Thèse soutenue

Modélisation Computationnelle des Interactions Entre Mémoire Épisodique et Contrôle Cognitif

FR  |  
EN
Auteur / Autrice : Hugo Chateau-Laurent
Direction : Frédéric Alexandre
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 08/02/2024
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale Mathématiques et informatique (Talence, Gironde ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire bordelais de recherche en informatique
Jury : Président / Présidente : Emmanuelle Abisset
Examinateurs / Examinatrices : Rufin VanRullen, Anna Schapiro
Rapporteurs / Rapporteuses : Mehdi Khamassi, Randall C. O'Reilly

Résumé

FR  |  
EN

La mémoire épisodique est souvent illustrée par la madeleine de Proust comme la capacité à revivre une situation du passé suite à la perception d'un stimulus. Ce scénario simpliste ne doit pas mener à penser que la mémoire opère en isolation des autres fonctions cognitives. Au contraire, la mémoire traite des informations hautement transformées et est elle-même modulée par les fonctions exécutives pour informer la prise de décision. Ces interactions complexes donnent lieu à des fonctions cognitives supérieures comme la capacité à imaginer de futures séquences d'événements potentielles en combinant des souvenirs pertinents dans le contexte. Comment le cerveau implémente ce système de construction reste un mystère. L'objectif de cette thèse est donc d'employer des méthodes de modélisation cognitive afin de mieux comprendre les interactions entre mémoire épisodique reposant principalement sur l'hippocampe et contrôle cognitif impliquant majoritairement le cortex préfrontal. Elle propose d'abord des éléments de réponse quant au rôle de la mémoire épisodique dans la sélection de l'action. Il est montré que le Contrôle Episodique Neuronal, une méthode puissante et rapide d’apprentissage par renforcement, est en fait mathématiquement proche du traditionnel réseau de Hopfield, un modèle de mémoire associative ayant grandement influencé la compréhension de l'hippocampe. Le Contrôle Episodique Neuronal peut en effet s'inscrire dans le cadre du réseau de Hopfield universel, il est donc montré qu’il peut être utilisé pour stocker et rappeler de l'information et que d'autres types de réseaux de Hopfield peuvent être utilisés pour l'apprentissage par renforcement. La question de comment les fonctions exécutives contrôlent la mémoire épisodique est aussi posée. Un réseau inspiré de l'hippocampe est créé avec le moins d'hypothèses possible et modulé avec de l'information contextuelle. L'évaluation des performances selon le niveau auquel le contexte est envoyé propose des principes de conception de mémoire épisodique contrôlée. Enfin, un nouveau modèle bio-inspiré de l'apprentissage en un coup de séquences dans l'hippocampe est proposé. Le modèle fonctionne bien avec plusieurs jeux de données tout en reproduisant des observations biologiques. Il attribue un nouveau rôle aux connexions récurrentes de la région CA3 et à l'expansion asymétrique des champs de lieu qui est de distinguer les séquences se chevauchant en faisant émerger des cellules de séparation rétrospective. Les implications pour les théories de l'hippocampe sont discutées et de nouvelles prédictions expérimentales sont dérivées.