our findings indicate that review systems are highly e↵ective in populations with uniform

tastes. However, this e�ciency diminishes when considering a population with varied prefer-

ences, where individual learning becomes a more e↵ective strategy.

A particularly intriguing aspect of our study is the exploration of social learning. Our

simulations reveal that social learning is e↵ective in populations with heterogeneous tastes,

irrespective of their distribution. This e↵ectiveness holds true in networks structured around

the homophily principle (McPherson et al. (2001),) as well as in networks that do not exhibit

homophilous tie formation.

We begin our analysis by outlining the baseline model, which closely aligns with the frame-

work established in Chapter 1. This will set the foundation for our exploration. Subsequently,

we delve into the construction of various network structures employed in our study, detailing

the methodologies and rationale behind each. Following this, we present and discuss our key

findings, focusing on two main aspects: firstly, the impact of influencers within these networks

and how their presence shapes consumer decisions; and secondly, we critically examine the

limitations and e↵ectiveness of review systems in guiding consumer choices, particularly in the

context of diverse consumer preferences and behaviors.

2.2 Model

2.2.1 Reinforcement Learning

The basic model, as established in Chapter 1, introduces a population connected through a

network structure. This population faces a repeated decision-making process, choosing among
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10 distinct products, labeled from Product 1 to Product 10. Each product provides a utility

value equivalent to its numerical label.

At each decision round, each participant must select from these ten options.

In this model, the number of products and their respective values remain unchanged through-

out the duration of the simulation. The primary interest in this model arises from the fact that

the products are designed as experience goods. This means that no agent in the population can

ascertain the value of a product prior to consuming it.

Therefore, agents with no prior information will must learn both which is the best product

to pick, but also about which method is the most useful to learn.

Agents have two primary decision-making strategies available to them. The first strategy

is social learning, where an agent randomly selects a direct neighbor within the network and

emulates their choice at the current time step.

The second strategy involves individual learning, where agents make choices based on a

reinforcement learning mechanism.

Reinforcement learning operates on the principle of strengthening the likelihood of choosing

alternatives that have previously yielded higher payo↵s. This is mathematically represented by

a probability vector, encompassing the probabilities of selecting each of the ten alternatives,

with the vector sum always equaling one. At each time step t, the selected alternative provides

a reward, which then informs adjustments to the probability vector for future selections. The

probability vector is dynamically updated at each step following the equation:

the change in probability p(a, t, i) to choose the same product as in t at time-step t + 1 is

given by :

p(a, t+ 1, i) = p(a, t, i) +

8
><

>:

⌫(
Q
(a, t, i)) ⇤ (1� p(a, t, i)) if a = a(t)

�⌫(
Q
(a, t, i)) ⇤ p(a, t, i) if a 6= a(t)

with a(t) the product selected in t, ⇧(a, t, i) the payo↵ of product a and ⌫ a parameter that

controls how fast agents respond to new experience.1

Agents are characterized as either social learners or individual learners. To determine their

learning strategy at each round, we incorporate a second layer of reinforcement learning. This

layer dynamically adjusts the probabilities of an agent adopting either a social or individual

learning strategy in any given round, based on the payo↵s received from previous choices.

The payo↵s from chosen alternatives directly influence these probabilities. For instance, if an

agent, employing social learning, selects a product with a high payo↵ (such as product 10), this

will significantly reinforce their tendency towards social learning in future rounds, consequently

1
See chapter 1 for more details
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reducing their inclination towards individual learning. Conversely, a lower payo↵ (e.g., a payo↵

of 1) will result in only a minor adjustment to the probability vector, subtly altering the

likelihood of choosing between social and individual learning strategies in subsequent rounds.

Therefore at each round, each agent has two decisions to make: being a social or individual

learner, which is decided through a reinforcement learning process, and once it is decided, what

product to choose.

A social learner will simply mimic the pick of a neighbor taken at random.

An individual learner will pick a product using its probability vector associated to the pool

of products, which is evolving through a reinforcement learning process.

finally, the probability vectors associated with the learning method and the pool of products

are updated according to the learning process.

2.2.2 Network Models

We use two models of network structures that well characterize many social interactions pro-

cesses. One is the the scale-free model Barabási and Albert (1999) and the other the small-world

model Watts and Strogatz (1998).

The Barabási-Albert (BA) model, is a method for generating scale-free networks. It begins

with a small initial network of m0 nodes. New nodes are then added one at a time, each creating

m  m0 edges to existing nodes. The key aspect of the model is the ”preferential attachment,”

where the probability P (i) that a new node will connect to an existing node i increases with

the degree ki of node i, given by P (i) = kiP
j kj

. Here, the sum in the denominator is over all

existing nodes j. This process results in a network where a few nodes become hubs with high

degrees, while most have a low degree. The degree distribution of the network, P (k), follows

a power law, specifically P (k) / k�� with � typically in the range of 2 to 3, consistent with

many real-world networks.

The Watts-Strogatz model is a process for generating networks that exhibit small-world

properties, namely high clustering and short average path lengths. The model starts by creating

a regular lattice, a ring of N nodes where each node is connected to k nearest neighbors (k

is an even number). Then, each edge in the network is rewired with a probability p. During

this rewiring process, one end of the edge is fixed, while the other end is reconnected to a node

chosen uniformly at random over the entire network, avoiding self-loops and duplicate edges.

For p = 0, the network is a regular lattice, and for p = 1, it is a random network. The

interesting behavior occurs for intermediate values of p, where the network exhibits both high

clustering (like a regular lattice) and short average path lengths (like a random graph). This

combination of properties is characteristic of many real-world networks and is what defines a

small-world network.
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Finally, for testing our model as designed in chapter 1 and compare it to review system, our

population is placed on a random network following Erdos-Reniy model Erdős et al. (1960)

The Erdős-Rényi model, denoted as G(N, p), is a simple and widely used model for gen-

erating random graphs. This model starts with N isolated vertices and adds edges between

them randomly. Each possible edge between a pair of vertices is included in the graph with a

probability p, independent of other edges.

This process results in a graph where the presence of each edge is a Bernoulli trial with

probability p. The main parameter of interest, p, determines the graph’s density. For low

values of p, the resulting graph is likely to be sparse with many isolated vertices, while for high

values of p, the graph becomes denser and more connected.

2.3 Results

While Chapter One delved into the dynamics of private learning, encompassing both individual

and social learning, it’s crucial to recognize that a significant portion of our learning also

transpires through public channels.

Prior to the advent of the internet, public learning was predominantly facilitated by adver-

tisements in various media. In the current digital age, new methodologies for product selection

have emerged, notably through Influencers and Review systems. Influencers, active on social

media platforms, are compensated by companies to promote products to their extensive follower

base, thereby providing these products with significant exposure. On the other hand, review

systems serve as collaborative platforms that aggregate user ratings and feedback for products

post-consumption, e↵ectively addressing the challenges posed by experience goods.

In today’s market, consumers frequently rely on both channels to make informed decisions

about experience goods. Influencers cover a wide range of cultural products, including movies,

TV shows, books, restaurants, and travel destinations, most of which are also subject to review

systems.

Thus, consumers are presented with an array of methods for choosing products, and the

forthcoming simulations aim to discern the most e↵ective among these.

We begin by examining the impact of influencers within a consumer population learning to

select the optimal product from a variety of alternatives serving the same purpose.

Specifically, we investigate the influence of influencers on consumer utility, considering both

the nature of the products they promote and the network structure through which their influence

is disseminated.



Chapter 2. Internet and experience goods: The role of Influencers and rating-scale systems93

2.3.1 Influencers & Star Networks

The phenomena induced by the internet we look at is the emergence of influencers on online

social networks. Influencers are highly connected people on online social networks, where they

can share a large variety of content which make them rise on these networks. They gather

followers and as they grow, brands might solicit them to advertise their products to their

communities as they can reach a lot of people at the same time with short publication.

Thus, influencers can lead their followers to sub-optimal alternatives because they can be

paid to do so by companies. It will be up to the star to decide whether a product is worth

advertising or not.

We analyze this situation with our model by setting up a star network structure, also called

a hub and spoke, an extreme situation of preferential attachment. In this model, there is one

star agent, the influencer, and the rest of the population which are followers. All followers are

only connected to the star agent, so they have only one neighbor. In our scenario, the star is

neither using the network nor its own experience. Rather, it is forced to choose one of the ten

alternatives. This asymmetric relationship would translate into a directed network. Followers,

as in the chosen-interaction framework, have the choice between relying on their experience or

seeking advice from the influencer.
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Figure 2.1: Left: Evolution of Aggregate Payo↵s at the last round, for each product advertised.
Right: Evolution of the number of individual learners at last round, for each product advertised.

Above two graphs shows the relationship between payo↵s and users of the ”personal expe-

rience” behavior and the star agent moving from product 1 to product 10. When the star is

advertising the lowest-rewarding alternatives, the population is ”robust” and everyone chooses

to rely on their own experience instead of following the star agent. However, as the star is

advertising products in the highest-rewarding range, more and more people start to listen to
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him, and so to choose sub-optimal products. When the star is advertising the highest-rewarding

products, around 3/5 of the population have chosen to rely on its choice and so are able to

make high rewards.

Interestingly, the worst-case scenario for the population is not when the influencer advertises

the lowest-rewarding range of products, but rather when it is advertising average-rewarding

ones. In this situation, many agents (around 1/2 of the population) are following its advice,

thus choosing a sub-optimal alternative thereafter.

The pattern we observe in the figures can be explained as follows: When the star advertises

products 1 to 3, almost everyone in the population tries following influencer’s advice, and

realizes that individual learning generates better payo↵s. Indeed an individual choice during

the first rounds has a payo↵ probability of around 5 while following the influencer leads to

inferior payo↵s.

The situation gets trickier when the star advertises products near 5 since our agents will not

easily realize that they could get better payo↵s through individual learning. In the early phase

of the simulation, the alternative you draw from individual learning will be crucial to determine

whether you will follow the influencer or not. This is why around half the population follow

the star while they could do at least as much with individual learning.

Finally, the situation gets better for our population when the influencer advertises products

of the high-rewarding range. In this case, 2/3 of the population follow the influencer, and it

leads to higher aggregate payo↵s at the last round than when everyone is an individual learner.

2.3.2 Influencers & Realistic Network Structures

We finally want to test the impact of Influencers on more realistic network structures. To

do so we will use Scale-Free (SF) and Small-World (SW) network structures. As defined by

Watts & Strogatz (1998), SW are useful to depict real-life observed phenomena such as the six

degrees of separation experiment conducted by Milgram (1967). The idea of SW is to combine

high clustering: the people I’m connected to are also mainly connected between themselves,

and short average path length: every agent of the network is only a few connections away, so

potentially easy to reach. Also a good approximation of some real-life structures, SF structures

are defined by Barabasi & Albert (1999) as graphs where the degree distribution follows a power

law, which implies that while the vast majority of nodes on the network have a similar, low

number of connections, a few have a lot more links. These kinds of structures are generally

related to “Mathew e↵ect” kind of phenomena.

To test the impact of Influencers advertising goods, we use a model with 500 regular agents

and 50 influencers, advertising to them. At first, we compare the aggregate payo↵s in the

last time step when there are influencers and when there are not. We do this both for SF
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and SW graphs. Hence we will compare, for each good being advertised, the results with and

without influencers (and so without advertising when there’s no influencer). We also make

sure the results of influencers are not interfering in the analysis. Hence in the no-star model,

we create 500 agents while in the star model, we create 550 but then subtract the payo↵s of

these influencers from the aggregate payo↵ in the last round. This leaves us with both models

showing payo↵s for 500 regular agents.

To define influencers in both network structures, we use betweenness centrality as an indi-

cator of central individuals. In the SF, it roughly coincides to degree centrality. In the SW

graph, where everyone has a similar number of neighbors, betweenness centrality describes

people connecting remote places of the network.

The graph below shows results as each good is advertised (x-axis). On the y-axis, results are

expressed as a ratio from the star model to the no-star model (for the same network structure).

A value of 1 then indicates that both models are performing equally for the given advertised

good and network structure considered. Values below 1 indicate that the star model performs

less than the no-star one, and values above 1 that the star model over-perform the no-star one.

For each situation considered, we run 10 simulations of the model and show the mean over these

10 simulations. In each simulation, we run 100 time steps.

In a small world, influencers have little impact. They reduce payo↵s slightly, relative to

a world with no influencers, and they only improve payo↵s when they are advertising the

really top goods. By contrast, in a scale free world, agents greatly su↵er from the presence of

influencers. As shown earlier, critical situations happen when the goods being advertised are

average-rewarding. This is when a lot of agents are deceived and start being social learners

when they should remain individual ones. It seems that being an influencer on an SF structure

(like most of our online social networks...) entails way more power than in an SW one, at least

for the di↵usion of recommendations.
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Figure 2.3: Evolution of the number of individual learners as the product being advertised
varies in both SF and SW network structures.

In the graph, we observe a distinct relationship between the proportion of social learners

in the population and their reaction to various products advertised by influencers, highlighting

di↵erent adaptations in SW (Small-World) and SF (Scale-Free) models.

In the SWmodel, regardless of the product advertised, a significant portion of the population

consists of social learners. This proportion exhibits a mild increase, ranging from about forty

percent for the least valued good to roughly fifty percent for the most rewarding one.

Conversely, the SF model shows a more dramatic change in the proportion of social learners.

This figure starts at zero percent when the least valued product is advertised, escalating to over

sixty percent for the most desirable product.

A key observation is that for product seven, the proportion of social learners is approximately

half the population in both models, yet the aggregate payo↵s are markedly di↵erent. This

disparity suggests that influencers wield more power in the SF network. Their promotion

of product seven significantly deters more individuals from choosing the optimal product. In

contrast, the SW network demonstrates resilience to influencer advertising. The minor variation

in the proportion of social learners across di↵erent products indicates a lower tendency to shift

towards individual learning when faced with lower-end products. Moreover, the stability of the

SW structure’s results, even in the absence of influencers, further validates its robustness.
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2.3.3 Influencers and Heterogeneous Advertising

The last thing we test with our model is when influencers are not all advertising the same

product. Rather we use various distributions to test their impact on population payo↵s. Mainly

we test 5 di↵erent distributions: normal, uniform, polarized and transitional distributions from

polarized to uniform and from normal to uniform. We show the frequency distributions of these

functions in figure 4 (due to the small size of the number of influencers, we manually shape

those distributions instead of using a defined function).

Figure 2.4: Distributions of goods advertised in the sub-population of influencers (n = 50).

We use the Scale-Free structure, 500 agents, 50 influencers, 100 simulations and 100 time-

steps in each simulation. As before, the payo↵s of influencers are subtracted from global aggre-

gate payo↵s so we easily compare the model with the setting without influencers.
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Figure 2.5: Evolution of aggregate payo↵s at each time-step for various distributions of
advertised goods.
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Figure 2.6: Evolution of the mean number of social learners at each time-step for the di↵erent
distributions of product advertised tested.

Figure 5 shows that all distributions of advertised goods are detrimental to the global

payo↵s of the population. From the beginning of the model, the setting without influencers

ranks highest in terms of payo↵s and speed of learning. Among the various distributions we’ve

tested, the one that leads to the highest payo↵s is the polarized one, where roughly half of the

influencers are advertising the lowest products, and the other half are advertising the highest

rewarding ones.

By contrast, the lowest rewarding distribution is the bell-shaped one, where most influencers

are advertising average products. This is coherent with our previous results, which showed that

the most detrimental situation for the population was when the influencers were advertising

products 6 and 7 on a Scale-Free structure.
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Figure 6 provides some insights into the behaviors that lead to these results. It shows the

evolution of the number of social learners over a hundred time steps for each distribution of

products advertised. There is a symmetrical relationship between payo↵s and the number of

social learners. While the highest rewarding distributions are the ones with the fewest social

learners, the lowest are the ones with the most social learners.

Most likely, in situations where average products are advertised, it’s di�cult for consumers

to discern that better options exist, and thus, they’re likely to trust social learning as the best

method to choose a product at each round.

Instead, in situations where the lowest options are advertised, consumers can easily find

better options (by testing individual learning at the beginning of the simulation), and therefore

won’t use social learning thereafter. This lead to better payo↵s for those individual learners

that won’t listen to influencers bad recommendations. The consumers that keep being social

learners are probably the ones that are connected to an influencer that promotes one of the

highest rewarding option, which is then not an issue.

Overall we find that for all but the two best products, influencers action is always detrimental

to the population whom would get higher aggregate payo↵s without their presence.

Important finding reveals that under our assumptions of reinforcement learning, influencers

do the most harm to consumers’ payo↵s when they are advertising average products instead of

the lowest options.

They are minimally detrimental when their presence is mitigated by a small-world network

structure, where no agent has a significantly higher degree than others. We also find a limited

impact when the distribution of the products they advertise is polarized (with either ads about

very low/high products).

The next part finally analyze the potential for review systems, but also show their limita-

tions, by modeling heterogeneous tastes of agents.

2.3.4 Review system

With the advent of the internet, markets for experience goods have increasingly adopted review

systems to guide consumers. These systems, typically implemented by search engines like

Google, specialized websites such as TripAdvisor and TheFork, or two-sided market platforms

like Airbnb, Uber, and Deliveroo, aim to mitigate the inherent uncertainties associated with

experience goods by providing value indicators.

How these systems work is simple: all goods are available to be reviewed online, most of

the time simply by grading it on a scale. The current trend is using stars, with 5 the highest

number possible, and half a star the minimum.
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It follows that when consuming an experience good, each consumer can review the good to

inform the rest of the population, and everyone can use the reviews to choose a good. While

we’ll be considering a very basic model, the very concept of grading goods can be altered by

many variables. For example:

• The willingness to rate honestly : The one leaving the review might be biased either

positively or negatively by personal relationships to the company providing the good.

While this is true in a review model and it might alter the quality of the grade, this is

equally true in a social learning context, and as we chose not to include it in the former

model, we won’t do it either in the later.

• The conversion from the experience to the grade : while it can be easy to rank options, it

can be harder to give accurate grades. We’ll make the assumption that they are entirely

capable of translating experience to reviews here.

• In reality, goods are not delivering the same value at each time. This could be verified

for many experience goods, especially when they include a human-delivered service like

restaurants or healthcare. Coupled with the hypothesis that agents would be more willing

to leave reviews for particularly good or bad experiences, that might spur from an incident

for example, could lead to distorted grades. However as for the learning model, we make

the simplifying assumption that a good always delivers its true value and that agents

review all the goods they consume.

Therefore, the model we use to represent the review system is straightforward: an agent

chooses a good based on the existing reviews which are averaged to give a single grade. Natu-

rally, the agent chooses the best existing options.

If two products have the same grade, the agent pick any of the two at random.

A simulation consists of several rounds. In each, all agents pick a good and rate it. Then

the average grades are adjusted after each new review.

The only problem is the initialization phase. Because every good is unrated at the beginning,

people must choose at random. Say that all goods are rated the average grade of 5 (on a scale

from 1 to 10) initially.

If an agent selects a good whose true value is below 5, it is not a problem because the agent

will rate it according to its true value. This action will lower the good’s grade to below 5,

leading the remaining agents to choose from the higher-graded options that are still available.

But if the next agent pick an above-average good, then it will grade it its true value and

therefore, the good will be the highest graded, even if its not the good with value 10. Thereafter,

all remaining agents are locked to this option because they use a simple maximum function.
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To solve this issue we choose to update the grades only starting at round 2. It allows for

the five hundred agents to pick a good at random and rate them their true value. It means

that every agent chooses at random once. then the grades are updated once every agent choose

once. It ensures (with a large enough population) that all goods are picked at least once, and

that no lock-in e↵ect appears.

It follows that this version of the review model is the most e�cient possible. It allows agents

to perform the best score possible from round 3, and never deviate thereafter.
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Figure 2.7: Comparison of models where agents can only use the review system, or only use
either individual or social learning, or when they can use the three strategies. We display mean
(among 10 simulations) aggregate payo↵s at population level at each round.

Our next point of interest is the situation where individuals have access to reviews, alongside

private learning methods like individual and social learning. Does the presence of a review
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system cause everyone to forsake private signals in favor of public reviews?

While many of us have access to review systems, and in theory, they o↵er the most e↵ective

way of gathering information, it seems that we do not solely depend on them in our everyday

lives—at least, not universally.

Hence, our goal is to investigate whether our model can replicate this observed behavior in

the population.

Figure 7 shows a comparison of the evolution of aggregate payo↵s across three di↵erent

models. Although the model that exclusively uses the review system is the most e�cient, as

previously mentioned, comparing a model that incorporates both public (review system) and

private (individual and social learning) information with a model that depends solely on private

signals uncovers interesting dynamics.

In the initial hundred rounds, the model that integrates both public and private information

gathering is more e�cient than the model relying only on private information, achieving higher

payo↵s more quickly. However, this e�ciency diminishes afterwards.

There is a slight decrease in aggregate payo↵s after the initial rounds, which is not attributed

to the average of multiple simulations depicted in the graph but represents a consistent trend

observed in each simulation.

In the long term, both models yield similar levels of aggregate payo↵s, likely due to the

behavioral choices of individuals. In the model where both public and private learning are

available, the majority (approximately sixty percent of the population) predominantly opts

for the review system as their most frequent behavior, and thus, likely as the behavior they

commit to in the long run. Meanwhile, twenty percent continue as individual learners, and

another twenty percent as social learners.

These numbers emerge and stabilize after approximately a hundred rounds, coinciding with

the point at which the two models begin to converge in terms of the levels of payo↵s they reward

to the population.

Figure 8 illustrates the individual payo↵s associated with the most frequent behaviors. It

shows that the average payo↵s for individual and social learners are lower than those for users

of the review system.

Thus, at the population level, there seems to be no advantage for the existence of the review

system if people can also learn to use other methods to make choices among alternatives (and

thereby fail to learn to use the review system). However, the users who do utilize the review

system significantly benefit from it.
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Figure 2.8: box-plots of total aggregate payo↵s by sub-population. Each dot is the aggregate
payo↵ of one agent over one simulation. A blue dot indicates the aggregate payo↵ of an agent
that has chosen the review-system method the most over the 100 rounds of the simulation.

We then question whether the review system retains its usefulness for its users when we

discard the assumption that users have similar tastes. The following section presents results

from a model incorporating heterogeneous tastes.

2.3.5 Review system with heterogeneous tastes

While the reviewing system is indeed a better option in a context of homogeneous tastes, as in

the models we’ve studied before, it may not be the case if we consider heterogeneous tastes.

While so far we considered that the goods would reward the same payo↵s to all users,

indicating a shared ordering of preferences over the 10 alternatives, some experience goods
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might not exhibit such an universal ranking. For example the value of cultural experience

goods will greatly vary from one individual to another depending on tastes.

In this situation, reviews aggregated from the whole population, hence from agents with

potentially di↵erent tastes might not give a useful information to a given individual .

Contrarily, it is known that social networks are inherently connecting people with similar

characteristics and tastes McPherson et al. (2001); Puetz (2015); Duricic et al. (2021).

We thus adapt the model to allow for heterogeneous tastes and networks built through

homophily. We keep the 10 products set, but give a di↵erent “best option” to each agents

following an uniform law. This means that if an agent’s best alternative given its taste is

product 2, then picking it would reward them the maximum payo↵ possible of 10.

To make sure that each agent, depending on its best option, still has 9 inferior alternatives,

we use a circular representation of tastes. Therefore if agent’s preference is product 3 its second

best options are product 2 and 4, third best options products 1 and 5, fourth best option

products 10 and 6, fifth best options products 9 and 7 and its worst option is product 8.

Regarding the network formation, once everyone has a preferred choice, we simply repeat

a procedure where each agent can pick the closest neighbor (in terms of tastes) among a pool

of agents selected at random from the population. Controlling the size of the pool allows to

control the strength of the homophily. We repeat the procedure until we have the desired graph

density.

We can measure the homophily inside our network with the following measure:

Network Homophily Index =
1

N

NX

i=1

 P
j2Neighbors(i) Proximity(i, j)

Max Di↵erence⇥Number of Neighbors(i)

!

Where: N is the total number of agents in the network, Neighbors(i) represents the set of

direct neighbors of agent i, Proximity(i, j) is the measure of taste proximity between agent i and

their neighbor j, and Max Di↵erence is the maximum possible di↵erence in tastes, considering

the circular representation.

The measure vary from 0, which would indicate the highest level possible of homophily:

every agent is only connected to agents with the exact same taste, and 1 which indicates the

total absence of homophily: all agents are only connected to individuals with the farthest taste

then theirs. A random network, where agents connect to each other without taking homophily

into account, will score 0.5 on the homophily measure for example.
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Figure 2.9: We compare various levels of homophily in the network of interactions and the
model using global reviews. plot show mean aggregate results at each round for 10 simulations
of each model. N = 500, ⌫ = 0.02.

We evaluate various versions of the network, constructed with di↵ering degrees of homophily.

The levels range from 0.5, which corresponds to no homophily in the construction of the network,

to 0.09, the highest level of homophily we were able to implement. In each network we keep

the same level of density.

We then employ each of these networks to simulate a model of private information, where

agents decide which product to choose through either individual or social learning. In these

configurations, there are no review systems. This version of the model corresponds to the one

explored in Chapter One, except now agents have heterogeneous tastes, and the people they

are connected to somewhat reflect these preferences.



108Chapter 2. Internet and experience goods: The role of Influencers and rating-scale systems

We compare these various simulations, where we vary the level of homophily, to a scenario

where agents exclusively use the review system. The results are presented in Figure 9.

There is a clear advantage for the model with social and individual learning over relying on a

review system when tastes are heterogeneous and that the network is built through homophily.

Even a network without homophily, which is represented by the one with a level H = 0.5 which

is build by reducing the size of the pool to only one agent (chosen at random in the population),

and which corresponds to a random structure, scores better than the review model. And even

in this case, there are social learners in the population that score lower than individual ones,

but still above the average payo↵ they could expect if choosing a product at random.

A potential explanation would be that the social learners in this model are agents for which

their neighborhood is composed of more agents that have similar tastes than dissimilar ones.

Therefore they can consistently score better than if choosing at random by asking neighbors.

At early stages of the learning process, this can be an advantage over the individual process.

Subsequently, a distinct positive correlation emerges between homophily and performance.

The beneficial impacts of local social learning, as evidenced in these results, could be amplified

by incorporating the probable mechanism of identifying which neighbor’s advice to follow. In

the model being examined, while agents currently select a neighbor randomly for social learning,

the approach’s e�ciency could be substantially improved if agents had the ability to choose a

neighbor based on whose recommendations align more closely with their own preferences.

2.4 Conclusion

This study aimed to explore the impact of the internet on decision-making in high-uncertainty

situations, particularly when selecting experience goods. We focused on examining the influence

of online influencers and review systems on the decision-making process and outcomes for the

population.

As demonstrated in the first chapter, social learning was more beneficial to individuals

in this context than individual learning, represented by reinforcement learning. However the

advent of the internet brought unprecedented changes in information aggregation and di↵usion.

It enabled users to connect with others at a low cost in terms of both price and time.

While agents previously communicated with a few acquaintances regularly and accessed global

information through news media, they could now engage in one-on-one communication with

anyone using technology, primarily through forums or online social networks.

The easy aggregation of information led to the development of useful tools. In the context

of experience goods, where the value of a good cannot be assessed before consumption, gateway

websites like Google and dedicated platforms created ways to inform users by allowing them to



grade goods and access others’ ratings.

However, these systems perform best when everyone shares a common preference ordering.

Their e�ciency decreases when considering agents with diverse tastes and di↵erent preference

orders. In such cases, aggregated reviews start losing their informational value. Simultaneously,

social networks regain interest due to their structure reflecting a homophily process that binds

together people with shared tastes.

Under the hypothesis that tastes are heterogeneous and uniformly distributed among the

population, networks formed endogenously around the idea of homophily attachment enable

social agents to learn and perform better than with the review system. Even networks not built

around homophily (heterogeneous agents connects at random) perform better than random

choices at each round, reinforcing the importance of social interactions in decision-making.

Online social networks also gave rise to influencers, agents who capitalize on their popularity

by selling their audience’s attention to brands.

We demonstrate that in a context where agents can either heed influencers’ endorsements

or learn independently which goods to choose, influencers are most detrimental for average

options. This is because, for very poor-quality goods, agents learn not to trust influencers, and

for high-quality options, they learn to heed influencers’ ads. However, for average options, many

agents struggle to discern that better options are available, and continue to rely on influencers

instead of exploring alternatives independently.

While these results hold true for a network structure built on the most extreme case of

preferential attachment (star network), they are also true on scale-free networks, commonly

found in online social networks. Conversely, influencers do not pose a significant threat in

populations evolving within small-world networks.

Overall, these simulations reveal that social interactions with local acquaintances might be

the best solution for making informed choices in the context of experience goods. While the

changes brought by the internet seemed promising for improving population utility, they hinge

on assumptions about people’s distribution of tastes and the ethical choices of influencers, which

might prove unrealistic.
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Figure 2.2: Comparison of models performance in terms of aggregate mean payo↵s at final
round with and without influencers for SF and SW structures as the good being advertised

varies. 1 is the mean performance for the models without influencers on the network structure.
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Chapter 3

Opinions Polarization,

Influencers, and Endogenous

Online Social Networks

We propose a model to improve our understanding of the escalating polarization of opinions

in recent Western societies. This phenomenon is often attributed to the role of online social

network platforms’ algorithms and the influence of key individuals in creating echo chambers

of opinions. Our model situates the population within a network, enabling interactions both

among individuals and with these influencers. Distinctly, influencers, as a separate class of

agents, learn to shape their opinions to maximize their utility by expanding their follower base.

Concurrently, the platform can implement policies to control content visibility based on users’

existing beliefs.

Computer simulations of our model reveal several crucial insights. Contrary to popular

belief, influencers tend to moderate public opinion, while platform policies favoring content

alignment with users’ existing views contribute to reducing polarization. Furthermore, our

findings explain the Pareto distribution of influencers’ network degrees, attributing it to a

combination of word-of-mouth dynamics within the population and a limit on the number of

influencers an individual is likely to follow.

Introduction

The emergence of online social networks (OSNs) in the mid-2000s profoundly transformed how

people communicate and interact. This change is evident in direct communication whether

113
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for one-on-one interactions or for broader audiences with posts, but also for the sharing of

beliefs and opinions (Peter and Muth (2023); Center (2014)), the formation and participation

in interest groups (Howard et al. (2011)), and the way people access news (Shearer (2021)).

Primarily, online social media platforms have transformed various aspects of both our social

circles and our awareness of events outside these circles.

Most OSNs operate using feeds. These feeds display posts and recent news from individuals

within an agent’s neighborhood, meaning all the people to whom the agent is connected. This

connection grants access to their profiles, posts, and reactions to other content on the platform.

In contrast to o✏ine interactions, the breadth of friends and acquaintances one can now access

and stay updated with online is vast. Traditionally, an individual would engage with a few

distinct and close-knit circles daily, such as family, colleagues, or close friends. However, with

online platforms, that same individual can maintain a sense of closeness and stay informed

about the lives of high-school friends, colleagues from a decade ago, or distant cousins residing

across the country.

While Dunbar empirically demonstrated and theorized that the size of our social circles

could average around 150 people (Dunbar (1992); Dunbar et al. (2015)), the shift from o✏ine to

online interactions has undoubtedly influenced how individuals engage with this newly accessible

group.

The manner in which people interact on OSNs is fundamentally di↵erent from traditional

forms of communication, such as phone calls or written letters. While OSNs do o↵er a semblance

of these traditional interactions through chat messaging, they also introduce novel modes of

communication, including posts, re-posts, comments, and reaction buttons. These innovative

methods foster distinct user behaviors. For instance, posts allow individuals to address their

entire network simultaneously, while re-posts and comments enable users to endorse or share

content they find compelling. Reaction buttons attempt to compensate for the lack of non-

verbal cues inherent in online communication. In essence, these platforms alter not only the

content people share but also the breadth of their audience in certain instances. Consequently,

online communication diverges significantly from o✏ine interactions.

Furthermore, OSNs often suggest connections to new individuals, regardless of whether you

personally know them. They also display content in your feed from individuals outside of your

immediate network.

The primary goal of this approach is to prevent users from leaving the platform. Once a

user has caught up with all the activities of their connections, they might not have a reason

to stay. However, much like traditional media, most OSNs generate revenue by monetizing the

time users spend on their platforms, selling this engagement data to advertisers. Consequently,

the longer an individual remains on the platform, the more beneficial it is for the OSN.
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Algorithms employed by OSNs for recommending new connections and showcasing content

from unfamiliar users are typically proprietary secrets of the respective companies. However,

it’s widely believed that these algorithms can drive various outcomes, contingent upon the

platform’s objectives.

For instance, if an OSN prioritizes introducing users to real-life acquaintances, it might

suggest connections with many mutual friends on the platform. Such a strategy could enhance

tie density within a confined user group. Alternatively, a platform might focus on connecting

users with similar interests or beliefs, potentially bridging gaps and fostering interactions that

might not occur o✏ine. Another approach could prioritize promoting already-popular users,

gauging popularity through their connection count or the engagement their posts receive. Most

likely, leading OSNs like Facebook, X, or Instagram deploy a blend of these strategies to optimize

user engagement and network growth.

In turn, these user retention methods employed by social networks are believed to potentially

have concerning consequences on public discourse. They might lead to the formation of echo

chambers, which could amplify both a↵ective and ideological polarization, a serious concern

for the well being of a society (Axelrod et al. (2021); Esteban and Schneider (2008)). Addi-

tionally, the rise of macro and micro-influencers on these platforms may result in asymmetric

relationships among users.

Echo chambers emerge when OSN recommendation algorithms curate feeds based on users’

presumed preferences. For instance, if the algorithm deduces a user leans politically right, it

might predominantly showcase posts from right-leaning media outlets or influencers. The con-

cern here is the absence of pluralism and heterogeneity in news sources and perspectives. Such

a narrow viewpoint may not only reinforce existing biases but could also contribute to further

radicalization within one’s current political stance. Moreover, this lack of diverse exposure can

stifle the evolution of more nuanced opinions that span across the political spectrum. In the

end, echo chambers could lead to polarization. This issue is highly debated both in the news

Chapin (2018) and inside the scientific community (Maes and Bischofberger (2015); Keijzer and

Mäs (2022)), with papers highlighting both the detrimental e↵ects of echo chambers (Cinelli

et al. (2020); Cinus et al. (2021)) or its absence of e↵ect to the matter (Bruns (2019)).

Recently, a series of research papers (Nyhan et al. (2023); Guess et al. (2023b,a)) had the

unique opportunity to collaborate with Meta, the parent company of Facebook and Instagram,

to conduct a series of experiments on their Online Social Networks (OSNs). These studies no-

tably investigated the influence of echo chambers, network algorithms, and re-posting behaviors

on political polarization during the 2020 American election. The collective findings from these

three studies indicate that these phenomena had no discernible impact on political polarization.
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While they are not typically studied in conjunction, a fundamental characteristic of many

OSNs is their propensity to give rise to influencers—highly connected individuals on the network

who garner attention and followership from their community. Such relationships especially

thrive on directed OSNs like X or Instagram, where connections aren’t necessarily reciprocal,

allowing for asymmetries to develop (Aparicio et al. (2015)).

These individuals have been identified as opinion leaders, as defined by Katz et al. (1955),

in recent studies examining their impact on vaccine behavior (Bonnevie et al. (2020)) and

commercial product promotion (Nandagiri and Philip (2018)). Recognizing their e↵ectiveness

in shaping behavior, politicians quickly adopted influencers for their campaigns. They have been

e↵ectively employed by the American government to promote pro-vaccine initiatives against the

coronavirus and to campaign in the U.S. for both Biden and Trump (Lorenz (2021); Goodwin

et al. (2020)).

Such practices pose challenges, especially when the commercial partnerships between the

political party or candidate and the influencers are not transparently disclosed, potentially

leading to audience manipulation. Moreover, political advertising by influencers can amplify

extreme messages or give rise to conspiracy theories (Riedl et al. (2021)). Recent research

from Gibson et al. (2023) indicates that exposure to these types of influencers can escalate

extremist views, and that encountering paid political advertisements can erode trust in political

institutions.

In turn, profound changes have occurred due to the global adoption of social media as a

medium for interactions within local networks of acquaintances and global discussions on na-

tional or international topics. Previously, our communications were more direct, often private,

and within closely-knit circles. Today, we express ourselves through posts intended for broad

audiences, many of whom we might not know personally, using likes and reposts to share our

stances. While we once sourced our information, knowledge, and opinions primarily from jour-

nalists and editorialists in newspapers and on television, we are now the audience of monetarily

incentivized influencers who might promote any message without disclosures if paid su�ciently.

While this shift isn’t entirely negative, given the ease of keeping in contact and the potential to

foster powerful social movements, there are genuine concerns about how these transformative

platforms are shaping global opinion dynamics.

In light of this discussion, the model to be presented in the next section aims to illustrate how

opinions evolve on an OSN. Within this model, influencers are distinctly defined based on their

incentives, and their di↵erences from other platform users are clearly delineated. Furthermore,

the model facilitates the study of the e↵ects of various policies that OSNs might implement

using algorithms.
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The literature on opinion dynamics modeling is extensive. Comprehensive overviews of

both theoretical models and empirical findings are available in Peralta et al. (2022). The

contributions of these models in explaining polarization have also been explored by Keijzer and

Mäs (2022).

The model developed in this work draws from the philosophy of Attraction and Repulsion

mechanisms, as described in Axelrod et al. (2021). The fundamental concept is that our opinions

evolve di↵erently depending on whether we communicate with like-minded individuals or those

with divergent views. In the former scenario, an individual might adjust their beliefs to align

more closely with the interlocutor. In contrast, in the latter situation, the individual might

adjust their beliefs to further di↵erentiate themselves within the opinion space.

The novelty of our approach arises from the inclusion of influencers within the ecosystem. In

our model, these agents actively pursue new connections, striving to amass as many followers as

possible. Empirical evidence indicates that influencers can monetize their extensive networks,

suggesting that such behaviors are likely to emerge online.

To expand their network connections, agents categorized as influencers will disseminate

content. With the platform’s assistance, this content might reach audiences based on the

engagement these influencers have previously garnered. Our model’s influencers operate as

reinforcing learners; they adjust the content they share based on the rewards (or feedback)

they receive.

This model juxtaposes ‘casual’ users, who primarily seek information or communication,

with influencers who are motivated to maximize their influence. This dynamic enables us to

observe the endogenous evolution of the OSN through simulations, which will be elaborated

upon later.

Consequently, our model serves to integrate two pivotal types of agents that are instrumen-

tal in shaping the theoretical discourse on opinion dynamics: platforms (via algorithms) and

influencers (via content dissemination).

Subsequent sections will provide a detailed explanation of the model and its dynamics. We

will explore the evolving structural characteristics of networks that result from this model,

evaluate the impact of influencers on the opinion landscape, and finally assess the e↵ects of

various platform algorithms.

3.1 Model

The framework is based on three categories of participants: casual users, who constitute the

bulk of online social networks; a small number of influencers; and the social network platform.

In terms of opinions, we focus on a single-topic opinion space with a continuous scale ranging
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from 0 to 10. The distance between two opinions is gauged by their absolute di↵erence.

3.1.1 Casual users

Casual users represent the majority of OSN participants. They engage with these networks

primarily for entertainment, information, or other specific interests. Unlike influencers, casual

users aren’t actively pursuing an increase in connections. As a result, they have distinct moti-

vations and behaviors, especially in terms of how their opinions evolve when interacting with

others.

Initially, casual users are interconnected through a random undirected network, defined by

the Erdős–Rényi model (Erdos et al. (1960)).

Initial beliefs are assigned independently, drawn from a random uniform distribution on the

set [0,10].

Importantly, we do not correlate the distribution of initial beliefs with the network structure.

The distribution of any agent’s neighbors beliefs is therefore uniform.

At each round of a simulation, agents will have the opportunity to interact among them-

selves.

When two agents do interact, the outcome is a revision of the belief they held before the

interaction. The way we model the revision process of two interacting agents i and j is inspired

by the Attraction-Repulsion Model (ARM) proposed by Axelrod et al. (2021). We consider two

main e↵ects:

• Attraction: When agents i and j hold beliefs that are su�ciently close in the opin-

ion space, the initiating agent i updates its opinion to a position closer to j. Empirical

evidence supporting this behavior can be found in Myers (1982) Myers (1982). Mathe-

matically, the updated belief bi,t can be updated taking the mean of both beliefs:

bi,t =
1

2
⇤ (bj,t�1 + bi,t�1) (3.1)

• Repulsion: Conversely, if agents i and j have beliefs that are su�ciently distant in the

opinion space, agent i adjusts its opinion to a position even further from j. Such behavior

is also empirically observed, as noted by Flache et al. (2017) Flache et al. (2017). This

can be mathematically represented as:

bi,t = bi,t�1 + r ⇤ (bi,t�1 � bj,t�1) (3.2)

Considering how the two equations are related, for the attraction and repulsion e↵ects to

be equally strong, r should be equal to 0.5.
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Notably, interactions in our model are not always reciprocal. Agent i might modify its

belief due to influence from agent j, while agent j remains una↵ected. This is analogous to

user behaviors on OSNs like Twitter, where each individual has a profile showcasing their

tweets, retweets, and replies. Thus, agent i might be influenced by visiting j’s profile without

j reciprocating the visit or experiencing any change in belief.

Lastly, to determine the point at which two opinions diverge enough for repulsion to occur

instead of attraction, we introduce a threshold T . This threshold T can take values between 0

and 10, representing the di↵erence between two beliefs. A value of T = 0 indicates a scenario

where even the slightest di↵erence between two opinions results in repulsion, thereby eliminating

attraction. Conversely, T = 10 signifies a scenario devoid of repulsion, as the maximum possible

di↵erence between any two opinions in our model cannot exceed 10.

3.1.2 Influencers

As previously discussed, influencers, as defined in this context, di↵er significantly from casual

users. While casual users primarily engage with the platform for personal or social reasons,

influencers are driven by the pursuit of network richness. They aim to convert this vast net-

work reach into monetary benefits, such as through commercial partnerships and advertising

opportunities. While the term ’influencer’ often conjures images of individual personalities, in

the context of an OSN—especially within political spheres—it can also encompass entities akin

to traditional news companies.

These di↵ering motivations lead to distinct behaviors exhibited by influencers on the plat-

form. Their primary goal is to attract the maximum number of casual users to connect with

them. Such connections allow these users to access and engage with the content shared by the

influencer. In essence, influencers are in pursuit of followers.

To model this unique agent category on the platform, we initialize them without any imme-

diate neighbors, contrasting the approach taken with casual users who are integrated into the

random network structure from the outset.

Unlike casual users, influencers do not start with a predefined belief. Instead, over time, they

experiment to determine which opinions yield the greatest success in terms of acquiring new

followers and eliciting reactions. We propose modeling this learning process using reinforcement

learning. A variety of reinforcement learning models have been introduced and utilized in

academic literature. Key examples include works by Arthur (1993); Erev and Roth (1998); Bush

and Mosteller (1955), and a justification for employing this learning paradigm can be found

in Brenner (2006). Central to reinforcement learning is Thorndike’s ’law of e↵ect’ (Thorndike

(1927)), which posits that behaviors rewarded in the past are more likely to be repeated, while

those that led to adverse outcomes are avoided.
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We adopt the model proposed by Bush and Mosteller (1955), which provides each agent (in

our context, the influencers) with a probability vector. This vector outlines the likelihood of

selecting each available alternative—in our case, opinions ranging from 0 to 10—for subsequent

interactions. Following every interaction or experience, this probability vector undergoes up-

dates. For instance, when an influencer shares an opinion on the OSN, the reactions it garners

and the net change in followers serve as feedback. This feedback is quantified into a reward

function. A high reward amplifies the likelihood of the influencer expressing that opinion again,

whereas an opinion leading to follower attrition would see its associated probability reduced for

future iterations.

Mathematically, the vector p(t) represents the probabilities associated with the selection of

various opinions a at time t. The update to this probability vector is influenced by the reward

⇧(t) corresponding to the selected action a(t) multiplied by a variable ⌫ that can be used to

control the impact of rewards on the probability vector, and thus to shape the learning process.

This relationship is defined as:

p(a, t+ 1) = p(a, t) +

8
>>>>>><

>>>>>>:

⌫⇧(t)(1� p(a, t)) if a = a(t) ^⇧(t) � 0

⌫⇧(t)p(a, t) if a = a(t) ^⇧(t) < 0

�⌫⇧(t)p(a, t) if a 6= a(t) ^⇧(t) � 0

�⌫⇧(t)p(a,t)p(a(t),t)1�p(a(t),t) if a 6= a(t) ^⇧(t) < 0

(3.3)

This configuration of the reinforcement learning model accommodates both positive and

negative rewards. This flexibility is beneficial as our reward modeling encompasses both types.

3.1.3 Influencers-Casual Users Interaction

Rewards for influencers are determined by the reactions of casual users to the influencer’s most

recent opinion post. These reactions are quantified in terms of new connections, disconnections,

and “reactions,” which are designed to mimic comments or reaction buttons on OSNs.

When a casual user encounters an influencer’s post in the current time-step, they first revise

their opinion, just as they would when interacting with another casual user in the network

through the Attraction-Repulsion model. Subsequently, they decide whether to follow or un-

follow the influencer and whether to leave a comment on the post. Naturally, the option to

unfollow is only available if the casual user had previously chosen to follow the influencer.

To model the probabilities of following, unfollowing, and reacting, we use the following

functions:

• The probability for an individual to connect to an influencer (star) after encountering their

content is a linearly decreasing function of the absolute di↵erence between the individual’s
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opinion and that of the influencer:

p(connect) = 1� |bi,t � bs,t|
O

(3.4)

where O represents the “maximum” opinion (in our case, 10). bs,t is the opinion posted

by the influencer at time-step t, and bi,t is the opinion of the casual user.

• The probability for an individual to react is very high when the di↵erence between the

two opinions is either at its maximum or its minimum:

p(react) = (
|bi,t � bs,t|

2 ·O � 1)2 (3.5)

• The probability to sever an existing connection from an individual to an influencer is

described by a convex increasing function. We opted against a linearly increasing function

for the connection probability, believing that individuals more readily form connections

than they sever them:

p(disconnect) = (
|bi,t � bs,t|

O
)2 (3.6)

Thus, the reward an influencer receives at the end of a time-step is the change in connections

from the previous time-step plus the number of comments garnered by their post.

3.1.4 Discovering Influencers and the Platform’s Role

The final aspect to address is how influencers are discovered in this model. Since they are

not initially connected, we allow for several processes, each with varying influence, to enable

influencers to reach casual users on the OSN. Mainly we distinguish the following e↵ects:

• n: the ”natural” rate of reach. At each round, the influencer reaches a fixed proportion

of individuals at random in the population. This is used to initially introduce influencers

in the early rounds where the other two processes are inactive. Furthermore, it represents

a kind of random discovery process that might exist in reality, albeit to a limited extent.

• f : This parameter represents the proportion of agents an influencer reaches in the current

round, determined by the engagement level of their most recent opinion publication.

Specifically, the number of reactions and connections an influencer’s content garnered in

the previous round directly influences the extent of their reach in the current round. For

example, if due to its last publication, an influencer gained n new followers and the post

itself gave rise to c comments, then at present, the influencer reaches f ⇤ (n+ c) agents.
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This mechanism reflects a system where the platform gives precedence to content that has

previously generated significant engagement from casual users. The underlying rationale

is that content which has demonstrated appeal and has engaged users e↵ectively in the

past is more likely to encourage casual users to spend additional time on the platform in

the present.

• w: the ”word-of-mouth” parameter. Individuals recommend influencers to others. Conse-

quently, the more agents already connected to an influencer, the more agents the influencer

can potentially reach. This exhibits a clear Matthew e↵ect (Perc (2014)).

It is evident from the model that the primary role of the platform is to curate which in-

fluencers are showcased to casual users. In the baseline model, we employ the f parameter,

representing an OSN that is pragmatic in its recommendations. However, by adjusting this

algorithm, we can introduce various recommendation strategies. For instance, the OSN could

favor influencers who share similar views with users, those with opposing views, or even those

presenting moderate opinions.

We will delve deeper into these scenarios in the subsequent section.

3.1.5 Model flow

To summarize, the initialization phase and a typical time-step execution of the model proceed

as follows:

A population of casual users is placed within a neighborhood on a randomly connected,

undirected network. Each agent is given an initial belief.

A small subset of influencers, relative to the overall population size, is introduced into the

same network; however, they initially have no connections.

As the first round begins, each casual user randomly selects a neighbor to engage with,

leading to the belief revision process.

Simultaneously, during this round, influencers choose an opinion to share. Based on the

previously explained rules, they are presented to casual users. Consequently, influencers may

gain and/or lose ties within the network and receive comments from users.

In response to these rewards, influencers adjust their probability vectors, which influence

the opinions they will share in subsequent rounds.
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3.2 Results

3.2.1 Opinion dynamics

We initially focus on the evolution of belief distributions within the population. Given the

prevalent debate, as mentioned in the introduction, regarding the role of OSNs in intensifying

polarization on political topics, we aim to investigate its impact within our model.

To quantify polarization, we adopt the definition provided by Esteban and Ray (1994).

According to the authors, polarization is observed when:

1. There are a few large groups that dominate, in contrast to isolated individuals who have

a minimal impact on the indicator.

2. There is a high degree of homogeneity within each group.

3. There is a high degree of heterogeneity between di↵erent groups.

In our framework, a group is defined as all the agent sharing the same belief. Homogeneity

and heterogeneity are gauged based on the beliefs of the users. Here homogeneity is ensured

since the group is composed only of people sharing the exact same belief. Heterogeneity is

the distance is measured as the distance between two beliefs. The polarization measure is as

follows:

P(⇡,y) = K
nX

i=1

nX

j=1

⇡1+↵
i ⇡j |yi � yj |

Here, K is a constant. yi denotes the class of i (in our context, a belief), and ⇡i represents

its corresponding weight in the population, such that
Pn

i=1 ⇡i constitutes the total population.

For example yi can be the belief 5, and if it’s the belief of a third of the total population, then

its weight ⇡i = 1/3.

↵ belongs to the interval (0,↵⇤] where ↵⇤ = 1.6. “This parameter reflect the degree of

”polarization sensitivity” of the measure. The larger is its value, the greater is the departure

from inequality measurement”. For more details see Esteban and Ray (1994).

Specifically, we are exploring the role of influencers on polarization. We perceive them, along

with the enhanced interactions within personal social circles, as the most significant agents of

change compared to o✏ine interactions.

Thus, to assess their impact, we run our model with and without the presence of influencers

within the population and examine the resultant variations in the distribution of opinions among

the population over time.
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Figure 3.1: Each panel represent a simulation lasting 100 time-steps of two distinct models:
one without influencers and one with influencers. The evolution of polarization in the absence
of influencers is represented in each panel by the red line. For the model with influencers, we
separate the population representation. In blue we show the evolution of polarization for the
casual users population, while in yellow the evolution of the indicator for influencers at the
same round. We use a repulsion strength parameter of 1/2. We test from T = 1 to T = 9.
N = 300 for both casual users populations. N = 30 for the population of influencers.
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Figure 1 depicts simulation results, illustrating the dynamics of polarization through a hun-

dred time steps for two distinct scenarios. Each panel presents the dynamics at a di↵erent

threshold level T . Lower levels of T signify high intolerance to di↵ering opinions and a propen-

sity for polarization, while higher levels of T indicate substantial tolerance to varying views.

To recap, if the di↵erence between two opinions is below T , attraction occurs; if it’s above,

repulsion occurs.

In the studied scenarios, maximum polarization is observed when the population is split into

two groups of equal size (N/2), with one group adhering to opinion 0 and the other to opinion

10. This polarization level is approximately P = 3.4 with ↵ = 1.6.

In contrast, when the population uniformly concurs on an opinion, the polarization is P = 0.

The simulations initiated from a state featuring a uniform distribution of opinions, correspond-

ing to a polarization level of approximately P = 1.

When examining the model devoid of influencers (lines in red), it reveals that only two

outcomes are plausible: absolute polarization or unanimous consensus. The transition between

these states is observed when the threshold level T lies between 5 and 6.

Our best hypothesis explaining why the transition occurs at this level of T is related to

the proportion of agents that cannot be repulsed away during the first round, which impacts

subsequent rounds.

When T = 4, in the first round, all agents have a positive probability of meeting someone

whose belief is such that it would cause repulsion, and therefore, a move towards polarization.

This is because the threshold is low enough so that, for any agent across the belief spectrum

(which spans from 0 to 10), there is at least one segment of the population (holding beliefs

divergent enough to be outside the threshold) that will lead to repulsion. However, for agents

holding belief 5, only meeting agents with beliefs 0 and 10 will lead to repulsion, which accounts

for 20% of the population (since beliefs are randomly attributed).

But when we move to T = 5, those agents with belief 5 are not repulsed by meeting an agent

who believes in 0 or 10, because it now falls within the threshold boundaries. Consequently,

these agents can only converge towards the agent they meet in the first round, regardless of

that agent’s belief.

But for T = 5, our simulations show that the population keeps ending-up being polarized.

We believe this is because the proportion of those agents that can’t be repulsed by any divergent

belief is not high enough (it’s only 9% of the population at first round). Furthermore, by

interacting with others at the first round, they will average their opinion and the opinion of

the agent they just met. Thus they won’t be holding belief 5 in the next round, unless they

meet an other agent holding belief 5, which has a 1,6% chance of happening. The other way

any agent holds belief 5 at this next round is if someone believing 4 meet someone believing 6
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or if someone with belief 7 meet someone with belief 3. In total there is 4,8% of interactions

that can lead to an agent holding belief 5 in the second round. This drastic fall of those type

of agents might explain why we still witness polarization as a long-term dynamic when T = 5.

Then for T = 6, the proportion of agents that can only converge with someone else opinion

grow to all the agents holding beliefs 4, 5 and 6, which represent 27% of the population. And

our simulations shows that on average, at the next round, we still have around 21% of agents

with beliefs in that range from 4 to 6 where agents can only get closer to other’s opinions in

the next round.

We believe that this sustainable proportion of agents who will not repulse from any other

belief is the reason why starting at T = 6, the dynamics move from polarization to consensus.

This is a first important result from this model. To converge towards conformity, a society

don’t need to have only people ready to converge towards the opinion of others, but a proportion

of 20% seems to be enough so that their action leads the whole population towards consensus.

However it’s important to note that these results happen when the threshold is already high

(T = 6), and the same for the whole population.

The introduction of influencers into the Online Social Network (OSN) significantly alters

polarization at the population level. With identical model parameters, the dynamics of pop-

ulation opinion (depicted in red) diverge markedly. The dynamics of the influencers’ opinions

are also illustrated (in yellow).

The interaction between influencers and casual users constitutes an interdependent sys-

tem where influence on opinions is bidirectional. Influencers, once they have gathered enough

followers, can broadcast an opinion, thereby attracting or repulsing a large number of users

simultaneously. However, what influencers choose to publish is shaped by their perceptions of

user preferences, which are inferred from users’ decisions to follow or unfollow them and from

their reactions. Thus, the outcomes observed are inherently a result of this interdependence,

with one group potentially exerting more influence over the other.

For low thresholds levels, from 1 to 5, the population confronted with influencers still rise

towards polarization, but the process is slowed down, apparently due to the influencers who

slowly polarize themselves, learning to di↵use what the population will likely engage with. It’s

interesting to note that there is a steeper curve of polarization in the first rounds in the model

with influencers compared to the population without their presence. Our explanation for that

phenomena is the increased number of interactions each agent has when there are influencers

in the model. Indeed while the population without influencers only interact once by round,

the presence of influencers gives the opportunity to make more interactions at each round.

And because the population is initially confronted with very diverse opinions, each interaction
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increases the chance for polarization for these thresholds levels (There are more chances to

interact with someone with an opinion above the threshold).

Then the situation is also very interesting for threshold levels superior to 5. While the

issue sparking this model is polarizing societies, there’s likely an evenly strong case to be made

about the perils of living in a society where total conformity—everyone holding the same exact

opinion—prevails.

Because opinions are not truths, there is danger whenever an idea is no longer debated

but taken for granted by the whole group. From a purely utilitarian perspective, it has been

demonstrated that diversity is associated with higher levels of innovation (Hewlett et al. (2013)).

Galton’s renowned experiment on the wisdom of the crowd (Galton (1907)) also showed that

diverse populations tend to make more accurate estimations than individual experts when asked

to guess about something.

In this regard, it appears that a world with influencers permits societies that are slightly

less uniform, allowing for polarization levels di↵erent from 0, although they remain low. For

threshold levels from 6 to 9, the presence of influencers shifts the population’s opinion distri-

bution from a uniform one to what appears to be, around 0.5, a distribution more akin to a

normal distribution.

In every simulation, the convergence is centered around the opinion 5.

An explanation for the asymmetrical impact of influencers - when transitioning from thresh-

olds that induce polarization to those that induce total conformity - may be found in the initial

rounds of the model.

The population swiftly gravitates towards polarization for t < 6 as they are exposed to

uniform distributions of beliefs (both from their neighborhoods and from the dew influencers

who initially propose random opinions and are discovered with the natural rate of discovery n).

This leads the influencers to rapidly adapt to this polarization by di↵using extreme opinions

themselves. If the initial opinions encountered by people were more aligned with their beliefs,

then polarization would not occur as quickly.

Conversely, for T � 6, encountering uniform distributions of beliefs is not problematic as

it results in more attraction than repulsion; it becomes statistically less likely to encounter

someone whose belief would induce repulsion. However, by disseminating random opinions and

gradually learning the population’s beliefs, influencers actually decelerate the unification process

by presenting users with opinions far removed from their own. This e↵ect is enduring, as these

divergent opinions are introduced to new users in each round, either through word-of-mouth or

platform algorithms.

As we’ve analyzed, the sub-population of influencers seems to act as an anchor for the
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opinion’s distribution of the population, both slowing down processes of polarization and total

unification. We wish to validate this hypothesis by asking what would happen if those same

influencers were to di↵use random opinions instead of learning what the population wishes.

Figure 2 shows this experiment for every threshold level from 1 to 9 for one simulation of 50

rounds.

There is a clear anchor e↵ect from the influencers when they’re spreading random opinions.

Indeed while it’s not able to change the early dynamic of polarization for thresholds below

6, it is nevertheless acting as a regulator for those cases. For greater thresholds levels, the

population closely align with the distribution of influencers, showing that influencers do have

a great impact on the opinions of the population.
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Figure 3.2: Each box represent a simulation lasting 50 time-steps of the model with influencers
with di↵erent thresholds levels. Lines represent the evolution of polarization among the respec-
tive populations. blue is the whole population (N = 300), and yellow the sub-population of
influencers (N = 30). We use a repulsion strength parameter of 1/2. We test from T = 1 to
T = 9.
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3.2.2 Distribution of Influencer’s degree

A common feature of OSNs with directed connections (where i can connect to j without the

reverse being true) is the emergence of positively skewed distributions of in-going connections

(such as the number of followers on Twitter, for example).

This process has been uncovered for many di↵erent types of networks in Barabási and Albert

(1999) with a simple explanation for its existence: the ’preferential attachment’ hypothesis.

For the authors, the explanation for this network feature would lie in a Matthew e↵ect, also

sometimes called the ’rich-get-richer’ e↵ect. Basically, it explains that the high-degree nodes

would have gained their numerous connections not from intrinsic qualities or performance, but

rather from the opportunity of being on the network at its beginning. There would then be a

natural tendency for new entrants to connect to people already there, combined with a simple

heuristic of connecting to the already well-connected.

While there is certainly some truth to this explanation, we suppose that some other dynamics

might be at play which could explain as well the asymmetrical success of Influencers. Because

in this model the whole sub population of influencers arrive at the same time (at t = 0), we

can explore those other hypotheses.

In the baseline model we presented earlier, all influencers succeeded in obtaining a high

number of connections. This is expected since they all learn the same way. If we look at the

degree distribution of the global population, including influencers, then yes, we have a scale-

free distribution with a few highly connected agents and the rest of the population with far

fewer. But certainly not all who wish to be influencers succeed, and so we will instead focus

our attention on the distribution of degree inside the sub-population of influencers to try to

understand what drives success and failure in this specific group of agents.

The two main factors likely to generate disparities are the word of mouth process of di↵using

information about existing influencers and the bounded time and attention the population of

casual users are willing to spend on the platform.

The word-of-mouth mechanism operates by expanding the potential pool of new followers

through the existing follower base of an influencer.

This process is crucial for influencers as it allows them to expand the pool of potential new

followers and the number of potential reactions to their posts, which in turn influences whether

the platform is likely to highlight them in the upcoming rounds.

Specifically, if an agent i has x neighbors within the population of regular users and is

connected to an influencer k, this agent can ‘introduce’ its neighbors to k by informing them

about the influencer’s existence.

The w parameter defined earlier then control the proportion of those x neighbors that will
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Figure 3.3: Influencer’s degree distribution when we vary the strength of the word-of-mouth mechanism
coupled with variations on scarcity of users’ capacity to follow. In blue the distributions for T = 4, in
red for T = 5 and in yellow for T = 6. Each panel is a di↵erent combination of the maximum number
of influencer any casual user can follow and of the level of word-of-mouth parameter. For example
13 0.2 is the simulation of the model when any casual user can follow at max 13 influencers, and the
the word-of-mouth parameter is set to 20%.
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be reached through the word-of-mouth mechanism.

To test whether the word-of-mouth mechanism can drive inequalities in the success of the

influencer population, we run our model while varying w from w = 0 to levels of 20%, 40% and

60%.

What the word-of-mouth mechanism likely induces is a self-reinforcing process, wherein an

influencer can expand their pool of potential followers in each round, provided the structure

of the network of casual users remains homogeneous. This is also contingent on the influencer

continually converting a similar proportion of potential to actual followers, implying the dissem-

ination of opinions that resonate well with the beliefs of the population, or at least a significant

portion of it.

This process is inherently inclusive, allowing all influencers the opportunity for growth

through word-of-mouth di↵usion. However, minor disparities in the ability to disseminate

the ’right’ opinions early in the simulation could lead to significant discrepancies. This is

particularly true as success through word-of-mouth increases the likelihood of being spotlighted

by the platform, thereby further expanding the pool of potential new followers.

Moreover, it will be crucial for influencers to achieve success early on, especially considering

the variable of scarcity. The scarcity hypothesis posits that each casual user, having only a finite

amount of time to spend on the platform, cannot connect and engage with every influencer.

This is particularly plausible when considering that users might prefer to avoid redundancy

in the opinions they are exposed to and may wish to prevent being overwhelmed by excessive

information, which would hinder their ability to access their preferred content on the OSN. Thus,

we argue that the scarcity hypothesis, which suggests a limit to the number of influencers a

casual user is willing to connect to, is plausible. It’s important to emphasize that scarcity does

not lead to user lock-in as users always have the option to disconnect from any influencer if

they find the diversity in the opinion space to be too broad.

Even though agents have the option to disconnect, the interplay of word-of-mouth and

scarcity is likely to augment the path dependency of initial successes for any influencer. This

can potentially expand their pool of prospective followers while concurrently undermining the

success of other influencers. This is because existing followers might have already reached their

connection limit and, therefore, are not open to forming connections with other influencers.

The results from Figure 3 confirms this hypothesis. By coupling the two variables and

observing the distributions of in-degree for influencers for three di↵erent levels of the threshold

we can see that the most skewed distributions arise for very high levels of scarcity and at least

existing word-of-mouth mechanism. When agents can connect to many influencers, distributions

are much more symmetrical.

These results show that the preferential attachment hypothesis can be further detailed, in
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this context, as a combination of a word-of-mouth mechanism where success can breed further

exposition and thus, more success, and a scarcity parameter the model the bounded time we

spend on a social platform, or the limits to people’s willingness to follow and engage with

influencers.

Therefore it enrich the explanation of why some influencers will be more successful than

others.

Platform’s algorithms

Lastly, we employ the model to investigate the implications of potential policies that the plat-

form could implement. These policies, manifested as algorithms, would regulate the visibility

of various influencers to the casual user base.

We examine three distinct algorithms utilized by the platform for influencer recommenda-

tions: one that prioritizes influencers who have recently expressed opinions aligning with the

user’s current views; one that does the contrary, highlighting those with opposing views; and a

third that exclusively presents influencers with moderate opinions to users.

We choose to only focus on the three threshold which represent most of the dynamics in this

model. When T = 4 or below we’re on a easily polarizing context, T = 5 act as a transitory

state and T = 6 or above will most likely move opinion distribution toward consensus.

When T = 4 we witness diverse dynamics which highlight a clear impact from the algorithms

on population’s opinions. We display a benchmark dynamic in black that represent the opinion

dynamic without algorithms (the platform simply shows engaging influencers without taking

care of individuals opinions). Then in red is shown the so-called echo chamber where the

platform highlight influencers that are close on the opinion space. In blue the opposite (platform

display influencers distant on the opinion space to the user) and in yellow a moderate filter which

would only show influencers with recent moderate opinions, typically in the range 4 to 6.

for this threshold level, there is a clear detrimental e↵ects of showing opposite opinions to

users, contrary to moderate and filter algorithms, which seem to act as decreasing polarization

inside the population.

The e↵ect is even more pronounced for T = 5. In this scenario, while showing opposite

opinions through influencers increase polarization compared to the benchmark model, the two

other policies lead to a population with converging opinions, in the range 0.5 which typically

exhibits normal-law types distributions.

Finally, for T = 6, we don’t discern any e↵ects of the policies compared to the benchmark

model.

These results gives theoretical foundations for recent empirical results (Guess et al. (2023b,a);

Nyhan et al. (2023)) which found no detrimental e↵ects of online social networks (and therefore
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Figure 3.4: 3 Di↵erent algorithms tested for T = 4,T = 5,T = 6. In red an algorithm that
propose close-opinion influencers, in yellow influencers with moderate opinions, in blue ones
with distant opinions and in black a benchmark simulation without any algorithm.
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of echo-chambers) on polarization. It seems that if people do indeed behave in an Attraction-

Repulsion kind of way regarding their opinions, then displaying people close to you on the

opinion space will likely lead to less polarization than if no algorithm is in place if people’s

threshold is below 5, and actually leads to more consensus otherwise.

This result is not necessarily expected from the model, because while the attraction e↵ect

will take place under an echo-chamber with the influencers, casual users are still connected to

other casual users which are not necessarily close on the opinion space. So a typical user, in a

given round, can both get closer to influencer’s opinion, but also repulsed from a neighbor’s one.

In term, depending on the scope of these e↵ects, we could also have witnessed more polarization.

3.3 Conclusion

This study has illuminated the diverse e↵ects that occur online when various actors engage with

di↵ering motives. Specifically, distinguishing between individuals who aspire to be influencers

and the general population reveals a compelling bi-influential system in which both groups

reciprocally influence each other.

While regular users predominantly share and discuss opinions—leading them towards either

polarization or consensus—influencers aim to propagate views that will maximize their suc-

cess on the platform. Consequently, the presence of these influencers seems to decelerate the

polarization process and reduce the likelihood of total consensus.

We were also able to gain deeper insights into the factors that drive success for influencers,

moving beyond the conventional explanation of preferential attachment in scale-free structures.

We discovered that the most pronounced skew in network success arises from the conjunction

of two factors: firstly, potent word-of-mouth e↵ects among regular users, indicating that they

disseminate information about the influencers they follow to their peers. Secondly, a pronounced

scarcity in the number of influencers that a regular user is willing to follow. This amalgamation

fosters a path dependence for early success, even though individuals can unfollow influencers.

Utilizing the model, we could assess various algorithms that a platform could implement

to optimize user engagement. There is a prevailing debate regarding the impact of OSNs on

polarization, with some proposing that algorithms intentionally display content aligning with

user opinions. Contrarily, our model demonstrates that such algorithms would actually mitigate

polarization and could potentially result in a homogeneous distribution of beliefs within the

population, contingent upon the population’s receptivity to divergent opinions.

This finding notably aligns with recent empirical studies investigating polarization on Face-

book during the 2020 American election campaign. Similarly, these studies did not observe an

impact of algorithms on polarization.



This suggests alternative explanations for the increasing polarization observed in western

societies. For instance, Bakshy et al. (2015) discovered that users themselves tend to limit

their exposure to divergent news and opinions, irrespective of the algorithms employed by the

platforms.

Furthermore, the study by Andris et al. (2015) on cross-partisan collaborations reveals a

trend towards polarization that predates the creation of the first OSN, as illustrated in Figure

5 (sourced from their article).

Lastly, we recognize that numerous extensions could be integrated into this model to either

explore issues closely related to Online Social Networks (OSNs) or enhance the model’s real-

ism. For instance, this framework could be instrumental in investigating the dissemination of

misinformation online. Additionally, incorporating the ability for regular users to establish and

sever connections among themselves users could increase coherence.
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Figure 3.5: Each member of the U.S. House of Representatives from 1949–2012 is drawn as a
single node. Republican (R) representatives are in red and Democrat (D) representatives are
in blue. Edges are drawn between members who agree above the Congress’ threshold value of
votes. The threshold value is the number of agreements where any pair exhibiting this number
of agreements is equally likely to comprised of two members of the same party (e.g. D-D or
R-R), or a cross-party pair (e.g. D-R).



Chapter 4

Online Social Network protocols

In the competitive market of Online Social Networks (OSNs) used by the population, explaining

why one platform outperforms another, or why users migrate, remains a complex challenge.

While existing literature often emphasizes the competitive advantage created by network e↵ects,

our research proposes that network protocols - the foundational rules shaping the creation of

OSNs and the interactions within them - play a crucial role in why users prefer one platform over

another. To substantiate our argument, we employ computer simulations of di↵erent network

structures, derived from various network protocols. Our findings reveal significant insights; for

instance, directed networks can markedly impede the di↵usion of information, and the presence

of sub-communities is vital for enhancing collective actions. These simulations demonstrate

that the nuances of network design can lead to vastly di↵erent outcomes, providing a deeper

understanding of user behavior and platform dynamics in online social networks.

4.1 Introduction

The recent purchase of Twitter (now known as ”X”) by Elon Musk and its subsequent an-

nouncements regarding the future of the platform (such as the major changes to the Twitter

Blue program) quickly fostered waves of worry among many of its users, encouraging them to

look for and collectively migrate to an alternative Online Social Network (OSN) that would

serve the same functions as Twitter. The favored network soon became Mastodon, an open-

source alternative that essentially serves as a substitute for Twitter, allowing users to post and

view short text messages — capturing the essence of the former OSN.

Figure 1 illustrates the evolution of active users on Mastodon over time, with November

2022 marking Elon Musk’s acquisition of Twitter. Although the call to migrate from Twitter

139
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Figure 4.1: Evolution of Mastodon’s users base

to Mastodon had a discernible impact on Mastodon’s user statistics, it’s noteworthy to see

that this surge in growth persisted for only a month. A rapid decline ensued, with over one

and a half million users ceasing to use the OSN within a few months. Thus, six months after

Twitter’s acquisition, Mastodon can report a doubling of its active user base. In contrast,

Twitter’s latest data report (from the end of 2022) cites approximately 240 million daily users,

and Musk recently announced a count of 250 million daily users. While the migration could be

considered a win for Mastodon, it hardly appears to be a loss for Twitter.

These recent events provide a compelling illustration of the perplexing competition dynamics

that platforms can sometimes exhibit. How can we account for the abrupt halt in migration

after an impressive gain of 2 million users, with most presumably coming directly from Twitter?

Literature on platform competition typically cites network e↵ects as the primary force shap-

ing dynamics in such markets. Network e↵ects, as seminally developed by Katz and Shapiro

(1985) and Arthur (1989), detail how the value of certain goods is intrinsically tied to their

existing user base. Put simply, owning a phone in a world where no one else has one provides

no utility to its owner. Thus, network externalities are a crucial factor when considering online

social networks. Because if no one is using Facebook, its utility becomes null for anyone that

would consider joining.

The literature also makes evident that the winning competitor is not necessarily the superior

one but rather the one that gained an advantage in the early days of the market. Therefore,

understanding why one social network has more users than its competitors and becomes the

market leader often hinges on the ”historical events” that favored it.

In November 2022, such a historical event occurred. Elon Musk purchased Twitter, prompt-

ing many active users to reconsider which OSN they should use. Strictly speaking, we aren’t
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exactly in the situation described by Arthur’s model because the population isn’t deciding which

good to adopt. Instead, they’re determining whether they’re willing to switch from one to the

other, a situation Farrell & Saloner explored through theoretical models (Farrell and Saloner

(1985, 1986)).

Overall, given such a dazzling start, the network externalities stream of literature would

suggest that a snowball e↵ect should be taking place. This rapid growth would only further

fuel the subsequent adoption by millions of other users. Notably, cascades leading to the fall of

an online social network have recently been studied by Török and Kertész (2017).

However, if this is not the trend we’re observing, there might be another factor explaining

the sudden decrease in the Mastodon hype. While Mastodon is designed as an open-source

alternative to Twitter, and using it can feel very much like Twitter, we argue that certain

network protocols result in a notably di↵erent experience. This could explain Twitter’s resilience

to the detriment of Mastodon following the buyout by Musk.

If you examine any major online social network (OSN) today, it’s evident that they largely

o↵er similar functionalities to their users. Most are structured in the following way: Users can

share ”posts”, which can manifest in di↵erent formats, including text messages, audio clips,

videos, or photos. In response, other users can engage with these posts through reactions

(such as ”likes”) or by leaving comments. Additionally, most of these platforms provide a

private messaging feature that facilitates direct communication between users. However, not

all platforms prioritize the same functionalities. For instance, Instagram emphasizes photo

sharing, TikTok focuses on brief videos, and Twitter on concise text messages. Yet, in principle,

one could use Twitter in much the same way as Instagram, or LinkedIn as an alternative to

YouTube.

Then the distinct user experience of these OSNs might lie from the unique network protocols

each employs. By ‘network protocols’, we refer to the strategic choices made by the platforms

that directly influence the structure of the user network. In this paper, we highlight the primary

protocols as: the nature of ties, the limits on the number of users an individual can connect to,

the type of user recommendations, and the ability (or lack thereof) to establish sub-communities.

By ‘the nature of tie’, we mean the way in which an OSN allows users to establish connections

with others. For instance, Facebook and LinkedIn operate on the basis of reciprocal ties. When

you want to add another user to your network, you send them a request. The recipient can

then accept, decline, or ignore this request. On the other hand, platforms like Twitter and

Instagram use directed ties. This means that you can follow someone without needing their

approval. However, this doesn’t guarantee that they will follow you back.

Most platforms also impose limits on the number of users one can connect with. For instance,

Facebook allows up to 5,000 connections, while LinkedIn permits 30,000. On directed networks
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like Instagram or Twitter, there’s a cap on the number of people you can follow, but no ceiling

on the number of followers you can have.

This interplay of the first two protocols explains why there aren’t macro-influencers boasting

hundreds of millions of followers on Facebook or LinkedIn like on Instagram — such colossal

neighborhoods simply aren’t permitted by the platform’s constraints.

Furthermore, the ability for users to form and rally around sub-communities can transform

the network’s structure, making it more dense. The essence of most sub-communities is the

capacity to engage with all of its members through public posts. The idea is to facilitate sharing

around a common interest. So, even if you’re not directly connected to everyone in the group,

a single post within the community can e↵ectively reach them all. Therefore a sub-community

could be considered a complete sub-graph among all members, although the weight these ties

carry might not be as strong as a ‘real’ connection on the OSN.

Lastly, a significant feature of an online network is its recommendation algorithm. This

algorithm determines whom the platform will suggest you connect with. Recommendations

can be explicit, such as ”Here are 10 people on this network you might know,” or they can

be more subtle. For instance, the platform might highlight activities from people you aren’t

directly connected to in your feed, typically framed as ”You might be interested in this.” Most

major OSNs employ both strategies. We can categorize the typical recommendations into a few

types: individuals the platform believes you know in real life, individuals with similar interests

or backgrounds, and those already well-connected on the platform, often termed ”influencers”.

In turn, Recommendation algorithms play a pivotal role in shaping network structures. For

instance, they can amplify the reach of established ’influencers’ or promote emerging ones, likely

leading to the formation of scale-free structures, as described by Barabási and Albert (1999).

Given its status as open-source, non-profit software, Mastodon avoids the typical recommen-

dation algorithms often found in other platforms. While it might display global trending topics,

the platform doesn’t o↵er the same level of personalized content as major OSNs do. While this

approach holds several merits, such as preventing echo chambers and addressing data privacy

concerns, this particular network protocol might adversely impact user experience, especially

during the crucial initial phase of platform discovery. This could, in part, account for the

observed decline in active users following a brief period of intensive growth.

In the same time frame, Meta’s Threads, a direct competitor to X, has notably outperformed

Mastodon. Garnering tens of millions of monthly users in the U.S. alone (Intelligence (2023)),

Threads likely benefits from Meta’s established use of recommendation algorithms, similar

to those in Facebook and Instagram. This contrast in user engagement with Mastodon, which

eschews such algorithms, might bolster the argument about the pivotal role of network protocols

in shaping social platform success.
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In light of this discussion, it becomes clear that while many platforms, ranging from stream-

ing services and game consoles to newspapers, rely on third-party contributors—such as di-

rectors, game developers, and writers—to carve out their competitive advantage, OSNs stand

apart in this landscape. The unique competitive strength of OSNs doesn’t primarily derive

from external creators, but from their intrinsic network protocols. It’s the distinct architecture

and rules set by these platforms that determine how users can establish connections, interact,

and subsequently shape the network. This inherent design not only dictates the user experience

but also results in a specific network structure, which becomes the platform’s defining asset and

source of competitive advantage.

In this chapter, we postulate a causal linkage between the network protocols instituted by

firms and the utility consumers extract from their OSNs. This hypothesis is grounded in the

notion that these protocols critically shape the interaction dynamics among users, which in turn

impacts the e�cacy of these networks in fulfilling the diverse expectations of their user base.

Such a framework suggests that the architectural choices of network protocols are not merely

technical decisions but also key determinants of consumer utility than can therefore influence

the success of one OSN over another.

The first part of the chapter will therefore be devoted to generating the di↵erent networks,

each following a di↵erent combination of protocols, and then to study how di↵erent they are in

terms of various network characteristics.

Then the second part of our argumentation test the statement that di↵erent network struc-

tures will result into di↵erent dynamics or outcomes for the users. While it is obvious that a

star network will unfold di↵erent processes than a complete graph, we’re interested to know if

the realistic network protocols we model here will result into di↵erent enough networks struc-

tures so that they do have an impact on the processes we will test. This second part then test

three di↵erent processes that frequently happen and that are partially the reason why people

use OSNs.

We focus at how information spreads, how groups can come together for a common cause,

and how job seekers connect with potential employers. These processes, by reflecting proto-

typical uses of social networks, bring part of the value to the users of the platform. We’re

focusing on quantifiable measures of success. For instance, most would agree that an OSN

is more e↵ective if it spreads information quickly, helps a community mobilize, or aids in job

searches. Admittedly, our focus does not encompass the entire spectrum of platform utilities,

notably those related to entertainment. Given the subjective nature of entertainment—what

captivates one individual might bore another—it presents challenges in terms of precise mod-

eling. Consequently, we have chosen to exclude it from our current analysis.



144 Chapter 4. Online Social Network protocols

Combining the two parts of this chapter, we’ll be able to link the performance of a particular

network structure, on one or plural processes, to the network protocols that shaped it.

It can then be used either by firms to understand how they can improve or build new OSN

that would fit their ideas, and the functionalities they believe users will want to use it for, or

by consumers, to choose the right OSN according to their need.

The rest of this study is structured as follow: We start by generating di↵erent online social

networks that would mimic the combinations of various network protocols and evaluate their

network properties. Then we apply the three enumerated processes: the di↵usion of information,

the dynamics of collective action and a simulated job market on each of these network structures.

We demonstrate that for each process, we identify significant e↵ects of network protocols. This is

an important finding for platforms seeking to enhance their performance and, more importantly,

for users who should be aware of certain platforms’ limitations and choose the right OSN based

on their specific needs.

4.2 Modeling Networks

We begin by building the networks that will serve as our OSNs, each designed based on a unique

set of protocols outlined in the introduction. Of the four protocols mentioned, we retain three:

the nature of ties, the ability to form sub-communities, and the recommendation algorithm.

We exclude the ’limits on individual degree’ protocol, as it primarily poses a constraint for

Facebook.

We categorize the nature of ties and the ability to form sub-communities as binary vari-

ables. Specifically, a tie can be either directed (D) or undirected (U), and the network either

allows (C) or does not allow (N) the creation of sub-communities. As for recommendation algo-

rithms, we consider the three previously discussed options: recommendations based on real-life

acquaintances (F), those based on similar interests or characteristics (A), and recommendations

of influencers, which we also refer to as ’Stars’ (S). This categorization results in twelve distinct

network structures. Throughout our discussion, we will refer to these structures using their re-

spective initials. For instance, an undirected network that recommends real-life acquaintances

and allows the formation of sub-communities will be designated as ’UFC’.

4.2.1 Creating a “Real-life” network

While modeling some protocols is straightforward, such as depicting the nature of ties, others

require a bit more ”background building”. This is particularly true when considering the

recommendation of real-life acquaintances. If an Online Social Network (OSN) aims to suggest
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connections to people you’re familiar with, it presupposes that the platform has access to some

level of information about your real-life social circles, whether partial or complete. In practice,

this data can be obtained through various techniques. For instance, Facebook encourages

users to provide their phone numbers and grant access to their phone contacts. Should you

consent, Facebook can then cross-reference your contacts with other users who have also shared

their phone numbers. Additionally, if you disclose details such as your age, place of study, or

workplace, the OSN can make educated guesses about other individuals you might know who

have shared similar information.

We thus need a network that can replicate this real-life scenario. The aim is to represent

a social network as it existed before the advent of Online Social Networks (OSNs). Such

neighborhoods typically consisted of families, friends, colleagues, and so on. In this context,

ties are not weighted.

Importantly, we want the network to embody two characteristics commonly observed in

social networks: small-world and scale-free properties.

The small-world phenomenon in social networks has been well-understood since the studies

of Milgram (1967); TRAVERS (1969). The structure and modeling of small-world networks

were further elaborated upon by Watts and Strogatz (1998).

Similarly, the concept of scale-free networks, introduced by Barabasi & Albert, underscores

the idea of asymmetric node connectivity within graphs. The emergence of scale-free structures

in social networks can be attributed to factors such as popularity, hierarchies, or brokerage

roles. To substantiate the presence of these scale-free properties, we examined two datasets: a

mail communication network and ego networks from Facebook. These datasets are particularly

appropriate proxies for real-life networks as they largely exclude connections to ’unknown peo-

ple,’ such as influencers who gain prominence through OSNs like Twitter or Instagram. Both

datasets are sourced from the Stanford Large Network Dataset Collection1. Our analysis indeed

confirms both the scale-free and small-wrold nature of these networks.

We thus aim to generate a network that would allow N individuals to connect through

two distinct processes: homophily and popularity. While homophily promotes connections

with similar agents, leading to the formation of cliques, popularity fosters the emergence of

scale-free-like structures.

This leads to two questions: how can an agent discern someone as more similar than another

and how can it assert that one agent is more popular than another?

To deal with homophily in our model, we arrange every agent from our population along a

circular segment. We position each agent at equal intervals from one another. This arrangement

1
http://snap.stanford.edu/data/
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is designed to reflect the level of similarity between agents: the closer two agents are on the

segment, the more similar they are to each other; conversely, the greater the distance between

two agents on this circular segment, the more dissimilar they are. Thus if an agent wants to

connect to someone based on homophily, it will pick an agent that is close on the segment.

Then to deal with popularity, we simply use degree centrality, meaning that an agent will

consider another agent popular proportionally to its degree on the network. We artificially

create slight inequalities in degree at the beginning of the model by selecting a few agents and

making them connect at random. There is a few agents that will have a higher degree before

the rest of the population join and they will potentially become the high-degree agents found

in scale-free networks.

Once this initialization phase is done, agents sequentially pick an other agent to connect

to. They all have the same probability p of connecting based on homophily and the probability

1� p of connecting based on popularity. If the agent connects to someone similar, it will look

into the closest not-already connected agent on the circular segment. If it connects to someone

popular, it selects from the pool of the highest-degree agents.

After all agents have made their initial choices, this process is repeated for the entire pop-

ulation multiple times, until a specified network density is achieved.

We use the following parameters for the model: N = 1000, a probability of connection based

on homophily p = 0.9, 3% of the agents initially connect using a random process with a density

of 30%, and the connection process is repeated 10 times. This results in a connected network

with a density of 2%, an average path length of approximately 3, and a clustering coe�cient

of 63%. Both the average path length and the clustering coe�cient suggest that the graph

possesses small-world properties. Below, we present the degree distribution on a log-log scale,

which further indicates a scale-free-like behavior of this structure.

4.2.2 Cultural Diversity

The next step is to recommend individuals who share similarities across one or multiple dimen-

sions. This is essential not only for the recommendation protocol of the Online Social Network

(OSN) but also to ensure that, when agents form sub-communities, they do so based on shared

interests or values.

To capture the richness of cultural heterogeneity within populations, we adopt the conceptu-

alization of culture presented by Axelrod (1997) in his paper on cultural dissemination. In this

framework, every agent possesses a cultural vector of length F . Each element within this vec-

tor represents a cultural feature. These features can be conceptualized as overarching cultural

markers, such as religion, musical preference, sporting a�liations, political views, and so forth.

Each feature can assume one of T possible traits. Taking the ”religion” feature as an example,
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Figure 4.2: Degree distribution of the Real-life network

its possible traits might include Christianity, Judaism, Islam, and others. By determining the

values of F and T , we can calibrate the depth of cultural diversity within our population. For

instance, with F = 5 and T = 3, the cultural profile of an agent i might appear as: [2, 1, 2, 3, 2]

These cultural vectors are then use for the recommendation of similar people. The OSN will

typically propose to connect to someone that has a given proportion of similar traits. Similarly,

agents will join sub-communities that are centered around a given trait of a specific feature.

4.2.3 Recommending Influencers

Lastly, some of our OSNs will make recommendations based on popularity. At the onset of

the OSN’s creation, there won’t be any standout or popular agents. To kickstart this dynamic,

we employ a method similar to the one used for generating the real-life network. The first

batch of agents to join the OSN will be randomly interconnected. With a small enough initial

group, and by establishing connections among them at a density of 30%, we ensure su�cient

variability in their connectivity. As a result, while some agents might have only one connection,

others could have as many as four. When subsequent agents join the OSN, and if they receive

recommendations to connect with these early members, the initial agents will naturally emerge

as more popular choices. Over time, as this dynamic intensifies, these early agents evolve into

”stars”—individuals with a degree significantly higher than the majority of the population.
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4.2.4 The Online Social Networks

We can now generate networks based on the twelve combinations of network protocols we

discussed. These combinations arise from three main choices:

• The network’s structure, which can be either undirected or directed.

• The platform’s recommendation system, which suggests friends, people with similar traits,

or star users.

• The OSN’s policy on sub-communities, either allowing or disallowing their creation.

All combinations exhibit a consistent adoption pattern resembling an S-curve, reflecting

real-world adoption processes, as described by Rogers et al. (1962). We model this using a

Susceptible-Infected approach with a 10% infection rate, applied to the real-life network.

Starting with an initial 2% of the population, each subsequent round sees new members join

based on platform recommendations. If the platform suggests friends, there’s a chance of an

erroneous recommendation. This simulates real-life scenarios where platforms may mistakenly

suggest unfamiliar connections.

For similarity-based recommendations, cultural vectors use parameters F = 10 and T = 5.

The platform then suggests users sharing at least half of the newcomer’s traits.

If sub-communities are allowed, new members can either form individual connections or

join a sub-community, linking them to all its members. In directed networks, this a�liation

generates both incoming and outgoing connections.

The connection process repeats until the desired network density is achieved. To ensure our

model’s accuracy, we aim for low density, reflecting the sparse nature of real-world OSNs, as

noted by Bhattacharya et al. (2020). Even with just a thousand agents, two iterations produce

a 2% density, surpassing most real-world OSN densities.

Following table reports basic network statistics for each of the combination tested. We

simulate each structure ten times and report the average for each measure:
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Metric DFC DAC DSC DFN DAN DSN

Density 0.02 0.02 0.02 0.00 0.00 0.00
Average Path Length (In-going links) 3.05 3.04 2.89 11.92 6.09 2.26
Silent Nodes 159.20 236.60 241.90 176.20 785.10 980.70
Clustering Coe�cient 0.61 0.60 0.60 0.06 0.02 0.01
KS-test 0.07 0.07 0.07 0.03 0.08 0.02
p-value 0.94 0.83 0.90 0.96 0.57 0.85

Metric UFC UAC USC UFN UAN USN

Density 0.02 0.02 0.02 0.00 0.00 0.00
Average Path Length 3.02 3.10 3.00 6.03 4.34 4.00
Clustering Coe�cient 0.60 0.63 0.60 0.07 0.02 0.01
KS-test 0.06 0.06 0.06 0.03 0.08 0.03
p-value 0.87 0.98 0.86 0.95 0.39 0.72

Looking at the following metrics, we can see great variations from the di↵erent structures.

First regarding density, it is clear that the community feature greatly improve the number of

edges in the network. This is expected since communities are designed, as explained previously,

as complete components.

Regarding Clustering, the role of communities is here again predominant. It is interesting

to notice that the networks without communities doesn’t all perform similarly. The structures

that promote the connections to Influencers (USN and DSN) are the least performing structures

in terms of clustering. The ones that promote tie building through real-life connections are the

ones with the better scores, leading to clustering coe�cients around 7.5%. Though this is still

far from the clustering expected in small-world networks.

The next metric we look at is the average path length. For undirected networks, the cal-

culus and interpretation is straightforward. Here again sub-communities drastically reduce

the average path length. Then in networks without sub-communities, the recommendation of

friends greatly increase the average length. Recommending influencers or similar people leads

to around the same number of degree.

But in directed networks, we first need to clarify the context in which we compute the average

path length. Indeed, our directed graphs are the representation of online social networks such

as Twitter or Instagram, where someone can “follow” an other agent, while the reciprocity is

not guaranteed, and remains the choice of the other agent. The way we modeled these networks,

an out-going link from i to j imply that i follows j. This means that it becomes reachable by

j, who can di↵use posts that will be seen by i, but not the other way around.

Thus, we are interested in path length through in-going links. The way we built our net-

works, everyone is at least following one agent of the OSN, so everyone is reachable by at least

one person. But not everyone is followed by someone, which means that some agents will be
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”silent” in the sense that what their posting on the network won’t reach anyone else in the

OSN.

Consequently, we present two pieces of information: Average path length through in-going

links, and the number of silent agents in the network. Strictly looking at average path length it

looks like the DSN structure will be the most e�cient structure to di↵use information. However,

considering the number of silent nodes (980), it is evident that only a very few agents receive

all the connections. In this context, only the information of those stars will spread through

the network. Similarly, DAN is bad both at allowing everyone to di↵use information with an

average of 785 silent agents, but also at reaching people fast, with an average path length of

6. DFN on the other hand, while having the highest average path length of all, is able to keep

its number of silent agents quite low. Then all the structures allowing sub-communities have

similar behavior: about a quarter of the population is silent, but the average path length is

low, with a mean of 3 degree of separation.

Finally, we’re interested in the scale-free attribute of our networks. To analyze it we use the

Kolmogorov-Smirnov test to assess whether the degree distribution could have been generated

using a power law. Here all OSNs have high enough p-values ( superior to 0.1) to assume

that our data could have been generated the power law. However, upon examining the linear

representation found in the appendix for each of these distributions, it becomes apparent that

some do not completely align with the commonly held perceptions of scale-free networks.

While the structure without sub-communities do indeed seem to show a scale-free structure,

with the vast majority at very low levels of degree and very few agents with significantly higher

number of connections than this majority, it is important to notice that not all recommendations

systems (friends, similar agents or influencers) leads to the same “power” acquired by the

connection-rich agents. Both for undirected and directed networks, the highest power of the

rich is found in the star recommendation system which would be expected. Then recommending

similar agents leads to more power for the influencers than the friends protocol. This could

be explained by the fact that while friends will tend to connect among themselves, and thus

create small cliques, mimicking the “real-life” network generated at the beginning, connecting

to similar people will not necessarily lead to those same clusters, but exhibit a more random

pattern.

For the undirected networks, every agent that has joined a sub-community will have a greater

number of connections, which explains the high frequency of agents with around 20 ties. Those

networks, nevertheless, shows both large amount or people with almost no connections, and

very few with high number of connections.

The detailed network analysis of the various combinations we tested unveils a great diversity
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of structures. This diversity suggests that we will likely observe distinct dynamics when we

apply and test various social processes on these structures.

That’s what we do in the next section: On every of the twelve di↵erent OSN, we test the

dynamics for the di↵usion of information, the leverage of a collective action, and the e�ciency

of a job market.

4.3 Di↵usion of Information

4.3.1 Model

Now that we have generated our networks, and assessed how di↵erent their structural properties

could be with various protocols, we want to understand how these variations can lead to di↵erent

outputs in terms of objective measures. To start we investigate the role of the network structure

in the di↵usion of information. What we’re curious about is about the speed, but also about

the breadth of di↵usion in our networks.

Evaluating the speed of di↵usion on OSNs can be of great importance, as a growing part

of the population are using them as a source of information (Shearer and Mitchell (2021)). It

is even more important to understand how the di↵usion happens with the presence of fake, or

unverified news that can have important political or economic impacts (Wang (2020); Kogan

et al. (2019)).

To simulate the propagation of a given information piece, we use a Susceptible-Infected (SI)

model where agents on the network have two possible states: either being Susceptible, meaning

that they did not receive the information (they accept information with probability equal to 1

once reached), or Infected, meaning that they had receive and accepted the information. This

very basic framework is enough to show great disparities, as we’ll show later.

We add one element to this model regarding the sub-community propagation. As we’ve

explained, sub-communities work as complete sub-graphs inside the OSNs. However it would

not be realistic to model the interaction between two agents that have decided to connect in

the same manner as two agents that belongs to the same sub-community. Indeed, as the sub-

community grow, so will the number of posts on it. We hypothesize here that the probability

to care and read a post coming from the sub-community is decreasing as the sub-community

grows. This is because there will naturally be more posts, and agents might not care about

reading so much of them, or because they’re not interested to engage with the community at

all times when they’re on the platform. Platforms like Facebook design those pages that act as

sub-communities as places you must willingly go, which represents a barrier. And while posts

from the sub-community can be displayed on the feed of the user, not all posts are shown. this
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is thus coherent with the hypothesis that as a sub-community will grow, the less posts will be

seen by a member of the community.

Therefore, for networks that allow sub-communities, we introduce the action from users

to decide whether or not they’d like to open the piece of information that a neighbor wishes

to share with them. If the information comes from a neighbor the agent chose to connect

to, then p = 1, else, if the post comes from a neighbor the agent connected to through the

sub-community, then p = 1/sc with sc the sub-community that connects the two agents.

On each network, the process then goes as follow: We infect 1% of the population at random

to be the initial owners of information. At each round, they give the information to 10% of

their neighborhoods.

Of course, in such a framework, for connected networks, with enough rounds, everyone would

end up infected. What’s interesting to look at is the speed of di↵usion. But many directed

networks won’t be strongly connected, and thus, the steady state is not necessarily a full spread

of the information. First because, as we’ve seen, some structures induce that a large proportion

of the population is silent which means that even if they want to share information, they can’t

because no one’s connected to them. Secondly loops or subsets of nodes that aren’t able to

communicate to the rest of the graph can exist in such structures.

i j

k

l

m

Network 1

Consider the network 1 shown above. If the agent having information is among nodes i, j or

k, then the information won’t be able to move further than in this subset since no one following

them. Thus l and m will never get the information piece.

4.3.2 Results

Figure 3 shows the di↵usion spread for each structure. Results are the average for 10 simulations

on each OSN.
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Figure 4.3: Di↵usion of Information
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From the plot we witness a great diversity of behaviors resulting from the di↵erent OSNs

structures. This is a first result regarding the importance of network protocols for the user’s

experience. This imply that while some OSNs will be fitted to di↵use information, some will

not be at all. Particularly, directed networks, that don’t allow sub-communities (DSN, DAN)

are very slow at di↵using information. This is mainly because of the asymmetric out-going

degree distribution that renders a great part of the network unable to share information. It

is important to note that while all the other structures almost don’t show variation from one

simulation to the other, DSN and DAN exhibit higher levels of variation. For the DSN structure,

only 10% of the simulations are able to di↵use to the remaining populations. As the structure

is very close to a star-network, the probability of di↵usion depends on whether the star (in our

case one or plural stars) is part of the initial agent with the information. If no star is infected

in the beginning, the di↵usion becomes impossible. In terms of di↵usion of information, these

kind of networks are close to mass-medias as only one or few sources are able to di↵use to a very

large audience. These structures are close to OSNs like Twitter or Instagram, where ties are

directed, there is no places for sub-communities, and the algorithm is at least partially trying

to recommend influencers and content based on center of interests.

We also observe that while sub-communities should act as the greatest force towards fast

transmission of information, the simple rules we introduced in order to weight these type of ties

makes them slower than some undirected OSNs without the sub-community feature.

Overall, undirected OSNs will be faster than directed ones and the sub-community is an

advantage for di↵usion only for directed networks.

To our knowledge, there is no comparison in the literature regarding the di↵usion of infor-

mation in a directed social network as opposed to an undirected one, which appears to be a key

factor influencing di↵usion speed in our model. However, some literature does confirm other

findings of ours. Notably, the speed of information di↵usion is influenced by various network

characteristics, such as modularity (the existence and number of communities), average degree,

and the relative degree of social hubs, all of which play a role in determining the e�ciency of

information spreading (Peng et al. (2020); Peres (2014)). On the other hand, the clustering

coe�cient has a negative impact on di↵usion (Peres (2014)). This aligns with our findings:

Among undirected networks, the most e↵ective are those that do not allow sub-communities.

Overall, this is a first compelling result supporting our hypothesis that di↵erent network

protocols will yield di↵erent outcomes for users. In terms of information di↵usion, building a

directed or undirected network drastically modifies the probabilities that a piece of information

will reach the entire population. This is due to the many silent nodes (individuals not followed

by anyone) present in the network. The proportion of silent nodes even increases, thus rendering
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di↵usion slower when the platform pushes agents to follow influencers or when it doesn’t allow

for the formation of sub-communities.

We now keep building our argument by testing the influence of the network protocols on a

collective action process.

4.4 Collective Action

In 1978, Granovetter introduced the concept of Thresholds in collective behaviors (Granovetter

(1978)). The idea, is to consider that for some actions, people need that a su�cient proportion

of the population has engaged in it already before they can themselves join. Granovetter list

many of those cases such as political protests or the di↵usion of innovations.

Consider for example,the case of products with high network externalities. Adoption will

be highly dependent on the existing user base. While some will be early adopters, ready to

advocate for the further spread of the innovation, the majority will need to see that many others

have already adopted the product so that they can feel confident that the product will meet its

purpose, given that it has established a su�cient user base. In his seminal paper, Granovetter

consider the case where agents have perfect information about the choices among the whole

population. But it could be argued that in many contexts, local information, meaning looking

at what your neighbors are doing, is more realistic than having global information.

The process of a collective action taking form inside a population is quite di↵erent than

the propagation of simple piece of information. While the population is aware of the option

of adopting the product, or of joining a protest, they’ll be inclined to do so only if their

perceptions of the proportion of the population already doing it is high enough. Depending on

the distribution of thresholds among the population, and on the accessible information - here

about the structure of the network - collective actions can vary in scope and length to take

form.

Studying these kind of processes on online social platforms can be particularly useful as they

drastically modify the way people can access information and form beliefs about the willingness

of the population to engage in the given collective action, compared to traditional mass medias,

or o✏ine social networks, which are way more constrained geographically for example.

In the early 2010s, we witnessed a compelling example of how OSNs were used to amplify

and spread anti-government protests in the Arab world, an event now known as the Arab

Spring (Howard et al. (2011)). More recently, these networks have been instrumental in the

development and dissemination of the MeToo movement (Hosterman et al. (2018); Manikonda

et al. (2018)), especially on Twitter. The movement is often associated with its hashtag, which

serves as a key tool for spreading the message on the platform. Additionally, OSNs played a
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prominent role in Hong Kong’s Umbrella Movement (Shen et al. (2020)).

Given the critical importance of OSNs in the existence and e↵ectiveness of these movements,

they must be understood as strategic tools. This section aims to demonstrate how varying

network protocols - such as di↵erent recommendation algorithms, community policies, and the

nature of connections among users - can influence the spread and, consequently, the success of

collective actions.

4.4.1 Model

As for the di↵usion of information, we use one of the simplest modelling of thresholds models

of collective action. The goal is not to perfectly depict the process of engagement in a precise

context, but rather to establish important di↵erences among the di↵erent structures that we’ve

generated.

Let’s denote the set of agents as A, such that A = {a1, a2, ..., a1000}. For each agent ai in

A, there is an associated threshold ti. Each ti is drawn from the uniform distribution over the

interval [0, 1].

Furthermore, the process, if is to start at all, needs to have agents with a threshold level of

0. To make sure of their presence, we define a random subset S of A such that |S| = 0.01⇥ |A|.

Then for each ai in S, ti = 0. for each ai, we also allow a 5% interval below ti which will be

interpreted as meeting the required threshold. Imagine an agent j, with tj = 0.68 and a degree

of 3. What we want to allow is that if 2 neighbors of j engage in the collective action, meaning

that j calculates a threshold of 0.66, j should nevertheless be more inclined to join because its

threshold is very close, than not joining until its third neighbor has also joined, which might

never happen.

Once this is defined, the process goes as follow: we draw a random ordering of the population.

Then sequentially, for each ai in the random drawing, ai computes its ratio of engaged neighbors

at the given period s ri,s and compares it with its threshold. If it meets its requirement:

vi � 0.05 ⇤ vi > ri,s, then ai joins the collective action and can be seen as such directly for

the next agent and for all subsequent rounds. There is no disengagement in this version of the

model.

4.4.2 Results

To generate results we proceed as follow: For each of the 12 structures we test, we run 50

simulations. All simulations share the same original real-life network. They also share the same

original distribution of thresholds. What will change from a simulation to another is simply

the generation of the OSN. This way we ensure that we have isolated the structure and the
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underlying network protocols as the main cause of di↵erences from one structure to another in

terms of levels of engaged population in the collective action. For each simulation, we run 30

time-step, which means that every agent has 30 chances to re-consider its choice of joining or

not the collective action.
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Figure 4.4: Final levels of engagement after 30 rounds in a population of 1000 agents.

As for the di↵usion of Information, our results suggest a high heterogeneity regarding the

ability of a given network structure to foster a collective action.

Figure 4 shows the final level of engaged agents after 30 rounds, for each simulation per-

formed on every structure. There is a clear performance enhancement when the network allows

for sub-communities. On these structures, the collective action is able to reach 75% of the

population on average. During the least e↵ective simulations on those structures, the level of

engagement still reach 60 % of the population.

Among the OSNs that don’t allow sub-communities, DFN is the closest performing one, with

a similar mean level of engagement but a significantly higher variation from one simulation to

the others, as shown in the figure 5.

It is also interesting to note that the directed structures are performing better inside the

group of sub-community OSNs. Among those networks, the recommendation algorithm doesn’t

seem to have a high impact on performance.
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Figure 4.5: Box plots for the 12 OSNs, in red OSNs with sub-communities, in blue OSNs
without sub-communities.

The least performing structure is DAN, a directed network without sub-communities, and

where recommendations are based on common interests. In such a structure neither influence

or community can serve as a vector to engagement, which result in collective actions gathering

in average 20% of the population.

Finally one structure stands out by its behavior: DSN, a directed network without sub-

communities, and where recommendations are based on degree (so it recommends influencers).

This combination of network protocols creates a highly asymmetric network in terms of degree,

with many silent agents (no one follows them) and a small group of macro-influencers (some

get more than 25% of the whole population connected to them). As for the experiment about

the di↵usion of information, this structure leads to either very small or very high levels of

engagement. Typically high levels of engagement will be achieved when one or many initial

engaged people are those influencers. Say that one influencer has a threshold of 0. It will start

by convincing all of its followers with low enough thresholds. Then since influencers will also

tend to follow other influencers, if propagation succeeds in this cluster of influencers, then the

whole population can become engaged.

By contrast, in this framework, ’silent nodes,’ which are agents that follow others but are

not followed themselves, cannot propagate or fuel any collective action due to their virtual

invisibility within the network. If the majority of the initial agents initiating an action are

silent nodes, the action is unlikely to progress in this network. Moreover, even if these silent

nodes become willing to participate in a movement as a result of influence from their network,

their shift does not impact others’ decisions, as they are not being listened to, unlike in a
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strongly connected network.

In a scenario where 99% of the population are silent nodes, willing to engage in a collective

action but only following a few influencers, the initiation of the movement depends heavily on

these influencers. If the influencers are unwilling to participate, the movement is unlikely to

ignite. Conversely, if the influencers do choose to participate, the movement can gain momentum

easily.

This particular structure is close to networks such as Instagram, TikTok or Twitter (now X)

which are allowing directed nodes, are mostly recommending influencers, and don’t help users

to build sub-communities.

Again, network protocols, as expressed by their resulting network structures, do modify the

dynamics of a collective action process.

We finally test the impact of those protocols for a job market, where both job suppliers and

seekers signal their presence on a network of acquaintances.

4.5 Job Market

The development of the Internet, and soon after of online social networks, gave job market

participants a new tool to look for and advertise job openings. As many papers highlight

(Stevenson (2008); Kuhn (2014)), internet as a search tool has drastically been adopted by

users both for employed and unemployed users over the years and it has proven successful to

increase the chance of being hired compared to people not using internet to search for jobs

(Choi (2023)).

We can distinguish two di↵erent ways in which Internet has created new ways to look for

jobs. First the use use of websites and forums have acted as global information places where jobs

openings could be published. For example we saw the rise of websites such as Monster.com or

Craigslist.org being used as such. While this practice doesn’t radically change how people might

find jobs, because it is close to job fairs or looking for job ads in newspapers, it nevertheless

reduce time delays because of the instantaneous of access online and increase the scope of people

reached because everyone can access those websites regardless of their geographic localization.

Later, as Online social networks emerged, their potential for conveying information about

job seeking and openings was quickly recognised, and dedicated OSNs were soon created, with

its most successful one being LinkedIn. The processes that allow LinkedIn to function are

closer to what people were doing well before the internet: using their networks of personal

relationships, whether being friends and families (which could be labeled as strong ties) or

more distant acquaintances (weak ties) to get jobs. It is well known that people use these
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networks to find jobs, and even that the weak ties might be more useful to that purpose than

strong ones (Granovetter (1973)). Empirical work has, since then, refined this theory, showing

a paradoxical relationship: while weak ties help more people to find jobs, the value of a single

strong tie is more valuable at the margin. This is explained by the numerous number of weak

ties that we have, compared to only a few strong ones (Gee et al. (2017)).

Then, what an OSN such as LinkedIn allows is for each user to be able to explicitly write

their network down, by virtually connecting to other members. Then as for traditional OSNs,

a feed allows for users to share and receive posts from their neighborhoods.

It can therefore be used as a similar way to channel jobs opportunities and job requests

through the same network but online. It can also enhance the capability to maintain such a

network of professional acquaintances and thus be more e�cient than the o✏ine traditional

way of doing it.

As for the previous processes, we now ask whether there are better structures than others

to be used as job markets. This is both in the interest if platforms such as LinkedIn, which

can build and maintain a competitive advantage by providing the network protocols that will

ensure the highest level of matches among job seekers and job providers, and naturally in the

interest of users of those networks, as they will profit from the most e�cient OSN.

4.5.1 Model

We build a labor market with N participants, represented by a graph G = (V,E), where V

is the set of vertices (N = |V |), each representing a market participant, and E is the set of

edges representing the social connections between participants. The graph represents a social

network used by its users, firms or workers, to communicate about professional information

such as in LinkedIn. Here the information di↵usion is purely local and can only move from one

direct neighbor (di,j = 1) to another.

Each vertex v 2 V can take one of three states: “S” (Sleeping), “O” (O↵ering), or “L”

(Looking). “S” indicates an employed participant without any job to o↵er, “O” indicates a

participant with a job o↵er, and “L” indicates an unemployed participant seeking a job.

When an agent i moves from the“S” state to either the “O” or“L” state, it shares this new

information with its direct neighbors N(i) = j 2 V : (i, j) 2 E. If a neighbor is compatible (i

is“O” and j is“L” or the inverse) then a match is created, and both agents return to state “S”.

We hypothesis that at least two other processes can have a significant importance in the dy-

namics we wish to explore here. Mainly we want to enrich the behaviors of our agents by gifting

them memory and a varying willingness to share information in this particular framework.

A memory variable Mi,t depicts the state of knowledge of agent i about the other agents

o↵ering/looking for a job at time t. As stated, information di↵use locally and thus it is mainly
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filled with information about direct neighbors looking/o↵ering a job at the current period. The

memory length m gives the number of rounds the information will stay in agent i’s vector. The

shorter m, the harder it will be for two neighbors of i, j and k (that are not direct neighbors

themselves) to match if they’re not o↵ering/looking for a job at the same time period. if m = 1,

and j becomes “O” at t = 1 and k becomes “L” at t = 3, then the match is never made because

of i’s short memory for example.

We allow agent i’s memory vector to be enriched by information about outside its direct

neighborhood agents looking/o↵ering a job if this information is transmitted by one of i’s direct

neighbor.

A direct neighbor j can transmit information about an other agent k (that is not in i’s

neighborhood) to i depending on j’s willingness to help k find a job.

For simplicity, we posit that the willingness to propagate information about an other agent’s

status (O or L) is decreasing with the distance (degree of separation on the network) to that

agent. The idea is that we might be very inclined to help friends and share their CV, and we

might also do it for friends of friends, but as the distance increase, there is certainly a tendency

to ignore. Thus the probability P of information di↵usion can be written as: P (d) = (0.5)d

where d is the degree of separation from the source. The factor 0.5 is the decay rate, which

means the probability is halved for each degree of separation. It follows that the chance to

share information about a neighbor is 1/2 and about a neighbor of a direct neighbor is only

1/4 for example.

Therefore matches can be created between j and k even if they belong to di↵erent neighbor-

hoods, as long as an agent i possess in its current memory the information that the two agents

are compatible: one is “L” and one is “O” and that the information has been transmitted to i

by the agents on the path from j to k.

To sum-up a round in this model goes as follow:

• A proportion of agents are selected to switch state from ”S” to either ”O” or ”L” at

random.

• These agents share their new states with their neighborhoods. If any neighbor is compat-

ible or has information about someone that is in its recent memories, a match is created

and both actors of the match return to state ”S”.

• If that’s not the case, neighbors write the status of the agent in their memory.

• Then everyone has the opportunity to share information about o↵ers and proposals they

have in their last-round memory to their direct neighbors. They can’t give a piece of

information to the one that initially gave them. The probability to accept the new in-
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formation is negatively correlated with the distance from the agent o↵ering/proposing a

job.

• A new layer of memories for the whole population is created so they can store and di↵use

information in the next round.

The principal element we track for now is the number of matches made over time. By

setting the number of rounds and the number of new entrants in the market at each period, we

can know the maximum number of jobs created in a perfect information/di↵usion world. It is

expressed by: M = p⇤R
2 with M the total number of matches made, p the number of new “O”

or “L” posts at each round and R the number of rounds in the simulation.

4.5.2 Results on Simple Networks

Before translating this model into our ecology of online social networks, we can try to understand

what elements are key for a network to perform well.

First if we keep aside memory and di↵usion decay, the only determinant of performance will

be average path length. That is, a complete graph will ensure the fastest and best structure for

jobs suppliers and seekers. This is because any two nodes with matching statuses will be able

to directly communicate and match in a given round. By contrast, a linear or ring structure

where everyone has only 2 neighbors on average will perform the worst because it achieve the

highest average path length possible.

It follows that small-world or scale-free networks, for example which have low average path

length will necessarily show good performances. Of course, the importance of average path

length is true if job suppliers and seekers appear at random ”geographic” places on the network.

If all appears on a small restricted region of a graph, then the average path length of the whole

network become useless to predict performance. For now the emergence of suppliers and seekers

is indeed random on the graph.

Below is a table showing matching performances for various networks, each with similar

density values, when we omit memory and di↵usion decay. Here omitting memory is giving

perfect memory to all agents and omitting di↵usion decay is allowing information to di↵use

without decay.

To test models, we set the number of job seekers and o↵erers appearing at each round to

one, the number of rounds to 20, and the size of the population to 500. Consequently, the

maximum number of matches possible, denoted as T , is 20, assuming one possible match per

round. For each network structure, we run 10 simulations and calculate the mean number of

matches based on these simulations.
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Mean number of Matches Average path length Density

Line 10.5 167 0.004

SW, Rewiring probability

0 14.4 32 0.016
0.01 17.8 7 0.016
0.05 18.4 4.5 0.016
0.1 18.6 4 0.016
0.5 19 3 0.016
1 18.7 3 0.016

SF 18.5 3 0.016
Complete 20 1 1

These results confirm the intuition: the lowest the average path length the better for match-

ing. Neither cliquishness nor ”stars” inside networks have a significant impact on results. In-

deed random graphs (when p=1) perform as well as all small-world structures (from 0.01 to

0.1 rewiring probabilities) and the scale-free structure which does have a few highly connected

agents does not perform better than a random one.

Adding bounded memory and di↵usion decay will create two barriers: a temporal and

a ”geographical” one. With low memory size, our agents will not be able to recall much

information from the past, and thus the condition for a successful match will mainly be that

seekers and suppliers manifest themselves inside a short, coordinated time-frame. With high

di↵usion decay, information will have trouble moving further than direct neighborhoods of

agents. Reduction of average path length and density of networks becomes even more important

with this behavior.
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We now simulate the same networks, with the same number of rounds and same number

of new entrants at every round. But we now include bounded memory where agents only

remember the last round, and di↵usion decay with the probability to di↵use: P (d) = 0.5d with

d the shortest path from i to j. Results are then:

Mean number of Matches Average path length Density

Line 0.9 167 0.004

SW, Rewiring probability

0 10.6 32 0.016
0.01 12.3 7 0.016
0.05 15.2 4.5 0.016
0.1 16.7 4 0.016
0.5 17.7 3 0.016
1 17.4 3 0.016

SF 18.8 3 0.016
Complete 20 1 1

As expected, all structures (except the connected graph naturally) are a↵ected by the new

barriers. The line network becomes extremely ine�cient, and it seems that the passage from a

ring network to a random one exhibits a di↵erent pattern than before in terms of mean Matches.

The number of matches seems to be more sensitive to slight changes in the average path length.

The most remarkable results comes from the performance of the scale-free structure which now

is the most e�cient structure but also the only one that didn’t decrease its mean number of

matches. It thus appear the most robust to low memory and low di↵usion.

4.5.3 Results on Online Social Networks

As for the simulations in simpler structures, the maximum number of matches, that would

happen in a complete graph is of 20 matches because we create, at each of the 20 rounds, one

agent looking for a job, and one agent o↵ering one. We test each structure 15 times and report

the box-plots for each one in figure 7.

As for the 2 precedent processes, the structure of the network is of great importance for

this simulated job market. The main lessons are that undirected networks perform significantly

better than directed ones, and that allowing sub-communities can also increase the number of

matches.

The worst structure is the DSN one, which creates structure similar as star-graphs. While

in the two previous processes of collective action and of information di↵usion, this structure

was either the best or the least performing, here it’s always the worst one. It is most likely

due to the one-way flow of information, through the influencers of theses networks, which while

working to di↵use information or engage people into doing something, is not working for a job
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Figure 4.6: Statistics for each OSN, 15 simulations for each.

market, where information must flow in both ways to create matches.

The group of undirected, sub-community structures are performing the best with a level of

75% job matches among the total possible ones. This is the case even though we discounted

the probability to read information when it came from a community-based link. Nevertheless,

this higher clustering and the presence of influencers in these structures, which place them in

the Small-World category of graphs, seems to be the most e�cient one. A characteristic that

we also observed for SW networks in the previous section.

4.6 Conclusion

Overall, the hypothesis that the network protocols, which influence the network structure of

OSN, have also an impact on common processes happening in theses medias is theoretically

validated by our models and simulations.

There is a high heterogeneity in the most and least performing structures whether we look

at the di↵usion of information, the leverage of collective actions or the performance of a job

market. What’s even more interesting is that a enhancing characteristic for one process might

not be for an other.

There is thus room for platforms to look at what they aim at achieving with their OSN,

and revising their network protocols accordingly. This is even more important for users, which

can use the right network for the right purpose. Thinking about it might increase the chance

of success. Our very simple models would tell, for example, not to use Instagram or Twitter

which are close to DSN structures, if you’re looking for a job. Or that platforms that allow
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sub-communities, such as Facebook or Reddit can be very powerful to gain traction in collective

actions.
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Figure 4.7: Dynamics for a single simulation on each structure for collective action





General conclusion

When I began this thesis, my main objective was to emphasize the dynamic interplay of influence

between social networks and individual behaviors, acknowledging that causality is bidirectional.

The likelihood that you smoke or abstain, drink or abstain, or lean politically left or right, often

reflects the behaviors of those close to you. Beyond this broad influence, your specific position

within a network impacts not only your actions but also the dynamics of the entire group.

The rate and extent of behavioral di↵usion are shaped by the network’s pathways of influence.

For example, smoking habits within a classroom can vary significantly based on the structure

of student interactions. Similarly, an individual’s number of connections and their centrality

within a network critically influence the pattern of di↵usion. Thus, networks significantly shape

our behaviors.

However, these networks are not imposed upon us. We actively create, maintain, and sever

the connections that shape our networks, often in response to observed behavioral changes.

Consider the classroom scenario where smoking spreads. Depending on certain network ar-

chitectural features, smoking might permeate the entire classroom. Yet, suppose other values

are prevalent among the students—such as religious beliefs that strongly discourage smoking.

These students may resist adopting this habit by severing ties with peers who smoke. Conse-

quently, the network becomes less dense, potentially features longer average paths, and could

even become disconnected.

Thus, the initial social structure among students outlines a set of potential pathways for

behaviors to spread. When e↵ective, this connectivity exposes some students to practices they

prefer to avoid. Consequently, the social structure adapts to align with the individual beliefs

of each student, with the network being reshaped by these behaviors.

Moreover, people are becoming increasingly aware of their presence within networks and

recognize their positions within these structures. This awareness is especially pronounced on

online social platforms, where the network is not only palpable but also integral to the platform’s

purpose.

These observations led us to further test these observations trough the several models we

171



172 Chapter 4. Online Social Network protocols

built. Overall we find several key findings:

• The network structure do influence the behaviors of agents. This is a result we find in

several chapters. In chapter 3, we show that the outcomes for social learners, when they

are exposed to influencers, are greatly deteriorated when they move from clustered struc-

tures such as small-worlds, to structures with highly skewed degree distributions, where

a small number of agents are greatly connected compared to the rest of the population.

These are commonly known as scale-free structures.

Testing the importance of structures is also the object of chapter 5. In it we test if the

network rules of OSNs a↵ect social processes that happen on them. We find great varia-

tions among the di↵erent structures tested for information di↵usion, leveraging collective

action but also for the e�ciency of a job market. Depending on the purpose of the net-

work, some structures will be better suited than others.

• The behaviors of agents can easily spur the emergence of skewed distributions of degree.

We first identify this phenomena in chapter 2, where social learners also learn about

which agents to listen to. We find that some agents become central in the sense that they

gather more people asking them at each round than other ones. And it is not necessarily

correlated with them being more informed than others.

In chapter 4 we also find a skewed degree distribution in the opinion model, where influ-

encers are trying to obtain more connections from the population. We show that under

realistic hypothesis some influencers will succeed far more than others. Creating both a

skewed distribution in the overall population but also inside the sub-population of influ-

encers.

• Social learning is e�cient. This the main finding of chapter 2. In a population where

no one has better information’s than others, it is safer, and on average as e�cient, than

individual learning. So allowing people to interact easily among themselves like an online

social network would do can have benefits. It can lead agents to better learn, to change

their opinions, to join a collective movement or even to find jobs more e�ciently.

• But when they are manipulated, those same networks can be detrimental for their users.

This is the case in chapter 3 when we introduce influencers to the network of interactions,

or when the platform that regulates the online social network elicit the wrong algorithm

in chapter 4 and chapter 5.

Overall, our works validates the idea of co-influence between networks and behaviors, and

give more depths into the precise mechanisms that are at play. We focused on learning in the



context of social interactions, and showed how social interactions modify this process, with

an emphasis on the role of online social networks, which, as we showed, greatly modify the

dynamics of social learning.





Conclusion Générale

Lorsque j’ai commencé cette thèse, mon principal objectif était de mettre en lumière l’interaction

dynamique d’influence entre les réseaux sociaux et les comportements individuels, en reconnais-

sant que la causalité est bidirectionnelle. La probabilité que vous fumiez ou vous absteniez, que

vous buviez ou vous absteniez, ou que vous penchiez politiquement à gauche ou à droite, reflète

souvent les comportements de ceux qui vous entourent. Au-delà de cette influence générale,

votre position spécifique au sein d’un réseau impacte non seulement vos actions mais aussi

la dynamique du groupe entier. Le taux et l’étendue de la di↵usion des comportements sont

façonnés par les chemins d’influence du réseau. Par exemple, les habitudes tabagiques au sein

d’une classe peuvent varier considérablement en fonction de la structure des interactions entre

les élèves. De même, le nombre de connexions d’un individu et sa centralité au sein d’un réseau

influencent de manière cruciale le schéma de di↵usion. Ainsi, les réseaux façonnent significa-

tivement nos comportements.

Cependant, ces réseaux ne nous sont pas imposés. Nous créons, maintenons et rompons

activement les connexions qui façonnent nos réseaux, souvent en réponse à des changements de

comportement observés. Prenons l’exemple de la classe où le tabagisme se propage. En fonction

de certaines caractéristiques architecturales du réseau, le tabagisme pourrait imprégner toute

la classe. Pourtant, supposons que d’autres valeurs prévalent parmi les élèves, comme des

croyances religieuses décourageant fortement le tabagisme. Ces élèves peuvent résister à cette

habitude en coupant les liens avec leurs pairs qui fument. Par conséquent, le réseau devient

moins dense, présente potentiellement des chemins moyens plus longs et pourrait même se

déconnecter.

Ainsi, la structure sociale initiale parmi les élèves délimite un ensemble de chemins potentiels

pour la propagation des comportements. Lorsque cette connectivité est e�cace, elle expose

certains élèves à des pratiques qu’ils préfèrent éviter. Par conséquent, la structure sociale

s’adapte pour s’aligner sur les croyances individuelles de chaque élève, le réseau étant remodelé

par ces comportements.

De plus, les gens prennent de plus en plus conscience de leur présence au sein des réseaux et
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reconnaissent leur position dans ces structures. Cette prise de conscience est particulièrement

prononcée sur les plateformes sociales en ligne, où le réseau est non seulement palpable mais

aussi essentiel à la finalité de la plateforme.

Ces observations nous ont conduit à tester davantage ces observations à travers les di↵érents

modèles que nous avons construits. Dans l’ensemble, nous trouvons plusieurs résultats clés :

• La structure du réseau influence les comportements des agents. C’est un résultat que

nous trouvons dans plusieurs chapitres. Au chapitre 3, nous montrons que les résultats

pour les apprenants sociaux, lorsqu’ils sont exposés à des influenceurs, se détériorent

considérablement lorsqu’ils passent de structures regroupées comme les petits mondes à

des structures avec des distributions de degré très biaisées, où un petit nombre d’agents

sont beaucoup plus connectés que le reste de la population. Ce sont communément des

structures dites sans échelle.

Tester l’importance des structures est également l’objet du chapitre 5. Nous y testons

si les règles du réseau des OSN a↵ectent les processus sociaux qui s’y produisent. Nous

trouvons de grandes variations parmi les di↵érentes structures testées pour la di↵usion de

l’information, la promotion de l’action collective, mais aussi pour l’e�cacité d’un marché

du travail. En fonction de l’objectif du réseau, certaines structures seront mieux adaptées

que d’autres.

• Les comportements des agents peuvent facilement favoriser l’émergence de distributions

de degré biaisées. Nous identifions ce phénomène pour la première fois au chapitre 2, où

les apprenants sociaux apprennent également à identifier les agents auxquels ils doivent

prêter attention. Nous trouvons que certains agents deviennent centraux dans le sens

où ils rassemblent plus de personnes les sollicitant à chaque tour par rapport à d’autres.

Et cela n’est pas nécessairement corrélé avec le fait qu’ils soient mieux informés que les

autres.

Au chapitre 4, nous trouvons également une distribution de degré biaisée dans le modèle

d’opinion, où les influenceurs essaient d’obtenir plus de connexions de la part de la popu-

lation. Nous montrons que, sous des hypothèses réalistes, certains influenceurs réussiront

beaucoup plus que d’autres. Créant à la fois une distribution biaisée dans l’ensemble de

la population mais aussi à l’intérieur de la sous-population des influenceurs.

• L’apprentissage social est e�cace. C’est la principale conclusion du chapitre 2. Dans

une population où personne n’a de meilleures informations que les autres, il est plus sûr,

et en moyenne aussi e�cace, que l’apprentissage individuel. Ainsi, permettre aux gens

d’interagir facilement entre eux, comme le ferait un réseau social en ligne, peut avoir
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des avantages. Cela peut conduire les agents à mieux apprendre, à changer d’opinion, à

rejoindre un mouvement collectif ou même à trouver des emplois plus e�cacement.

• Mais lorsqu’ils sont manipulés, ces mêmes réseaux peuvent être préjudiciables à leurs

utilisateurs. C’est le cas au chapitre 3 lorsque nous introduisons des influenceurs dans le

réseau d’interactions, ou lorsque la plateforme qui régule le réseau social en ligne utilise

le mauvais algorithme aux chapitres 4 et 5.

Dans l’ensemble, nos travaux valident l’idée de co-influence entre réseaux et comporte-

ments, et approfondissent les mécanismes précis en jeu. Nous nous sommes concentrés sur

l’apprentissage dans le contexte des interactions sociales et avons montré comment les inter-

actions sociales modifient ce processus, en mettant l’accent sur le rôle des réseaux sociaux en

ligne qui, comme nous l’avons montré, modifient grandement la dynamique de l’apprentissage

social.
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37(1):149–177.

Cowan, R., Cowan, W., and Swann, P. (1997). A model of demand with interactions among

consumers. International Journal of Industrial Organization, 15(6):711–732.

Cross, J. G. et al. (2008). A theory of adaptive economic behavior. Cambridge Books.

David, P. A. (1985). Clio and the economics of qwerty. The American economic review,

75(2):332–337.



182 Bibliography

De Giorgi, G., Frederiksen, A., and Pistaferri, L. (2020). Consumption network e↵ects. The

Review of Economic Studies, 87(1):130–163.

DeGroot, M. H. (1974). Reaching a consensus. Journal of the American Statistical association,

69(345):118–121.

Dunbar, R. I. (1992). Neocortex size as a constraint on group size in primates. Journal of

human evolution, 22(6):469–493.

Dunbar, R. I., Arnaboldi, V., Conti, M., and Passarella, A. (2015). The structure of online

social networks mirrors those in the o✏ine world. Social networks, 43:39–47.

Duricic, T., Kowald, D., Schedl, M., and Lex, E. (2021). My friends also prefer diverse music:

homophily and link prediction with user preferences for mainstream, novelty, and diversity

in music. In Proceedings of the 2021 IEEE/ACM International Conference on Advances in

Social Networks Analysis and Mining, pages 447–454.

Ellison, G. and Fudenberg, D. (1993). Rules of thumb for social learning. Journal of political

Economy, 101(4):612–643.

Ellison, G. and Fudenberg, D. (1995). Word-of-mouth communication and social learning. The

Quarterly Journal of Economics, 110(1):93–125.

Enigma (2023). France adopts pioneering law for influencers.
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