Thèse soutenue

Approximations polynomiales et méthode des éléments finis enrichis, avec applications.

FR  |  
EN
Auteur / Autrice : Federico Nudo
Direction : Allal GuessabFrancesco Dell'accio
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 12/03/2024
Etablissement(s) : Pau en cotutelle avec Università degli studi della Calabria
Ecole(s) doctorale(s) : École doctorale sciences exactes et leurs applications (Pau, Pyrénées Atlantiques ; 1995-)
Partenaire(s) de recherche : Laboratoire : LMAP Laboratoire de mathématiques et de leurs applications
Jury : Président / Présidente : Domingo Barrera
Examinateurs / Examinatrices : Allal Guessab, Francesco Dell'accio, Gradimir V. Milovanović, Elisa Francomano, Donatella Occorsio, Francisco Marcellán
Rapporteurs / Rapporteuses : Domingo Barrera, Gradimir V. Milovanović

Résumé

FR  |  
EN

Un problème très courant en science computationnelle est la détermination d'une approximation, dans un intervalle fixe, d'une fonction dont les évaluations ne sont connues que sur un ensemble fini de points. Une approche courante pour résoudre ce problème repose sur l'interpolation polynomiale. Un cas d'un grand intérêt pratique est celui où ces points suivent une distribution équidistante dans l'intervalle considéré. Dans ces hypothèses, un problème lié à l'interpolation polynomiale est le phénomène de Runge, caractérisé par une augmentation de l'erreur d'interpolation près des extrémités de l'intervalle. En 2009, J. Boyd et F. Xu ont démontré que le phénomène de Runge pouvait être éliminé en interpolant la fonction que sur un sous-ensemble approprié formé par les noeuds les plus proches des noeuds de Chebyshev-Lobatto, communément appelés noeuds de mock-Chebyshev.Cependant, cette stratégie implique de ne pas utiliser presque toutes les données disponibles. Afin d'améliorer la précision de la méthode proposée par Boyd et Xu, tout en tirant pleinement parti des données disponibles, S. De Marchi, F. Dell'Accio et M. Mazza ont introduit une nouvelle technique appelée constrained mock-Chebyshev least squares approximation. Dans cette méthode, le rôle du polynôme nodal, est crucial. Son extension au cas bivarié nécessite cependant des approches alternatives. La procédure développée par F. Dell'Accio, F. Di Tommaso et F. Nudo, utilisant la méthode des multiplicateurs de Lagrange, permet également de définir l'approximation des moindres carrés de mock-Chebyshev sur une grille uniforme de points. Cette technique innovante, équivalente à la méthode univariée précédemment introduite en termes analytiques, se révèle également plus précise en termes numériques. La première partie de la thèse est consacrée à l'étude de cette nouvelle technique et à son application à des problèmes de quadrature et de différenciation numérique.Dans la deuxième partie de cette thèse, nous nous concentrons sur le développement d'un cadre unifié et général pour l'enrichissement de l'élément fini linéaire triangulaire standard en deux dimensions et de l'élément fini linéaire simplicial standard en dimensions supérieures. La méthode des éléments finis est une approche largement adoptée pour résoudre numériquement les équations aux dérivées partielles qui se posent en ingénierie et en modélisation mathématique [55]. Sa popularité est attribuable en partie à sa polyvalence pour traiter diverses formes géométriques. Cependant, les approximations produites par cette méthode s'avèrent souvent inefficaces pour résoudre des problèmes présentant des singularités. Pour surmonter ce problème, diverses approches ont été proposées, l'une des plus célèbres reposant sur l'enrichissement de l'espace d'approximation des éléments finis en ajoutant des fonctions d'enrichissement appropriées. Un des éléments finis le plus simple est l'élément fini triangulaire linéaire standard, largement utilisé dans les applications. Dans cette thèse, nous introduisons un enrichissement polynomial de l'élément fini triangulaire linéaire standard et utilisons ce nouvel élément fini pour introduire une amélioration de l'opérateur triangulaire de Shepard. Ensuite, nous introduisons une nouvelle classe d'éléments finis en enrichissant l'élément triangulaire linéaire standard avec des fonctions d'enrichissement qui ne sont pas nécessairement polynomiales, mais qui satisfont la condition d'annulation aux sommets du triangle.Nous généralisons les résultats présentés dans le cas bidimensionnel au cas de l'élément fini simplicial linéaire standard, en utilisant également des fonctions d'enrichissement qui ne satisfont pas la condition d'annulation aux sommets du simplexe.Enfin, nous appliquons ces nouvelles stratégies d'enrichissement pour définir une version plus généralede l'enrichissement de l'élément fini linéaire vectoriel simplicial développé par Bernardi et Raugel.