Thèse soutenue

Sur la géométrie des ensembles d'excursion : garanties théoriques et computationnelles

FR  |  
EN
Auteur / Autrice : Ryan Cotsakis
Direction : Elena Di BernardinoThomas Opitz
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 06/05/2024
Etablissement(s) : Université Côte d'Azur
Ecole(s) doctorale(s) : École doctorale Sciences fondamentales et appliquées (Nice ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire J.-A. Dieudonné (Nice)
Jury : Président / Présidente : Céline Lacaux
Examinateurs / Examinatrices : Elena Di Bernardino, Thomas Opitz, Céline Lacaux, Pierre Calka, Clément Dombry, Clément Levrard, David Cohen-Steiner, Catherine Aaron
Rapporteurs / Rapporteuses : Pierre Calka, Clément Dombry

Résumé

FR  |  
EN

L'ensemble d'excursion EX(u) d'un champ aléatoire réel X sur R^d à un niveau de seuil u ∈ R est le sous-ensemble du domaine R^d où X dépasse u. Ainsi, l'ensemble d'excursion est aléatoire, et sa distribution à un niveau fixe u est déterminée par la distribution de X. Étant des sous-ensembles de R^d, les ensembles d'excursions peuvent être étudiés en termes de leurs propriétés géométriques comme moyen d'obtenir des informations partielles sur les propriétés de distribution des champs aléatoires sous-jacents.Cette thèse examine :(a) comment les mesures géométriques d'un ensemble d'excursion peuvent être déduites à partir d'un échantillon discret de l'ensemble d'excursion, et(b) comment ces mesures peuvent être liées aux propriétés distributionnelles du champ aléatoire à partir duquel l'ensemble d'excursion a été obtenu. Chacun de ces points est examiné en détail dans le Chapitre 1, qui fournit un aperçu global des résultats trouvés tout au long du reste de ce manuscrit. Les mesures géométriques que nous étudions (pour les ensembles d'excursion et les sous-ensembles déterministes de R^d) lors de l'adressage du point (a) sont la mesure de la surface de dimension (d−1), le reach, et le rayon de r-convexité. Chacune de ces quantités peut être liée à la régularité de la frontière de l'ensemble, ce qui est souvent difficile à déduire à partir d'échantillons discrets de points.Pour résoudre ce problème, nous apportons les contributions suivantes au domaine de la géométrie computationnelle :- Dans le Chapitre 2, nous identifions le facteur de biais qui correspond aux algorithmes de comptage local pour calculer la mesure de la surface de dimension (d − 1) des ensembles d'excursion sur une grande classe de pavages de R^d. Le facteur de biais dépend uniquement de la dimension d et non de la géométrie précise du pavage.- Dans le Chapitre 3, nous introduisons un algorithme de comptage pseudo-local pour calculer le périmètre des ensembles d'excursion en deux dimensions. L'algorithme proposé est convergent multigrille (multigrid convergent en anglais) et comporte un hyper paramètre réglable pouvant être choisi automatiquement à partir d'informations accessibles.- Dans le Chapitre 4, nous introduisons le β-reach en tant que généralisation du reach, et l'utilisons pour prouver la cohérence d'un estimateur du reach des sous-ensembles fermés de R^d. De même, nous définissons un estimateur cohérent du rayon de r-convexité des sous-ensembles fermés de R^d. De nouvelles relations théoriques sont établies entre le reach et le rayon de r-convexité. Nous étudions également comment ces mesures géométriques des ensembles d'excursion sont liées à la distribution du champ aléatoire.- Dans le Chapitre 5, nous introduisons l'extremal range : une statistique géométrique locale qui caractérise l'étendue spatiale des dépassements de seuil à un niveau fixe u ∈ R. La distribution de l'extremal range est entièrement déterminée par la distribution de l'ensemble d'excursion au niveau u. Nous montrons comment l'extremal range est liée distributionnellement aux volumes intrinsèques de l'ensemble d'excursion. De plus, le comportement limite de l'extremal range aux grands seuils est étudié en relation avec la stabilité des peaks-over-threshold du champ aléatoire sous-jacent. Enfin, la théorie est appliquée à des données climatiques réelles pour mesurer le degré d'indépendance asymptotique présent et sa variation dans l'espace.Des perspectives sur la manière dont ces résultats peuvent être améliorés et étendus sont fournies dans le Chapitre 6.