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Résumé

La stimulation hydraulique joue un réle important dans lI'amélioration de la conductivité hydraulique du réseau de
fractures autour des puits d'injection et de production dans les réservoirs géothermiques. Il est donc important de
caractériser le comportement hydromécanique des discontinuités face a I'injection de fluide. Le site de Soultz-sous-
Foréts (France) a été un site pilote EGS ou plusieurs stimulations hydrauliques majeures ont été réalisées et sont bien
documentées (https://cdgp.u-strashg.fr/ et https://tcs.ah-epos.eu/).

Ici, nous avons utilisé I'outil de modélisation numérique 3DEC (ltasca) pour analyser la stimulation en 2000 du puits
GPK2 pour lequel des anomalies sismiques a grande échelle ont été mises en évidence pendant les différentes étapes
de la stimulation en utilisant la tomographie 4D d’onde P (Calo et al, 2011). La spécificité de 1'approche est de
combiner deux modélisations a différentes échelles. Tout d'abord, un modéle a petite échelle (100x100x100 m®) est
construit pour analyser la réponse mécanique effective d'un réseau de fractures discrétes stochastique (DFN) en suivant
les caractéristiques statistiques du réseau de fractures observé (Massart et al, 2010). Deuxiemement, un modéle
numérique a grande échelle du réservoir de Soultz-sous-Foréts (5000x5000x5000 m®) hébergeant les plus grandes
failles du réservoir définies par Sausse et al, 2010, est développé en incluant les contraintes régionales. L'objectif est
de contraindre les propriétés mécaniques a grande échelle de la matrice environnante autour de la faille a partir du
modele a petite échelle, en particulier, son comportement hydromécanique en termes de réponse élastique non linéaire
liée & la DFN stochastique.

La simulation numérique d'une stimulation hydraulique a grande échelle de I'anné 2000 réalisée sur le GPK2 de Soultz-
sous-Foréts est effectuée pour mieux caractériser la propagation de la pression des fluides a travers un plan de faille.
La méthode des éléments distincts (DEM) 3DEC d'ltasca a été utilisée pour stimuler la fracture FZ4770 encastrée
dans un bloc de granite élastique, homogéne, isotrope et imperméable par injection d'eau pendant 24 heures a un débit
constant. Les résultats indiquent qu'un front de pression de fluide existe et migre en fonction de Vt lorsqu'un débit
d'injection constant est imposé. Le méme comportement a été observé dans l'ouverture hydraulique de la fracture ol
un débit constant a entrainé une propagation de I'ouverture de la fracture avec une fonction de racine carrée du temps.
Au contraire un débit augmentant linéairement, a entrainé une migration de I'ouverture de la fracture avec une tendance
linéaire dans le temps.

Les résultats des deux scénarios d'injection susmentionnés ont été comparés au modele introduit par Lengliné et al, en
2017 pour la stimulation d’un puits voisin & Rittershoffen. Ce modéle est un modeéle de décollement supposant une
ouverture constante le long de la partie ouverte de la fissure et un front net entre la partie ouverte et la partie fermée
de la fissure sans diffusion de la pression. Il exprime que c'est I'évolution de I'ouverture qui est le mécanisme moteur
de la sismicité et non la diffusion de la pression. Nous avons essayé de généraliser le modéle a nos résultats numériques
en utilisant les valeurs d'ouverture des fractures dérivées des simulations 3DEC pendant la période d'injection. Ces
valeurs d'ouverture varient dans le temps et dans I'espace et, ici, une valeur moyenne d'ouverture dans I'espace a un
moment donné a été substituée dans le modele de Lengliné et al. 2017. Les résultats ont montré une bonne concordance
entre les deux modeles, indiquant le fait qu'il existe un front de pression de fluide lié au front d'ouverture hydraulique
qui se propage dans une tendance de type diffusion le long du plan de fracture.

Pour mieux comprendre le comportement de la fracture face a la stimulation hydraulique, une série d'analyses de
sensibilité a été réalisée et a montré que parmi les rigidités normales et de cisaillement de la fracture, la taille, le
pendage et l'orientation, seules la rigidité normale et la taille de la faille influencent de maniére significative son
comportement élastique. On constate que l'augmentation de I'ouverture de la faille pendant I'injection présente une



relation linéaire avec la pression du fluide, sensible a I'ampleur de la rigidité normale de la fracture ainsi qu'a la taille
de la fracture.

On constate également que la prise en compte de I'effet du glissement de cisaillement de la fracture basé sur la loi de
glissement de Coulomb a diminué la vitesse de migration pression/ouverture de I'ouverture, cependant le processus
de propagation présente une loi de puissance, avec une légére réduction de I'exposant par rapport au comportement
diffusif (0,4). En outre, cette vitesse de propagation est supérieure d'un ordre de grandeur aux vitesses de migration
des événements sismiques survenus en 1993 lors de la stimulation du puits GPK1 a Soultz-sous-Foréts, mentionnées
dans Bourouis et Bernard, 2007.

Dans un deuxieme temps, il s'agissait de déterminer numériquement les propriétés mécaniques effectives (module
d"Young et coefficient de Poisson) d'un bloc de roche fracturée de 100x100x100 m? dans lequel les rigidités normales
et de cisaillement des fractures sont définies sur la base des équations non linéaires introduites par Bandis et al. en
1983. Pour ce faire, le code 3DEC d'ltasca a été utilisé pour effectuer des tests de vérification du comportement non
linéaire des fractures. Cette phase était composée d'un bloc rocheux de 1x1x2 m® contenant une fracture finie circulaire
de 0,5 m de diamétre avec un pendage et une direction de pendage de 45° et 90°, respectivement. Les courbes de
contrainte normale-déplacement (pour les joints imbriqués et non imbriqués) et de contrainte de cisaillement-
déplacement ont ensuite été comparées aux courbes analytiques (Bandis et al. 1983) pour vérifier le comportement du
modéle développé. Ce modéle a ensuite été généralisé a un bloc de 100x100x100 m?® abritant deux fractures afin de
vérifier la cohérence du code développé lorsqu'un DFN est le cas d'étude. Aprés cette vérification, le code développé
a été appliqué au bloc fracturé avec différents exemples de DFN soumis a des scénarios de perturbation de la contrainte
dans I'état de contrainte in situ du réservoir géothermique de Soultz-sous-Foréts a une profondeur d'environ 500 m,
2,3 km et 4,7 km afin d'évaluer les modules élastiques de la masse rocheuse fracturée. Les résultats ont ensuite été
comparés aux solutions analytiques existantes telles que l'absence d'interaction, l'auto-cohérence, le schéma
différentiel, et enfin & la méthode introduite par Davy et al. en 2018.

Les trois méthodes de non-interaction, d'auto-consistance et de schéma différentiel sont basées sur I'énergie de
déformation élastique stockée d'Eshelby, 1957. L'approche la plus simple pour obtenir la perturbation de I'énergie
dans un milieu contenant des fractures/vides causés par une contrainte de confinement/cisaillement, consiste a négliger
I'interaction fracture-fracture/pore et a calculer I'effet de chaque fracture/pore comme s'il s'agissait d'une fracture/pore
isolée dans une roche intacte infinie, puis & additionner toutes ces perturbations de I'énergie pour toutes les
fractures/pores. Cette simplification a entrainé une divergence significative entre les résultats des trois méthodes
susmentionnées et ceux de Davy et al. 2018 et de 3DEC.

Les résultats de Davy et al. (2018) étaient les plus proches de ceux de la méthode 3DEC. La raison en est que cette
méthode prend en compte le champ de contrainte a distance, I'orientation de la fracture par rapport au champ de
contrainte a distance appliqué et les parameétres de rigidité de la fracture. Cependant, les différences peuvent résulter
du fait que Davy et al. 2018 ne prend pas en compte la perturbation de la contrainte causée par les fractures et les
interactions entre les fractures, de sorte qu'une diminution précoce ainsi qu'une surestimation des modules effectifs
ont été observées dans les résultats.

Les modules élastiques numériques résultants ainsi que ceux de la méthode de Davy et al. 2018 ont ensuite été utilisés
pour obtenir la vitesse des ondes P a travers les modeles synthétiques de masse rocheuse fracturée, normalisée par la
vitesse des ondes P le long de la roche intacte. La variation de la vitesse des ondes P normalisée en fonction du
parameétre de densité de fracture a trois niveaux de contrainte différents, a montré le méme schéma que celui des
modules élastiques. A de faibles densités de fracture, les méthodes analytiques et numériques, quel que soit le type de
rigidité de la fracture, étaient indépendantes du paramétre de densité de fracture et du niveau de contrainte appliqué.
D'autre part, pour les résultats analytiques de la vitesse des ondes P & travers la masse rocheuse fracturée basés sur la
méthode de Davy et al. 2018, la encore quel que soit le type de rigidité de la fracture, I'écart par rapport a la vitesse de
la roche intacte s'est produit pour un paramétre de rigidité de la fracture plus faible par rapport au modéle numérique
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; probablement en raison du fait que la méthode analytique ne prend pas en compte les interactions entre fracture et
les perturbations de contrainte associées.

En considérant le milieu a faible perméabilité traité par Weidler et al. (2002), en plus de I'existence d'un front de
pression de fluide/ouverture de fracture qui se propage le long de la fracture plus rapidement que la diffusion de fluide
dans le milieu environnant la fracture, comme démontré dans cette étude, on peut affirmer que la surpression générée
par le fluide injecté dans la fracture agit comme une composante additive a la pression de confinement de la masse
rocheuse, au lieu de jouer le role d'une augmentation de la pression interstitielle. Dans cette situation, et selon la
littérature déja mentionnée, en particulier Todd et Simmons (1972), toute augmentation de la pression de confinement
peut entrainer une augmentation de la vitesse des ondes P.

La présente étude s'est concentrée sur I'évaluation de I'influence que des fractures séches peuvent avoir sur les modules
élastiques effectifs d'une masse rocheuse fracturée. 1l serait intéressant, en tant que perspective, d'effectuer cette étape
en ajoutant un fluide dans le systéme afin d'étudier I'effet des fractures saturées en fluide sur les modules élastiques
effectifs d'une masse rocheuse.



Abstract

Hydraulic stimulation of pre-existing fractures and faults plays a significant role in improving hydraulic
conductivity of the fracture network around injection and production wells in geothermal reservoirs. It is
therefore important to characterize the hydro-mechanical behavior of discontinuities against fluid injection.
The Soultz-sous-Foréts site (France) has been an EGS pilot site where several major hydraulic stimulations
have been performed and are well documented (https://cdgp.u-strasbg.fr/ and https://tcs.ah-epos.eu/).

Here, we used the 3DEC numerical modeling tool (Itasca) to analyze the year 2000 stimulation of GPK2
well for which large scale seismic anomalies have been evidenced during the different stages of the
stimulation using 4D-P-wave tomography (Calo et al, 2011). The specificity of the approach is to combine
two modeling at different scales. First, a small-scale model (100x100x100 m?®) is built to analyze the
effective mechanical response of a stochastic discrete fracture network (DFN) following the statistical
features of observed fracture network (Massart et al, 2010). Second, a large-scale numerical model of the
Soultz-sous-Foréts reservoir (5000x5000x5000 m®) hosting the largest faults of the reservoir defined by
Sausse et al., 2010, is developed including regional stresses. The objective is to constrain the large-scale
mechanical properties of the surrounding matrix around the fault from the small-scale model, in particular,
its hydro-mechanical behavior in terms of non-linear elastic response related to the stochastic DFN.

Numerical simulation of large-scale hydraulic stimulation of the year 2000 performed on GPK2 of Soultz-
sous-Foréts is carried out to better characterize fluid pressure propagation throughout a fault plane. The
3DEC distinct element method (DEM) of Itasca was used to simulate the stimulation of FZ4770 fracture
embedded in an elastic, homogeneous, isotropic, and impermeable block of granite by injection of water
for 24 hours at a constant flow rate. The results indicated that a fluid pressure front exists and migrates as
a function of v/t when a constant injection rate is imposed. Then, a complementary simulation with variable
flow rate was performed and found that the fluid pressure propagated as a function of t. The same behavior
was also observed in the fracture’s hydraulic aperture where a constant flow rate yield a fracture opening
propagation with a time square root function and a linearly increasing flow rate resulted in a fracture
opening migration with a linear trend in time.

The findings of both aforementioned injection scenarios were compared to the model introduced by
Lengliné et al., 2017. This model is a lift-off model assuming a constant aperture along the open part of the
crack and a sharp front between open and close part of the crack with no diffusion of the pressure. It

Vi



expresses that it is the aperture evolution which is the driving mechanism of seismicity not the pressure
diffusion. We tried to generalize the model to our numerical results by using the fracture aperture values
derived from the 3DEC simulations during injection period. Such aperture values were varying in the time
and space and here an average value of aperture over space in any given time were substituted in the
Lengliné et al., 2017 model. The outcome showed a good agreement between the two models indicating
the fact that there exist a front in fluid pressure related to the hydraulic aperture front that propagates in a
diffusion-like trend along the fracture plane.

To better understand the behavior of the fracture against hydraulic stimulation, a series of sensitivity
analysis are carried out and found that among the fracture’s normal and shear stiffnesses, size, dip and
strike, only the normal stiffness and size of the fault significantly influence its elastic behavior. It is found
that the increase of the aperture of the fault during the injection shows a linear relationship with fluid
pressure sensitive to the magnitude of the fracture normal stiffness as well as the size of the fracture.

It is also found that, taking into account the effect of shear slip of the fracture based on Coulomb slip law
decreased the pressure/aperture opening migration velocity, however the propagation process still remained
power-low, but now, with a little reduction in the magnitude of the exponent in merely downward migration
(0.4). In addition, this propagation velocity compared to the seismic event velocities of 1993 stimulation of
GPK1 well at Soultz-sous-Foréts, mentioned in Bourouis and Bernard, 2007, are one order of magnitude
larger.

In second step, it was aimed to numerically determine the effective mechanical properties (Young’s
modulus and Poisson ratio) of a 100x100x100 m? fractured rock block in which the fractures’ normal and
shear stiffnesses are defined based on non-linear equations introduced by Bandis et al., 1983. For that, the
3DEC of Itasca was used to first do some verification tests on the implemented non-linear fracture behavior.
This phase was composed of a rock block of 1x1x2 m? containing a 0.5 m diameter circular finite fracture
with dip and dip direction of 45° and 90°, respectively. Normal Stress-displacement (for both interlocked
and mismatched joints) and shear stress-displacement curves were then compared to the analytical curves
(Bandis et al., 1983) to verify the behavior of developed model. This model was then generalized to a block
of 100x100x100 m?® hosting two fractures to verify consistency of the developed code when a DFN is the
case of study. After this verification, the developed code was applied to the block fractured with various
DFN examples undergoing some stress perturbation scenarios when were at the in-situ stress state of Soultz-
sous-Foréts geothermal reservoir at a depth of approximately 500 m, 2.3 km, and 4.7 km in order to evaluate
elastic moduli of the fractured rock mass. The results were then compared to the existing analytical solution
such as no-interaction, self-consistent, differential scheme, and finally to the method introduced by Davy
etal., 2018.

Three methods of no-interaction, self-consistent, and differential scheme are based on stored elastic strain
energy of Eshelby, 1957. The simplest approach to obtain energy perturbation in a fracture/void containing
medium caused by confining/shear stress is to neglect fracture-fracture/ pore-pore interaction and calculate
the effect of each fracture/pore as if it were an isolated fracture/pore in an infinite intact rock, and then sum
up all these energy perturbations for all fractures/pores. This simplification caused significant divergence
of results of three above mentioned methods from those of Davy et al., 2018, and 3DEC.
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The Davy et al., 2018, results were closest to those of 3DEC. The reason was that this method considered
the remote stress field, fracture's orientation relative to the applied remote stress field, and fracture stiffness
parameters. But, the differences may resulted from the fact that Davy et al., 2018, does not take into account
the stress perturbation caused by fractures and also fracture interactions; so that an early stage decrease as
well as overestimated effective moduli were seen in the results.

Resulting numerical elastic moduli as well as those of Davy et al., 2018 method were then utilized to obtain
P-wave velocity through the synthetic fractured rock mass models normalized by the P-wave velocity along
the intact rock. Variation of the normalized P-wave velocity versus fracture density parameter at all three
stress levels demonstrated the same pattern as that for the elastic moduli. At low fracture densities, both the
analytical and the numerical methods, regardless of the fracture stiffness type, were independent of the
fracture density parameter and the applied stress level. On the other hand, for the analytical results of P-
wave velocity through the fractured rock mass based on Davy et al., 2018 method, again regardless of the
fracture stiffness type, deviation from the intact rock velocity occurred in lower fracture stiffness parameter
compared to the numerical scheme; probably due to the fact that the analytical method does not take the
fracture interaction and corresponding stress perturbation factors into the account.

Considering the low permeability medium addressed by Weidler et al. (2002), in addition to the existence
of a fluid pressure/fracture opening front that propagates along the fracture faster than fluid diffusion in the
fracture surrounding medium, as demonstrated in this study, it can be stated that the overpressure generated
by the injected fluid in the fracture acts as an additive component to the confining pressure of the rock mass,
instead of playing the role of pore pressure enhancement. In this situation, and according to the literature
already mentioned, especially Todd and Simmons (1972), any increase in confining pressure can cause an
increase in P-wave velocity.

The second step of the present work focused on assessment of the influence the dry fracture may had on
the effective elastic moduli of a fractured rock mass. It would be of interest, as perspective, to perform this
step by adding fluid into the system so as to investigate the effect of wet fractures on the effective elastic
moduli of saturated rock mass.
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Chapter 1
1 Introduction

1.1 Background

Hydraulic stimulation is a widely used method for enhancing permeability of reservoir rocks and improving
connectivity of injection and production wells in geothermal reservoirs (Zimmermann and Reinicke, 2010;
Darnet et al, 2005; Baria et al,1999). Enhanced Geothermal Systems (EGS), formerly called Hot Dry Rock
(HDR) systems, were first conceptualized at Los Alamos National Laboratory at Fenton Hill, New Mexico
(USA) in the 1970s (Mc Clure, 2012; Genter et al., 2009). Since then, these projects have attracted a lot of
attention as a potential, abundant and widespread source of green energy (free from emission of greenhouse
gases (Tester, 2007)). Soultz-sous-Foréts site in France, Rosemanowes site in UK, Ogachi and Hijiori sites
in Japan, Cooper Basin in Australia, and Desert Peak in USA are examples of EGS around the world (Mc
Clure, 2012). In spite of being a green source of energy, EGS developments are often involved with induced
seismicity generated from alteration of subsurface stress or fluid pressure during hydraulic stimulation. In
recent years, some large earthquakes induced by fluid injections are documented. The 2011 Mw 5.7 and
5.0 earthquakes near Prague in Oklahoma, United States (Keranen et al., 2013), the Mw 5.8 Pawnee,
Oklahoma, in 2016 (Yeck et al., 2017), or the 2017 Mw 5.5 earthquake near an EGS in Pohang, South
Korea (Grigoli et al., 2018; Kim et al., 2018; Lee et al., 2019) are large induced seismic events caused from
fluid injection into the underground formation (Wynantes-Morel et al., 2020). The 2003 Mw 2.9 Soultz-
sous-Foréts, France (Evans et al., 2012), the 2006 Mw 3.4 Basel, Switzerland (Evans et al., 2012), the 2019
Mw 3.0 and the 2020 Mw 3.6 and 3.3 Vendenheim, France, are some examples of relatively large
earthquake felt by local population and caused definitive project abandonment (Schmittbuhl et al., 2021).
Therefore, EGS development demands a high level of responsibility against ever-growing concerns in terms
of human-felt seismic events, which demands sufficient understanding about the mechanism of induced
seismicity.

1.2 Soultz-sous-Foréts Geothermal Reservoir

Soultz-sous-Foréts geothermal reservoir is located in upper Rhine Graben, North-East of France (Dezayes
et al., 2010) (Figure 1.1.a) which is laid under a 1.4 km of sedimentary layers and consisting of a 2.5 km
porphyritic granite followed by a two mica granite till depth of interest at approximately 5 km (Vallier et
al., 2019) (Figure 1.1.b).

This reservoir is one of the “Enhanced Geothermal System” (EGS) sites in the world. It hosted drilling of
many observational and operational wells among which a 1400 m well called 4550 was one of the seismic
observation wells. Well EPS1 fully cored down to 2230 m, GPK2, GPK3, and GPK4 constitute the
European geothermal pilot plant, which extended beyond 5000 m and, finally, well GPK1 drilled down to
approximately 3600 m dedicated to first hydraulic tests (Sausse et al., 2010).
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1.3 Question of the Thesis

This thesis is about modeling of P-wave velocity variation during hydraulic stimulation of GPK2 well. The
purpose of stimulation was to enhance hydraulic conductivity of reservoir by stimulating pre-existing
fractures and faults or creating new fractures to ensure efficient hydraulic exchange between injection and
production wells (Calo et al., 2011). This operation was monitored seismically using down-hole and surface
receiver networks, enabling 4-D P-wave tomography mapping of the reservoir. Figure 1.3 demonstrates
stimulation procedure of GPK2 well in terms of wellhead pressure and injection rate against time. The
operation time is divided to four sets and fourteen subsets based on changes occurring in injection rate and
wellhead pressure (Calo et al., 2011).

Injection flow rate at first day (subsets 1 and 2) of stimulation was 30 liter per second that increased to 40
I/s in second day (subsets 3, 4, and 5). Stimulation was continued from beginning of third day to end of
sixth day by injection flow rate of 50 I/s and the dropped to zero by the end of the operation. While well-
head pressure in beginning of injection in days one and two were approximately 12 MPa gradually
decreasing to about 11 MPa at the end of days and before enhancing flow rate, it build up from 12 to about
13 MPa by progress of injection operation in third stage of stimulation from day 3 to end of day 6. An
instance decrease of about 3 MPa experienced by shut-in the injection and gradually dropped to 3 MPa at
day 10 of operation. It is worth mentioning that, precise analyses of shut-in pressure change with respect to
time will be useful in building geomechanical model including stress state, fracture gradient, focal
mechanism, and injection pressure.
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The 4-D tomography showed the temporal and spatial evolution of the P-wave velocity during and after
fluid injection. Figure 1.4 illustrates evolution of P-wave velocity at depth of 4.6 km during stimulation of
GPK2. Each image demonstrates P-wave velocity change in corresponding subset from 1 to 14,
respectively. Looking at figures reveals two points:

1) With the exception of sets 3 and 6, all the sets share a low-velocity anomaly that is larger than the seismic
cloud and primarily located near the region where microseismic activity occurs. On the map view, the
velocity anomaly is circular and appears right after the start of injection (set 1). During set 2, it lengthens
in the direction of N145-N150E, and this direction does not change after that.

2) Trends of P-wave velocity change during stimulation; first, at early stages of fluid injection (subsets one
and two), decrease in P-wave velocity happens as expected from pore pressure increase caused by fluid
injection, but then, at subset 3, enhancing injection flow rate results in disappearance of P-wave velocity
anomaly which is vice versa with expectation as is discussed in next two paragraphs. The same pattern is
repeated from subset 4 through 6. This V, evolution is, as mentioned by Calo et al., 2011, a fast and extended
change, where a rapid change in seismic velocity of over 1000 m in 3 h was observed.

Lockner et al. [1977] performed a laboratory experiment on a Granite sample. They put the sample in a cell
equipped circumferentially with P- and S-wave source and receivers positioned parallel and perpendicular
with respect to the sample axis. Confining stress was set on a fixed magnitude while axial stress gradually
increased until rock failure occurs. P- and S-wave velocity was monitored during loading process and the
results were drew in terms of V/V, (ratio of velocity to initial velocity at hydrostatic pressure) and percent
of failure strength (percentile proportion of applied axial stress from rock failure strength) as figure 1.5.
Looking at their derived graph reveals that under axial loading of approximately 35% of failure strength
and subsequently closure of horizontal micro-cracks, the P-wave and perpendicular S-wave velocities

4



experience less increase comparing to parallel S-waves. By progression of the loading and initiation of
vertical fractures P-wave and perpendicular S-wave, velocities experience more drop compared with
parallel S-waves until rock failure moment.
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Figure 1.4. Map view of evolution of P-wave velocity in each subset of stimulation operation of well GPK2 (reproduced after
Calo et al., 2011)
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Rummel (1991) also performed some experimental studies about physical properties of the granite samples
cored from GPK1 well of Soultz-sous-Foréts. He investigated P-wave velocity evolution due to lithostatic
pressure change and found that P-wave velocity increases as pressure enhances (figure 1.6). According to
his findings the rate of increase in P-wave velocity happens in initial stages of pressure increase. He suggests
that this may be due to closure of micro-cracks, which were open during core relaxation from in-situ stress
situation. The outcomes of P-wave 4D tomography of GPK2 stimulation demonstrated in figure 1.4 are
consistent with the results of Lockner et al, 1977 and Rummel, 1991 experiment except for subsets 3 and 6
in which the P-wave velocity increases by enhancing injection flow rate (and in consequence enhancing
pore pressure and water content of system which can be either within discontinuity or rock), being vice
versa with the Lockner’s derivations probably due to existence of non-linear behavior of discontinuities
under stress as explained by Bandis et al. at 1983.

Linear diffusion of pore pressure in porous media has hydraulic diffusivity as a central parameter (Jaeger
et al., 2007):

[
at—DVp (D)

in which temporal evolution of the pore pressure (%) is related to the spatial evolution of the pore pressure

(V2p) by a proportionality factor of hydraulic diffusivity (D) (Jaeger et al. 2007; Wang 2000; Rozhko 2010).
In fact, hydraulic diffusivity is a ratio of transport (permeability) to storage (specific storage capacity)
properties, which in turn, depend on properties of rock (geometrical characteristics of flow conduits and
deformation characteristics) and fluid (compressibility and viscosity) (Deng et al., 2021).

Shapiro et al., 1997, evaluated spatio-temporal distribution of approximately over 400 microseismic events
induced during hydraulic fracturing experiment of KTB borehole in Germany in order to estimate
permeability. At their study, fluid injection in KTB was approximated by a point source fluid injection into
an infinite homogeneous, isotropic, poroelastic, and saturated medium for which the pore pressure diffusion
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can be considered as the mechanics of poroelastic media, analogous with present simulation. Shapiro and
associates, by ignoring all non-mechanical (e.g. chemical and electro-chemical) solid —fluid interactions,
solved pore pressure diffusion equation (equation (1)) for their simulated model assuming a boundary
condition as an initial pore pressure perturbation being supplied as a function of time, py(t), on a tiny
spherical surface of radius a, with the injection point at its center. It is found that the initial seismic
triggerings may take place at t,, for the very first occurrences as

to < To+/ to/(47TD) (2)
This disparity leads to the following

2

< (3

T 4wt

Using above arguments on about 9000 seismic events induced during hydraulic stimulation of GPK1 well
of Soultz-sous-Foréts at 1993, Shapiro et al., 2002, estimated an effective hydraulic diffusivity of 0.05 m?/s
at depths of 2500 to 3500 m. The diffusion distance of pore pressure perturbation from injection point can
then be obtained by manipulation and reordering of equation (3) as

r =+4nDt (4)

Substituting t=3 h and D=0.05 m?/s in this model leads to pressure evolution distance of 82 m, which is by
far less than the Calo et al., 2011, observation of over 1000 m in 3 h.
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In conclusion, a large-scale P-wave velocity variation is observed during and after the hydraulic stimulation
of GPK2 in 2000, part of which, as shown in Figure 1.7, is associated with the effective normal stress
change in the vicinity of the injection point and is accompanied by microseismicity associated with fluid
diffusion; but the larger part of this V, variation, which is still associated with the effective normal stress
change, is not accompanied by microseismicity and rather reflects the occurrence of large-scale aseismic
motions and/or elastic response of fractures. These unexpected behaviors are studied in this thesis.

1.1 Methodology

According to previous section, the aim of this thesis is numerical modeling of non-linear hydro-mechanical
coupling of discontinuities encountered in GPK2 stimulation test. To achieve this goal, 3DEC discrete
element modeling software of ITASCA Consulting group as a powerful tool in numerical modeling of
discontinuum environment is chosen.

To account for the observed non-linear behavior, a description of the fracture network is required which
may be achieved by definition of Discrete Fracture Network (DFN). In addition of assigning a DFN to the
numerical model of target area, the model must be built applying mechanical properties of the intact rock
and fractures, pore pressure, and in-situ stress field using ITASCA 3DEC software (Version 5.2). The next
step will be to simulate the observed velocity anomaly for the maximum possible stress drop during GPK2
stimulation (possibly discussing the lack of velocity anomaly during GPK3 stimulation).

1.1.1 Discrete Fracture Network (DFN)

A DFN can be characterized with fracture position or density, fracture orientation (dip and dip direction),
fracture size, and fracture thickness or hydraulic aperture each of which can be determined using borehole
data such as image logs, vertical seismic profiles (VSP) as well as microseismic events. Figure 1.8 illustrates
some characteristics of a fracture. The dip of a discontinuity is the angle between its plane and horizontal
plane and the direction of its plane is dip direction.

A DFN can be characterized in stochastic and deterministic approaches. In stochastic type, fractures and
faults are presented statistically as a set of planes in which their characteristics are related to a distribution
model such as log normal, gamma law, or power law. In deterministic version, each fracture and fault is
presented as a plane with specific characteristics of dip, dip direction, size, position, and aperture.

1.1.2 Numerical Modeling (3DEC)

Numerical models are used when empirical methods cannot be extrapolated to new situations and when no
other methods (such as analytical or limit equilibrium) are available or the available methods are too
simplistic and lead to underestimation of the actual situation. Their advantage is that they can be used to
explain observed physical behavior such as collapse and multiple options can be analyzed such as different
design hypothesis.

Numerical models are divided into two categories of continuum and discontinuum. Continuum methods
which are suitable for modeling of continuum materials such as soils are categorized in types of finite
element, finite difference/finite volume, and boundary elements. On the other hand, discontinuum methods
are divided into two categories of implicit and explicit methods which are applicable in discontinuum
medium such as rocks.
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Figure 1.7. Map view of evolution of the microseismic cloud. Each picture shows, in chronological order comparable with those
shown in figure 1.4, the final event positions after the computation of the local tomography. The radius of each circle is
proportional to the magnitude and the projection of the injection well is indicated as a black line. Red line is approximate
illustration of fault surface passing through stimulation area. X-axis is E-W direction and Y-axis is N-S direction, both in
kilometers.
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Figure 1.8. Characteristics of a discontinuity (www.structuralgeology.org)

UDEC/3DEC, FLAC2D/3D, and PFC 2D/3D of ITASCA Consulting and Engineering Group are
commonly used software in numerical modeling of geological projects. Among these tools, FLAC is best
fit to modeling of projects in shallower depth projects performed in soils such as urban railway tunnels.
PFC is suitable for activities related to particle flows such as block caving mining method. UDEC/3DEC is
mostly used in modeling of problems in rocks such as slopes, tunnels, and wellbores because of its ability
to model discontinuous materials that show non-linear behavior.

3DEC is a Distinct Element Method (DEM) for discontiuum environment and can simulate the interaction
between blocks. It is best suited to model discontinuous materials that show non-linear behavior. It
comprises of many built-in constitutive models for blocks and joints and provides an option for user-written
models by introducing FISH scripting language. In addition, of representing or importing of any shape of
geometries, it can carry out static and dynamic analysis and considers thermal stress and time-dependent
behavior of geomaterial.

To account for the observed non-linear behavior, a description of the fracture network is required which
may be achieved by definition of a Discrete Fracture Network (DFN). In addition, of assigning a DFN to
numerical model of the target area, it must be built applying mechanical properties of the intact rock and
fractures, pore pressure, and in-situ stress field.

What to keep in mind about 3DEC is that the Biot theory is not implemented in that. Therefore, the fluid
flow is restricted to the fracture network and pore pressure evolution of the system due to fluid dissipation
from fracture to the rock matrix is independent from applied stress.

1.1.3 Nonlinear fracture stiffness

Bandis et al., 1983, performed a series of experiments on fresh and weathered locked joints of some samples
of five rock types under normal and shear loading condition. Normal deformability was studied by
conducting loading/unloading and repeated load cycling tests and shear deformability was studied by
performing direct shear tests under a range of normal stresses. In both normal and shear loading methods,
deformability of samples demonstrated nonlinear behavior irrespective of joint and rock type (figure 1.9)
indicating the influence of discontinuities on mechanical behavior of rock mass under loading condition.
Comparison tests were also carried out on mismatched joints where two faces of the joints were relatively
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dislocated by 0.5-1.0 mm. The normal stress versus closure curves of the dislocated joints showed a similar
behavior as when loaded in a fully locked position.
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Figure 1.9. (a) Total deformation of fresh and weathered joints in Dolerite under repeated normal loading condition and (b) Joint
shear displacement in Limestone and Dolerite; in both cases the graphs demonstrating a nonlinear behavior being described with
a hyperbolic function (Bandis et al., 1983)

1.2  Overview of the thesis and State-of-the-Art

To model the response of geomaterial around injection point during stimulation of GPK2, it is necessary to
take the role of both small fractures and large faults into account. According to Cornet (2015), a rock sample
bearing small fractures under triaxial loading condition demonstrates elastic behavior until it reaches to
plastic domain. This is shown in figure 1.10 in which change in effective normal stress causes some
reversible strain in rock. This is related to the initial stages of fluid injection into a rock mass where
subsequent pressure increase in pore space of fractures will cause decrease in effective normal stress and
subsequent increase in fracture hydraulic aperture that, in turn, will result in decrease in P-wave velocity.
Then continuous increase in pore pressure will cause shear slip of preexisting fractures or generation of
fresh fractures depending on mechanical properties of rock mass and stress state. Activation of preexisting
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fractures is bearing reaction of fracture stiffness to changes in effective normal stress, which is controlled
by fracture roughness (Joint Roughness Constant or JRC as defined by Barton, 1976), fracture wall strength
(Joint wall Compressive Strength or JCS as defined by Barton, 1976), and fluid flow within fracture.

Stress (MPa)

Elastic Limit, L,

Strain

Figure 1.10. Deformation of rock mass under different stress magnitudes

Figure 1.11 illustrates the evolution of shear stiffness with respect to effective normal stress in which shear
stiffness shows a non-linear trend with respect to change in effective normal stress. This non-linear behavior
can be simplified to a bilinear trend (figure 1.11). However, and according to the author’s best of
knowledge, the fractures’ shear and normal stiffness in the literature is always considered constant (e.g.
Cappa et al., 2006; Guglielmi et al., 2008; Farmahini-Farhani and Ghassemi, 2016; Yin et al., 2020;
Wynants-Morel et al., 2020 & 2021) with some exceptions such as Darcel et al., 2021. In the current work,
we will try to account for the nonlinearity of normal and shear stiffness, as shown in Figure 1.8, and study
its effect on the elastic response of fractures.

Effective Normal Stress {MPa)

.

Shear Stiffness (GPa/m)

Figure 1.11. The shear stiffness of a fracture is strongly dependent on effective normal stress and shows non-linear behavior
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Based on the above explanations, the aim of this work is to numerically simulate the fluid flow along the
main fault of the Soultz-sous-Foréts reservoir and the nonlinear hydromechanical coupling of the
discontinuities encountered during the GPK2 stimulation test, in order to characterize the observed anomaly
in the P-wave velocity variation, as shown in Figure 1.4. For that, first the effect of fluid flow along a large
fracture passing through the seismic cloud resulted from hydraulic stimulation of the study area, as shown
in figure 1.7, will be assessed. Then, the elastic behavior of the rock mass fractured by a DFN in a
100x100x100 m? block will be studied, taking into account the nonlinear fracture stiffness. The models will
be characterized with appropriate physical properties, in-situ stress state, and normal and shear stiffness of
fractures. The elastic response of the block to different scenarios of applied stress will be evaluated in terms
of the evolution of P-wave velocity.
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Chapter 2

2 Numerical Benchmarking Modeling of Mechanical Behavior of an Intact
Rock Block

To effectively model the response of geomaterial around the injection point as well as far field during
stimulation of GPK2, it is necessary to take the role of both intact rock and discontinuities into account. In
this chapter, by utilizing 3DEC the mechanical behavior of an intact rock block of 100x100x100 m* was
assessed through a set of benchmarking tests.

2.1 Benchmarking Tests

In order to check that 3DEC is used properly, first the mechanical behavior of a homogeneous, isotropic,
and elastic block of 100x100x100 m® was assessed. The model was characterized with proper mechanical
and physical properties, as well as stress and velocity (displacement) boundary conditions. Elastic responses
of blocks in different cases of Uniaxial Stress, Uniaxial Strain, and Polyaxial Stresses were investigated.
Figures 2.1 and 2.2 show three different tests of benchmarking where the gravity was neglected and was
considered, respectively.

Scenario 1

Scenario 2

Scenario 3

Uniaxial Stress Uniaxial Strain Polyaxial Stresses
03 a3 g3

W, W 141/

L L L i
E U= E 5 E 5
v = v
v
I3 I, s | b I, o-‘
I Iy / Iy >

Figure 2.1. Three different cases in which mechanical benchmarking were conducted when the gravity is not considered

Scenario 1

Scenario 2

Scenario 3

Uniaxial Stress Uniaxial Strain Polyaxial Stresses
03 03 03
W, W 11/
L L L "
= E
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L] I L . » ‘ v
J3 I, pgz 3 1, ng I3 I, % ng
I Iy I
u; =0

Figure 2.2. Three different cases of Uniaxial Stress, Uniaxial Strain, and Polyaxial Stress in which mechanical benchmarking
were conducted when the gravity is considered
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2.1.1 Numerical Solution (Distinct Element Method-3DEC)

The distinct element method (Cundall, Strack 1979b) is a method for simulating the mechanical behavior
of systems consisting of isolated blocks or particles. The shapes of the particles can be freely chosen; any
particle can interact with any other; and there are no restrictions on the displacement or rotation of the
particles. Blocks can be modeled in 3DEC in two distinct ways: rigid blocks with six degrees of freedom
(including translational and rotational degrees) or deformable blocks with three degrees of freedom in a
tetrahedron (or node) at each vertex. The rigid block motion is sufficient for stability studies where the
stress state applied is low in comparison to the intact rock strength and the motion is focused along the
structural features. In deformable block formulae, each block is divided into a finite difference mesh
composed of tetrahedron elements of constant-strain. The resulting mesh is an explicit large-strain mesh,
and the block material is modeled using elastic models as well as elastoplastic models. The logic of
deformable blocks is similar to the two-dimensional block logic, as formulated by Lemos et al. (1987).

3DEC takes into account the deformability of blocks and the failure of intact material. In 3DEC, each
polyhedron block is divided into an inner finite difference mesh made up of tetrahedron elements of constant
strain. The resulting mesh is an explicit large strain mesh. The model for the block is an elastic model and
the model for the elasto model is an elasto plastic model. The logic of the deformable block is similar to
the two-dimensional block logic, as described by Lemos, (1987).

3DEC uses a dynamic (time domain) algorithm to solve the equations of motion for the block system using
the explicit finite difference method (see Cundall 1987). Solution schemes based on equations of motion
are better suited to identify potential failure modes for discontinuum systems, as opposed to schemes that
do not take into account velocities or inertial forces (for example, successive over-relaxation). The law of
motion and constitutive equations are used at each timestep. For both rigid blocks and deformable blocks
the sub-contact force displacement relations are prescribed. Integrating the law of motion gives the new
block positions and hence the contact displacement increments (or velocities). Sub-contact force
displacement law is used to obtain the additional sub-contact forces to be applied on the blocks in the
following timestep. Figure 2.3 shows the cycle of mechanical calculations.

Sub-Contact Force -

Update

Block Centroid
Forces Relative Contact

or Velocities
Gridpoint Forces

Block/Gridpoint
Motion Update

Figure 2.3. Cycle of mechanical calculations in 3DEC

In most cases, it's impossible to ignore the deformations of individual blocks (you can't just assume that
blocks are solid). In 3DEC, fully deformable blocks are designed to allow you to deform each block in your
model internally.
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These deformable blocks are divided into tetrahedral blocks with a finite difference. The amount of
deformation you can get depends on how many elements you have to divide the blocks into. Using
tetrahedral blocks means you don't have to worry about deformations like the hourglass* that can happen
when you're working with a polyhedron constant-strain finite-difference.

The vertices in the tetrahedron are called gridpoints, and the motion equations for each gridpoint are given
as follows:

_ fs oijn;jds+F;

m

where s is the surface enclosing the mass, m, lumped at the gridpoint, o;; is the zone stress tensor, n; is the

unit normal to s, F; is the resultant of all external forces applied to the gridpoint (from block sub-contacts
or otherwise), and g; is the gravitational acceleration.

Gridpoint forces are obtained as a sum of three terms as
Fi,=Ff+Ff+F (22

where F} is the external applied load. Ff is the result of the sub contact forces. Ff exists only for gridpoints
along the block boundaries. The forces from sub contacts along the two adjacent faces to the gridpoint
contribute to Ff. Because the displacements along any face are assumed to be linearly distributed, the
impact of sub-contact forces along a face can be represented by static equivalent forces applied on the face
endpoints. The contribution of internal stresses in adjacent zones is calculated as

FiZ = fC O'l'jnde (23)

where n; is the unit outward normal to the contour, C, which follows the closed polygonal surface defined
by the straight segments which bisect the zone faces converging on the gridpoint under consideration.

At each gridpoint, a net nodal force, ), F;, is calculated. The net nodal force includes the contributions of
applied loads, as mentioned above, and the contributions of body forces caused by gravity. Gravitational

forces, Fi(g), are computed from

FO = gmy  (24)

where my is the lumped gravitational mass at the gridpoint and equal to the one third of the masses of
tetrahedral connected to the gridpoint. If the body is in equilibrium or in a steady-state flow (for example,
plastic flow), 3. F; on the node is zero. If not, the node is accelerated according to Newton's second law of
motion as

uEH% _ ui(t—%)

(t) At
+XF — (29)
where the superscripts denote the time at which the corresponding variable is evaluated.
During each timestep, strains and rotations are related to nodal displacements in the usual fashion:
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Notice that, because of incremental treatment, equations (2.6) and (2.7) do not imply a restriction to small
strains.

The constitutive laws for deformable blocks are used in an incremental form so that it is easy to implement
on non-linear problems. The form in which these equations are actually expressed is

where A and u are Lame constants, Ao{j- are the elastic increments of the stress tensor, Ae;; are the
incremental strains, Ae, = Aejq + A€,, + A€z is the increment of volumetric strain, and §;; is the
Kronecker delta function.

Nonlinear and post-peak strength models are easy to implement directly in the code without using tools like
equivalent stiffnesses or starting strains, which must be introduced into matrix oriented programs to
maintain the linearity imposed by matrix formulation. In explicit programs, however, it is much easier:
After each time step, we know the strain state for each zone. Then, we need to know the stress for each
zone to continue to the next time step. The stress is unique to the stress and strain model, whether it be a
linear elastic relation or a more complex, nonlinear and post-peak strength model.

2.1.1.1 Sign Conventions in 3DEC

The sign conventions in 3DEC are as follows and must be followed when entering input or evaluating
results (Itasca, 2016).

Block motion: Positive motion is in the positive coordinate axes directions.

Direct stress: Positive stresses indicate tension; negative stresses indicate compression. It is the same as the
convention in continuum mechanics (Cornet, 2015).

Shear stress: Referring to Figure 2.4, a positive shear stress points in the positive direction of the coordinate
axis of the second subscript if it acts on a surface with an outward normal in the positive direction.
Conversely, if the outward normal of the surface is in the negative direction, the positive shear stress points
in the negative direction of the coordinate axis of the second subscript. The shear stresses shown in Figure
2.4 are all positive. The stress tensor is symmetric (i.e., complementary shear stresses are equal).

Direct strain: Positive strain indicates extension; negative strain indicates compression.
Shear strain: Shear strain follows the convention of shear stress (see above).
Pore pressure: Fluid pore pressure is positive in compression.

Dip, dip direction: — Dip and dip direction assume that the x-direction corresponds to “East,” the y-direction
corresponds to “North,” and the z-direction corresponds to “Up.” The dip angle is measured in the negative
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z-direction from the global xy-plane. The dip direction angle is measured in the global xy-plane, clockwise
from the positive y-axis.

Note that the X, y, and z components of vector quantities (such as forces, displacements, and velocities) are
positive when they point in the directions of positive X, y, and z coordinate space.

-~

-

"
Ty Tz

Figure 2.4. Sign convention for positive stress components
2.1.2  Analytical Solution

Below, you can find analytical solution to calculate displacement components in abovementioned block for
Polyaxial Stresses case when the gravity is not considered. Its generalization to the other two cases of
Uniaxial Stress and Uniaxial Strain is straightforward.

If us and uy in figure 2.5 are displacement components in I3 and I principal directions (I is inward normal
to the page), the strain components will be:

Uq

81 = T (29)
g="2 (210)
g="2 (211
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Figure 2.5. Schematic cross section of block with side size of | for Polyaxial Stresses case

To determine strain at any point such as a in the block, the side length of | should get very small, for the
strain is assumed to be uniform in the block. Then:

ef =lim (%) = @r o 012)

a1 Uy =du‘2"

&2 —%1_r)r01(l)_ dl (2.13)
a _ s _us :dug"
& —%1_{13( l)_ (214

Substituting Hooke’s law in strain relations 2.12-2.14 at a point and solving in terms of displacement will
yield to:

[0, O

duf = T E (0, + 03)_ dl (2.15)
duf =2 -2 (o, + op)|dl  (216)
dug =|Z-2(0, +op)|dl  (217)

In which E and » are Young’s modulus and Poisson’s ratio, respectively. Integration of above relations will
yield to displacement magnitudes in principal directions in the cube of side size I:

u; = [duf = fol 2 _ ﬁ(az + 03): dl  (2.18)

| E E

u, = [du§ = [[[Z2 -2 (0 + 03): dl (2.19)

| E E

uy = [ dug = [} [2 -2 (0 +0p)|dl  (220)

OLE

To conclude displacement magnitudes in Uniaxial Stress case, it should be noticed that Hooke’s law for
this case is:
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£ = % (2.21)
81 = 82 = _1983 (222)

Substituting equations 2.21 and 2.22 in equations 2.12 to 2.14 and doing the same derivation steps as earlier
case will yield to following displacement components:

up = [duf = — [[Zdl (229)
w = [duf = - [[92dl (224)
up = [duf = - [[92dl (2.25)

For the Uniaxial Strain, lateral strains are equal to zero. Hooke’s law will be as equation 2.26 due to effect
of Poisson’s ratio:

9 _ Y

=T (o1 +0,) (2.26)

83 =
&1 =& = 0 (227)

Similarly, substituting equations 2.26 in equations 2.14 and doing the same derivation steps as Polyaxial
Stresses case will yield to following vertical displacement value:

us = fduf = - [} [2-2 (0, + 0p)|dl  (228)

Taking the gravity into consideration, a gradient of the Gravitational loading (which is equal to pgZ; p is
bulk density in Kg/m?, g is gravitational acceleration in m/s?, and Z is depth in m which is variable from 0
to 100 m in current benchmarking modeling) will be directly added to constant magnitude of o5 from top
to bottom of the block. Consequently, lateral principal stresses will be changed corresponding to change in
vertical stress value.

An example for comparison of numerical displacement magnitudes to analytical values and corresponding

errors can be found in figures 2.6 and 2.7 respectively for Polyaxial Stresses and Uniaxial Stress cases when

the gravity is ignored or considered in calculations, respectively. To find complete sets of results, interested

readers can refer to Appendix A2.1. The relative error in terms of percent is determined as below:
Numerical Value—Analytical Value

error = +*100 (2.29)

Analytical Value

By above definition of error calculation, it is obvious that in some points of the block where the analytical
displacement is zero, magnitude of the error will tend to a very high value due to division to zero. This can
be seen in the central axis of the block for lateral displacements (figures A2.6, A2.7, A2.9, A2.10, A2.13,
and A2.14 of appendix A2.1).
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Figure 2.6. Numerical (upper) and analytical (middle) vertical displacement magnitudes and corresponding error (lower) for
Polyaxial Stresses case when gravity is not considered
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Figure 2.7. Numerical (upper) and analytical (middle) vertical displacement magnitudes and corresponding error (lower) for
Uniaxial Stress case when gravity is considered
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It is worth mentioning that, the accuracy of numerical results generally increases with decreasing mesh size.
However, with an extremely fine mesh size, substantial computational time will be consumed. Therefore,
it is necessary to determine a reasonable mesh size to achieve a balance between computation efficiency
and accuracy (Chen et al., 2000b). Magnitudes of absolute error, which is difference between analytical and
numerical displacement components, at two points of A and B shown in figure 2.8 versus mesh sizes of 2,
3,4, 5, and 10 meters, when the gravity is taken into account, are shown in tables 2.1 to 2.3 and figures 2.9

to 2.11.

(-100, 0, -50)
(0, 0, -50)

2
A (-50, -50, -50)

(-100, -100, -50)
(0,-100,-50)

Figure 2.8. Plane view of the block of benchmarking modeling at the depth of -50 m where A and B are the points in which,
respectively, the vertical and both lateral components of displacement are evaluated and compared with analytical values
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Table 2.1. Absolute error values of numerical displacement components versus discretization mesh size at point A (for vertical
displacement) and point B (for lateral displacements) in the block for Uniaxial Stress case when the gravity is considered

Absolute Errors
Mesh Size (m) Vertical Displacement | Lateral Displacement Lateral Displacement
(m) (X Direction) (m) (Y Direction) (m)
2 -3.775E-03 3.354E-04 1.207E-04
3 -8.065E-03 -1.273E-03 2.517E-03
4 -7.338E-03 -5.820E-04 2.228E-03
5 -1.639E-02 3.230E-04 1.293E-03
10 -2.638E-02 3.430E-03 -1.153E-02

Table 2.2. Absolute error values of numerical vertical displacement versus discretization mesh size at point A in the block for
Uniaxial Strain case when the gravity is considered
Mesh Size (m) Absolute Error

Vertical Displacement
(m)
-2.393E-03

2

3 -5.581E-03
4 -5.035E-03
5 -1.177E-02
10 -1.923E-02

Table 2.3. Absolute error values of numerical displacement components versus discretization mesh size at point A (for vertical
displacement) and point B (for lateral displacements) in the block for Polyaxial Stresses case when the gravity is considered

Mesh Size (m) Absolute Error
Vertical Lateral Displacement Lateral Displacement
Displacement (m) (X Direction) (m) (Y Direction) (m)
2 -1.47E-03 2.86E-04 -2.08E-04
3 -3.22E-03 -3.68E-04 -5.27E-03
4 -3.29E-03 6.18E-07 -4.69E-03
5 -7.91E-03 2.15E-04 -2.63E-03
10 -1.30E-02 1.22E-03 2.47E-02

Looking at the results of the error analysis and considering the physical time of block discretization, in most
cases the 4 meter mesh size has the lowest absolute error compared to other sizes. Therefore, the
discretization mesh size of 4 may be the most efficient size for benchmarking modeling when both error
and computation time are considered.
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Figure 2.9. Absolute errors of displacement components versus mesh size in Uniaxial Stress case when the gravity is considered
in computation; (a) for vertical displacement at Point A, (b) for lateral displacement in X direction at point B, and (c) for lateral
displacement in Y direction at point B
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Figure 2.10. Absolute errors of displacement components versus mesh size in Polyaxial Stresses case when the gravity is
considered in computation; (a) for vertical displacement at point A, (b) for lateral displacement in X direction at point B, and (c)
for lateral displacement in Y direction at point B
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Uniaxial Strain
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0.000E+00
-5.000E-03
-1.000E-02

-1.500E-02

Absolute Error (m)

-2.000E-02

-2.500E-02
Mesh Size (m)

Figure 2.11. Absolute error of vertical displacement at point A versus mesh size in Uniaxial Strain case when the gravity is
considered in computation
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Chapter 3

3 Benchmarking modeling of hydro-mechanical effect of fluid flow in a
fracture embedded in a rock matrix

Therefore, the decision was made to consider the well-known problem of fluid flow through a single
fracture modeled by two parallel plates. In fact, the problem at this step aimed to numerically assess
transient as well as steady-state fluid flow through a parallel-plate fracture. This flow generated by pressure
gradient between two ends of the fracture and the results were then compared to the analytical values. After
that, a uniform normal stress field was added to the problem in order to investigate the influence of the
effective normal stress and normal stiffness of the fracture on deformation of the fracture and rock matrix
as well as on the fluid flow results achieved in the first step.

3.1 Fluid flow through a rigid parallel plate fracture

This section aims to assess one dimensional fluid flow through a fracture intersecting a cubic block of
homogeneous, impermeable, and rigid material. A pressure difference has been imposed to two ends of the
fracture in x-direction. On the one hand, as the material is rigid, then the imposed fluid pressure gradient
will not cause any deformation in the material. On the other hand, the fracture can be stiff enough to avoid
normal displacement of that due to fluid pressure by defining a very large value of normal stiffness. Then,
the analyses can merely be restricted to fluid flow through a fracture with a given aperture. Figure 3.1 is
schematic illustration of the block, the fracture, initial and boundary conditions.
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Figure 3.1. Schematic view of the block and the fracture in the middle of the block

The initial and boundary conditions for fluid flow in x-direction are as
Initial condition:
p(x,0) =py for 0<x<L

Boundary conditions:
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p(0,t) =p; for t>0
p(L,t) =p, for t>0

It should again be denoted that there is no flow in y-direction. The objectives are numerically assessing steady-
state and transient fluid flow through parallel plate fracture and are also validating the numerical achievements
with analytical results.

3.1.1 Governing Equations

The flow of a fluid in a fracture is governed by Navier-Stokes equation (Jaeger et al., 2007)
9 __1 Hd 2
atv+(Vv)v— pr+va+b (3.1)

Where v is the velocity vector, b is body force per unit volume, p is fluid density, u, is fluid’s dynamic viscosity,
and p is the pressure. The first term on the left-hand side of equation (3.1) represents the acceleration of a fluid
particle that is due to the fact that, at a fixed point in space, the velocity may vary with time. The second term is
the advective acceleration term, which accounts for the fact that, even in steady-state flow, a given fluid particle
may change its velocity (i.e., be accelerated) by virtue of moving to a position at which there is a different velocity
(Zimmerman & Bodvarsson, 1996). The terms on the right-hand side represent the applied pressure gradient, the
viscous forces, and the applied body force, respectively (Jaeger et al., 2007). The ratio between inertial forces and
viscous forces also known as Reynold’s number which is a dimensionless parameter and specifies the onset of
turbulent flow (Cornet, 2015, pp. 159) and is defined as (Streeter et al., 1975)

Re=2 (3.2
Ha
where V is characteristic velocity and L is characteristic length, such as aperture of fracture, h. Iwai (1976)
determined that the critical Reynolds number for a rock joint is 100, while Louis (1974) determined the critical

number to be 2300.

Equation (3.1) represents a vector equation or three scalar equations for four unknowns including three velocity
components and the pressure. Then, an additional equation which is conservation of mass or continuity equation
is required to have four equations for four unknowns as

2 +div(pr) =0 (33)

Steady-State Fluid Flow

In steady-state fluid flow, there is no dependence on time, then in conservation of mass equation, dp/dt = 0 and
it can be concluded that div (pv) = 0. On the other hand, for an incompressible fluid, which is reasonable
assumption for fluids under typical subsurface conditions, the conservation of mass takes the form (Zimmerman
and Bodvarsson, 1996) of

divv=V.v=v,,+v,,+v,,=0 (3.4)

Also, for the steady-state case since there is no dependence on time, the Navier-Stokes equation will be (Jaeger et
al., 2007)
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Vv —p(Vv)v=Vp (3.5)

The relevant boundary condition for Navier-Stokes equation is “no slip” condition, meaning that at any boundary
between fluid and solid, the velocity vector of the fluid should be equal to that of the solid. It specifies that for the
fixed fracture walls (Poisseuille flow), both components of fluid velocity, either normal or tangential, must be
equal to zero.

Parallel plate model such as figure 3.2 is the simplest form of a fracture for which the exact calculation of the link
between velocity and pressure is possible (Zimmerman and Bodvarsson, 1996). Considering a steady (ho time
dependence) and laminar (Re < 1 or in sufficiently low velocities) flow of an incompressible fluid in x-direction
(direction of the pressure gradient) and between two parallel and smooth plates implies that the solution does not
depend on y-direction (v, = 0).
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Figure 3.2. Steady-state fluid flow between two parallel plates

In this situation, equations (3.4) and (3.5) become
pa(Vaxx + Vezz) = P(VeaVx + Va202) =px  (3.6)
pa(Vzux + V2zz) = P(VzaVe + V22v) =2 (37)
Vex TV, =0 (3.8)

Since the fracture is assumed to be with uniform aperture of h and on the other hand, fractures show a very small
aspect ratio (ratio of aperture to length of the fracture), then velocity component in z- direction will be zero, too
(v, = 0). Thereafter, from equation (3.8) it can be concluded that v, ,, = 0; meaning that the x-component of the
velocity does not vary in x-direction and equations (3.6) and (3.7) will reduce to

UaVx zz = p,x (39)
p,=0 (3.10)

One can find mathematical derivation of solution for equations (3.9) and (3.10) in Cornet (2015) for both Couette
and Poisseuille flow. The final solution for Poisseuille flow (Cornet, 2015) is

vy = =3 pal(h/2)? = (2 = h/2)’]  (31D)

Equation (3.11) reveals that the flow velocity exhibits a parabolic profile between the fracture walls. The total fluid
flow in a fracture with width of w in y-direction, normal to the pressure gradient, can be determined by integrating
the velocity as
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Q =w ) vedz == 22 p, [ 1(h/2)? - (2 = h/2)ldz = — 2, (3.12)

This equation is known as cubic law in which

wh3
T=-—r (3.13)
is known as Transmissivity. Recalling Darcy’s law for flow in porous media, which in one dimension can be
written as (Kranz et al., 1979)

Q=-"p, (314)
d

and comparing of that with equation (3.12) reveals that h%? /12 can be defined as permeability of the fracture. Q in
Darcy’s law is flow rate, k is permeability, and A is cross-sectional area through which fluid flows and is equal to
wh.

Equation (3.12) is consistent with achievements of many researches such as Oron and Berkowitz (1998),
Zimmerman and Yeo (2000), Skjetne et al. (1999) and Hasegawa and lzuchi (1983). They analyzed the relation
between the volumetric flux and pressure gradient using various approaches and proved that this relation is
approximately linear for Reynolds number less than about 10.

Zimmerman and Bodvarsson (1996) showed that if the flow is governed by the Stokes equation, even for fractures
with variable aperture, the relation between volumetric flux and pressure gradient will be linear, as Q =
—(T /u4)Vp, homologous with equation (3.12). They reduced Navier-Stokes equation to Stokes equation by doing
the order of magnitude analysis and taking some assumptions. Here, their approach is manipulated for a fracture
with uniform aperture through which a laminar flow occurs.

Assuming that the advective acceleration terms in the Navier-Stokes equation is negligible compared to the viscous
terms will yield the Navier-Stokes equation to the Stokes equation. If V is considered to be characteristic velocity
like the mean velocity in the direction of the pressure gradient, since the in-plane velocity varies quasi-parabolically
from zero at the upper and lower boundaries to some maximum value in the order of V in the interior, as concluded
from equation (3.11), the magnitude of the viscous term can be estimated as

14
lugV?v| ~ |:udvx,zz| ~ % (3.15)

The order of magnitude of the advective acceleration term or inertia term can be determined as
p(Vv)vl ~ 2 (3.16)

where A is a characteristic dimension in the direction of the flow, which we assume that A is fracture length.
Referring to the assumption that the inertia forces being negligible compared to the viscous forces will read
ugVv

A4
A<< or Re

« — PVh?
<l =<1 (317)

31



where Re™ is reduced Reynolds number being a product of the traditional Reynolds number, pﬂ—Vh, and the geometric
d

parameter % The % identifies aspect ratio of the fracture which is always a very small value, then the condition

(3.17) is satisfied and the Navier-Stokes equation reduces to the Stokes equation as

ugVv=vVp (3.18)

or

Uy xx + Ux,yy + Vx,zz = _dp,x (3-19)

1
Vyxx T Vyyy + Vy 2z = H—dp,y (3.20)

1

Vzxx T VUzyy t V., = M_dp,z (3.21)

It can be seen, the Stokes equations are linear and more tractable than nonlinear Navier-Stokes equation. In current
benchmarking modeling the flow is considered to be only in x-direction, then y component of the velocity will be
zero. Additionally, very small aspect ratio also implies that velocity component in z-direction is negligible in
comparison with x component of fluid; reducing Stokes equation to Reynolds lubrication equation according to
Zimmerman and Bodvarsson (1996). The magnitude of the second derivatives in equation (3.19) can be estimated
as
14 14
|vx,xx| ~ |vx,yy| =2 |vx,zzl = n (22)

If (h/A)? « 1, the derivatives within the plane (derivatives with respect to x and y) will be negligible compared
to the derivative with respect to the z, and equation (3.19) can be replaced by

1
Ux,zz = u_dp,x (3-23)

Integration of this equation with respect to the z, with the previous knowledge of the no-slip boundary condition
at the top and bottom walls of the fracture, z=0 and z=h, reads

Ve = —p (2% —zh) (3.24)
2pq

This is essentially the same parabolic velocity profile as occurs for flow between parallel plates.

As V.v = 0, therefore the integral of it with respect to z must be zero, too. If the velocity satisfies the no-slip
boundary condition, the interchanging the order of the divergence and integration operations will show that the
divergence of the z-integrated velocity or ¥, must also be zero. Then,

0hv,
ax

=0, s0=[h%p,]=0 (3.25

which is Reynolds lubrication equation.
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Considering that fracture thickness or mechanical aperture (h) in fluid flow analysis through a parallel plate fracture
may be equal to hydraulic aperture, hy, then the transmissivity and flow rate per unit width of fracture can be given

by:

3
T =" (326)

h3
Q=1 ="1tp. (327)

where Q,, is flow rate per unit width of the fracture (m%s.m).

Transient Fluid Flow

So far, the steady-state fluid flow, in which the time has not effect on variation of pressure and velocity, has been
introduced. Now, governing equation for pressure evolution with time or transient flow in a porous medium will
be explained. Generalization of the results to transient flow through a parallel plate fracture is straightforward.

As stated before, conservation of mass equation for fluid flow in a porous medium is
2 +V.(pv) =0 (3.28)

By multiplying both terms in porosity, n, we have

onp
at

+ V.(pnv) =0 (3.29)
In a homogeneous medium, we know that
=1
v=- (3.30)
where q is fluid flux vector. Then,

221 V.(pg) =0 (331)
Using product rule, we will have
n2 424 pV.q+qVp=0 (3.32)

With the knowledge that the density and porosity are a function of the pressure (p), we can use chain rule and
factoring out the np of first two terms in the left-hand side (LHS) of the equation (3.32), then it will read

1220, 1omom

ap _
p Op Ot napat]+pv'q+%vp-q—0 (333)

If the both sides are divided by p, and substituting fluid and rock compressibility as ¢, = %Z—Z and ¢, = 1on , then

naop

nfcr + ¢ Z—IZ +V.q+ ¢ Vp.q=0 (3.34)
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The relation between fluid flux vector and pore pressure in any anisotropic porous medium by vector form of the
Darcy’s Law is (Bear, 1988) as

k
q= —H—dV(p —pg.x) (3.35)

where k is permeability tensor, p4 is dynamic viscosity of the fluid, and g is the gravity vector and assuming
isotropic and homogeneous permeability beside the assumption of horizontal fluid flow (i.e., there is no
gravitational effect on fluid flow) and the knowledge of c; = ¢; + ¢, ina fully saturated fluid-solid system (Jaeger
et al. 2007), equation (3.34) will lead to

neg - = Cr Vp. (”d Vp) V. (”d Vp) =0 (3.36)
Some manipulations will read

d
”d: C‘ta_f — ¢ Vp.(Vp) = V.(Vp) =0 (3.37)

Assumption of negligible fluid compressibility compared to the rock compressibility (for example, as the
compressibility of water is only 4.9e — 10/Pa (Batchelor, 1967), a pressure change of 1 MPa will cause a change
of 0.05% in density of the water (Zimmerman & Bodvarsson, 1996)) gives

Hance O _ g (yp) =0 (3.38)

k ot

or
ap _  k
F=——V.(Vp) (339)

which is pressure diffusion equation. For 1D problem in x-direction, the equation will be
®-p 3.40
E = UD xx ( . )

In which

k

Hance

D=

(3.41)

is hydraulic diffusivity (Jaeger et al. 2007). In current case with initial and boundary conditions explained at the
beginning and by assuming rigid matrix (¢, = 0 then c¢; = ¢¢) and porosity of 1 for the fracture and knowledge of

2
that the permeability of a single fracture is th/ 17 the magnitude of hydraulic diffusivity for fractures will be

2
“h . (3.42)

- 12[1.dCf
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For 1-D fluid flow in which the initial pressure is p, (initial condition) and pressures at the beginning and end of
the tube are respectively p; and p, (boundary conditions), the pressure evolution at any point of x in time t can be
determined as explained below.

To facilitate solving the pressure diffusion equation, it is permissible to homogenize the boundary conditions by
substituting p(x,t) with u(x,t) as

u(e,©) =pGet) = [pr+3 P2 —py)|  (3.43)

Then, the equation (3.40) and its related initial and boundary conditions will change to

ou _ . 0%u

Initial Condition: u(x,0) = p(x,0) — [pl + % (p, — pl)] =py— [pl +%(p2 - pl)] =f*(x) (3.45)

u(0,t) =0

Boundary Conditions: {u(L, £ =0

As it is obvious, the boundary conditions are homogenized to be zero. Left-hand side of equation (3.44) is t
derivation of function u and right-hand side of it is second degree x derivation of function u. These two derivatives
will be equal to each other merely in a condition that both of them be a floating value such as A. 4 can be zero (A =
0), or positive (1 > 0), or negative (4 < 0). Considering these three possibilities and solving equation (3.16), the
general solution will be as below

(agpx +by) fori=0
u(x,t) =1 (a;coshix + blsinhxlx)emzt forA>0 (3.46)
(aycosAx + bysinAx)e PA’t  for 1< 0

For homogeneous boundary conditions where in two points the u(x,t)=0, the third form of the equation (3.46)
where 4 is negative will be the solution of partial differential equation (PDE), because the other two possibilities
only will have one zero point for any amount of x and t. Then, benefiting from separation of variables (Tsay and
Weinbaum, 1991) will read

F(x) = (a,cosAx + b,sinAx)

Gty = o-PF (3.47)

u(x,t) = F(x)G(t) => {
Let us to consider the boundary conditions
F(0) =0=> a,cos(0) + b,sin(0) =0=> a, =0
F(L) =0 => bysin(AL) = 0 => sin(AL) = 0 => AL =nw => 1 =""  (3.48)
By substituting above results in F(x) of equation (3.47) we have

F(x) = bysin (nL—nx) (3.49)
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Then, for u(x,t) we can conclude that
u(x,t) = bysin (nL—nx) e DXt (350)
or in general expression
U, (x,t) = ¥_; bysin (nL—n x) e P¥t  (351)
Considering the initial condition, we will have
Up(x,0) = Yn—1 bysin (nL—nx) =f*(x) (352
In which b,, can be determined benefiting from Fourier series as
by =2 [y f @) sin(*Fx)dx  (359)

By substituting f*(x) from equation (3.18), above integration will be

2

b =211 (po = [P + 2 @2 — p0)]) sin (*x) dx (354)

The solution of above integration will be

b — E (p2 — po)cos(nm) _ (p1 — po)cos(0)
"L n"/L mT/L

Doing some manipulations will read

bu = (o1~ po) — (p ~ po)ecos(um)]

In which magnitude of b,, depends on magnitude of cos(nm) as

—2
. E(m +p, —2py) forn=13,5,..
i 2 =2,4,6
—(@1—p2) forn=2,46,.
Or, in cumulative form,
bn = — (1 + (~1)"p, + (-1 + (-1)™py) forn=1 (3.55)

Substituting (3.55) in (3.51) yields to

Uy G, 8) = Doy = (py + (=17, + (=1 + (=1)")pg)sin (7x) e P4 (3.56)

Then, p(x,t) will be
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Tl7T2
p(x,6) = py + TP Ly 2o g (C1) 1, 4 (—1 4 (~Dp)sin (2x) e (T C (357)

The characteristic time is

L2

t"=— (3.58)
When t>>t*, the pressure evolution is expected to obey the below equation
p() =pi+ (P2 —p)7 (359)

which is pressure gradient calculation solution in steady-state fluid flow. For t<t*, the pressure evolution, can be
calculated using equation (3.57).

3.1.2 Numerical Approach

In the 3DEC numerical approach, the flow domain is fully saturated (Itasca, 2016) and discretized into tetrahedral
zones defined by four nodes as same discretizing method as mechanical and thermal calculations (Itasca, 2016).
This flow domain is indicated by flow plane, which is major geometrical element of the flow model and always is
a plane extended to the boundaries of the block (Itasca, 2016). The flow plane is a two dimensional surface in
which flow is occurring through its thickness. Therefore, flow planes are planar polygons and are connected along
the edges, which are straight-line segments called a flow pipe (Itasca, 2016). The geometric elements of the flow
model are (Itasca, 2016):

Flow plane- a planar polygon corresponding to a face-to-face contact between solid blocks

Flow plane zone- a triangular discretization element of the flow plane

Flow plane vertex- vertex of a flow plane zone, generally corresponding to a sub-contact between solid blocks
Flow plane edge- a straight line that defines each segment on the periphery of a flow plane

Flow plane edge segment- a sub-segment of the flow plane edge

Flow pipe- the intersection between two or more flow planes

Flow pipe vertex- the vertex (end) of the flow pipe

Flow knot- the same as a flow plane vertex except along the flow plane intersects, in which case one flow knot
corresponds to two or more co-locational flow plane vertices from the intersecting flow planes. The flow knot
stores the fluid pressure; hence, the pore pressure is a nodal variable.

NGk~ owDd P

Figure 3.3 illustrates some of these structures. Figure 4 represents the hierarchical and adjacency relations between
elements in the data structures in both directions. In this figure, hierarchical relations are shown with vertical solid
arrows, adjacency relations are indicated by horizontal solid arrows and dashed arrows are pointers to the list (or
loop) of the indicated elements (ltasca, 2016).
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Flow plane vertex =
flow knot (except at edge)

Flow plane zone

Flow plane edge

\ Flow pipe

(3 edges = 1 pipe)

Flow knot
(3 vertices = 1 knot)

Figure 3.3. Flow structures for the intersection of three flow planes. The flow planes are actually connected but have been
exploded for visualization (Itasca, 2016)
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Figure 3.4. Links between data structure of the geometrical elements of the flow model (ltasca, 2016)

As it is shown in figure 3.4, once a pointer to a flow plane has been obtained, all other structures are accessible
(Itasca, 2016). In this figure, a dashed arrow indicates that the higher structure contains a pointer to a linked list of
the lower structure. For example, the flow plane contains a pointer to a linked list of flow plane zones. In addition,
the solid arrows represent a pointer to a single instance of the corresponding object. For instance, a flow plane
edge contains a pointer to its flow plane (Itasca, 2016). There are some important exceptions (ltasca, 2016) as

e Each flow plane points to the flow-plane edge list, which is a doubly linked list of flow-plane edges. The
double-linked data structure allows traversal of the loop in the both directions. This is essentially an infinite
loop in which the last element links to the first element.

e A flow pipe points to two flow pipe vertices indicating the ends of the pipe.

e A flow pipe segment points to two flow knots; one on each end of the segment.

It is worth to note that the link between fluid flow data structures and the solid model is made through relations
between the flow plane and its corresponding face-to-face contact of the solid blocks and between the flow plane
vertex and the corresponding sub-contact between the solid blocks (ltasca, 2016). At flow plane locations, one
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flow-knot or flow plane vertex indicates two or more coincident gridpoints, so that the joint flow and matrix flow
is connected (Itasca, 2016).

In 3DEC, the numerical scheme for fluid flow analysis relies on a finite difference nodal formulation of the
continuity equation and the resulting ordinary differential equations will be solved using an explicit mode of
discretization in time (Itasca, 2016).

Fluid flow through fractures in 3DEC, is governed by simplified Navier-Stokes equation; which is Reynolds
lubrication equation for incompressible fluid through two parallel and impermeable surfaces (Itasca, 2016) as
h3 .
(@p,x)'x =0 (3.60)
This equation is valid only for laminar flow. From equation (3.60), fluid flow rate per unit width of the fracture
may be determined (Itasca, 2016) as

h3
Qw = _Tudp,x (3-61)
which is well-known cubic law. Note that in fractures introduced by two parallel plates, aperture of fracture is

equal with hydraulic aperture; therefore, equation (3.61) will yield to equation (3.27).

As already mentioned, a fluid flow analysis may be transient or steady state. In 3DEC, the solution is always
transient. If steady-state solution is desired, the transient solution will run until no change in pore pressures being
observed, at which time it is assumed that the steady state has been achieved (ltasca, 2016).

The rate of pressure propagation in a saturated medium (in 3DEC the joints and rock matrix are assumed to be
fully saturated) is dictated by the fluid diffusivity (Itasca, 2016)

—kn
c=F (362

3
in which kg is hydraulic conductivity defined as pghi 121y’ and S; is the storage which may be obtained (Itasca,
2016) as

Se=pg(LE+——) (3.63)

s K+4/3G

where s is spacing between fractures, G and K are shear and bulk moduli of the surrounding rock. If the rock is
assumed rigid, then the second term in the parenthesis will be equal to zero (ltasca, 2016).

Pressures are calculated and stored in a data structure called flow-knot and are updated subsequent to flow rate
calculations, considering the net flow into the flow-knot. Then, the new flow-knot pressure for uncoupled fluid
flow (no mechanical effect is taken into account) will be (Itasca, 2016)

A
P = Do +C%7t (3.64)

where p, is the flow-knot pressure in the preceding time-step, @ is the sum of flow rates into the flow-knot from
all surrounding contacts, At is time-step, and V is flow-knot volume which is constant in flow-only analysis (no

39



hydromechanical coupling) but can vary in hydromechanical analysis. For such case (i.e., hydromechanical
coupling) a third term as — éé—v will be added to the right-hand side of the equation (3.64) in which

AV =V -V, (3.65)
And
Vp=W+V,)/2 (3.66)

Where V and V, are the new and old flow-knot volumes respectively. Therefore, equation (3.64) will take the form
of (Itasca, 2016)

P = Do pea 1 (3.67)

cr %4 cr Vi
If the new pressure calculated from equation (3.67) is negative, then the pressure will be set to zero; meaning that
the negative pore pressure cannot exist (Itasca, 2016).

3.1.3 Benchmarking

In present benchmarking modelling, fluid flow through a stiff fracture with aperture of 1 mm embedded in a rigid
cubic block, which initially was dry (p, = 0 Pa in figure 3.1), was investigated. The side size of the block, L, and
consequently length of the fracture was assumed to be equal to 10 m. To have a stiff fracture, its normal stiffness
was set to 1e20 MPa/m. Initial fluid pressure in the fracture plane was zero (p, = 0 Pa in figure 3.1) and flow was
generated by imposing differential fluid pressure of 1e3 Pa and zero (p; = 1000 Pa and p, = 0 Pa in figure 3.1),
respectively, to left-hand side and right-hand side of the fracture in x-direction shown in figure 3.1. Fluid in this
test was water with density of 1e3 Kg/m?, dynamic viscosity of 1e-3 Pa.s, and bulk modulus of 2e9 Pa.

In 3DEC, governing equation for the fluid flow through fractures is Navier-Stokes equation simplified to Reynolds
lubrication equation for incompressible fluid through two parallel and impermeable surfaces. This equation is valid
only for laminar flow and from which fluid flow rate per unit width of the fracture may be determined by equation
(3.27). Reynolds number for current test was determined equal to 12.5 using equation (3.2) by substitution of
relevant parameters as p = 1e3Kg/m3, L=h=1e—3m, u; = le—3Pa.sec and V = 1.25e —2m/s
calculated at the middle of the fracture aperture (z=h/2) using equation (3.11) with the knowledge that p, =
le2 Pa/m. Hence, according to both Iwai (1976) and Louis (1974) determinations, the flow holds laminar
condition. Therefore, Reynolds lubrication equation can be utilized to analyze fluid flow. Figure 3.5 illustrates
numerical pressure profile along the fracture length compared with analytical counterparts determined from
equation (3.57).
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Figure 3.5. 3DEC and analytical fluid pressure profile along fracture length

Figure 3.6 shows 3DEC flow rate per unit width of fracture mainly equal to 8.3333e-6 m?/sec, but ranging from
8.32208e-6 to 8.3632e-6 m?/sec in some areas; showing good agreement with analytical value of 8.33e-6 m?/sec
achieved from equation (3.27).
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Figure 3.6. Flow rate per unit width of the fracture derived by 3DEC

To compare numerical transient flow solution to analytical one, fluid pressure profile along fracture length in
various time values were extracted and plotted. In analytical transient solution of current problem, since p, = p, =

0, then p, was replaced by p, and factoring out of (p, — p,) in second and third terms in right-hand side of
equation (3.57) read

nm 2
p(x,6) = Py + (9 — p1) [% +232 Lo (x)e ()t (368)
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Calculating hydraulic diffusivity of D=0.167e6 m?%sec from equation (3.42), and substituting values of fluid
pressure and fracture length in equation (3.68) yielded to

x 2y 1 . (nm —0.167e6("—”)2t
E-I_;ZIESln(Ex)e 10

n

p(x, t) = 1000 — 1000

Figure 3.7 illustrates numerical and analytical results of fracture fluid pressure evolution in time through fracture
length. It may be approximated from figure 3.6 that in both numerical and analytical solutions the flow approaches
steady state at 6e-4 seconds which is consistent with characteristic time of 6e-4 seconds determined from equation
(3.58) for present test; however, it is worth mentioning that in figure 3.6 the flow numerically reaches to steady-
state in 0.94 milliseconds compared to 1.106 milliseconds of analytical solution.

Accuracy of 3DEC results is, to some extent, dependent of mesh size; the smaller the mesh size the higher the
density of zones in the block. The user should be careful not to create zones that have a high aspect ratio; a practical
limit on aspect ratio is approximately 1:5 for reasonable solution accuracy (Itasca, 2016).

To compare agreement of 3DEC results and analytical values against discretization size, the Sum of Squared Error
(SSE) method was utilized. In this method, the sum of square of difference between analytical and numerical
pressure values at each point through the fracture length (x=1, 2, 3... 10; for L=10 m) were calculated as

SSE = ¥(P,(x,t) — P,(x,0))°  (3.69)

where subscripts a and n represents, respectively, analytical and numerical pressure values in time. Figure 3.8
illustrates how magnitude of SSE drastically decreases versus the decrease of discretization size from 1 meter to
0.25 meter.

Discrepancy of 3DEC results from analytical values may also be caused by the size of fluid timestep. Fluid timestep
in 3DEC is calculated automatically; however a maximum limit can directly be introduced by the user, but it cannot
exceed the critical timestep which is equal to minimum value of the fluid timestep over all flow-knots in the
analysis (Itasca, 2016) as

Aty = min [Zcf_l‘;] (3.70)

where the summation of the permeability factors, k;, is extended to all contacts surrounding the flow-knot. The
minimum value of At; over all flow-knots is the critical timestep in the analysis. From equation (3.70) it can be
concluded that fluid timestep is function of the fluid bulk modulus and an inverse function of the joint
transmissivity. Joint transmissivity is proportional to the hydraulic aperture cubed as introduced by equation (3.26).
Hence, any change in hydraulic aperture and consequently in hydraulic diffusivity will cause reverse effect on
fluid timestep. Therefore, keeping the length of the fracture constant and changing the hydraulic aperture from 2
mm to 0.5 micrometer will provide a possibility to assess the influence of hydraulic diffusivity (or hydraulic
aperture) and corresponding fluid timestep on accuracy of the numerical calculations. Table 3.1 summarizes fluid
flow characteristic parameters for various hydraulic apertures. As it can be seen from table 3.1, fluid flow in all
fracture geometry combinations falls into the laminar flow regime, and any decrease in hydraulic aperture also
causes an increase in the 3DEC fluid timestep, accompanied by an increase in the analytical characteristic time
obtained from equation (3.58).
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Pressure Profile after 1e-5 seconds

Pressure Profile after 2e-5 seconds

1000 T T T T T T T 1000 T T T T T T T
200
1 800 1
1 700 1
o o
o o
o 1 @ 600 1
:
@
4 1 & s ]
o o
] o ]
7'% 5 400
™ [
1 300 1
1 200 1
&
1 100 1
ey & " 5 L L L . —k
5 6 7 8 10 2 3 4 5 6 7 8
Fracture Length, m Fracture Length, m
Pressure Profile after 5e-5 seconds Pressure Profile after 1e-4 seconds
1000 T T T T T T 1000 T T T T . :
900 900
800 800 1
700 700 1
[ o
o o
¢ 800 @ 600 ]
5 5
@ @
B s00r $ 500 * 1
o o
o L o ]
5 400 5 400 +
[ * [
300 300 * 1
200 - 8 200 * 1
¥
100 100 1
o L . L . . L . 5 L L L . L L .
0 2 3 4 5 [ 7 ] 10 2 3 4 5 3 7 ]
Fracture Length, m Fracture Length, m
Pressure Profile after 2e-4 seconds Pressure Profile after 6e-4 seconds
1000 T T T T T T T 1000 T T T T T T T
a00 900
800 1 800 1
700 1 700 1
o o
o o
g 600 4 @ 600 1
5 5
7 @
g s00 1 § s00 1
o o
o 1 o ]
T 400 Z 400
[ [
300 1 300 1
200 1 200 1
100 1 100 1
0 o]
0 2 3 4 5 6 7 8 10 2 3 4 5 6 7 8
Fracture Length, m Fracture Length, m
Pressure Profile after 9.4e-4 seconds Pressure Profile after 1.106e-3 seconds
1000 T T T T T T 1000 T T T T T T T
900 200 1
800 1 800 1
700 1 700 ]
o o
o a
@ 600 1 ¢ 600 1
5 5
@ @
B 500 1 £ 500 1
o o
o L 1 = ]
5 400 E 400
w w
300 F 1 300 1
200 1 200 1
100 1 100 ]
5 L . L . L L a . . . L . . L
0 2 3 4 5 6 7 3 10 2 3 4 5 6 7 8

Figure 3.7. Numerical and analytical fluid pressure evolution in time along the fracture length of 10 m (hydraulic aperture of 1
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mm, numerical discretization size of 0.25 m)
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Sum of Squared Error vs Discretization Size
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Figure 3.8. Sum of Squared Error of 3DEC results for different discretization sizes

Table 3.1. Fluid flow characteristic parameters for various hydraulic apertures

Fracture Hydraulic Hydraulic Characteristic 3DEC
Reynolds No.
Length (m) Aperture (m) Diffusivity (m?/s) Time (s) Timestep (5s)
10 2.00E-03 6.67E+05 1.00E+01 1.50E-04 5.30E-08
10 1.00E-03 1.67E+05 1.25E+00 6.00E-04 2.10E-07
10 1.00E-04 1.67E+03 1.25E-03 6.00E-02 2.10E-04
10 1.00E-05 1.67E+01 1.25E-06 6.00E+00 1.76E-02
10 1.00E-06 1.67E-01 1.25E-09 6.00E+02 1.71E+00
10 5.00E-07 4.17E-02 1.56E-10 2.40E+03 8.43E-01

Figure 3.9 also shows the magnitude of SSE against various hydraulic diffusivities that shows a general trend in
decrease of SSE against decrease of hydraulic diffusivity.
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SSE versus Hydraulic Diffusivity
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Figure 3.9. Sum of Squared Error for 3DEC model against hydraulic diffusivity of the fracture
3.2 Effects of normal stress on fluid flow through parallel plate fractures

In section 3.1, the fluid flow occurred through a parallel plate fracture dividing a rigid block into upper and lower
halves in the z-direction in which, there was no imposed stress boundary condition. In other words, there was not
any hydro-mechanical coupling in the fluid flow process throughout the fracture. In this section, the block was
first loaded by a normal, uniform, compressive stress on top side of the block, while there was no displacement in
remaining five sides (figure 3.10). This loading was compensated with some displacement in the rock matrix and
fracture until reaching an equilibrium state. After that, a fluid pressure gradient was imposed into two ends of the
fracture in X-direction to assess the interaction of the applied normal load and fluid pressure on each other or
hydro-mechanical coupling in the other word.
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Figure 3.10. Schematic view of boundary conditions imposed to the fractured block

3.2.1 Dry Fracture Condition

If the abovementioned block was loaded perpendicular to the fracture wall (g,,), a displacement between top and
bottom of the block will occur. It will contain two contributions: the deformation of the intact rock (dH,) and
deformation of the fracture (joint closure, d&) (Goodman, 1976). The magnitudes of these two deformations not
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only depends on Young’s modulus of the intact rock (E,.) and normal stiffness of the fracture (K,,), but also on the
magnitude of the normal stress (o,,). Therefore, the total deformation between top and bottom of a block with
height of H, (dH), will be (Jaeger et al., 2007)

Ldo, (3.71)

H
dH = dHr +dé = —E—TdO'n Tk
From the right side of equation (3.71), the deformation of the intact rock, dH,., is explained in detail in the second
chapter through three scenarios of uniaxial stress, uniaxial strain, and triaxial stresses. For the current set up of the
model, which is uniaxial strain, dH, can be determined numerically and analytically using equations (2.4) and
(2.29) of the aforementioned chapter, respectively. These equations, with some revision, for numerical case is

dH! = dHin; (3.72)

where dH.: is increment of relative displacement at the sub-contacts for both rigid and deformable blocks, dH is
normal component of dH;, and n; is unit normal vector in sub-contact; and for analytical case is

H[o, 29
dH, = - ] [‘%—Fa{] dh  (3.73)
in which dh is incremental length of the block height, 9 is Poisson’s ratio and g; is the lateral stress which can be
determined as (Cornet, 2015)

9
o, = ﬁO’n (374)

Deformation of fracture or joint closure, d&, which depends on magnitude of normal stiffness of the fracture will
be explained in the following.

In 3DEC, normal stiffness of a fracture is constant value defined by the user (Itasca, 2016); meaning the existence
of a linear relation between normal stress and joint displacement (Hart, 1993) as

o, = K,ds (3.75)

It has been experimentally proved that the relation between normal stress and displacement in fractures is not
linear, but nonlinear. Various measurements of joint closure as a function of normal stress on dry samples in which
a fracture was artificially created were done by Goodman (1976). These measurements were carried out first on
intact sample and then on the same sample after inducing of an artificial fracture. Joint closure measurement was
performed on both mated (intact fracture surface) and unmated (the two surfaces of the fracture are displaced
relative to each other) joints. Joint closure in unmated fractures were greater than that in mated fractures due to the
fact that the pore space in the former is more than that in the latter (Cornet, 2015), showing lower joint stiffness
for unmated fractures (Goodman, 1976). Figure 11 illustrates measurements of Goodman performed on joint
closure which reveals that the joint closure is highly nonlinear function of stress and levels off to some asymptotic
value at high magnitudes of the confining stress (Jaeger et al., 2007).
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Figure 3.11: measurements made by Goodman (1976) of joint closure on a granodiorite specimen: (a) axial displacement of intact
rock, sample with mated joint, and sample with unmated joint; (b) joint closure, determined from subtracting displacement of
intact core from displacement of jointed specimen (Jaeger et al., 2007)

In present benchmarking test, to evaluate the accuracy of the 3DEC results compared to the analytical values, it
was assumed that the relation between normal stress and normal displacement of the fracture in analytical solution
is linear and governed by equation (3.75).

Assuming the block side size of 10 m, fracture’s initial aperture of 1 mm, Young’s modulus and Poisson’s ratio
for rock matrix of respectively 25 GPa and 0.3, and finally normal stiffness of the fracture equal to 10 GPa/m, we
can analytically use equation (3.73) for calculating displacement of the rock matrix (lower and upper halves of the
block) and equation (3.75) for determination of fracture normal displacement. So that, vertical displacement profile
through the block height caused by a normal uniform stress of 1 MPa can be determined by summation of results
of equations (3.73) and (3.75) using equation (3.71) and can be shown in figure 3.12 which compares displacement
profiles of both numerical and analytical solutions. As it is obvious in the middle of the block height (h=5 m) in
figure 3.12, the plateau section from about -1.5e-4 m to about -2.5e-4 m indicates closure of the fracture equal to
-1e-4 m determined from equation (3.75) when substituting values of normal stress and normal stiffness of the
fracture (minus sign serves for displacement in negative directions of system of coordinates).
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Figure 3.12. Numerical and analytical vertical displacement profile in the block; Zoomed section illustrates vertical displacement
in the fracture determined numerically and analytically

3.2.2  Special Cases

To have some more investigations on influence of normal stiffness of the fracture on displacement, it was desired
to calculate such values of normal stiffness of the fracture in order, first, the effect of fracture closure was
eliminated on total displacement values in the block and second, the closure of the fracture is 1000 times of the
first case. To realize the first case, the normal stiffness of the fracture must be equal to stiffness of the rock sample
under current boundary conditions. The normal stiffness of the fracture is K. Normal stiffness of the rock in
present boundary conditions can be obtained as

K, = % (3.76)
From equations (3.73) we have
u,=2-Lgn (377)

where u, is vertical displacement and h is height. Considering that o; = %Gn from equation (3.74) and
substituting it in (3.74) and doing some simplification and manipulation, magnitude of rock stiffness will be

K =1(1-22)n (379)

Hence the normal stiffness of the fracture must be equal with equation (3.78) in order to eliminate its effect on
overall displacement of the block. Substituting values of E (25 GPa) and 9 (0.3) of rock matrix at 1I=0.001 m length
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(initial aperture of the fracture in zero stress condition is 0.001 m) yielded to 33.654e12 MPa/m of normal stiffness
for fracture. Now, using equation (3.72), displacement of a fracture with above stiffness under normal stress of
1e6 Pa will be 2.9714e-8 m which is equal with deformation of a length of 0.001 m (1=0.001 m) using equation
(3.77) (2.9714e-8 m). Figure 3.13 shows the comparison of vertical displacement in the block for both fractured
and intact rock. Looking at figure 3.13 reveals that increasing fracture’s normal stiffness to that of rock matrix
produces approximately the same displacement magnitudes as the intact block.

Vertical Displacement in the Block

10

\\\ Intact Rock
9r . — — —Fractured
| \

.
Tr s
.

E s
=
k=l
g 2 ™.
NI \
.
3 ",
\\\
.,
2 \
‘1 ",
1 1 1 1 1 \\\
o
-3 -2.5 -2 -1.5 -1 -0.5 0
Vfertical Displacement, m w1074

Figure 3.13. 3DEC vertical displacement in some point of the block height for both fractured and not-fractured block; it can be
seen that embedding a fracture with stiffness equal to the stiffness of the rock matrix in the block can approximately equalize the
magnitudes of the displacement to those of not-fractured block

Comparing displacement profile shown in the figures 3.12 and 3.13 reveals the impact of the normal stiffness of
the fracture on the elastic behavior of the model. A block with a fracture as stiff as surrounding rock matrix has no
effect on the cumulative displacement of the block while a less stiff fracture will influence the overall as equal as
closure of itself as can be seen in figure 3.12.

To have a fracture stiffness so as to obtain a normal displacement in the fracture as large as 1000 times of first
case, utilizing equation (3.75) resulted in 3.365e10 MPa/m. Applying this value on fracture embedded in the rock
matrix of the model in 3DEC yielded to 9.7028e-4 m of hydraulic aperture or, in other words, normal closure of
0.2972e-4 m for the fracture. Analytical solution (equation 3.75) generated 0.29717e-4 m for normal closure of
the fracture.

3.2.3 Imposing Fracture Fluid Pressure

The effect of changes in the fluid pressure of the fracture or in the applied stress has led to the use of the concept
of effective stress, which provided a convenient means for treating the many different combinations of pore
pressure and confining stress (Walsh, 1981). This type of problem is actually a hydromechanical coupling problem,
where the pore pressure change affects the mechanical deformation, and the mechanical deformation affects the
pore pressure (Itasca, 2016). When the fracture is filled with the fluid, depending on the fluid pressure and applied
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normal stress, the fracture’s normal deformation will be influenced. According to Walsh (1981), the effect of pore
pressure and applied normal stress on normal deformation can be expressed as

Op = 0n —Spp,  (3.79)

in which p,, is pore pressure and s is effective stress coefficient or Biot coefficient. Based on measurements of
flow through simulated fractures carried out by Kranz et al. (1979), s can vary between 0.5 and 1.0 for tensile
fractures with rough surfaces and fractures with smooth surfaces, respectively. For smooth fracture surfaces of
current study, s was considered to be unity, so that, Biot’s effective stress becomes equivalent to Terzaghi’s
effective stress (Cornet, 2015).

For a slightly compressible fluid in a deformable rock fracture with uniform aperture, the continuity equation has
the form of (Itasca, 2016)

S6h 1)
i =—5 —chg  (3.80)

Combining equation (3.61) and (3.80), we can obtain

5p _ h? 1 6h
St - 12[ldCfpl'l i (381)

Equation (3.81) is the diffusion equation for the pressure inside the fracture (Itasca, 2016). Generally, the fracture
aperture not only varies with local fracture stiffness and fluid pressure, but it is also a function of the mechanical
response of rock mass. Hence, the second term in the right-hand side of the equation (3.81) is determined by
coupling between fluid flow and mechanical deformation of the rock mass. In the other words, this term is external
or a “source” which, for undrained condition, indicates the pressure change in the fluid trapped within the fracture
because of rock mass and rock fracture deformation (Itasca, 2016).

In 3DEC, the relation between hydraulic aperture and effective stress is a bilinear curve shown in figure 3.14. The
hydraulic aperture is obtained, in general, (Itasca, 2016) as

where hy, is the joint aperture at zero normal stress which is defined by the user. In addition to hy,, residual
(Rgres) @and maximum (hymay) hydraulic apertures should also be defined by the user. Below residual hydraulic
aperture and above maximum hydraulic aperture the mechanical aperture (h,,,) will not have any effect on contact
permeability. Therefore, in 3DEC, the hydraulic aperture is always equal with mechanical aperture except when
the mechanical aperture exceeds Rymax OF hyres (Itasca, 2016).
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Figure 3.14. Idealized relation between hydraulic aperture and effective normal stress for a rock joint (Itasca, 2016)

Equation (3.79) reveals that when the fracture is dry (p, = 0 Pa), the effective normal stress acting on the rock
matrix and fracture is equal with applied normal stress, but existence of fluid pressure in fracture generated by
fluid flow through the fracture results in decrease of effective normal stress compared to dry situation. This fluid
pressure and consequent decrease of effective normal stress (according to equation 3.79) increases mechanical
aperture of the fracture (Trimmer et al., 1980). Figure 3.15 illustrates 3DEC results of hydraulic aperture due to
imposing fluid pressure of 1.1 MPa to one side of fracture in x-direction (p; = 1.1 MPa and p, = 0 Pa). The
hermax @Nd hyes Values are assigned 2e-3 and le-4 meters, respectively. The results shown in figure 3.15 are
related to steady-state fluid flow. It can be seen in figure 3.15 that hydraulic aperture values along the fracture
length are showing larger magnitudes in comparison to 0.9 mm obtained in section 2.1.
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Figure 3.15. 3DEC hydraulic aperture along fracture length for inlet fluid pressure of 1.1 MPa
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Figure 3.16 and 3.17 illustrate numerical magnitudes of respectively hydraulic aperture of the fracture and effective
normal stress for various values of inlet fluid pressure ranging from 1.1 MPa to 1.4 MPa.
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Figure 3.16. Numerical hydraulic aperture of the fracture for various magnitudes of inlet fluid pressure
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Figure 3.17. Numerical effective normal stress profile throughout the fracture length for various inlet fluid pressures
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Chapter 4

4 3DEC Modeling of Large-Scale Fluid Injection into a Kilometer-Scale
Fault

4.1 Introduction

This section aims to simulate the year 2000 stimulation of well GPK2 at Soultz-sous-Foréts geothermal reservoir.
It was a 6-day operation of 23,400 m® water injection into open-hole section of the well at depth of 4400 to 5050
meters (Weidler et al., 2002). This injection, as shown in figure 4.1a, was performed in three steps starting from
30 Is injection rate for 24 hours, continuing by 27 hours of injection with flow rate of 40 Is? and finally ceasing
after 90 hours of fluid injection with 50 Is? of injection rate (Weidler et al., 2002). It can be seen on figure 4.1a
that the well-head pressure (WHP) after a sudden rise to approximately 10 MPa at the beginning of the operation
followed almost an identical pattern at first and second steps of stimulation, a fairly quick build-up to about 12
MPa and then gradual decrease to 11 MPa, but at the third step, the pressure first quickly increased to 12.2 MPa
and its increase gradually continued to a maximum pressure of 13 MPa at the end of stimulation (Weidler et al.,
2002). After shut-in, the WHP dramatically dropped by 4 MPa and then gradually and continuously declined in
the next days but did not reach to a constant pressure magnitude after one week, implying a less permeable far-
field medium where the enhanced fluid pressure could not be released in short periods (Weidler et al., 2002).
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Figure 4.1. The year 2000 GPK2 stimulation Procedure (a) (Calo et al., 2011); Injection procedure numerically modeled at this
study (b)

Based on the results achieved from flow logs, Weidler et al., 2002, expressed that the main flows exit during the
first injection step, were localized at 4440 m (at the casing shoe), at 4760 m, at 4890 m and below 4950 m (all
logging depths). They mention that the last flow loss zone (below 4950 m) was not detected by cutting analyses,
but it was remarkable on temperature log, while Dezayes et al., 2010, stated that this zone could correspond to a
fracture zone at 5060 m, based on cutting observations. Sausse et al., 2010, also made the same observations as
Weidler et al., 2002, stating that at the open hole section of well GPK2 there are three main fractures of GPK2-
FZ4760, GPK2-FZ4890, and GPK2-FZ5060 derived from flow tests. They assume that these three fractures have
the same dip and dip direction of, respectively, 65° and 250°, intersecting the GPK2 well at 4760, 4890, and 5060
meters of measured depth (MD), or equivalently and respectively, 4712.73, 4836.26, and 5001 meters of true
vertical depth (TVD).

On the other hand, Dorbath et al., 2009, analyzed seismic events induced during and after the stimulation of the
GPK2 well in 2000 and detected a 2.6 magnitude seismic event 10 days after the stimulation was stopped at a
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depth of about 4400 m. Even though, they were confident about the epicenter of the seismic event, its depth was
not determined precisely due to absence of surface seismic networks when event occurred. Since this approximate
depth was not matched with any of fracture zones mentioned in previous paragraph, there is a doubt that another
discontinuity may exist and intersects the GPK2 well at its open-hole section. Therefore, it may be worthwhile to
consider another option than the three fractures mentioned above.

There is a well-known fracture at Soultz-sous-Foréts reservoir which intersects three wells constructing the EGS
pilot plant (GPK2, GPK3, and GPK4). This fracture is called GPK3-FZ4770 by Sausse et al., 2010; the biggest
discontinuity among 39 derived by Sausse et al., 2010, from well logs, micro-seismic activities, and vertical seismic
profile data available for whole the wells drilled at Soultz-sous-Foréts geothermal reservoir. This fracture had a
dip direction and dip of 234° and 71° (64° in Dezayes et al., 2010) (Sausse et al., 2010), respectively. According
to Weidler et al., 2002, this fracture intersects the GPK2 well at a depth of 4700 m TVD. However, Sausse et al.,
2010, confirms that the GPK3-FZ4770 intersects the well GPK2 at a depth of 3900 m. This expression is
compatible with occurrence of a huge cave at 3880 mTVD of GPK2 well according to Genter et al., 1999, Dorbath
et al., 2009, Dezayes et al., 2010, and Sausse et al., 2010. Figure 4.2 exhibits abovementioned four discontinuities
intersecting well GPK2 at lower granite formation.
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Figure 4.2. The fractures intersecting open-hole section of the well GPK2; the light gray figure represents the cubic model of the
reservoir and the dark gray separates the upper granite from the lower one

4.2 In-situ Stress State and Fault Selection

According to the comprehensive study carried out by Valley and Evans, 2007, and Cornet et al, 2007, on the stress
state of Soultz-sous-Foréts reservoir using the data acquired from breakouts and drilling induced tensile fractures
(DITFS) in the former study and hydraulic stimulation of the year 1993 of GPK1 in the later one, the in-situ stresses
can be expressed as:

56



Table 4.1. In-situ stress state at Soultz-sous-Foréts geothermal reservoir; Z is depth in “km” for Valley and Evans equations and
in “m” for Cornet et al., equations; all stresses are in MPa

Valley and Evans, 2007 Cornet et al., 2007

S, = —13 + 2557 Sy = 33.8+0.0255(Z — 1377)

S .
Shmin = —1.78 + 14.06Z hmm/SV — 0.54

1.17 + 22.95Z < Symax < —1.37 + 26.87Z 0.95 < Shm“x/sv 11

P, =09+9.8Z
P, = 0.9 +0.0098Z

In table 4.1 the Sy, Shmin, and Skmax are respectively vertical, minimum horizontal, and maximum horizontal in-situ
stresses in MPa; Py is pore pressure (MPa) and Z is depth in “km” for Valley and Evans equations and in “m” for
Cornet et al., equations. According to Cornet et al., 2007, the maximum horizontal stress has a direction of
N170°E+10° (169°+14° based on Klee and Rummel, 1993, and Valley and Evans, 2007). The relation between the
vertical stress and the maximum horizontal stress in table 4.1 indicates that the stress regime in the Soultz-sous-
Foréts is Normal to Strike-Slip in which the vertical stress is, respectively, the maximum and intermediate principal
stresses. Cornet et al., 2007, found that the fault regime is normal down to depth of 3200 m and is strike-slip below.

In current study, 3D Mohr diagrams are used to carry out stability analysis on the GPK3-FZ4770, GPK2-FZ4760,
GPK2-FZ4890, and GPK2-FZ5060 fractures, assuming that the fractures intersect the GPK2 at TVD of about
4700, 4712.73, 4836.26, and 5001 meters, respectively. For GPK3-FZ4770 fracture, using equations of table 4.1
at TVD of 4700 m yielded to the stress values listed in table 4.2.

It can be seen that the magnitudes of the pore pressure, vertical and minimum horizontal stresses at the depth of
interest are approximately identical, but the range of maximum horizontal stress differs for two sets of equations.
While this range is between 0.9 and 1.05 times of vertical stress in Valley and Evans, 2007, it is between 0.95 and
1.1 times of vertical stress at Cornet et al., 2007; indicating an isotropic stress condition in Sy-Snmax plane while it
is not the case on other two planes of Sy-Shmin aNd Stmax-Shmin SINCE Shmin IS almost half of the S, and Shmax; indicating
a strong differential stress in these two planes.

Table 4.2. In-situ stress magnitudes at TVD of 4.7 km based on equation introduced in table 4.1

Valley and Evans, 2007 Cornet et al., 2007
Sv=118.62 MPa Sv=118.53 MPa
Simin= 64.34 MPa Smmin= 64 MPa
106.76 <SHmax<125 MPa 112.61 <SHmax<130.39 MPa
Pp=47 MPa Pp=47 MPa

To do stability analysis, first, Mohr circles for pore pressure and principal stress magnitudes derived from Cornet
et al., 2007, were drawn under two different faulting regimes of normal and strike-slip. Then the Byerlee’s law or
Coulomb friction law was plotted on the Mohr diagram based on cohesive strength and friction coefficient of the
fracture introduced by Cornet et al., 2007. Finally, GPK3-FZ4770 fracture was localized on the resulted Mohr
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diagram utilizing values of the shear and effective normal stresses on fracture’s plane to see if it slips or not; and
if not, how much overpressure is required to destabilize it. All planar features can be represented by a point based
on the shear and normal stress in the plane (black dots in figure 4.3, left).

The simplest method to determine the magnitudes of the shear and effective normal stress on an arbitrary oriented
plane is to graphically determine the position of the plane on 3-D Mohr diagram by employing two angles of 5,
and 35 that define the angle between the normal to the fracture plane and the S; and S3 axes, respectively, as shown
in figure 4.3b. One can utilize the angles 2, and 2f; to find points on the two small circles, and by constructing
arcs drawn from the center of the other Mohr circle, P is determined as the intersection of the two arcs (figure 4.3a)
(Zoback, 2007).

(a) (b) N
1. Active shear planes
A P
u=0.6
u = 1.0 ~<_p ﬁ1 %(/
\x, (»
7 AN ﬁ3
2B >S5
2
7/ \\B1 > S /
O3 O3 o " S3

Figure 4.3. Representation of the Mohr circles, Byerlee’s law with friction coefficients of 0.6 and 1.0, and arbitrary oriented
fracture planes (two black points) on Mohr diagram (a) where the point P is inactive plane while the other one is active shear
plane as shown on figure. The two angles of 8; and 35 are shown in (b). (Zoback, 2007)

Although the exact position of the fracture plane (point P on figure 4.3a) can be determined with angles 8, and S5
measured between the fault normal and S; and Ss directions (figure 4.3b) utilizing the graphical reconstruction
explained, mathematical calculation of this and utilization of the three-dimensional Mohr diagram for
representation of the data is common as well. The magnitudes of the shear and effective normal stress on an
arbitrary oriented plane can be determined using Cauchy tetrahedron. The “Cauchy Tetrahedron”, as shown in
figure 4.4 (Cornet, 2014), is utilized for determination of stress vector components (t;) acting on a surface (such as
the fault plane in current study) from stress tensor components (a;;).

In figure 4.4 the vector n is normal of the ABC surface which can be characterized by its three direction cosines
of ny, n2, and n3 as

n, =cosa (4.1)
n, =cosff (4.2)
ng =cosy (4.3)

where a, B, and y are the angles between n and [, I,, and I.
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Figure 4.4. Cauchy tetrahedron used to determine stress vector components on a surface element with orientation of n based on
stress tensor components (Cornet, 2015)

According to Cornet, 2015, the three components of the stress vector will be

t; = 011y + 051Ny + 03103 (4.4)

ty = 0120 + 033Ny + 0313 (4.9)

t3 = 013Ny + 023Ny + 03313 (4.6)
or

ti=oyn;, i,j=123 (4.7)
Or in vector form of
t=dn (4.8)

where t is called stress vector. Projection of stress vector onto the normal n and onto the fault plane will respectively
result in normal component and shear components of the stress vector as

Op = t.N = GN.N = 0 N3 + 0y3N5 + 033n35 + 201,11, + 20131113 + 20,3103 (4.9)
T=t—on=édn—(Gnn)n (4.10)

o, is the normal stress acting on the fault which is a scalar and vector t is shear component of t. The norm of the
shear stress vector will give us the shear stress magnitude acting on the fault plane.

r=|zll (411)

Knowing the magnitude of shear stress acting on the fault plane and the orientation of the fault plane and assuming
that the slip direction is parallel with the direction of shear stress vector, the slip direction can be determined as

rake = arctan (Z—d) (4.12)
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In which 7,4 and 7, are respectively projection of shear stress vector onto dip and strike direction of the fault plane
on the basis of ns and ng which are normal vectors towards strike and dip of the fault plane.

Tg=tng (4.13)
s =tng (4.14)

These two accompanied with n, make the frame of reference on the fault plane. Components of ns and nqare
determined as

ng = (cos(str),sin(str),0) (4.15)
ng = (—sin(str)cos(dip), cos(str) cos(dip), sin(dip)) (4.16)
The n can also be determined as
n = (—sin(str)sin(dip), cos(str) sin(dip), —cos(dip)) (4.17)

The rake angle describes the direction of fault movement with respect to the strike and is measured anticlockwise
from the horizontal where up is positive (Davis and Reynolds, 1996). According to Cornet, 2015 (pp. 268), the
peak shear strength (z,,) of a fracture plane is characterized by a linear relationship between the normal stress (S,,)
and the cohesion as

Tp = uSp, +C  (4.18)

in which p is fracture’s friction coefficient and C is fracture’s cohesion strength. Equation (4.18) is called Byerlee’s
law or Coulomb friction law. However, in Byerlee’s law when the normal stress acting on the fracture plane is
between 5 and 200 MPa (such as our case in this study), the effect of cohesion is negligible (Byerlee, 1978). It is
also worth to distinguish the difference between equation (4.18) and Mohr-Coulomb failure criterion, which is
used for rock, samples with an internal friction coefficient (Jaeger et al., 2007).

When there is fluid pressure in the fracture (Pp), the normal stress at equation (4.18) must be replaced by the
effective normal stress as

Tp = u(Sn - Pp) +C=po, +C (4.19)

Equation (4.19) can be drawn on Mohr diagram as a line with slope of u which intersects the shear stress axis at
C. From this equation it could be concluded that raising the fracture’s fluid pressure (e.g. through fluid injection)
will facilitate fracture slide by reducing the effective normal stress (Hubbert and Rubey, 1959) or increasing the
ratio of the shear to normal stress on any pre-existing fracture (Zoback, 2007). In other words, when the shear
stress on the fault plane (equation 4.11) exceeds the peak shear strength of the fracture (equation 4.19) the fracture
slide will occur.

In current study, four different cases of in-situ stress and faulting regime were applied to carry out the stability
analysis of GPK3-FZ4770 fracture at a depth of 4703 m as following:

Case 1: Strike-slip faulting regime (Skmax=1.1 Sy) and in-situ stress equations introduced by Cornet et al., 2007
represented in table 4.1
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Case 2: Normal faulting regime (Sumax=0.95 Sy) and in-situ stress equation introduced by Cornet et al., 2007
represented in table 4.1

Case 3: Strike-slip faulting regime (Sumax=1.05 S,) and in-situ stress equation introduced by Valley and Evans,
2007 represented in table 4.1

Case 4: Normal faulting regime (Shmax=0.9 Sy) and in-situ stress equation introduced by Valley and Evans, 2007
represented in table 4.1

In the case 1, we assume that the faulting regime at the depth of 4703 m is strike-slip with Si1= Spmax=1.1 Sy =130.39
MPa, S;= S,=118.53 MPa, and S3=Snmin=0.54 S, = 64 MPa. Then the principal stress tensor or effective principal
stress tensor will be

- [—130.39 0 0 —83.39 0 0
S= 0 —-11853 0 or 6= 0 —-7153 0
0 0 —64 0 0 -17

Here the minus sign represents the compressive stress. For this case, given the direction of principal stresses (right-
hand rule where the vertical stress is downward and the maximum horizontal stress has a direction of N170°E) and
the orientation of the fault (with dip and strike of 71° and 144°, respectively), first it is required to transform
principal stresses to stress tensor at geographical frame of reference and then calculate the ni, nz, and ns. The
rotation matrix to transform the principal stress tensor to stress tensor at geographical coordinate system is (Zoback,
2007)

cosacosb sin a cos b —sin b
Ry =|cosasinbsinc—sinacosc sinasinbsinc+cosacosc cosbsinc (4.20)
cosasinbcosc+sinasinc sinasinbcosc—cosasinc cosbcosc

where the Euler (rotation) angles that define the stress coordinate system in terms of geographic coordinates, are
as follows:

a = trend of §;
b = —plunge of §; (4.21)
c =rake S,

However for cases in which vertical stress is a principal stress, a, b, and ¢ can be defined as table 4.3
(https://dnicolasespinoza.github.io/node38.html).

Table 4.3. Summary of possible values of a, b, and ¢ for cases in which the vertical stress is a principal stress

Normal Faulting

Strike-Slip Faulting

Reverse Faulting

Azimuth of Shmin

Azimuth of SHmax

Azimuth of SHmax

90°

Oo

Oo

00

90°

Oo
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Then, the stress tensor at geographical coordinate system can be determined (Zoback, 2007) as
Sg = RJSR, (4.22)

For case 1, the a, b, and c will be respectively 170°, 0°, and 90° according to the table 4.3. Then, the Ry will give

—-0.985 0.174 0
R;=1-0174 0 1
0.174 0985 0
and
—0.985 —0.174 0.174
R} =10.174 0 0.985
0 1 0

Now, utilizing equation (4.22) will determine Syas

—-0.985 -0.174 0.174][—130.39 0 0 —-0.985 0.174 0
3'; = [0.174 0 0.985” 0 —-11853 0 ”—0.174 0 1]
0 1 0 0 0 —6411 0.174 0985 0
—13196 1135 20.58
= [ 11.35 —66 0 ]
20.58 0 —118.53

The n1, nz, and nz in a frame of reference in which ni, ny, and ns are aligned respectively positive northward,
positive eastward and positive downward will be

ny = n, = cos(19) x cos(126) = sin(71) x (—sin(144)) = —0.556
ny = n, = cos(19) x cos(144) = sin(71) X cos(144) = —0.765
ns =n, = —cos(71) = —0.326
Application of equations (4.9) - (4.11) will yield
o, = 34.18 MPa
7= (17.55,—17.92,12.16)
T = 27.88 MPa

Figure 4.5 demonstrates the Mohr diagram for this case before (left) and after (right) injection. As shown in figure
4.5 left, the pre-injection values of the three effective principal stresses are used to draw three Mohr circles. For
the first case, effective in-situ stresses are oy = §; — B, = 130.39—47 =83.39MPa, 0, = S, — P, =
118.53 — 47 = 71.53 MPa, and o3 = S; — P, = 64 — 47 = 17 MPa. The fracture is localized on the Mohr
diagram as a red point utilizing 7 and o,, already calculated. The failure criterion is also drawn on the Mohr diagram
knowing that the fracture’s cohesion and friction coefficient are respectively 6.5 MPa and 0.81 (as stated in table
4.6).
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Peak shear strength of the fracture at the depth of interest is determined by equation (4.19) as
7, = 0.81 X 34.18 + 6.5 = 34.18 MPa

The difference between shear stress acting on the fracture plane (determined by equations 10 and 11) and the peak
shear strength of the fracture (determined using equation 4.18) is, in fact, the distance to failure of the fracture,
which is called Coulomb Stress (CS) and is defined as (King et al., 1994)

CS=lt| —pu(Sn = Pp) =C =7l = (o, + C)  (4.23)

where positive CS indicates unstable fracture (since |z| is greater than 7,,) and negative shows stable one. By

substituting of 27.88 MPa for 7, 0.81 and 6.5 MPa respectively for u and C, and finally 34.18 for ¢, at the right-
hand side of equation (4.25), the CS will be -6.3 MPa.

As it can be seen in figure 4.5 left, the fracture is stable at the in-situ stress state; consistent with the sign of above
CS calculations. Figure 4.5 right demonstrates the fracture location on the Mohr diagram when the pore pressure
is increased for 8 MPa (e.g. by fluid injection). It can be seen that the red point superimposes on the fracture failure
criterion. This 8 MPa of overpressure to de-stabilize fracture, can analytically be determined using below
definition.

To determine the minimum required overpressure to de-stabilize the GPK3-FZ4770 fracture at the depth of 4703
meter and under aforementioned in-situ stress state and strike-slip faulting regime, we need to note that at the onset
of slippage, the shear stress is equal to shear strength of the fracture (Jaeger et al, 2007) or, in other words, the CS
is equal to zero. In fact, the injected fluid will decrease the inherent shear strength of the fracture (equation 4.18)
by decreasing the magnitude of effective normal stress acting on the fracture plane (equation 4.31). Then, if we
consider g, as effective normal stress acting on the fracture plane once slip occurs, we will have

T=Uops +C (4.24)

Doing some manipulation on equation (4.24) reads
Ons =T (425)

Difference between effective normal stress at initial state (determined by equation 4.9) and that once slip occurs
(determined using equation 4.25) is the required overpressure (4P) to de-stabilize the fracture which can be
expressed as

AP = 0, — Opg = 0y, — % (4.26)

By substituting of 27.88 MPa for 7, 0.81 and 6.5 MPa respectively for u and C, and finally 34.18 for g,, at the
right-hand side of equation (4.26), the AP will be 7.8 MPa; consistent with the required overpressure estimated by
Mohr plots. Practically, this 7.8 MPa of overpressure will generate 6.3 MPa of CS if it is multiplied by friction
coefficient of 0.81, according to equation (4.23).
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Figure 4.5. Mohr diagram at strike-slip faulting regime (Snmax=1.1 Sy, case 1) for in-situ stress and pore pressure values
introduced by Cornet et al., 2007; the GPK3-FZ4770 fracture is also localized on the diagrams by a red point. The left-side
diagram illustrates Mohr circles and fracture plane at hydrostatic pore pressure condition while the right-side one shows them
after imposing 8 MPa of overpressure (Mohr diagrams are drawn by “MohrPlotter” software introduced by Richard W.
Allmendinger)
The slip direction can also be calculated using equations (4.12)-(4.16) as
ng = (—0.191,-0.263,0.945)
ng = (—0.81,0.59,0)
T4 =t.ng = 12.86 MPa
T, = t.ng = —24.73 MPa

12.86
—24.73

rake = arctan( ) = —27.47°

The case 2 assumes the normal faulting regime at the depth of interest with Si= S,=118.53 MPa, Sy= Snmax= 0.95
Sy =112.61 MPa, and S3=Snmin= 0.54 S, = 64 MPa. Performing as same steps as those carried out for the case 1 will
yield to shear and effective normal stresses of, respectively, 22.83 MPa and 31.13 MPa acting on the fracture plane
before fluid injection. The peak shear strength of the fracture for this case is equal to 31.72 MPa using equation
(4.19); indicating a minimum of about 11 MPa of overpressure required for fracture slippage to take place based
on equation (4.18). Equation (4.12) results in rake angle of -37.53° for this case.

Figure 4.6 right shows that the GPK3-FZ4770 fracture slips for about 11 MPa of overpressure which is more like
the field observation of WHP.
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Figure 4.6. Mohr diagram at normal faulting regime (SHmax=0.95 Sy, case 2) for in-situ stress and pore pressure values introduced
by Cornet et al., 2007; the GPK3-FZ4770 fracture is also localized on the diagrams by a red point; left-side diagram illustrates
Mohr circles and fracture plane at hydrostatic pore pressure condition while the right-side shows them after 11 MPa of
overpressure (Mohr diagrams are drawn by “MohrPlotter” software introduced by Richard W. Allmendinger)

Then, above assessments were carried out for case 3 and case 4 using equations of Valley and Evans, 2007. The
components of shear and normal stresses acting on the fracture plane for these two cases as well as peak shear
strength and required overpressure to de-stabilize the fracture are summarized in table 4.3.

Table 4.4. The shear and normal stress components acting on the fracture plane, the Fracture’s inherent shear strength, the
Coulomb Stress and required overpressure to de-stabilize the fracture, and finally Rake angle for case 1 to case 4

Case Shmax/Sv 1 (MPa) o (MPa) T, (MPa) CS (MPa) AP (MPa) Rake (°)
1 1.1 27.9 34.2 34.2 -6.3 78 -275
2 0.95 228 311 317 -8.9 10.9 -375
3 1.05 26.1 335 336 75 9.3 -30.1
4 0.9 212 304 311 -9.9 122 -41.9

To have some more assessment on this issue, abovementioned calculations performed for various ratios of Sumax/Sy
and the required overpressure in order for GPK3-FZ4770 fracture to slip were determined. The results were
summarized in table 4.5 for both sets of equations introduced by Cornet et al., 2007, and Valley and Evans, 2007,
revealing the fact that it might be reasonable to constrain the upper limit of the Sumax 0n 0.95 since the overpressure
at this ratio (approximately 11 MPa in both sets of the in-situ stress equations) is close to the field WHP (11-12
MPa).

It seems that in the above results achieved from both sets of equations, at normal faulting regime higher values of
overpressure are required for destabilizing GPK3-FZ4770 fracture than strike-slip faulting regime; indicating that
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the strike-slip condition is more unstable. This is also mentioned in Dorbath et al., 2010, where the authors inverted
focal mechanism of the main events during stimulation of GPK2 at 2000 and found that normal faulting is dominant
among the focal mechanism solutions (figure 4.7); which means that seismic initiation in normal faulting regime
requires higher fluid overpressures than strike-slip regime. Figure 4.7 illustrates the focal plane mechanisms of
micro-earthquakes induced by the year 2000 stimulation of GPK2 well in which the light gray spheres indicates
the hypocenters of M>1 events and black spheres shows the hypocenters of events that Dorbath et al, 2010, used
in their performed inversion. The shown beachballs in figure 4.7 reveal the dominancy of the normal faulting
regime at the area of study among the events Dorbath et al, 2010, used to carry out the stress tensor inversion.

Table 4.5. The shear and normal stress components acting on the fracture plane, the Fracture’s inherent shear strength, the
Coulomb Stress and required overpressure to de-stabilize the fracture, and finally Rake angle for various ratios of maximum
horizontal stress to vertical stress (the yellow color indicates normal faulting regime and blue is used for strike-slip faulting

regime)
Cornet et al., 2007 Valley and Evans, 2007
SHmax/SV
T op Tp CS AP Rake T Op Tp cS AP Rake
(MPa) | (MPa) | (MPa) | (MPa) | (MPa) ©) (MPa) | (MPa) | (MPa) | (MPa) | (MPa) ©)
0.90 N/A N/A N/A N/A N/A N/A 21.2 304 31.1 -9.9 122 | -41.9
0.92 N/A N/A N/A N/A N/A N/A 218 30.8 314 -9.6 119 | -40.1

0.95 22.8 311 31.7 -8.9 109 | -375 | 227 314 31.9 -9.2 114 | -375

0.97 235 315 32.0 -8.5 106 | -359 | 233 31.8 32.3 -9.0 11.0 | -36.0

1 244 321 325 -8.1 100 | -33.7 243 324 32.8 -8.5 104 | -33.7

1.02 25.1 32.6 329 -7.8 9.6 -323 | 25.0 32.8 33.1 -8.1 10.0 | -32.3

1.03 25.4 32.8 33.0 -7.6 9.4 -31.7 | 253 33.0 33.3 -8.0 9.8 -31.6

1.04 25.8 33.0 33.2 -1.4 9.2 -31.0 | 256 33.2 334 -7.8 9.6 -31.0

1.05 26.1 33.1 33.3 -7.2 9.0 -304 | 26.1 33.5 33.6 -1.5 9.3 -30.1

1.08 27.2 33.8 33.9 -6.7 8.3 -28.6 N/A N/A N/A N/A N/A N/A

1.1 27.9 34.2 34.2 -6.3 7.8 -27.5 N/A N/A N/A N/A N/A N/A

66



i "0 C
> ~ P> -
|
|
- -4000 ' | ‘ I--4000
» = [ Z
-4.0 ° -4.0 [s) ‘ o)
v <«
o = yone =
4 3 - ]
2 z = z
ki £ = £
b3 = 2 . 2
£ - £ <
e = = - =
2 S £ =
< s e ‘ g
£ 2 s = &
a _s000 & l 1--5000
-5.0 + -5.0 4
pom— & ) b
Thin lines: cased sections gg::; Thin lines: cased sections GPK3
Thick lines: open sections  ~— * + Thick lines: open sections =
1. Dorbath EOST/2008 —: GPK4 L. Dorbath/EOST/2008 ~—: GPK4
6000 -6000
-0.5 0.0 0.5
1 1 1
(c)
- -4000
L
-4.0 =
3
= =
2 e}
- z
g £
1
- E
2 <
& -9
£ 2
oy
a L -5000
-5.0 4
= '
D V¥ O
Thin lines: cased sections - g::§
Thick lines: open sections  —© GPK4
L. Dorbath/EOST 2007 . 6000

Figure 4.7. Focal plane mechanisms represented on the lower hemisphere and used by Dorbath et al., 2010, for inversion of stress
tensor at Soultz-sous-Foréts. The light gray spheres indicate the hypocenters of the M>1 induced seismic events and the black
spheres shows the micro-earthquakes used for inversion by Dorbath et al, 2010. Assuming an approximate depth of 4.7 km
shown by the brown line in (a), (b), and (c), the beachballs indicated by a red circle are corresponding to the events induced
around the brown line. As it can be seen they mainly exhibits a strike-slip-normal faulting regime (oblique), however generally
the normal faulting regime is dominant among whole the focal plane mechanisms shown here

Looking at rake angles in table 4.5, ranging from about -27 to -42 degrees, reveals that the faulting regime at the
study area is strike-slip to normal (oblique) as mentioned in Cornet et al., 2007. This point is also obvious at figure
4.7 by assuming the depth of about 4.7 km shown by brown lines in figure 4.7(a), (b), and (c) and looking at the
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focal plane mechanisms indicated by red circle where it can be seen that the stress regime in the depth of 4700
meters is oblique with rake of approximately -40 to -90 degrees.

In the current study, we assumed that the stress regime at the depth of interest is normal with Shmax equal to 0.95
times of S, using equations introduced by Cornet et al., 2007.

It is also worth to assess the slip tendency of the other three fractures which intersect the open-hole section of the
GPK2 well as introduced in section 1. Among those three of GPK2-FZ4760, GPK2-FZ4890, and GPK2-FZ5060,
the first one intersects the well at TVD of about 4712.73 m while the other two intersected at, respectively, 4836.26
and 5001 m. In mud window design for drilling of hydrocarbon or geothermal wells the upper limit of mud weight
is defined based on fracture gradient concept which is the result of dividing of fracture pressure (the required
pressure to make a fracture in the formation or stimulate the pre-existing fractures) by TVD (Zhang and Yin, 2017).
Since, according to the equations introduced by Cornet et al., 2007, the pore pressure and stress gradients at Soultz-
sous-Foréts are hydrostatic and lithostatic (as shown in figure 4.8), it can be stated that the effective normal stress
and the shear stress acting on the fracture plane (which are a function of i) in-situ stresses, ii) pore pressure, and
iii) fracture attitude with respect to the maximum principal stress, as defined by equations (4.9) and (4.10)) will
rise with depth (as shown in figure 4.9) where Coulomb stress is negative (i.e., fracture is stable) and increases
with depth just like the required overpressure to de-stabilize the fracture; indicating that any overpressure imposed
to the open-hole section of wells will first stimulate the shallower fracture. Therefore, generalizing this fact to
GPK2-Fz4760, GPK2-FZ4890, and GPK2-FZ5060 (with dip, dip direction, friction coefficient, and cohesion of
respectively 65°, 250°, 0.81, and 6.5 MPa, respectively), during pressure build-up phase of stimulation, the GPK2-
FZ4760 fracture will be triggered earlier in time (and consequently in lower fluid overpressure value) than GPK2-
FZ4890 and GPK2-FZ5060. So that, it will be reasonable to compare the slip tendency of GPK2-FZ4760 and
GPK3-Fz4770 to know which one will first slide at a given overpressure. For that, the Mohr diagram is drawn
once again for normal stress regime at depth of 4.7 km and Byerlee’s law as well as fracture planes are also plotted
on the diagram as shown in figure 4.10 left, the shear and effective normal stresses on GPK2-FZ4760 fracture are
respectively 21.7 MPa and 28 MPa (calculated by equations (4.9) and (4.11)). The peak shear strength of the
fracture then will be 29.1 MPa. Therefore, the CS of GPK2-FZ4760 fracture is -7.4 MPa, according to equation
(4.23). The figure 4.10 right illustrates the over-pressured situation where it can be seen that at 9 MPa of
overpressure the GPK2-FZ4760 will slip earlier than GPK3-FZ4770 (remember that the CS of GPK3-FZ4770
fracture is -6.3 MPa, table 4.5). This provisional assessment implies that it may be reasonable to carry out extra
research on attitude of fractures intersecting the open-hole section of GPK2 well to utilize appropriate fracture for
investigations; however, current research is continued by using GPK3-FZ4770 fracture.

Moreover, it can be seen from Mohr diagrams shown in figures 5, 6, and 10 that by increase of pore pressure, the
o1 — a3 Mohr circle contacts the Coulomb friction criterion at a point which exhibits attitude different from that
of GPK3-FZ4770 but similar to attitude of GPK2-FZ4760. Doing some back analysis on the effect of dip and strike
of fracture on slip tendency revealed that the first contact-point of the Mohr circle and Coulomb friction law is a
plane with dip and strike of 65° and 165°, respectively, which will slip with 9 MPa of overpressure at normal
faulting regime (shear and effective normal stresses on the plane are respectively 21.1 and 27 MPa, using 0.81 and
6.5 MPa for friction coefficient and cohesion yields to CS of -7.3 MPa).
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Figure 4.8. In-situ stress state and pore pressure at Soultz-sous-Foréts based on Cornet et al., 2007, equations for the depth
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Figure 4.10. Mohr diagram at normal faulting regime for in-situ stress and pore pressure values introduced by Cornet et al., 2007;
the GPK3-FZ4770 (red point number 1) and GPK2-FZ4760 (red point number 2) fractures are also localized on the diagrams by
a red point; left-hand side diagram illustrates Mohr circles and fracture planes at hydrostatic pore pressure condition while the
right-hand side shows them after 7.5 MPa of overpressure in which GPK2-FZ4760 slides but GPK3-FZ4770 does not (Mohr
diagrams are drawn by “MohrPlotter” software introduced by Richard W. Allmendinger)

4.3 Methodology

Here, we used 3DEC software to analyze this large-scale fluid injection operation by developing a large-scale
numerical model of the Soultz-sous-Foréts reservoir (approximately 5000x5000x5000 m?; figure 4.11) containing
the largest fault of the reservoir defined by Sausse et al., 2010. The objective is to characterize the large-scale
hydro-mechanical behavior of the fault against fluid injection.

At the first step of modelling, it was aimed to merely consider one fault and simulate the first stage of the year
2000 stimulation (figure 4.1b, as a 24 hour injection of water (density 1000 kg/m?3, viscosity 1 centipoise) with
constant flow rate of 30 Is™ into a fault/fracture located at the open-hole section of the GPK2 well), it was decided
to investigate hydromechanical response of GPK3-FzZ4770 fracture against hydraulic stimulation as a first proxy.

The numerical model included a block of granite rock matrix containing a 3000 m diameter circular fracture called
GPK3-Fz4770. Physical and mechanical properties of the rock matrix at open-hole section of the well and the
fracture’s properties were derived from existing literature and summarized in table 4.6.

For the elastic moduli of the formations drilled in the Soultz-sous-Foréts reservoir, Vallier et al. (2019) performed
an extensive inversion of the observed temperature and stress-depth profiles using a THM model to obtain the
possible values of Poisson's ratio and Young's modulus within a wide range reported in the literature. They
concluded that 25 GPa is more realistic value for Young’s modulus at large scale (100 m) of the lower granite
where the open-hole section of GPK2 is located. The density of the lower granite was also chosen to be 2680
kg/m?3, according to Gentier et al. 2005. Gentier et al., 2005, carried out a numerical study using 3DEC on hydraulic
stimulation of wells at Soultz-sous-Foréts to reproduce observed behavior in terms of pressure-flow curves and
location of the stimulated fractures and found a good agreement between obtained numerical fluid flow results and
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the data achieved from in-situ hydraulic tests. At current work, we aim to use 3DEC to better understand P-wave
velocity variations by reproducing hydro-mechanical response of the faults located at Soultz-sous-Foréts.

For that, the magnitudes of Poisson’s ratio, fracture’s normal and shear stiffnesses, initial, residual, and maximum
apertures of the fracture which Gentier et al., 2005, used in their models are applied in current study. To have an
appropriate value of fracture’s cohesion and friction angle among those reported in the literature, we used the data
provided by Cornet et al., 2007, in which the authors extensively discussed two hypotheses about shear failure of
the pre-existing fractures and initiation of fresh fracture surfaces at Soultz-sous-Foréts reservoir. They stated that
for pre-existing fractures to be just in equilibrium at the present stress state, or in other words to be stimulated with
a slight increase in in-situ pore pressure, the cohesion and friction angle of fractures should be, respectively, equal
to 6.5 MPa and 39° (friction coefficient of 0.81).

The block is constrained to move in the bottom and at the sides of the block a boundary stress condition equal to
the in-situ stress state of the previous section is applied, first to prevent the block from moving laterally and second
to quickly reach the initial equilibrium condition. The block is also discretized with tetrahedrons of side-size 200
meters. In the 3DEC numerical approach, the flow domain is fully saturated (Itasca, 2016) and discretized into
tetrahedral zones defined by four nodes as same discretizing method as mechanical and thermal calculations
(Itasca, 2016). This flow domain is indicated by flow plane which is major geometrical element of the flow model
and always is a plane extended to the boundaries of the block (Itasca, 2016). The flow plane is a two dimensional
surface in which flow is occurring through its thickness. Therefore, flow planes are planar polygons and are
connected along the edges (Itasca, 2016). The circular edge of the fracture as well as the boundaries of the model
are impermeable.

In 3DEC, the numerical scheme for fluid flow analysis relies on a finite difference nodal formulation of the
continuity equation and the resulting ordinary differential equations will be solved using an explicit mode of

discretization in time (Itasca, 2016).

Fluid flow through fractures in 3DEC, is governed by simplified Navier-Stokes equation; which is Reynolds
lubrication equation for incompressible fluid through two parallel and impermeable surfaces (ltasca, 2016) as

(1:; p,x)x —0 (427)

»

This equation is valid only for laminar flow. From equation (4.27), fluid flow rate per unit width of the fracture
may be determined (ltasca, 2016) as

h3

q=-1Px (428)

which is well-known cubic law. Note that in fractures introduced by two parallel plates, aperture of fracture is
equal with hydraulic aperture.

The rate of pressure propagation in a saturated medium (in 3DEC the joints and rock matrix are assumed to be
fully saturated) is dictated by the fluid diffusivity (3DEC manual, 2016)

— kn
c=7, (4.29)
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Table 4.6. Physical and mechanical properties of rock matrix and fracture mentioned in literature; the * indicates the values used
in the current modelling

Element Property Symbol Value Unit Remark
25% - 47 Rummel, 1992
GPa
I\Y/I(())l(ljlllﬁuss E 52 Gentier et al., 2005
25* Sausse, 2002, Vallier et al., 2019
0.29* Gentier et al., 2003&2005
Rock 0.1 Sausse, 2002
Matrix Poisson’s ' i '
Ratio v
0.38 Rummel, 1992
0.20 Vallier et al., 2019
2680* Gentier et al., 2005
Bulk Density p Kg/m3
2650 - 2800 Haenel, 1983
sh 20* GPa/m Gentier et al., 2005
Shear Ke
Stiffness .
80 -180 Gentier et al., 2003
N | 80* GPa/m Gentier et al., 2005
orma K,
Stiffness .
80 -180 Gentier et al., 2003
39* Cornet et al., 2007
F;\'rf;'g” 0 45 ° Evans, 2005
48 Gentier et al., 2005
4-8 Cornet et al., 2007
Fracture
Cohesion So 6.5* MPa Evans, 2005
0 Gentier et al., 2005
Initial 14e-05* Gentier et al., 2005
nitial
Aperture ho m .
6e-07 Gentier et al., 2003
Residual 7e-05* Gentier et al., 2005
esidua hrec m
Aperture .
1e-08 Gentier et al., 2003
Maxi 12e-03* Gentier et al., 2005
aximum
Aperture Pmax m )
1e-03 Gentier et al., 2003

3
in which ky is hydraulic conductivity defined as pghi 121" and S; is the storage which may be obtained (Itasca,
2016) as

o (h, 1
Se = pg( s T K+4/3G) (4.30)
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where s is spacing between fractures, G and K are shear and bulk moduli of the surrounding rock. If the rock is
assumed to be rigid, then the second term in the parenthesis will be equal to zero (Itasca, 2016).

Pressures are calculated and stored in a data structure called flow-knot and are updated subsequent to flow rate
calculations, considering the net flow into the flow-knot. Then, the new flow-knot pressure will be (Itasca, 2016)

P =Do e ié—; (4.31)

crV cf
where p, is the flow-knot pressure in the preceding time-step, Q is the sum of flow rates into the flow-knot from
all surrounding contacts, At is time-step, V is flow-knot volume, ¢ is fluid compressibility, AV =V —V,, and
Vin = (V+V,)/2, where V and V, are the new and old flow-knot volumes, respectively. If the new pressure
calculated from equation (4.31) is negative, then the pressure will be set to zero; meaning that the negative pore
pressure cannot exist (Itasca, 2016).

In fully coupled hydromechanical analysis where the fluid pressure affects the mechanical deformation and
mechanical deformation affects the pressures, the rock and fluid counteraction will be in three aspects as (Itasca,
2016):

— The effect of pore pressure on deformation and strength of fractured rock masses;

— The effect of mechanical deformation on permeability which arises as a result of the change in the aperture
of the fracture; and

— The effect of mechanical deformation on pore pressure.

When the fracture is filled with the fluid, depending on the fluid pressure and applied normal stress, the fracture’s
normal deformation will be influenced. According to Walsh (1981), the effect of pore pressure and applied normal
stress on normal deformation can be expressed as

Op =0y, —ap, (4.32)

in which p,, is pore pressure and o is effective stress coefficient or Biot coefficient. Based on measurements of
flow through simulated fractures carried out by Kranz et al. (1979), a can vary between 0.5 and 1.0 for tensile
fractures with rough surfaces and fractures with smooth surfaces, respectively. Furthermore, since both tensile and
shear failure conditions of the rock fractures are described in terms of the effective, not total, stress, hence the pore
pressure can affect the strength of the rock fracture through the effective stress principle.

Mechanical aperture which may be considered as the average distance between two planes of a fracture, is a
function of the mechanical deformation. On the other hand, the hydraulic aperture is trivially related to the
mechanical aperture and in most of the cases the authors equate the mechanical and hydraulic aperture and directly
use them in cubic law for calculation of fluid flow. However, comparison of the measured flow rates in a fracture
with those predicted by the cubic law (equation 4.28) using the hydraulic aperture assumed to be equal to the
mechanical aperture very often show significant disagreement; a summary of which has been given by Alvarez et
al., 1995 (Itasca, 2016). Witherspoon (1980) introduced the following form of the cubic law:

hin
q=—1,7Px (433

where F is a correction factor. Comparing equations (4.28) and (4.33) gives
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hy = fhy, (4.34)
in which

f=—m (435)

The parameter f is a representative for the effect of the fracture’s plane roughness on the tortuosity of the flow. For
smooth or interlocked joint planes, f is approximated by unity while for mismatched joints with a small ratio of
span to roughness height, f has values less than 1 (Itasca, 2016).

For a slightly compressible fluid in a deformable rock fracture with uniform aperture, the continuity equation has
the form of (Itasca, 2016)
8h

5
i = —5 —chg,  (4.36)

Combining equation (4.28) and (4.36), we can obtain

Sp _ _K? 1 6h
5t 12[ldCfp

Equation (4.37) is the diffusion equation for the pressure inside the fracture (Itasca, 2016). Generally, the fracture
aperture not only varies with local fracture stiffness and fluid pressure, but it is also a function of the mechanical
response of rock mass. Hence, the second term in the right-hand side of the equation (4.37) is determined by
coupling between fluid flow and mechanical deformation of the rock mass. In other words, this term is external or
a “source” which, for undrained condition, indicates the pressure change in the fluid trapped within the fracture
because of rock mass and, in particular, rock fracture deformation (Itasca, 2016).

In explicit time integration techniques, it is essential that the timestep size does not exceed the critical timestep.
So that, in present explicit analysis of fluid flow it is required to limit the fluid timestep to

— min |V
Aty = min [Ziki] (4.38)
In which the summation of the permeability factors, k;, is extended to all contacts surrounding the flow-knot. With
this regard, the minimum value of At over all flow-knots is the critical timestep in the analysis (lItasca, 2016).

As can be concluded from equation (4.38), the fluid timestep is inversely proportional to the fluid bulk modulus
and joint transmissivity, which is proportional to aperture cubed, according to the cubic law. For typical joint
apertures in practical problem settings, the fluid timesteps on the order of milliseconds are obtained. Furthermore,
the first fraction of the second term in the right-hand side of equation (4.37) implies that the fluid trapped inside a
fracture will increase the apparent joint stiffness by 1/c¢h, thus possibly requiring a reduction in the mechanical
timestep. Hence, these two together, will make the numerical analysis very time-consuming or impractical;
meaning that this algorithm can only be applied in short duration simulations (Itasca, 2016).

In 3DEC, some tips are introduced to increase the timestep in practical analysis such as our case study. One of
main tips is called “fast flow” which speeds up the coupled calculations by assuming incompressible fluid which
might be a reasonable assumption when the rock is not so stiff relative to the fluid or when the aperture is so small
(recalling aforementioned apparent joint stiffness). In this option it is required to define an apparent fluid bulk
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modulus as equal to the material bulk modulus divided by the cube of the zone size (i.e., K/edge?; using the
maximum value of each parameter for models with variable material properties and zone size) (ltasca, 2016). This
option, as stated before, increases the fluid timestep in order to decrease the required time of calculations. For
example, in our reference case, the fluid timestep was automatically set to a very high magnitude (over 24 hours),
however it was manually limited to 60 seconds by the authors, results of which can be found in appendix section
where it can be seen that some results such as the value of the fluid pressure at the end of stimulation is as equal
as the normal flow calculations, but its evolution during stimulation period shows an oscillation behavior which
its characteristics are strongly dependent upon the chosen fluid timestep by the user (figure A2.4). The authors,
spent over six months on characterizing the oscillating behavior of the fluid pressure during stimulation period and
when it was tried to define a criterion to pick-up appropriate onset time of pressure build-up at measuring point,
the effect of the fluid timestep was identified. Then, the reference model was ran in normal flow mode and found
that the waveform evolution in fluid pressure was a numerical effect rather than a physical process. The authors
highly recommend future users of the 3DEC, to first do a simple simulation using “fast flow” option by setting
various values of maximum fluid timestep limit and then to compare the results to the simulation in normal flow
mode for checking the consistency with great cares taken into account. In the present work, the normal flow mode
is then used.

Figure 4.11 illustrates the block and embedded fracture as well as the injection point at approximately the center
of the fracture at depth of 4.7 km. The fracture cuts the block in two parts of light blue and light green. These two
parts have the identical properties and are elastic, isotropic, and homogeneous. The reason behind this is that in
3DEC blocks cannot be partially cut, so all the 3DEC joints are necessarily bigger than the corresponding fractures
in the DFN (Itasca, 2016). We can deal with this issue by assigning different joint properties to areas lying inside
of the circular fractures and areas outside of the circular fractures. It means that, the areas of the fracture plane
located outside of the finite-size circular fracture should not have any effect on the fracture’s hydromechanical
behavior, even though the 3DEC will recognize that district as fracture. For that, it is important to assign
appropriate material properties to that district of the fracture plane in such a way to achieve as same
hydromechanical behavior as surrounding rock matrix. Therefore, the fracture’s shear and normal stiffness must
be defined as equal as the stiffness of rock matrix as is explained. For that, the normal stiffness of the fracture
located in the area outside of circular fault with initial aperture of 14e-05 m must be identical with the normal
stiffness of a cubic element of surrounding rock matrix with side size of 14e-05 m.

Considering an infinitesimal isotropic cubic specimen of surrounding rock matrix with side size of Aq (initial
aperture of the fracture) located on the fracture plane, as shown in figure 4.12, its normal stiffness in the direction
of the fault normal (K;,) can be obtained as

K, =2 (4.39)

Unn

where a,,,, and u,,,, are normal stress and normal displacement.
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Figure 4.11. 3DEC model of the block, embedded fracture and injection point at approximately 4.7 km; the height of the
modelled block starts from the bottom of the sedimentary layers and stops at 6.2 km as it can be seen from the figure.
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Figure 4.12. Schematic vertical intersection of a block with an embedded finite fracture; the outside areas of the fracture are
shown by dashed lines and a black cube with side size of Ao is located outside of the fracture. A frame of reference can also be
assumed as n-D-St with axis respectively parallel to normal, dip direction, and strike of the fracture as represented in the figure

Stress tensor with respect to the n, D, St frame of reference, respectively, for axis parallel to normal, dip direction,
and strike of the fault, as shown in figure 4.12, will be

Onn Onp Onst
Opn Opp Opst (4.40)

Ostn Ostp Ostst

For such a cube, the inverse of the Hooke’s law is as (Jaeger et al., 2007)
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where & is components of strain tensors at fracture plane. The strain at direction of the fracture normal can then
can be determined as

1
Enn = E (Onn — Yopp — Josst)  (4.42)
To have the stress tensor represented by (4.40), stress transformation can be utilized to transfer principal stress

tensor to first stress tensor at geographical coordinate system and then to stress tensor acting on the fracture plane
coordinate system. The effective principal stress tensor for normal faulting regime of current study is as

—71.53 0 0
0= 0 —65.61 O
0 0 =17

The transformation matrix of (4.20) is used to have stress tensor with respect to the geographical frame of
reference. The a, b, and c angles (Euler angles) for this case are respectively 80° (azimuth of Spmin), 90°, and 0°,
according to table 4.3. Then, using equation (4.22) will read

—-64.14 831 0
oy =[ 831 —18.47 0 ]
0 0 —71.53

The transformation matrix in order to transform the stress tensor at geographical coordinate system onto fracture’s
frame of reference is (Zoback, 2007)

cos(str) sin(str) 0
R, = |—sin(str) cos(dip) cos(str) cos(dip) sin(dip) (4.43)
—sin(str) sin(dip) cos(str) sin(dip) —cos(dip)

where “str” is the fault strike and “dip” is the fault dip (positive dip if fault dips to the right when the fault is viewed
in the direction of the strike). To calculate the stress tensor in a fault plane coordinate system, a5, we once again
use the principles of tensor transformation such that (Zoback, 2007)

0 = Ryo,R;  (4.44)
Then the 3 will be

-56.27 —6.24 —18.117
of =|—6.24 —66.74 1391
-18.11 1391 -—-31.13

Which is in fact stress tensor represented in equation (4.40).
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£, by definition is the fractional shortening of an infinitesimal line element that is initially oriented along the n-
axis and since the diagonal components of the strain tensor do not contain rotation components (Jaeger et al., 2007)
then &, will be

Eun =12 (4.45)

Substituting strain as equation 45 into equation 42 and solving it against displacement will lead to
1
Unn = = (Opn — I0pp — 90sest)Ag  (4.46)

where agpp is stress in the direction of fault dip, and o, is stress in the direction of fault strike. Substituting
equation (4.46) in equation (4.39) and doing some simplification and manipulation, magnitude of rock normal
stiffness will be

Kn = 0pnE/[0nn — 9(0pp + Osese)1Ag  (4.47)

Hence, the normal stiffness of the fracture must be equal with equation (4.47) in order to equalize its normal
displacement with displacement of the surrounding rock matrix parallel with normal of the fracture. Substituting
values of E (25 GPa) and 9 (0.29) of rock matrix and hy,=14e-05 m height (initial aperture of the fracture in zero
stress condition is 14e-05 m), 56.27, 66.74, and 31.13 MPa, respectively, for ,,,,, opp, and os.s; (determined from
matrix with superscript of asterisks at page 27) yielded to 3.6e14 Pa/m of normal stiffness for the areas of outside
of the fracture. If we assume that the hanging wall of the fault slides along the slip direction obtained in previous
section, then it can be considered that the shear stiffness or shear modulus of the area outside of the circular fault
will be, using the inverse of the Hooke’s law in equation (4.41), equal to

_ Opst _ UgSt _ _E (4.48)

2&pst 2(%)0'D5t 2(1+19)

By substituting values of E (25 GPa) and 9 (0.29) of rock matrix the G will be 9.69 GPa; its cohesion and friction
angle were also defined to a high range to prevent any slip to take place at the areas outside of the fracture. The
apertures could be any small magnitudes greater than zero. Hence, we just defined them identical with the initial
hydraulic aperture of the circular finite fracture. These properties are summarized in table 4.7.

Table 4.7. Physical and mechanical properties assigned to the outside of the circular fracture

Outside of the Circular Fracture

Kn = 3.6e14 Pa/m

Ks=9.69 GPa/m

@=45°

So=1e40 Pa

Ao= Ares= Amax= 14e-05m
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4.4 Simulation Results

4.4.1 Fluid Pressure Evolution

By simulating the injection procedure illustrated in figure 4.1b, we observed that the fluid pressure at injection
point rises sharply to a well-head pressure (WHP) of approximately 13 MPa (WHP is calculated by subtracting
hydrostatic pressure at injection point from downhole pressure, DHP) and then continuously increases to a
maximum value of over 20 MPa at the end of 24 hour injection which is somehow larger than observed field WHP
during the first step of stimulation of GPK2 at the year 2000 (11-12 MPa), even though the sharp rise of WHP is
initially similar to that of field observation. Figure 4.13 is WHP variation during injection period at injection point;
however, this value is dependent on the magnitude of initial hydraulic aperture of fracture as shown in figure 4.13.

%107

22

. WHP-3DEC; h,=1.6e-04 m
X —WHP-3DEC; h,=1.4e-04 m, reference case
——WHP-Field Data
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Figure 4.13. Numerical WHP evolution in time at injection point located at approximately 4.7 km depth for fractures with
different initial hydraulic apertures in comparison with WHP observed in the field; the numerical WHP (blue curve) suddenly
rises to a value of approximately 13 MPa and then continuously increases to over 20 MPa at the end of 24 hours of injection
which is higher than field observation of WHP, being approximately stable at 12 MPa (red curve)

To investigate the pressure front migration through the fracture, the onset time of pressure build-up at some
measuring points shown in figure 4.14 are determined. These measuring points are the nearest possible flow-knots
to the fictitious straight lines connecting point 8, to pints 1 and 15. Using this nearest neighbor interpolation to
relate distance from injection point to onset time of pressure build-up is rather a crude approximation especially
when the mesh size is large and the pressure propagation is not perfectly circular, but in current study this effect is
disregarded to avoid time-consuming discretization with finer mesh sizes. This onset time is considered when the
WHP at a measuring point exceeds 1 MPa, as described in figure 4.15. The superimpose of pressure evolution in
time for a period starting from pressure build-up onset time (subtracting the time period behind the onset time from
24 hours of injection duration) up to the end of injection period for all 15 measuring points are shown in figure
4.16. Figure 4.17 is a plot of depth versus onset time on the left-hand side and distance versus onset time on the
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right-hand side. The red curves in the left-hand side graph represent the pressure curves of figure 4.16.
Furthermore, it can be seen on the right-hand side graphs of figure 4.17 that the upward and downward velocities
of pressure propagation are approximately the same and obey a power-law function with exponent of 0.5 or better

to say +/t propagation process.
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Figure 4.14. Locations of the measuring points on the fracture indicated by colored spheres; the discretized polygon is the
fracture plane containing the finite size circular fracture (black circle); the yellow sphere (sphere number 8) is the injection point
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Figure 4.15. Illustration of pressure build-up onset point selection at a measuring point; the left-hand side graph shows the WHP
evolution at measuring point during the injection period while the right-hand side graph is the zoomed exhibition of the black
square of the left-hand side graph. As it can be seen from RHS graph, the time-point when the WHP is 1 MPa, is opted as the

onset time of pressure build-up at corresponding measuring point.
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Figure 4.16. Superimpose of WHP curves as a function of time for measuring points. The time period starts from the onset time

of pressure build-up at measuring points which is determined using the process described in figure 4.13, so that, all the pressure

curves start from 1 MPa except at injection point where the flow-knot volume at this point encountered a sudden increase due to
high rate of fluid injection and had some fluctuation at initial seconds and then stabilized
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Figure 4.17. Pressure front migration from injection point at depth of about 4.7 km to the top and bottom frontiers of the fracture
shown for measuring points; the velocity of fluid pressure migration along the fracture, as it can be seen in the figure, obeys a
power-law function with exponent of 0.5

4.4.2 Effective Hydraulic Diffusivity

Shapiro etal., 1997, evaluated spatio-temporal distribution of approximately over 400 microseismic events induced
during hydraulic fracturing experiment of KTB borehole in Germany in order to estimate permeability. At this
study, fluid injection in KTB was approximated by a point source fluid injection into an infinite homogeneous,
isotropic, poroelastic, and saturated medium for which the pore pressure diffusion can be considered as the
mechanics of poroelastic media.

The Biot (1962) equations describe the poroelastic deformation's linear dynamics. These equations predict the
existence of two compressional waves and one shear wave in the system in the general case, while neglecting the
shear wave in the fluid. The first shear and compression waves are typical seismic P and S waves moving across
the medium. For frequencies below the crucial Biot frequency (which, for the medium under consideration, is often
of the order of several MHz), the second type of compressional wave is a diffusional wave. It is analogous to the
pore-pressure diffusion mechanism which is as below in the extremely low-frequency range

op _ 2
=DV (4.49)
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that is the diffusion equation for the pore pressure perturbation in the rock mass. Shapiro and associates, by ignoring
all non-mechanical (e.g. chemical and electro-chemical) solid —fluid interactions, solved pore pressure diffusion
equation for their simulated model assuming a boundary condition as an initial pore pressure perturbation being
supplied as a function of time, p,(t), on a tiny spherical surface of radius a, with the injection point as its center.
In the case of a time-harmonic perturbation, po(t) = poexp (— iwt), the solution of equation (4.49) fulfilling
aforementioned boundary condition is as follows:

p(r,t) = poe_i“’t%exp [(i - - a)\/%] (4.50)

where w is angular frequency and r is the distance from the injection point. It can be seen from equation (4.50)
that the solution is an increasingly attenuating spherical wave. This is the Biot theory's second compressional wave,

with an attenuation coefficient equal to \/w /2D, the reciprocal diffusion length, and a slowness equal to 1/vw2D,
the reciprocal velocity of relaxation.

Now, the following reasoning may be used to estimate the diffusivity D. The step function is approximated by the
injection signal: po(t) = 0ift<0and py(t) =1 ift > 0. However, the rectangular pulse py(t) =0 ift<0,t
>to,and po(t) =1 if 0 <t < t, (since the development of the injection after the event's triggering is irrelevant
to this event) is what causes a seismic event to be triggered at a time t,. The range of this signal's prominent
frequencies is from 0 to w, = 21 /t,. The pore pressure perturbation's relaxation periods are thus of the order of

To+/to/(4mD) and greater if the event happened at a distance of r,. However, it is anticipated that the initial
triggerings may take place prior to a major relaxation (i.e., a significant drop in pore pressure). Consequently, for
the very first occurrences

to < 1o\/to/(4mD)  (4.51)
This disparity leads to the following

2
D<= (452
4'7Tt0

Using above arguments on about 9000 seismic events induced during hydraulic stimulation of GPK1 well of
Soultz-sous-Foréts at 1993, Shapiro et al., 2002, estimated an effective hydraulic diffusivity of 0.05 m?/s. The
diffusion distance of pore pressure perturbation from injection point can be obtained by reordering of equation
(4.52) as

r =+4nDt (4.53)

Comparison of which with equations of fitted lines shown in right sub-figures of figure 4.17 leads to an average
effective hydraulic diffusivity of ~13 m?%/s. This value is approximately consistent with the results of Calo et al.,
2011, where rapid migration of more than 1000 m in 3 h was observed. Substituting these observations into
equation (4.53) as r=1000 m and t=10500 s gives D=8 m?/s. This discrepancy may be due to the fact that in the
present numerical simulation, the surrounding rock matrix is impermeable and thus there is no leakage in the
fracture, unlike in the in-situ reservoir.
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4.4.3 Hydraulic Aperture Evolution

In 3DEC, normal and shear joint stiffness are represented by linearly elastic springs. The normal stiffness of a
fracture (K,,) in 3DEC is constant value defined by the user (3DEC manual, 2016); meaning the existence of a
linear relation between effective normal stress (a,,) and joint displacement (d&) (Hart, 1993) as defined by equation
(4.39) or

o, = K,d5 (4.54)

In 3DEC, the relation between hydraulic aperture and effective normal stress is a bilinear curve shown in figure
4.18. The hydraulic aperture (hy) is obtained, in general, (3DEC manual, 2016) as

where hy, is the joint aperture at zero normal stress or initial hydraulic aperture which is defined by the user. In
addition to hyy, residual (hgyes) and maximum (hymax) hydraulic apertures should also be defined by the user.
Below residual hydraulic aperture and above maximum hydraulic aperture the mechanical aperture (h,,) will not
have any effect on joint permeability. Therefore, in 3DEC, the hydraulic aperture is always equal with the
mechanical aperture except when the mechanical aperture exceeds hymax O Ryres (3DEC manual, 2016) (figure
4.18). It can also be understood from the fact that in 3DEC the fractures are simulated as two parallel plates, so
that any change in the mechanical aperture will consequently change the hydraulic aperture; however, to mimic
the non-zero residual hydraulic aperture found in the field or laboratory despite a near-zero mechanical aperture,
in 3DEC the hydraulic aperture is not equal to the mechanical aperture when it falls below hy;..s. The maximum
hydraulic aperture is also defined by the user to improve explicit calculations (3DEC manual, 2016).

Comparing equations (4.54) and (4.55) reveals that in 3DEC, the relation between effective normal stress (a,, =
Sn — By) and hydraulic aperture of the fracture will be linear, dependent on the magnitude of the fracture normal
stiffness. One may also state that the relation between fluid pressure and fracture aperture are linear owing to
constant fracture stiffness in 3DEC.

o hHmax =12e-03m

h,-p=5.3e-04 m

Hydraulic Aperture, hy

14e-05 m=h,;,—
Brres ——7e-05m
(compressive)
Effectiveistress, o, v
-949 MPa v +5.6 MPa
0

Figure 4.18. Idealized relation between hydraulic aperture and effective normal stress for a rock joint (reproduced from 3DEC
manual, 2016)
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If the variation of the hydraulic aperture as a function of the effective normal stress acting on the fracture plane is
plotted as shown in figure 4.19 for the injection point, the linear relationship between hydraulic aperture and
effective stress can be seen, as shown in figure 4.18, where the slope of the fitted line on the curve is the negative
inverse of the effective normal stiffness of the fracture (-1/-1.255e-11 = 79.7 GPa); approximately equal to 80
GPa/m assigned to the model.

5 %1074 Local Hydraulic Aperture vs Effective Normal Stress
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Figure 4.19. Local hydraulic aperture variation versus effective normal stress values at injection point where compressive stress
is positive; as it can be seen the numerical relation between effective normal stress acting on the fracture plane and the hydraulic
aperture at injection point is linear in which the slope of the fitted line is approximately negative inverse of the normal stiffness of
the fracture (-1/-1.255e-11 = 79.7 GPa/m); furthermore, the y-intercept of the graph is the hydraulic aperture at zero effective
normal stress (hgy—q) Or NHmax

Figure 4.21 illustrates fracture opening migration velocity along the fracture towards upper and lower edges of the
fracture along its diameter. The onset of aperture increase considered when the change of aperture exceeded the
5% of initial hydraulic aperture. Here, knowing the initial hydraulic aperture of 14e-05 meters, the onset time will
be when the hydraulic aperture exceeds 14.7e-05 meters which is equal to the sum of initial hydraulic aperture and
0.05 times of that. This process is demonstrated in figure 4.20. The red curves in figure 4.21 are derived using the
process explained in figure 4.20. To avoid any boundary condition effect on hydraulic aperture variation at the
edges of the fracture, the data of two last measuring points in either side of the fracture diameter are not considered
for evaluations of hydraulic aperture variation in time. As it can be seen in the figure 4.21 (sub-figures at the right-
hand side), the velocity obeys a power-law function with exponent of 0.49 just as pressure propagation.
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Figure 4.21. Increase of hydraulic aperture from injection point at about 4.7 km to the top and bottom frontiers of the fracture
shown for measuring points located at fracture’s diameter; the velocity of fracture opening along the fracture, as shown in the
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Furthermore, looking at local hydraulic aperture variation in time at injection point in figure 4.19 clearly reveals
the fact that the propagation of hydraulic aperture and fluid pressure along the fracture are exhibiting the same
behavior; implying that the variation of hydraulic aperture and fluid pressure during injection period are linearly
related to each other depending on the magnitude of fracture normal stiffness, consistent with figure 4.18.

To better understand the v/t behavior of the pressure front migration, we explore the impact of the injection rate.
As a first attempt, a variable flow rate of injection, Q(t) = 0.00001 x t in which Q(t) is variable flow rate and t
is time, is applied to the injection point and the velocity profiles were plotted. In this case the flow rate increased
by 0.00001 m¥s at each second contrary to the fixed flow rate of 0.03 m*/s of reference case. By applying such
variable flow rate with time to the model, it was expected to have a linear velocity profile in both upward and

downward migration. A fluid volume (V(t) = f(fQ(t)dt = Qt = 0.03 x 86400 = 2592 m3) as equal as
reference case was injected to the fracture for 22768 seconds (V = fot Q(Hdt = fot (0.00001 x t)dt :%x

0.00001 x t2) and the pressure propagation profile and velocity profiles were plotted as figure 4.22 in which a
linear relation between pressure propagation distance and time is obvious.
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Figure 4.22. Pressure front migration from injection point at about 4.7 km to the top and bottom frontiers of the fracture shown
for measuring points for variable flow rate case; the velocity of fluid pressure migration along the fracture, as it can be seen in the
figure, obeys a linear function

4.4.4 A simple Liftoff Model

Lengliné et al., 2017, proposed a simple hypothesis for the migration of the seismic activity occurring during
hydraulic stimulations. It is in fact a statement of a pressure front migration radius, r(t), and a constant aperture, h,
behind it, using the injected fluid volume, V(t), during stimulation time (t) assuming incompressibility of the
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injected fluid and that the seismicity expands over a disk of radius r. There is also an implicit assumption that once
the pressure exists in the fracture, the aperture jumps from zero to h without any stiffness effect. This relationship

is expressed as
t ’ ’
r(e) = 2L (4 56)

V() = [;Q(thdt' (457)

where

is injected volume at different flow rates of Q(t") at different time-steps of dt’. Supposing that the injected fluid
migrates over a disk of radius r, then injected volume can be calculated as

V(t) = mhr? (4.58)

Replacing equation (4.58) in equation (4.57) and doing some manipulation and reordering will yield to equation
(4.56). Equation (4.56) predicts the radius of pressure propagation by assuming a constant aperture throughout the
fracture in which the fluid flows.

For our cases of study, it is attempted to implement the equation introduced by Lengliné et al., 2017, in 3DEC in
order to have a prediction of pressure propagation using this equation for problems in which the fracture aperture
is variable with pressure. For that, the average hydraulic aperture throughout the fracture at each time-step of
numerical modeling is used, as a crude approximation of aperture in position and time, to determine the radius of
pressurized zone. Figures 23 and 24 show hydraulic aperture profile versus distance from the injection point for
both constant and variable flow rate cases at 14284 and 11382 seconds, respectively.

Additionally, average hydraulic aperture in figure 4.23 is approximately 1.9e-04 meters. Using definition of
hydraulic diffusivity as equation (4.60) and assuming 1e-03 Pa.s and 5e-10 1/Pa respectively for dynamic viscosity
and compressibility of the water, the effective hydraulic diffusivity will be 6000 m?%/s. Worth to keep in mind that
this value is for a rigid fracture (or a low fluid pressure) in which solid part does not deform.

Shapiro et al, 1997, by taking the assumption of correspondence of seismicity front to the pressure front, introduced
an equation to calculate diffusivity employing distance of seismic activity from well and time of seismic activities
as

r =+4nDt (4.59)

Where r is distance from well, D is hydraulic diffusivity and t is time of seismic activity. Doing some manipulation
on equation (4.59) and comparing it to the equation of fitted lines to variation of distance with time shown in right
sub-figures of figure 4.17 yields to upward and downward hydraulic diffusivity of 13.8 and 11.8 m?/s, respectively.
These values are for deformable fractures simulated by 3DEC in reference case of current study compared to the
hydraulic diffusivity of heterogeneous crystalline reservoir of Soultz-sous-Foréts (from depth of 2500 to 3500
meters) equal to 0.05 m?/s estimated by Shapiro et al., 2002.

88



3DEC DP5.20 | ]

©2020 Itasca Consulting Group, Inc.

3.00 4
Eff. Hyd. Ap.
1

2.80

o o

= =

=3 S
| 1

Hyd. Ap. (m) x10"-4
il\::
(=]
|

T T T T T T i
0.20 0.40 0.60 0.80 1.00 1.20 1.40

Distance (m) x10°3

Figure 4.23. Hydraulic aperture profile along the fracture in terms of distance from injection point at 14284 seconds after start of
injection used to predict the radius of pressure propagation for constant flow rate case based on Lengliné et al., 2017, hypothesis;
this profile is progressively updated at each time-step of numerical modeling to generate the curves plotted in figure 4.25
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Figure 4.24. Hydraulic aperture profile along the fracture in terms of distance from injection point at 11382 seconds after start of
injection used to predict the radius of pressure propagation for variable flow rate case based on Lengliné et al., 2017, hypothesis;
this profile is progressively updated at each time-step of numerical modeling to generate the curves plotted in figure 4.26

The results of generalizing Lengliné et al., 2017, hypothesis for the reference cases of current report with both
constant and variable flow rates are shown in figures 25 and 26, respectively. The comparison is done for the time
period when the overpressure arrives the furthest measuring point on the fracture plane. These time periods are
14284 and 11832 seconds for respectively constant and variable flow rate cases. As it can be seen, in both cases,
the predicted radius by Lengliné et al., 2017 hypothesis (about 1370 meters and 1627 meters, respectively) has a
good agreement with the radius of overpressure at numerical method (about 1539 meters).

89



Constant Flow Rate- Elastic Joint

1500

1000

500~

=
T

* 3DEC-Upward
* 3DEC-Downward

Lengline et al,2017-Upward
—Lecngline ct al,2017-Downward

Distance, m
th
=
2
T

-1000 -

-1500 -

-2000 '
0 5000 10000 15000

Time, s

Figure 4.25. Pressure front position (with respect to the injection point) as a function of time for constant flow rate case based on
Lengliné et al., 2017, hypothesis (solid lines) and 3DEC (blue and red points)
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Figure 4.26. Pressure front position (with respect to the injection point) as a function of time for variable flow rate case based on
Lengliné et al., 2017, hypothesis (solid lines) and 3DEC (blue and red points)

445 An Advanced Model

The Lengliné et al., 2017, argument is a simple advective model (assuming a constant aperture along the open part
of the crack and a sharp front between open and close part of the crack with no diffusion equation), so it is rather
a geometrical dispersion.

Here, we discuss Murphy et al., 2004, approach which is more advanced 1D model, in particular to explain the
origin of the front. It is, in fact, a comprehensive study which converts linear fluid dynamic equation in terms of
aperture rather than pressure. So that, Pressure and other flow parameters can be obtained from the aperture
solution through joint compressibility relationships. Assuming a Darcy flow in the fracture and no flow between
the surrounding rock and the open space of the fracture, mass conservation can be formulated as:

e (Bae) = (P +030) 5 400
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in which p and u, are respectively fluid density and fluid’s dynamic viscosity. Taking into account the assumption
of constant u; and p for the fluid will read

10 (ps0P) _ oo
12pgh 0x (h ax) =C ot (4.61)

where C = ¢; + c¢ ; inwhich ¢; and ¢ are respectively compressibility of the joint and the fluid and defined as

10h

_1lop _ 1
Cf = 0P = K (463)
Murphy et al., divided fluid flow along the fractures to two categories of linear diffusion and non-linear diffusion.
In the cases, which the joint deformation due to pressure change, is small and can be considered negligible, in

equation (4.61), h3 can be taken out of the derivative and c; will be zero. Then, equation (4.61) is represented as

%P _ 9P
axz ot (4.64)
where the hydraulic diffusivity for fractures, D, is

hZ
- 12pgey

(4.65)

According to Murphy et al., 2004, the linear diffusion equation is valid so long as h® is reasonably constant or so
long as

dh3
-5 < 1 (4.66)

or

1 9h3
Fa_PdP K1 (4.67)

implying that there is not a pressure or aperture propagation front. Using definition of joint compressibility, c;, as
equation (4.62) and replacing in (4.67) will read

3¢jdP K1 (4.68)

For the cases in which the fluid pressure significantly changes the aperture of fracture (called joints in contact and
lifted-off joints, according to Murphy et al., 2004) and consequently the equation (4.62) is not met, the diffusion
of pressure turns into nonlinear diffusion (Murphy et al., 2004).

By doing some manipulation on equation (4.62) we will have

0P _ L% (469)

a - cjh dx

Substituting (4.69) in (4.60) and doing some manipulation and simplification will read
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1 9 (h?20n\ _ 0h
1zuda(c—ja>—a (4.70)

For a joint in contact (meaning that the liftoff in joint surfaces has not occurred yet, even though the fluid pressure
inside the fracture is high enough to reduce the effective stress acting on the fracture plane and closing it, hence
the aperture will increase), ¢; is

¢j = bh/hy (4.71)
where b is determined (Murphy et al., 2004) as

G = o (Pt 1) (472)

So that, the solution of equation of flow represented by (4.69) is

hg=o 9 (, Oh\ _ oh
12ydba(ha) T ot (4.73)

For lifted-off joint (means that the fluid pressure inside the fracture exceeds the earth stress holding the joint

surfaces together and they are parted) the c; is

¢j = L/(hE) (4.74)

in which L is spacing between joints and E is reduced elastic modulus that can be defined as

E(1-9)

Hence

E_0 (30m) _on
12ugL 8x (h ax) oot (4.76)

For the case where h varies only slightly with respect to x, or when fluid pressure inside the fracture is not high
enough to increase the aperture (linear diffusion case), the high-order, small-term (9h/dx)? (Murphy et al., 2004)
can be ignored, and then the equation of linear diffusion of pressure represented by equation (4.73) will be recast
to

Rhg=o 8%h _ 0h
12ugb 8x2 ~ at

(4.77)

where h is an average over the fracture at initial stage. Equation (4.77) is similar to equation (4.64) only now in
terms of aperture, not pressure. Murphy et al., 2004, summarized equations (4.73), (4.76), and (4.77) as

9 (pnh) _ on
aax(h 6x)_6t (4.78)
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2L 0T

In which a represents the grouping of the coefficients; and n=0, 1, and 3 represents whether the fracture has almost
constant aperture, surfaces are in contact, or lifted off, respectively. Equation (4.78) is valid for fluid flow along a
set of parallel plate fractures located on spacing of L from each other. This equation for a single joint embedded in
a rock block of kilometer scale, such as our case, where there is not any spacing of L, which is in fact characteristic
dimension, can be derived as below. By analogy of pre-existing fracture opening propagation distance with
hydraulic fracturing propagation distance introduced by Perkins and Kern (1961) and Nordgern (1972) and
benefiting from St. Venant principle, which states that stresses diminish with distance in any direction once that
distance exceeds the minimum of the fracture plane dimension, Murphy et al. found that the characteristic length
for such fracture is time-varying propagation distance, &, and equation (4.78) can be replaced by (4.79) as (the
details can be found in Murphy et al., 2004),

L2 (=2 (479)

ox ox at
(;_1;1;:2 forn=20
a =+ 1};‘:;0[) forn=1
12;“1 forn =3

which is aperture propagation through a single fracture for every condition likely to be encountered. Here a’ is the
same as the a in equation (4.79) except that now L has been deleted. Assuming that the fluid diffusion in our
circular fracture is uniformly across a disc of radius r, same as the assumption taken by Lengliné et al., 2017,
reduces the problem to a 1D propagation study with following initial and boundary conditions

Initial Condition: h(x, 0) = h,

h(0,t) =h

Boundary Conditions: {h(L, t) = hg

and the entry flow rate of q at injection point as

q=-—a (h” %)xzo (4.80)

Benefiting from similarity transformation for the constant flow rate case introduced by Murphy et al., 2004, as

g=—2"— (481)

(q3t2/a’)n+3
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{=—"—7 (482

(a'qrtn+1)n+s

where 8 and ¢ are respectively dimensionless aperture and distance, yields

“(n )+ 20 -2 =0 (4.89)

d_Z dw n+3°’dw n+3

With boundary conditions of

deo
9’1(0)01—Z =-1

The results of equation (4.83) are represented in figure 4.27 in which the three cases of linear diffusion, joint in
contact, and lifted-off joint can be seen. It can be noted the shock-like behavior of the joint aperture for cases of
n=1 and 3 where there is not aperture disturbance beyond ¢ of slightly greater than 1 and 1.5 respectively, while
for n=0 the diffusion behavior is linear in which 6 slowly approaches zero, but, in fact, never attains it except at
infinite .

—n=0, Linear Diffusion
—n=1, Joint in Contact
n=3, Joint Lift-off

B, Dimensionless Aperture
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0 I I I
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Figure 4.27. Dimensionless aperture profile of fracture versus distance from injection point for constant flow rate cases where
n=0, 1, and 3 represent respectively linear diffusion, joint in contact, and lifted-off joint

Benefiting from the same dimensionless aperture and distance represented in equations (4.81) and (4.82) to plot
the average aperture along the fracture during injection time (such as those shown in figure 4.23 and 4.24) yields
to graphs illustrated in figure 4.28 for different time spans and different values of n equal to 0, 1, and 3 as defined
by Murphy et al., 2003. To utilize equations (4.81) and (4.82) it is required to have a’ calculated using its definition
for each case in equation (4.79) where h, h,—o, tiq, b, and E are required to be determined. h can be considered as
ho, because the fracture at current case is modeled as a parallel plate and therefore the average hydraulic aperture
of that at initial state will be uniform and equal to the initial hydraulic aperture of 14e-05 meters. h,_, is already
determined as 53e-05 meters shown in figure 4.19. u, for water can be considered as 0.001 Pa.s. E is defined in
equation (4.75) where we can substitute 25 GPa and 0.29 for E and v to get 32.76 GPa. According to Murphy et
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al., 2004, b can be determined as b = 9/a, ¢ in Which g, 4 is the effective stress required to attain a joint closure,
hs—o — h, equal to 0.9 times of the maximum closure, hs—y — hp,in. Knowing the h,,;, = 7e — 0.5 meters from
table 4.6 and substituting the other parameters will give us the b equal to 2.44e-07 Pa. Now, the a’ can be
calculated by substituting the above parameters in the equation definition in (4.79). Doing so, a’ are 25.34, 1.81e05,
and 2.73e12 respectively for n=0, 1, and 3. After that, the values of dimensionless aperture and distance can be
determined by substituting of above a’, g=0.03 m%/s, and t in equations (4.81) and (4.82), results of which are
shown in figure 4.28 for different t values. Comparing the plots of figure 4.28 with figure 4.27 reveals the fact that
current numerical simulation might be of the cases in joint is in contact (or n=1).
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Figure 4.28. Dimensionless aperture profile versus dimensionless distance from injection point for numerical results derived from
3DEC for constant flow rate case; the graphs are drawn for all three cases of n =0, 1, and 3 at different times to clearly observe
the opening migration along the fracture. Comparison of these plots with figure 4.27 reveals the similarity of propagation
distance between 3DEC results (1.5 to 2 in all time spans) at middle graphs (n=1, Joint in Contact) with that of n = 1 case of
Murphy et al., 2004, shown in figure 4.27 where the dimensionless distance is just over 1.5

446 Discussion

In last subsections we tried to monitor the fluid pressure and aperture opening propagation along the fracture during
hydraulic stimulation simulated using 3DEC numerical modeling tool. First, a constant volume flow rate of 0.03
m3/s was applied to a point on the fracture approximately located at a depth of 4.7 km for 24 hours (total injected
volume of 2592 m®). The pressure build-up at injection point as well as at few measuring points located on the
fracture diameter was considered the time when the WHP at corresponding point exceeded 1 MPa. The plot of
these onset-times versus the distance of corresponding measuring points from injection point (figure 4.16) showed
a power-law relation with exponent of 0.5 (a v/t behavior). This behavior further investigated by applying a time-
variable volume flow rate of 0.00001t m®/s in second for 22768 seconds (total injected volume of 2592 m?) and
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the results of onset-time versus distance from injection point once again plotted (figure 4.21) and showed a linear
relationship; proofing a v/t behavior of fluid pressure migration. It is also found that the migration of the fracture
aperture opening has the same behavior as fluid pressure migration along the fracture. This was understood by
investigation of the aperture opening onset time versus distance of measuring points from injection point (the same
process as fluid pressure migration assessments in figure 4.14) (figure 4.20). Additionally, it was found that the
fluid pressure and the fracture aperture has a linear relationship depending on the magnitude of fracture normal
stiffness (figure 4.18).

Shapiro et al., 1997, proposed a model for the diffusion of pore pressure in a homogeneous permeable rock mass
when a pressure point source is varied instantaneously and then remains constant. This sudden pressure variation

occurs at distance r from the source according to the diffusion equation: r = v4rmDt, where D is the hydraulic
diffusivity in the rock and t is time. Hydraulic diffusivity at Soultz-sous-Foréts reservoir during 1993 hydraulic
stimulation was measured by Shapiro as equal to 0.05 m?/s, as (Shapiro et al., 2002). Comparing the equations
shown in right hand side sub-figures of figure 4.17 (no-slip condition) with abovementioned Shapiro equation
yields effective hydraulic diffusivity of 12-14 m%s with average on 13 m?/s. This value is compatible with
observations of Calo et al., 2011 where P-wave velocity anomaly occurred within 1000 m distance in about 3
hours, but is two order of magnitude larger than that deduced from seismicity migration by Shapiro et al., 2002
(i.e., 0.05 m?/s).

Then, the findings of both aforementioned injection scenarios were compared to the model introduced by Lengliné
et al., 2017 (figures 24 and 25). This model is in fact a simple advective model (obeying v/t behavior) assuming a
constant aperture along the open part of the crack and a sharp front between open and closed part of the crack with
no diffusion equation, however we tried to generalize the model to our numerical results by using time and space
varying fracture aperture derived from 3DEC during injection period. The comparison revealed the fact that in the
first injection scenario the fluid pressure propagated a little faster than Lengliné et al., 2017 prediction which might
be due to the fact that in their model the fracture is initially assumed to be closed and it is opened to its maximum
aperture once fluid flow reaches it (binary behavior), but the fracture in our model has an initial non-zero aperture.

Finally, a more advanced model of diffusion, introduced by Murphy et al., 2003, was used to evaluate the numerical
aperture propagation data which were obtained from the first stimulation scenario. They divided whole the cases
which a fracture might be encountered during fluid injection into two cases of linear and non-linear diffusion. The
linear diffusion take place when the pressure evolution is not large enough to generate aperture opening. In this
case the fluid flows in the space between two planes forming the fracture (a v/t behavior). The non-linear diffusion
is divided into two cases of “joint in contact” and “joint lift-off”” at which the fracture opening due to fluid injection
happens, but in the latter the whole normal stress which keeps the fracture planes together is overcome by the fluid
pressure and the whole hanging wall moves up. Murphy et al. distinguished these three case and corresponding
equations by assigning a variable of n which is respectively 0, 1, and 3 for linear diffusion, joint in contact, and
joint lift-off cases.

Here, the dimensionless parameters introduced in Murphy et al. paper was utilized to plot the aperture variation
along the distance from injection point in different time periods. These periods were actually the time passed from
beginning of the hydraulic stimulation. This time partitioning was chosen to better investigate the existence of the
propagation front along the fracture during injection period and started from 1800 s, continued to 3600 s, 7200 s
and finally 14290 s (which was approximately the time when the WHP at the furthest measuring point exceeded
of 1 MPa). These plots were shown in figure 4.27. Comparison of figure 4.26 (which is a plot dimensionless
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aperture versus dimensionless distance from injection point achieved from semi-analytical equations of Murphy et
al., 2003) reveals the fact that, in our simulation, the aperture propagation along the fracture most probably obeys
the case of “joint in contact” (n=1). It is also consistent with the achievement of aforementioned comparison of
numerical results with Lengliné et al.’s model where the numerical propagation was shown to be a bit faster than
+/t behavior represented by Lengliné et al.

Moreover, according to Murphy et al., 2004, the propagation distance, d, of aperture is denominator of equation
(4.82) as

1
d = (a'q"t" s (4.84)

Substituting 0, 1, and 3 for n in equation (4.84) reveals that d varies with t to power of 0.33, 0.5, and 0.67,
respectively for n = 0, 1, and 3. Comparison of the numerical results shown in figures 20 (right sub-figures) with
aforementioned values from Murphy et al., 2004, demonstrates the similarity of n=1 case with the aperture
propagation behavior in no-slip fracture where the exponent of 0.49 can be seen in the right sub figures of figure
4.20, again consistent with previous conclusions.

Worth to note that, and contrary to above observations, Murphy et al., 2004, introduce the joint compressibility in
equation (4.62) as

_10h
EYT
In 3DEC, for the situation in which the hydraulic aperture is between residual and maximum hydraulic aperture as
shown in figure 4.18, Z—Z is equal to — Ki Substituting this in above equation reads

g==(- Kl—n) (4.85)

Knowing that in 3DEC, K,, is constant, then c; will be an inverse function of aperture. For three cases introduced
by Murphy et al, 2004, meaning n = 0, 1, and 3, ¢; is respectively zero, bh/h, (equation (4.70)), and L/(hE)
(equation (4.74)); comparison of which with equation (4.85) reveals the similarity of 3DEC joint compressibility
with n=3 case of Murphy et al., 2004, where, in both of them, c; is an inverse function of aperture. For the two end
sections in figure 4.18 where the hydraulic aperture is constant and equal to maximum hydraulic aperture or

residual hydraulic aperture, Z_Z is zero; yielding a joint compressibility of zero and indicating a linear diffusion case
of Murphy et al., 2004, in which ¢; is zero.

447 Simulation of the whole stimulation

As mentioned above, Calo et al, 2011 reported a P-wave velocity evolution over a distance of more than 1000 m
in a period of about 3 hours during the hydraulic stimulation of the GPK well in 2000. This is also shown by our
numerical model results in the right subfigures of Figures 4.17 and 4.21 in which both the propagation of fluid
pressure and fracture opening fronts reached to a distance of over 1000 m at time of about 11000 s (i.e., 3 hours).
These results were obtained by simulating the first phase of fluid injection in the undrained boundary condition,
where there was no leakage from the fracture wall and the edge into the surrounding rock matrix. A series of
complementary tests were performed to simulate the full fluid injection process (shown in Figure 4.29) to assess

97



the performance of the numerical models to cover the observed wellhead pressure evolution during the injection
phases and shut-in phase. This was done by first changing the undrained boundary condition to the drained
condition, where the fluid was allowed to flow through the outer plane up to the boundaries of the block, through
which a discharge equal to the injected flow rate was set to complete the drained condition in the model. The
parameters controlling the response of the fracture to the injected fluid were then adjusted to mimic the observed
pressure evolution in the field. Figure 4.30 shows the wellhead pressure evolution obtained from the numerical
simulation compared to the field observation. The numerical curve is obtained from the model where the normal
stiffness of the fracture is set to 40 and 80 GPa/m inside and outside, respectively. In addition, the hydraulic
aperture values on the outside of the fracture were the same as those on the inside of the fracture.

As can be seen from Figure 4.30, the numerical wellhead pressure generally follows the field observations, with
an approximate 1 MPa sharp increase when the injection rate is increased by 10 Is?, a continuous and gradual
increase in the third stimulation stage, and finally a 4 MPa sudden pressure drop in the shut-in phase and then a
gradual decline to a pressure of 5-6 MPa. However, the slope of the pressure drop in the shut-in phase is smaller
in the field observation than in the numerical simulation, suggesting a long-term pressure decline in the field
observation, which is addressed by Weidler et al. (2002) as a result of the lower rock mass permeability of the
deeper reservoir compared to the upper reservoir of Soultz-sous-Foréts. In addition, and among many others, the
more complex geometry of the fracture network compared to a single fracture may be another reason for the
observed difference between the shut-in phase pressure drop in the field observation and the numerical simulation.
Furthermore, during the first and second stimulation stages of the field observation, a well-head pressure of more
than 12 MPa was observed which was dropped for about 1 MPa (as can be seen in Figures 4.29 and 4.30), but was
not apparent in the numerical results, although the pressure curve rose sharply. This could be due to the fact that
the fault behavior in the numerical simulation was elastic, while the filed observation, as could be inferred from
the recorded induced seismic events, occurred in the elastic-plastic regime. In fact, as explained by Weidler et al.
(2002) about the field observation, in the first and second stages, after reaching the peak break-down pressure of
about 12 MPa, the fluid flows along a more permeable medium and thus the pressure decreases continuously, while
in the third stage the fluid pressure front has reached an impermeable outer boundary through which the fluid
pressure rises from 12 MPa to 14 MPa.
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Figure 4.30. Numerical WHP evolution over time at the injection point compared to that measured at the wellhead of the GPK2
well

As mentioned above, the 2000 stimulation operation of GPK2 was accompanied by more than 24000 microseismic
events detected by surface and borehole receiver networks, of which 7200 were selected by Calo et al. (2011) for
4D P-wave tomography. The entire injection operation was divided into 14 sets based on the changes in flow rate
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and fluid pressure that occurred (Figure 4.31), and 4D P-wave tomography was performed on the events that
occurred in each set. Figure 4.32 shows 6 sets out of these 14 where a variation in P-wave velocity can be observed
at a distance of over 1000 m over a period of approximately 3 hours. A measurement point close to the injection
source has been selected on the subplots of Figure 4.32(A), where an approximation of the P-wave velocity
evolution has been plotted against the change in set and flow rate, as shown in Figure 4.32(B). It can be seen that
an increase in P-wave velocity occurs as the flow rate is increased from 30 to 40 and from 40 to 50 Is* when
moving from set 2 to 3 and set 5 to 6, respectively. This behavior is inverse to the fact that any increase in pore/fluid
pressure will decrease the P-wave velocity (Mavko and Vanorio, 2010; Darot and Reuchle, 2000; Todd and
Simmons, 1972). Considering the low permeability medium addressed by Weidler et al. (2002), in addition to the
existence of a fluid pressure/fracture opening front that propagates along the fracture faster than fluid diffusion in
the fractured surrounding medium which was demonstrated in this study, one can state that the overpressure
generated by the injected fluid in the fracture acts as an additive component to the confining pressure of the rock
mass, instead of playing the role of pore pressure enhancement. In this situation, and according to the literature
already mentioned, especially Todd and Simmons (1972), any increase in confining pressure can cause an increase
in P-wave velocity. In our case, an overpressure of 1 MPa acting normal to the fracture plane with a dip and
azimuth of 71° and 144°, respectively, can be translated into a confining pressure component of about 0.6 MPa on
average in all three Cartesian directions, which, based on the results of Todd and Simmons, can produce a 2%
increase in P-wave velocity, assuming an average confining pressure of 90 MPa and a pore pressure of about 50
MPa. This increase in P-wave velocity is comparable to the 10% and 2% increases seen in the field observations
after the first and second injection rate increases, respectively, as can be roughly calculated from Figure 4.32(B).
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Figure 4.31. Numerical WHP evolution over time at the injection point compared to that measured at the wellhead of the GPK2
well (reproduced after Calo et al. (2010))
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Figure 4.32. (A) Evolution of the P-wave seismic velocity at 4.6 km depth during the 2000 stimulation test (after Calo et al.,
2011) on which the Vp measuring point is shown by a yellow circle; (B) Approximate P-wave velocity changes at the yellow
point shown in (A) versus set and flow rate

4.5 Sensitivity Analysis

In this section, it is aimed to investigate the effect of the fracture’s shear and normal stiffness, size, and in-Situ
stress orientation on the velocity of observed pressure front migration and magnitude of maximum pressure. Let
us assume that in all investigated cases the overpressure propagates as a circular disk and the time when the
overpressure reaches the furthest measuring point is a proxy of pressure propagation velocity. The maximum
reachable overpressure is also measured at injection point as another parameter to be investigated against many
other parameters which were changed during sensitivity analysis.

45.1 Fracture Stiffness Effect

First, the sensitivity of the fracture response to fluid injection with respect to normal and shear stiffnesses of the
fracture are analyzed. The analysis carried out by first maintaining the normal stiffness on initial value of 80 GPa/m
and changing the shear stiffness to values lower and higher than its initial magnitude of 20 GPa/m. Then the same
procedure was performed by keeping the shear stiffness on initial value and changing the normal stiffness. These
variable values were 10 GPa/m, 30 GPa/m, 50 GPa/m, 80 GPa/m, 150 GPa/m, 180 GPa/m, and finally 300 GPa/m.
Onset time of pressure build up at furthest measuring point at a distance of 1539 meters as a function of fracture
normal stiffness are illustrated in figure 4.33.

In the graphs of figure 4.33, the pressure build-up time decreases by increase of the fracture normal stiffness (figure
4.33, left), while the maximum WHP at the injection point increases by increase of the normal stiffness (figure
4.33, right). In addition, in figure 4.33, right, shows that the normal stiffness of 10-30 GPa/m produces a WHP
closer to the field observations of about 10-12 MPa.
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Figure 4.33. Effect of normal stiffness of the fracture on the overpressure onset time at the furthest measuring point located at a
distance of 1539 meters related to the injection point (left), and the maximum overpressure (or WHP) at injection point reached
during injection period (right); it can be seen in the figures that the onset time decreases by increase of normal stiffness from 10
to 300 GPa/m following a power law function, contrary to the maximum well-head pressure showing a linear increase by increase
of the normal stiffness.

Figure 4.34 illustrates the same graphs of figure 4.33 for the cases in which the fracture’s normal stiffness
maintained constant on the reference value (80 GPa/m) and the shear stiffness are changed from 10 to 300 GPa/m
to assess its influence on the elastic response of the fracture. As it can be seen in the figure 4.34, left and right it
seems that the fracture’s shear stiffness does not have a meaningful effect on the pressure build-up time at the
furthest measuring point as well as on the maximum WHP at injection point.
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Figure 4.34. Effect of shear stiffness of the fracture on the overpressure onset time at the furthest measuring point located at a
distance of 1539 meters related to the injection point (left), and the maximum overpressure (or WHP) at injection point reached
during injection period (right); it can be seen in the figures that the shear stiffness of the fracture does not have any meaningful

effect on the pressure build-up time or the maximum well-head pressure.

45.2 Fracture Strike Effect

The sensitivity analysis continued with assessment of the effect of the fracture’s orientation with respect to the
direction of the maximum horizontal stress (or in other words the orientation of the in-situ principal stresses) in
geographical frame of reference on hydromechanical response of the fracture against hydraulic stimulation. Here,
this angle is called ¢ (figure 4.35). The { plays an important role on mechanical behavior of the fractures by
controlling the magnitudes of shear and normal stresses resolved on the fracture’s plane. The initial { was 26°+10°
(considering the Shmax Orientation of N170°E+10°, Cornet et al., 2007) and 25°+14° (considering the Sumax
orientation of N169°Ex14°, Valley and Evans, 2007), so we investigated the effect of change of this angle on
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fracture’s hydro-mechanical elastic behavior by assigning 0°, 11° (which is 25°-14°), 16° (which is 26°-10°), 36°
(which is 26°+10°) approximately the same as 39° (which is 25°+14°), 60°, and 90° to {. Since any change in the
{ angle has changed the coordinate of the furthest measuring point, merely considering the pressure build-up time
at that point was not a reliable parameter. Hence, at each case the distance of the furthest measuring point to the
injection point is divided by the pressure build-up time to have the velocity in which the overpressure propagated
to the furthest point and this velocity is used as a proxy to analyze the effect of the fracture strike on the its elastic
response. For each case aforementioned velocity was derived and plotted as figure 4.36. The results reveal that the
angle between the maximum horizontal stress and the fracture strike does not have a significant effect on the
pressure propagation rate (with one exception at the 26° angle) and on the maximum WHP at the injection point.
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Figure 4.35. Schematic view indicating the angle between the maximum horizontal stress and fracture strike
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Figure 4.36. Fracture’s strike effect on the overpressure arrival time to a given measuring point (left), and on the maximum WHP
at injection point (right); it seems that the fracture’s strike does not effectively change the behavior of the fracture in terms of the
pressure propagation and the maximum WHP at injection point

45.3 Fracture Dip Effect

Then, the sensitivity analysis continued by assessing the influence of fracture dip on pressure propagation through
the fracture. Fracture dip varied from 30° to 90° including 71° and 64° which are stated as dip of GPK3-FZ4770
in the literature such as Sausse et al., 2010, and Dezayes et al., 2010, respectively. Figure 4.37, left, shows the
variation of the pressure propagation velocity for different fracture dips, where it can be seen that an increase in
the fracture dip is accompanied by an increase in the pressure propagation velocity. The variation of the WHP at
the injection point is also plotted in Figure 4.37, right; it shows that the behavior of the WHP variation is not
influenced by the evolution of the fracture dip.
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Figure 4.37. Fracture’s dip effect on the overpressure arrival time to a given measuring point (left), and on the maximum WHP at
injection point (right); it might be reasonable to state that the fracture’s dip does not affect the elastic behavior of the fracture in
terms of both the pressure propagation and the maximum WHP at injection point

45.4 Fracture Size Effect

Then, the size of the fracture is changed to analyze the sensitivity of the fracture’s response to fluid injection with
respect to the fracture size. The diameter of the fracture is changed from initial value of 3000 m to 4000, 5000, and
then 2000 m and the corresponding velocity of fluid pressure build-up at the furthest measuring point for each case
are plotted. Figure 4.38 illustrates the corresponding results for each fracture size. It can be seen from figure 4.38,
left, that increase in fracture diameter decreases the onset time of pressure build-up as well as the maximum WHP
at injection point as it can be seen in figure 4.38, right. It is caused by the increase in fracture volume as the fracture
diameter increases from 2 km to 5 km. Therefore, a given volume of injected fluid will be compressed more in a
small fracture than in a large fracture, and consequently will generate more pressure than the latter.
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Figure 4.38. The effect of fracture size variation on overpressure arrival time to a given measuring point (left), and on the
maximum WHP at injection point (right); it seems that the increase in the fracture size decreases both the overpressure arrival
time and the maximum WHP at injection point

455 Initial Hydraulic Aperture Effect

Finally, initial hydraulic aperture of the fracture is changed to analyze the sensitivity of the fracture’s response to
fluid injection with respect to the initial aperture. The initial aperture of the fracture is changed from initial value
of 1.4e-04 m at reference model to 0.5e-04, 1e-04, and then 1.6e-04 m and the corresponding onset time of fluid
pressure build-up at the furthest measuring point and the maximum WHP at injection point for each case are
plotted. Figure 4.39 illustrates the corresponding results for each aperture size. It can be seen from figure 4.39, left
and right, that increasing the fracture aperture does not meaningfully affect the pressure front arrival time or the
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maximum WHP at the injection point. Referring to Figure 4.40, it can be seen that the numerical WHPs are
completely superimposed on each other up to a time of about 250 minutes (15000 seconds), which is approximately
the time required for the overpressure to reach the farthest measuring point at 1539 meters from the injection point.
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Figure 4.39. The effect of fracture aperture variation on overpressure arrival time to a given measuring point (left), and on the
maximum WHP at injection point (right); it seems that the increase in the fracture’s initial aperture does not affect the arrival
time of overpressure and maximum WHP
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Figure 4.40. WHP evolution in time for apertures with different values of initial hydraulic aperture
4.6 Fracture Slip Effect on the Results

So far, in this report the investigations were focused on the elastic response of the fracture to fluid injection;
meaning that the permanent shear displacement along the fracture when reaching the failure criterion (Coulomb
friction law) were not taken into account. In this section, it is aimed to assess characteristics of pressure propagation
through the fracture when fracture slip is allowed to take place once the Coulomb failure criterion is met, following
an approach similar to first studied no-slip case. To do so, in 3DEC, the Coulomb slip law with weakening is
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applied to the fracture instead of previously used elastic constitutive law. So that, the fracture will behave based
on pre-defined parameters of the Coulomb slip law (cohesion and friction coefficient), but the cohesion strength
of the fault will be set to zero once the slip occurs (Itasca, 2016) (equation 4.82). This instantaneous loss of strength
approximates the “displacement-weakening” behavior of joint (3DEC manual, 2016).

{r = po, + C before slip occurs (4.82)

T = ug0, after slip occurs

where pug is dynamic friction coefficient which is, by default, equal to the static friction coefficient. It is also
possible to define dilation angle of the fracture surface asperities to take into account the normal displacement
caused by fracture dilation during slip, however it is assumed to be zero at this step.

The comparison of WHP evolution at injection point during stimulation for slip fracture and no-slip fracture and
field observation are shown in figure 4.41. It can be seen that the pressure evolution for slip fracture is almost
identical with the no-slip fracture except that there are some irregular section along the curve which might be due
the stress drop event once slip occurs.
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Figure 4.41. WHP evolution at injection during hydraulic stimulation for slip fracture compared to the field WHP and WHP for
no-slip fracture

The pressure front migration along the fracture diameter can also be found in figure 4.42 (left sub-figure) in which
it can be seen that the pressure build-up arrives to the furthest measuring point at the top frontier of the fracture
earlier than that for the bottom, so that the fluid upward migration is faster than that of downward. It might be
because the stress state of the model as shown in figure 4.8, increases with depth and consequently there exist less
confining stress at shallower depth compared to deeper parts of the fracture. It seems that the propagation process
is more or less identical between no-slip and slip fractures; however, the slip affects the velocity of migration (less
velocity in slip fracture compared to the no-slip one). It seems to be mostly related to the difference between
constitutive models of the cases. In no-slip fracture, the mechanical behavior of the fracture merely is controlled
by the normal stiffness of the fracture, as concluded from sensitivity analysis section. But, for the slip case, the
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mechanical behavior is also controlled by the shear and effective normal stresses acting on the fracture plane as
well as the intrinsic shear strength of the fracture (which is itself a function of the effective normal stress acting on
the fracture plane). So that, any overpressure will increase the fracture aperture (and simultaneously will decrease
the effective normal stress) as long as the intrinsic shear strength of the aperture falls below shear stress acting on
the fracture plane. After that, a stress drop will occur which may influence the fluid pressure evolution in time (the
fluctuation spots, or the irregular sections, on the pressure curves of figure 4.38). By assuming as same proxy for
pressure propagation velocity as elastic behavior cases (section 4.4), the required time for pressure propagation
can be determined as equal as 13446 and 33858 seconds respectively for upward and downward propagations
(compared to 12805 and 14284 seconds for the no-slip case of section 4.4). In figure 4.39 it can be seen that the
upward pressure propagation profile for both cases of no-slip fracture and slip fracture are almost matched, which
is not the case downward profiles. Moreover, application of Shapiro et al., 1997 pressure diffusion equation to the
data deduced from figure 4.38 vyields, respectively, upward and downward effective hydraulic diffusivity of
approximately 11 and 6 m?/s in comparison with 7 m?/s obtained by Calo et al., 2011; indicating the effect of
fracture shear slip on evolution of hydraulic diffusivity when it is compared to 13 m?%/s on average computed for
no-slip condition at 4.4.5.

107



-3200

-3600

-4000

-4400

(m)

-4800

Depth

-5200

-5600

-6000

-6400

Fluid Pressure Migration

0 10000 20000 30000 40000

Time, (s)

Distance, (m)

Distance (m)

10000

1000

100

10000

1000

100

Upward Velocity Profile

T T T

d = 1261104
RZ=0.99
L)

111 aal I ] 1 L

100

1000 10000 100000
Time, (s)

Downward Velocity Profile

T T

d = 23.98t4
R2=0.99 -

L1 nal 1 ool 1 Lo

100

1000 10000 100000
Time (s)

Figure 4.42. Pressure front migration from injection point at about 4.7 km to the top and bottom of the fracture for the fracture
with shear slip; the left-hand side figure is plot of WHP build-up onset time versus depth of measuring points on which the red
curves are WHP variation in time determined using the process explained in figure 4.14. The right-hand side sub-figures are
illustration of upward and downward velocity functions along the fracture where the both profiles obey a power-law function, but

the exponent of downward function is 0.4 compared to 0.5 of upward one
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Figure 4.43. The comparison of fluid pressure propagation profile for two cases of no-slip fracture (black curve) and slip fracture
(red curve); while the upward propagation are almost identical in both fractures, the downward propagation velocity might be of
double in no-slip case compared to the slip one

Fracture’s local aperture opening migration for slip fracture, as shown in figure 4.44, exhibits the same power-
law behavior as for no-slip fracture. It is the same behavior observed in figure 4.42 for fluid pressure evolution in
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time at injection point. Furthermore, migration of the local aperture opening, shown in the right-hand side sub-
figures of 4.44, obeys a power law with exponents respectively 0.47 and 0.38 for upward and downward velocities,
approximately as equal as those observed for pressure propagation in figure 4.42. Worth to note that, for the no-
slip fracture case, these exponents are approximately identical (and equal to 0.5) for both fluid pressure and local
aperture opening migrations (see figures 4.17 and 4.21).
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Figure 4.44. Migration of the fracture’s local aperture opening to the top and bottom of the fracture for the fracture with shear
slip; the left-hand side figure is plot of local aperture opening onset time versus depth of measuring points. The right-hand side
sub-figures are illustration of upward and downward velocity functions along the fracture where the both profiles obey a power-
law function, but the exponent of downward function is 0.38 compared to 0.47 of upward one

Further assessment between pressure increase and local aperture opening is done by plotting one versus the
other (as done in figure 4.19 for no-slip fracture) to evaluate influence of shear displacement on effective
normal stiffness of the fracture. The result can be found in figure 4.45 in which the effective normal stiffness
is again negative inverse of the slope of the graph and equal to approximately 79.43 GPa/m (note that the
applied normal stiffness to the fracture is 80 GPa/m). However, the relation between the effective normal
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stress and the local fracture opening are more or less identical for both no-slip and slip fractures, but as
shown in figure 4.46 the migration of the local aperture opening along the no-slip fracture is faster than that
of slip one, just like pore pressure migration velocities compared in figure 4.43.
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Figure 4.45. Local hydraulic aperture variation versus fluid pressure values at injection point; as it can be seen the numerical
relation between effective normal stress acting on the fracture plane and the local hydraulic aperture at injection point is linear in
which the slope of the fitted line is approximately negative inverse of the normal stiffness of the fracture (-1/-1.259e-11 = 79.43

GPa/m)
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Figure 4.46. The comparison of local fracture opening propagation profile for two cases of no-slip fracture (black curve) and slip
fracture (red curve); it can be seen that the fracture opening migration in no-slip fracture is a bit faster than that of slipped
fracture.
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4.6.1 Comparison with Seismicity Evolution

Figure 4.47 illustrates depth of seismic events versus of time for seismic activities recorded during hydraulic
stimulation of the year 1993 of GPK1 well of Soultz-sous-Foréts at depth of about 3 km. It can be seen in the figure
4.47 that the upward and downward velocity of seismicity migration are respectively about 0.3 and 1.1 mm/s. If
we assume that the seismic events are induced by fluid overpressure and the seismic wave velocities are
independent of magnitude of fluid injection flow rate (Alghannam & Juanes, 2020), then it might be reasonable to
compare the seismicity migration velocity observed in 1993 GPK1 stimulation (with flow rate of 3 I/s) to pressure
propagation velocity observed in our simulation (with flow rate of 30 I/s). This comparison is made because no
other data are available for seismic propagation during the 2000 hydraulic stimulation of the GPK2 well. Referring
back to figure 4.46, one can see that the furthest measuring points are located at a distance of approximately 1100
and 1050 meters, respectively, above and below the injection point. Moreover, the aperture opening propagation
requires 8600 and 14500 seconds to reach these measuring points, according to figure 4.45. Assuming the same
seismicity velocity, shown in figure 4.47, to be valid in the depth of current study, the arrival time of seismicity to
abovementioned points will be 3.68e6 and 0.9e6 seconds, respectively upward and downward. One possible reason
for this significant difference, among many of others such as various possible values for initial aperture, fracture
roughness, friction law, aseismic slip, temperature effects, etc., might be due to the fact that, at our simulation the
effect of fluid leak-off to the surrounding rock matrix was not taken into account by defining an impervious rock
matrix. The leak-off causes decrease in the volume of the fluid trapped in the fracture which, in turn, compensates
the fluid pressure propagation velocity. The same role might be played by background fracture networks where a
considerable volume of injected fluid can flow through an extended network of interconnected discontinuities.
This factor might be crucial to be precisely analyzed especially when the medium of study is crystalline rock such
as granite of Soultz-sous-Foréts.
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Figure 4.47. Depths of seismic events versus time recorded during hydraulic stimulation of well GPK1 at 1993 (reproduced after
Bourouis and Bernard, 2007)
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Worth to note that, the variation of slip front along the fracture for time periods of 6 hours from beginning of
injection is shown in figure 4.48. It can be seen that, the slip front migrates upward faster than downward, just like
the pressure front migration behavior shown in figure 4.42.

Figure 4.49 also illustrates the slip direction of the fracture in the model. Knowing that the X direction is strike of
the fault and —Z direction is dip direction, then the growth of the slip area, as can be seen from sequence of figures
in 4.48, is approximately in the direction of shear stress (yellow arrow); consistent with analytical results of table
4.5 for normal faulting regime with maximum horizontal stress of 0.95 times of vertical stress.

Evolution of shear displacement (in meter) and shear stress (in Pa) at injection point during stimulation period can
also be found in figures 4.50 and 4.51. It can be seen from figures 4.51 and 4.52 that the initial shear stress at
injection point located at depth of 4703 meter is about 24.5 MPa which is almost consistent with analytical value
of 22.8 MPa calculated in section 3, tables 4 and 5. Figure 4.52 also demonstrates shear stress as a function of
shear displacement for a measuring point located at a distance of 1105 m from injection point. The average shear
stress as a function of average shear displacement of whole fault is plotted in figure 4.53. Another interesting plot
might be average shear stress in terms of average effective normal stress acting on the fracture as shown in figure
4.54. The slop of this curve shows friction coefficient of the fracture as equal as 0.81.

21600s 43200s

3DEC_DP5.20

©2020 Itasca (ﬁnsulling Group, Inc.

DFN dfn name Label
Fractures (1)
Joint shear displacement magnitude|
< 1.5768E+00
1.5000E+00
1.4000E+00
1.3000E+00
1.2000E+00
1.1000E+00
1.0000E+00
9.0000E-01
8.0000E-01
7.0000E-01
6.0000E-01
5.0000E-01
4.0000E-01
3.0000E-01
2.0000E-01
1.0000E-01
3.6183E-07

Figure 4.48. Propagation of fracture slip front throughout the fracture plotted every 6 hours after start of injection; the finite-size
fracture is represented by black circle and the slip front is shown by gray scale. Shear displacements are in terms of meters.
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Figure 4.49. Direction of shear displacement (slip) of the simulated fracture
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Figure 4.50. Evolution of shear slip in time at a measuring point located at a distance of 1105 m from injection point
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Figure 4.51. Evolution of shear stress in time at a measuring point located at a distance of 1105 m from injection point
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Figure 4.53. Average shear stress acting on the fracture as a function of average shear displacement along the fracture
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Figure 4.54. Average shear stress as a function of average effective normal stress acting on the fracture plane

It is worth to note that, the magnitudes of the shear slip shown in above figures seems to be far from reality. The

authors are aware of this issue and will tackle it during future steps.
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4.7 Conclusion

At present work it was aimed to numerically simulate the large-scale hydraulic stimulation of well GPK2 of Soultz-
sous-Foréts performed in the year 2000 to better characterize both elastic behavior and slip of the fault against
hydraulic stimulation. The 3DEC distinct element method (DEM) of ITASCA was used to stimulate GPK3-
FZ4770 fracture introduced by Sausse et al., 2010 and Dezayes et al., 2010 embedded in an elastic, homogeneous,
isotropic, and impermeable block of granite by injection of water for 24 hours at a constant flow rate. The results
indicated that a fluid pressure front exists and migrates as a function of v/t; leading to an average effective hydraulic
diffusivity of 13 m?/s compared to 7 m?/s obtainable from Calo et al., 2011, where over 1000 m of \,, variation is
observed in about 3 h. Then, a complementary simulation with variable flow rate was performed and found that
the fluid pressure propagated as a function of ¢t. These behaviors were also seen in the fracture’s local hydraulic
aperture owing to linear relation between effective normal stress and fracture aperture due to the fact that the
fracture stiffness is considered constant in 3DEC calculations.

Then, the findings of both aforementioned injection scenarios were compared to the model introduced by Lengliné
et al., 2017. This model is in fact a simple advective model (obeying v/t behavior) assuming a constant aperture
along the open part of the crack and a sharp front between open and close part of the crack with no diffusion
equation, however we tried to generalize the model to our numerical results by using time and space varying
fracture aperture derived from 3DEC during injection period. The comparison revealed the fact that in the first
injection scenario the fluid pressure propagated a little faster than Lengliné et al., 2017 prediction which might be
due to the fact that in their model the fracture is initially assumed to be closed and it is opened to its maximum
aperture once fluid flow reaches it (binary behavior), but the fracture in our model has an initial non-zero aperture.

Finally, a more advanced model of diffusion, introduced by Murphy et al., 2003, was used to evaluate the numerical
aperture propagation data which were obtained from the first stimulation scenario. They divided whole the cases
which a fracture might be encountered during fluid injection into two cases of linear and non-linear diffusion. The
linear diffusion take place when the pressure evolution is not large enough to generate aperture opening. In this
case the fluid flows in the space between two planes forming the fracture (a v/t behavior). The non-linear diffusion
is divided into two cases of “joint in contact” and “joint lift-off” at which the fracture opening due to fluid injection
happens, but in the latter the whole normal stress which keeps the fracture planes together is overcome by the fluid
pressure and the whole hanging wall moves up. Murphy et al. distinguished these three case and corresponding
equations by assigning a variable of n which is respectively 0, 1, and 3 for linear diffusion, joint in contact, and
joint lift-off cases.

Here, the dimensionless parameters introduced in Murphy et al. paper was utilized to plot the aperture variation
along the distance from injection point in different time periods. These periods were actually the time passed from
beginning of the hydraulic stimulation. This time partitioning was chosen to better investigate the existence of the
propagation front along the fracture during injection period and started from 1800 s, continued to 3600 s, 7200 s
and finally 14290 s (which was approximately the time when the WHP at the furthest measuring point exceeded
of 1 MPa). These plots were shown in figure 4.28. Comparison of figure 4.27 (which is a plot dimensionless
aperture versus dimensionless distance from injection point achieved from semi-analytical equations of Murphy et
al., 2003) reveals the fact that, in our simulation, the aperture propagation along the fracture most probably obeys
the case of “joint in contact” (n=1). It is also consistent with the achievement of aforementioned comparison of
numerical results with Lengliné et al. model where the numerical propagation was shown to be a bit faster than v/t
behavior represented by Lengliné et al., 2017.
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Moreover, according to Murphy et al., 2004, the propagation distance, d, varies with t to power of 0.33, 0.5, and
0.67, respectively for n =0, 1, and 3. Comparison of the numerical results of present study with aforementioned
values from Murphy et al., 2004, demonstrated the similarity of n=1 case with the aperture propagation behavior
in no-slip fracture where the exponent of 0.49 can be seen in the right sub figures of figure 4.21, again consistent
with previous conclusions.

Contrary to above observations, analytical comparison between joint compressibility introduced by Murphy et al.,
2004, with that of 3DEC demonstrated similarity of 3DEC joint compressibility with n=3 case of Murphy et al.,
2004, where in both cases the c; was an inverse function of aperture. However, for the two end sections of aperture
evolution with respect to effective stress, where the hydraulic aperture is constant and equal to maximum hydraulic

aperture or residual hydraulic aperture, Z—Z is zero; yielding a joint compressibility of zero and indicating a linear
diffusion case of Murphy et al., 2004, in which ¢; is zero.

Numerical simulation of the entire hydraulic stimulation procedure, in which, compared to the initial numerical
simulation of the first stage of fluid injection, the boundary condition was changed from the undrained state to the
drained one, and some modifications were also made to the normal stiffness of the fracture both inside and outside
the fracture. In addition, the hydraulic aperture values on the outside of the fracture were the same as those on the
inside of the fracture. It is found that the numerical wellhead pressure generally follows the field observations,
with a sharp increase of about 1 MPa when the injection rate is increased by 10 Is?, a continuous and gradual
increase in the third stimulation stage, and finally a sudden pressure drop of 4 MPa in the shut-in phase and then a
gradual decline to a pressure of 5-6 MPa. However, the slope of the pressure drop in the shut-in phase is smaller
in the field observation than in the numerical simulation, suggesting a long-term pressure decline in the field
observation, which is addressed by Weidler et al. (2002) as a result of the lower rock mass permeability of the
deeper reservoir compared to the upper reservoir of Soultz-sous-Foréts.

To fully characterize the observed behavior of fluid pressure/fracture aperture against fluid injection, a series of
sensitivity analysis carried out on various parameters such as normal and shear stiffness of the fracture, relative
orientation of the fracture plane and in-situ stresses, the dip of the fracture, and finally the size of the fracture.
Among these parameters, it was found that the elastic behavior of the fracture (here as rate of fluid pressure
propagation and maximum WHP at the injection point) was significantly affected by normal stiffness, fracture
size, and fracture opening, while the changes were not significant against variation of other parameters. In addition,
holding all evaluated parameters constant during the sensitivity analyses, it can be seen that the normal stiffness
of 10-30 GPa/m produces a WHP closer to the field observations of about 10-12 MPa.

In addition, taking into account the effect of shear slip of the fracture based on Coulomb slip law with weakening
showed a decrease in pressure propagation velocity compared to the no-slip fracture; however, these velocities (by
taking the disturbance arrival time to a specific point as a proxy of the wave velocity) were higher than that
observed at the shallower depths during stimulation of GPK1 well at 1993 reported by Bourouis and Bernard,
2007. One possible reason for his difference, among many of them such as various possible values for initial
aperture, fracture roughness, friction law, aseismic slip, temperature effects, etc.), might be due to the fact that, at
our simulation the effect of fluid leak-off to the surrounding rock matrix was not taken into account by defining
an impervious rock matrix. The leak-off causes decrease in the volume of the fluid trapped in the fracture which,
in turn, compensates the fluid pressure propagation velocity. The same rule might be played by background fracture
networks where a considerable volume of injected fluid can flow through a huge network of interconnected
discontinuities.
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Chapter 5

5 Estimation of Effective Elastic Properties of Fractured Rock Mass

5.1 Introduction

Rock mass is composed of discontinuities at all scales, intact rock surrounding these discontinuities and the
fluid which flows through the discontinuities. These discontinuities are of engineering importance due to
their effects on the mechanical and hydraulic behavior of rock masses (Singh, 1973; Bieniawski, 1973,
1978; Barton et al, 1974; Amadei & Goodman, 1981; Hoek, 1994; Hoek et al, 1995; Hoek & Diederichs,
2006). There are usually four types of discontinuities in the engineering classification composed of bedding
surfaces, slip surfaces, tension fractures, and shear fractures (Cai and Horii, 1992). A discontinuity can be
characterized with its position or density, orientation (dip and dip direction), size, and thickness or hydraulic
aperture. They may be defined in a stochastic and/or deterministic approach. In the deterministic version,
each fracture and fault is presented as a plane with specific characteristics of dip, dip direction, size,
position, and hydraulic aperture. In stochastic type, fractures and faults are presented statistically as a set
of planes in which their characteristics are related to a distribution model such as log normal, gamma law,
or power law.

The influence of fractures in altering the effective elastic moduli of intact rock was first noted by Simmons
and Brace (1965) and Walsh (1965). Compared to intact rocks, jointed rock masses are weaker and more
deformable, and are highly anisotropic and heterogeneous (Cai and Horii, 1993). Constitutive modeling of
jointed rock masses has long been a subject of interest, and numerous models have been developed in
attempts to simulate their mechanical responses, which are divided into two groups of models: discrete
models and continuum models. The discrete models, in which the joints are implicitly modeled, often leads
to very large and complex problems in the cases with pervasive and closely spaced joints. In continuum
models, the joint rock mass is treated as a continuum material with equivalent material properties which
reflects the influence of the joints (Cai and Horii, 1993). The latter model is easier to handle in the cases
where the dimension of the underground structures are great enough compared to the heterogeneity size
(Pouya & Ghoreychi, 2001) and many authors (Budianski & O’Connell, 1976; Hashin, 1983; Oda, 1988;
Huet, 1990; Cai & Horii, 1992, 1993; Kachanov, 1980; Le Ravalec & Gueguen, 1996) have published their
investigations in this area.

Here, it is aimed to numerically determine the effective mechanical properties (Young’s modulus and
Poisson ratio) of a 100x100x100 m? fractured rock block in which the fractures’ normal and shear stiffnesses
are defined based on non-linear stress-dependent equations introduced by Bandis et al., 1983. For that, the
3DEC of Itasca is used to first do a few benchmarking tests on the intact rock samples. Then, a set of
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verification tests carried out on the implemented non-linear fracture behavior. This phase was composed of
a rock block of 1x1x2 m® containing a 0.5 m diameter circular finite fracture with dip and dip direction of
45° and 90°, respectively. The resulting numerical normal Stress-displacement (for both interlocked and
mismatched joints as described by Bandis et al., 1983) and shear stress-displacement curves were then
compared to the analytical curves to verify the behavior of the developed model. This model was then
generalized to a block of 100x100x100 m? hosting a discrete fracture network (DFN) located under in-situ
stress state of Soultz-sous-Foréts geothermal reservoir at a depth of approximately 4.7 km to evaluate
effective elastic moduli of the fractured rock mass.

5.2 Methodology

Mechanical behavior of a rock mass not only depends on properties of intact rock, but also, and to a high
extent, is a function of mechanical and physical characteristics of the existing fractures. In Soultz-sous-
Foréts, it is found that the macro-fractures decrease the strength of the rock mass (Villeneuve et al., 2018).
Therefore, to effectively evaluate effective elastic moduli of the rock mass located in the field of interest,
it is necessary to take into account the role of discontinuities on mechanical behavior of the rock. In the
current project, 3DEC distinct element modeling tool of Itasca was utilized to evaluate effective elastic
moduli of granitic basement in the Soultz-sous-Foréts geothermal reservoir. For that, stochastic DFN
previously characterized by some researchers such as Valley, 2007, Massart et al., 2010, and Afshari Moein
et al., 2019 and 2021, were embedded in a cubic block made of granitic intact rock basement of Soultz-
sous-Foréts and the resulting rock mass block underwent some true triaxial compressive stress tests.
Measured values of average axial and lateral stress and strain components in X-, Y-, and Z-directions were
then used to evaluate effective elastic moduli of the fractured rock block.

5.2.1 Discrete Fracture Network (DFN)

A DFN can be characterized with fracture position or density, fracture orientation (dip and dip direction),
fracture size, and fracture thickness or hydraulic aperture. DFNs may be defined in a stochastic and/or
deterministic approach. In the deterministic version, each fracture and fault are presented as a plane with
specific characteristics of dip, dip direction, size, position, and hydraulic aperture. Stochastic scaling of
fracture system has widely become an active research field in the last 50 years where, fractures and faults
are presented statistically as a set of planes in which their characteristics, e.g. size distribution, are scaled
by a distribution model such as log normal , exponential law, gamma law, and power law. Bonnet et al.,
2001, has provided a description of use of these models where it can be found that lognormal distribution
is well-suited for fracture length distribution (Priest and Hudson, 1981; Rouleau and Gale, 1985),
Exponential law has been widely used to describe the size of discontinuities (Cruden, 1977; Hudson and
Priest, 1979, 1983; Priest and Hudson, 1981; Nur, 1982; Carbotte and Mc Donald, 1994; Cowie et al.,
1993b) and gamma law is common to use in fault and earthquake statistics and seismic hazard assessment
(Davy, 1993; Main, 1996; Kagan, 1997; Sornette and Sornette, 1999). Numerous studies are performed at
various scales and in different tectonic settings and published results indicate that although some fracture
systems are best described by scale-limited laws, i.e. lognormal and exponential, but it is now recognized
that power laws and fractal geometries provide more appropriate and applicable descriptions for
characterization of fracture networks (Bonnet et al., 2001). The main point of the power law and fractal
scaling is the absence of characteristic length scales in the fracture growth process and having upper and
lower bounds (Bonnet et al., 2001).
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Davy et al., 1990, proposed a first order dual-power-law model that links the fractal spatial patterns of
fractures to power-law distributions of fracture length and fracture centers as:

n(l,L)dl = a.LP.17%.dl, 1€ [Lyin bmax]  (5.1)

where n(l,L)dl is the number of fractures having a length between | and I+dl in a box of size L, Dw is the
mass dimension of fracture barycenter, a is the exponent of the frequency distribution of fracture lengths,
and o is a fracture density term which is not essentially equal to the common fracture density values such
as Pio or P3; but is, in fact, the number of fractures, trances or fracture lengths, or intersections which is
required to cover the fractal box or surface or line (Bonnet et al., 2001). In the model, it is assumed that the
length distribution of fractures follows a power law, but equation (5.1) is valid regardless of Dv value, even
for a non-fractal distribution of elements in a plane (Dw = 2), or in a volume (Dm = 3) (Bour et al, 2002).

Methods for Computing Size Distribution

Frequency, frequency density, and cumulative frequency distributions are three different types of
distribution which might be used to characterize fracture size data (Bonnet et al., 2001). The value of the
power law exponent, a in equation (5.1), depends on the type of distribution on which the analysis is based
as well as on the bin type if it is linear or logarithmic (Bonnet et al., 2001). Table 5.1 is a comparison
between the power law exponent values for different types of binning and distributions.

Table 5.1. Relationship between distributions and bin types with their exponents (Bonnet et al, 2001)

Type of distribution

Logarithmic Binning

Linear Binning

Frequency a—1 a
Density a a
Cumulative a—1 a—1

For a population of fractures that follows a power-law model, frequency distribution of fracture size can be
expressed (Bonnet et al., 2001) as

N(L) =a.l"%dl (5.2)

Where N (L) is the number of fractures whose length belong to the range of [[,l + dl] withdl < [, a is a
density constant and a is the power law exponent. Davy, 1993, defined the density distribution as the
number of fractures belonging to an interval divided by the bin size as

n()="2=a1% (53)

As long as dl is small enough, the density distribution is independent of the chosen bin type (Bonnet et al,
2001). For a power-law population exhibited in a log-log plot of N(L) or n(l) in terms of [, the slope of the
straight line fitted to the distribution gives the exponent of the power law (Reches, 1986; Scholz and Cowie,
1990). Looking at equations (5.2) and (5.3) reveals that a small change in dl may have a significant effect
on the number of fractures appeared in an interval, hence the choice of dl is crucial in the sense that it
defines the degree of smoothing of the distribution trend (Bonnet et al., 2001). Davy, 1993, introduced an
objective method for determining an optimum dl size at which n(l) shows the lowest fluctuations.
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The cumulative distribution is the number of fractures whose length is larger than [ and corresponds t the
integral of the density distribution (Bonnet et al., 2001) as

c) = [™ an)dl  (5.4)

where L., IS the largest fracture length in the population. Worth to note that if n(l) is a power-law
distribution with the exponent of a, then and according to table 5.1., the C(1) will also be a power-law
distribution with the exponent of a — 1, which is commonly denoted as ¢ (Childs et al., 1990; Walsh et al.,
1991; Jackson and Sanderson, 1992; Cowie et al., 1993a; Pickering et al., 1997). The advantage of
cumulative distribution compared to the other two distribution types is that it is easily computed and the
data binning is not necessary (Bonnet et al., 2001), but on the other hand, its high sensitivity to finite size
effects can be considered as a disadvantage for cumulative distribution type.

Moreover, all observed fracture populations suffer from “truncation” and “censoring” effects that alter the
appearance of the fracture length distributions. Truncation refers to the fracture lengths that are not spotted
in the sampling operation due to the resolution problems and hence are not reported in the distribution. This
problem imposes a shallow slope of the distribution trend at the lower end of the scale range (small fracture
lengths). Censoring happens when the long fractures’ real length are not correctly sampled because they
overpass the observation region and in consequence causes an artificial steeping of the distribution trend at
the upper end of the scale range (large fracture lengths) (Bonnet et al., 2001).

Methods for Computing Fractal Dimension

The great advantage of the model presented in equation (5.1) is to allow the derivation of the fracture density
term, a, which fixes the number of fractures of a given length per unit of “‘fractal’” area (Davy et al., 1990).
The validated model can then be used for scaling of some other properties of the fracture network, e.g.
fracture density and fracture connectivity (Bour and Davy, 1997, 1998; Berkowitz et al., 2000).

Mandelbrot, 1982, described mathematical theory of the fractals and Feder, 1988, Falconer, 1990, and
Vicsek, 1992, gave more information regarding that. It is very important to keep in mind that the fractal
dimension does not completely define the geometry of the fracture system, and a complete characterization
should include various geometrical attributes such as density, length, orientation, etc. (Bonnet et al., 2001).

Depending on the measured parameter, there are different methods of computing fractal dimension.
According to the classical definition of the fractal, it is equal to the number of segments, circles, or spheres
of dimension d equal to 1, 2, or 3, and of characteristic length scale r , necessary to cover the part of fractal

object included in volume R%. This number should vary as N(r,R) ~ (§)D, where D is the fractal
dimension and N (r, R) x r¢ is an estimate of the length, surface, or volume of the fractal object. Based on
this definition, D may be obtained (Bonnet et al., 2001) as

InN(r)

b= tmam

(5.5)

Meaning the typical box-counting method where the fractal dimension is computed for infinitely small
details of the objects, or
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D = lim InN(R)
R—oo In(R)

(5.6)

Which is obtained by increasing the volume limiting the fractal object.

In the box-counting method, the number of boxes of size r, required to cover the fractal object is counted
and should vary as

N(r)~=rP (5.7)

Thus, by log-log plotting of N(r) versus r, the slope of the fitted straight line can be reported as fractal
dimension, D, e.g. works performed by Okubo and Aki, 1987; Barton and Larsen, 1985; Barton et al., 1986;
Barton and Hsieh, 1989; Barton, 1995a, Chiles, 1988.

Researchers generally benefited from mass method, at which the mass of the object replaces its volume in
the definition and scales as

M(R) ~ RPM  (5.8)

where D,, is called mass dimension and is not essentially equal to D because it refers to different
geometrical properties of the object. Davy et al., 1990 and Sornette et al., 1993, have defined the mass of
the fracture pattern as the total fracture length included in disks of radius r. By averaging over typically
100 disks centered on the fracture pattern, a function such as

L(r)=rPm (5.9)

may be obtained which explains the variation of the L(r) as a function of r. Equivalently, D,, is also called
mass dimension. These two methods are illustrated in figure 5.1.

b

T

NI

=i

Figure 5.1. (a) Mass dimension method, where the total length of the fracture lying in a disk of radius r is obtained, and (b) the
box counting method, for which the system of size L is covered by a regular mesh of size r; showing two different mesh sizes in
which the fracture contained boxes are shaded whereas empty boxes are left blanc (reproduced after Bonnet et al., 2001)

Another method which is commonly used for computing the fractal dimension of fracture sets is the two-
point correlation function (Hentschel and Procaccia, 1983) which gives the probability that two points
belong to the same structure (Bonnet et al., 2001). While the box-counting method suffers from strong

124



effects of finite size, the two-point correlation function methods is less affected and seems a better method
to derive the scaling exponent of the spatial distribution of the fracture centers in 2D outcrops (Afshari
Moein et al., 2019; Bonnet et al., 2001; Bour et al., 2002; Vicsek, 1992). This method can be described
(Hentschel and Procaccia, 1983) as

C2(r) = 35 Na()  (510)

or (Bour et al., 2002; Afshari Moein et al., 2019, 2021) as

C(r) = (Nz_l) Ng(r) (5.11)

In which N is the total number of points and N is the number of pairs of points/fracture barycenter whose
distance apart is less than » (Hentschel and Procaccia, 1983). Hence, this definition is based on a cumulative
frequency and for a fractal population of the points, it is expected to have

C,(r) =rPc  (5.12)

Where D, is the correlation dimension of the system (Bonnet et al., 2001). This technique is used to describe
the spatial distribution of the fracture barycenters, which are defined as the midpoints of the fracture traces
(Davy et al., 1990; Sornette et al., 1993; Bour and Davy, 1999). According to Hentschel and Procaccia,
1983, the correlation dimension in (5.12) is equivalent to the correlation dimension obtained from the box-
counting method. Bour, 1997, verified that the both models lead to similar results. The two-point correlation
function therefore gives an accurate estimation of the mass dimension which fixes the scaling of the number
of fractures in a box of size L in the model presented in equation (5.1) (Bour et al., 2002). Noteworthy is
that the two-point correlation function method is more effective at distinguishing natural fracture patterns
from purely random ones compared to the box-counting method (Bour, 1997).

Relation between Spatial Distribution and Topological Dimension of DFN

According to Bonnet et al., 2001, it seems that there is a misunderstanding between the fractal dimension
concept of spatial distribution and power-law distribution of the other topological dimensions of the fracture
systems such as length, displacement and aperture distribution. It stems from a simple theoretical
fragmentation model (generally known as the Apollonian model in physics) originally proposed by King,
1983, and Turcotte, 1986 and 1992, which gives rise to a power-law length distribution, exponent of which
was equated to the fractal dimension of the system. Following this, many researchers incorrectly concluded
that the system is fractal in a condition that the length distribution is power law (Bonnet et al., 2001). In
fact, the fractal dimension term should be only applied for description of the spatial distribution of fractures
(Mandelbrot, 1982). A fractal network indicates a spatial correlation and organization between fractures
that may be quantified by a fractal dimension that is independent of the distribution of the other fracture
parameters such as length. On the other hand, fractures may be nonfractal (i.e. randomly distributed in the
space) while other parameters may follow a power law distribution model (Bonnet et al., 2001; Bour and
Davy, 1997). Therefore, the dual power-law model represented in (5.1) contains no direct relationship
between fractal dimension and power-law exponent and hence it is called first order model (Afshari Moein
etal., 2019).
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Among a few studies carried out on analysis of spatial and length distribution of the fracture networks (e.g.
Davy et al., 1990 and 1992; Sornette et al., 1993), Bour and Davy, 1999, have proposed that the fractal
dimension and the length distribution exponent are related through the relation

D=(a—1)/x (5.13)

where x is the exponent indicating the average distance from a fracture barycenter to its nearest neighbor
with larger length. The case of a = D + 1 of the fragmentation model introduced by King, 1983, and
Turcotte, 1986, corresponds to a particular self-similar case in which x is equal to 1.

Some other works in this regard are performed by Darcel et al., 2003a, to relate the length of the fracture to
the mean distance of the fracture center to its nearest neighbor in the Hornelen basin of Norway. Davy et
al., 2010, introduced a universal model of fracture scaling based on categorizing the fracture systems to two
regimes of dilute and dense (“dilute” regime for the smallest fractures where they can grow independently
of each other and “dense” regime for which the density distribution is controlled by the mechanical
interactions between fractures) and the inhibiting role that the fractures do not cross the larger one. They
found that those two crude rules resulted in a self-similar distribution whose exponents and density term
are fully determined by the fractal dimension and a dimensionless parameter y that contains the information
of the fracture orientations and correlations.

Relation Between 1D, 2D, and 3D exponents (Stereological Relations)

Another important point of discussion here is the stereological relations between 1D, 2D, and 3D exponents
and fractal dimensions. A detailed explanation of stereological analysis of fractal DFN can be found in
Darcel et al., 2003b. It is obvious that the statistical analysis can be carried out in one-dimensional data
(gathered from well logs and scan-lines, two-dimensional data (provided by outcrop maps and other
images), and three-dimensional data (achieved from seismic surveys and serial sectioning in, for example,
guarries (Gervais and Genter, 1991; Gertsch, 1995). When the size distribution of the disks in 3D follows
a power law, trace lengths in an outcrop of that as well as the length distribution of them in a scan-line are
also power law with exponents of (Marret and Allmendinger,1991; Westway 1994; Marret, 1996; Piggott,
1997; Berkowitz and Adler, 1998)

ap =aszp—1 (5.14)
a;p =azp—2 (5.15)

Similarly, these rules are valid for fractal dimensions (Bonnet et al., 2001) as
Dyp=Dsp—1 (5.16)
Dip=Dsp—2 (5.17)

However, above equations are established based on assumptions of ideal Euclidean shapes or fractal sets,
assuming that all the geometric parameters of the fracture systems are independent and homogeneous
(Bonnet et al., 2001). These assumptions may not be valid in some cases, where, for example, there exists
a correlation between fracture length and position (Ackerman and Schlisch, 1997; Bour and Davy, 1999).
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Extrapolation of power law exponent and fractal dimension results from 1D or 2D datasets to 3D remains
one of the major challenges in the study of fracture systems. Borgos et al., 2000, performed a theoretical
analysis on reconstructing of 3D exponents from synthetic 1D and 2D data and proposed

&p=%p+B  (5.18)

where ¢ is the exponent and 0 < B < 1. Comparison of scaling exponents from acoustic emission data
(3D) and direct fracture trace data (2D) in laboratory experiments of subcritical tensile crack growth by
Hatton et al., 1993, showed that a combination of preferential crack nucleation at the tensile surface and
directional fracture anisotropy led to a scaling equation as

$ap =AX&p+B (5.19)

where the best fitted line to the whole data set yield A = 1.28 + 0.30 and B = —0.23 + 0.36 at which the
error bounds are one standard deviation.

Darcel et al., 2003b, assessed the stereological rules for fractal fracture networks, which means networks
whose fracture-to-fracture correlation is scale-dependent with a non-integer fractal dimension. They
introduced some relations between 1D and 2D as well as between 2D and 3D exponents. These relations
for 1D and 2D are

Dip=1 ay,p <2 and ay,p <Dyp (5.20)
Dip=Dyp—ayp+1, ayp <2 and ap =D,p (5.21)
Dip=D,p—1, ay,=>2 (522)
and for 2D and 3D are
Dyp =2, azp <2 and azp <D3;p—1 (5.23)
Dyp =D3p—asp+1, azp <2 and azp =D3;p—1 (5.24)
Dyp =D3p—1, azp=2 (525

For 1D and 3D relations, Darcel et al., 2003b, found that it is not possible to constrain 3D exponents from
lower-dimension exponents, except when the length exponent is known. Afshari Moein et al., 2019,
analyzed stereological relations of exponents for some synthetic DFN and compared the results with those
deduced from equations 5.20-25 (Darcel et al., 2003b) and found that even when the fracture systems’
length distribution is known, it is not possible to deduce 3D scaling parameters from 1D data.

Therefore, the extrapolation of the exponents from 1D or 2D to 3D are not as simple as the above
theoretically suggested models (Bonnet et al., 2001).

DFN at Soultz-sous-Foréts

The DFN at Soultz-sous-Foréts has been characterized in the literature in both probabilistic (Dezayes et al.,
2004, 2005, 2010a, 2010b; Valley, 2007; Massart et al., 2010, Afshari Moein et al., 2019 and 2021) and
deterministic (Sausse et al., 2010 and Dezayes et al., 2010b) approaches.
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Fracture Orientation

Among those working on the probabilistic DFN, Massart et al., 2010, re-interpreted the whole existing
Ultrasonic Borehole Image (U.B.1) logs and characterized 1878 fractures through the three deep Soultz well
paths (i.e., GPK2, GPK3, and GPK4). These fractures were then labeled from 1 to 9 based on the type of
the fractures shown in table 5.2. Among which, the natural open fractures were labeled 1 to 6, damage
zones were labeled 7, horizontal and vertical induced drilling fractures were labeled 8 and 9. They also used
the main and largest fractures characterized by Sausse et al., 2010, and labeled those 11, 12 and 14. Another
classification on the fractures were carried out according to dip direction; based on that the fractures were
grouped into two conjugated sets of West and East dipping which demonstrated N-S orientation and a mean
dip of 58°-72° and for former set and 69°-74° for the later one (Massart et al., 2010). The Soultz-sous-Foréts
basement is also represented by two different granite facies. The first one is located at depth of about 1200
meters down to 4000 meters is a monzogranite facies which consists of porphyritic granite, rich in potassic
feldspars appeared in quartz, plagioclase, biotite and amphibolite matrix which also can be strongly altered
(Genter, 1989). The second facies, starting from over 4000 meters, is a two micas facies composed of biotite
and muscovite in a gray quartz matrix which is more homogeneous and less concerned by the hydraulic
alteration than the first facies (Dezayes et al., 2005). Information of all fractures are summarized in table
5.3A, B, and C.

Table 5.2. Classification of fractures (Massart et al., 2010)

Label Fracture Type
Discontinuous Open
1
0-25% of UBI trace
Discontinuous Open
2
25-50% of UBI trace
Discontinuous Open
3
50-75% of UBI trace
4 Vuggy Fractures
Continuous Open
5
Fine aperture, more than 75% of the UBI trace
Wide Open
6
Big aperture, more than 75% of the UBI trace
Damage Zones
7
Intense fractures zones
8 Horizontal Induced Fractures
9 Vertical Induced Fractures
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Valley, 2007, analyzed borehole image logs of GPK2, GPK3, and GPK4 wells of Soultz-sous-Foréts and
clustered them to 7 sets based on their orientation. Figure 5.2 illustrates the results of the clustered fractures
where the poles of fractures of all seven sets are plotted on stereonet of lower hemisphere equal area.
According to Valley, 2007, the set 1 to 4 fractures are present along the entire borehole length, whereas sets
5 to 7 are observed at some specific locations. Set 5 fractures are sub-horizontal fractures existing at the
depths above 2.5 km and between 3.2 and 3.8 km. Set 6 and 7 are E-W striking fracture sets occurring
mainly below 4 km depth where set 6 fractures are sub vertical and set 7 fractures are dipping 45°. It can
be deduced from the statistics given in figure 5.2 that 95% of fractures belong to sets 1 to 4 with 3876
fractures compared to the 210 fractures clustered in sets 5 to 7.

Table 5.3. Results of statistical analysis of fracture database (Massart et al., 2010)

A Number of Number of | Number of | Number of | Number of
Label & fracture type Frockicas rate (%) fractures fractures fractures fractures
FACIES 1 FACIES 2 SET W SETE
1_|Discontinuous open traces (25%) 1361 72.47 1170 191 837 524
2 |Discontinuous open traces (50%) 85 4.53 83 2 a7 38
3 |Discontinuous open traces (75%) 30 1.60 21 9 16 14
4 |Vugagy Fractures 125 6.84 117 8 86 39
5 |Continous apen 23 1.22 20 3 17 [
_6_|wide open 13 0.69 10 3 8 5
7 _|Damage zones 82 4.37 g0 2 49 33
8 |Induced subhorizontal drilling fractures 159 8.47 137 22 88 71
Total 1878 100 1638 240 1148 730
Fracture density (Fractures/m) 1.890 0.952 0.18 0.12
SET W
B Label & fracture a Meann Pip Fisher Mean Di| Fisher ';r:::i"c
typ Direction coefficient P | coefficient (r"duu:lvm
1 _|Discontinuous open traces (25%) 263 0.73 68 5.8 0.202
2 _|Discontinuous open traces (50%) 249 0.92 67 5.65 0,177
3 _|Discontinuous open traces (75%) 246 1.3 61 3.74 0.003
4_[Vuggy Fractures 270 0.6 63 4.77 0.017
5 _|Continous open 247 1.29 72 8.24 0.006
6 _|Wide open 241 1.14 58 10.68 0.002
All fractures 266 0.72 68 5.57 0.18
SETE
Mean Di Fisher . Fisher Fracture
C Label & fracture type Directio: coefficient Mean Dip coefficient density
(Fracturesfm)
1_|Discontinuous open traces (25%) 81 1.1 69 5.57 0.134
2 _|Discontinuous open traces (50%) 77 1 74 10.07 0.012
3_[Discontinuous open traces (75%) 96 1.23 70 6.87 0.004
4 |Vugqy Fractures 74 1.17 71 7.32 0.011
5 |Continous apen 76 3.89 71 10.68 0.002
G _|Wide open 117 1 71 2.71 0.002
All fractures 77 1.06 70 5.65 0.12
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Figure 5.2. Stereographic projection of fractures clustered in 7 sets based on their orientation as well as whole fracture dataset
(Valley et al., 2007)

Afshari Moein et al., 2019, computed Fisher coefficient of fracture orientation for four main sets of 1 to 4
which is summarized in table 5.4.

Table 5.4. Fisher coefficient of fracture orientation for fracture sets of 1 to 4 at each well of GPK3 and GPK4

Fisher Coefficient
Fracture Set
GPK3 Well GPK4 Well
Set1 15.2 155
Set 2 14.9 13.9
Set 3 10.4 12.4
Set 4 121 12.4

Fractal Dimension Estimation

Massart et al., 2010, determined the fractal dimension of the Soultz-sous-Foréts fractures through following
two methods described in Bonnet et al., 2001:

e Distribution frequency of the fracture width
e Spacing interval method of Harris et al. (1991)

For the first approach, the data of table 5.3 were used by Massart et al., 2010. Labels 11, 12, and 14 in table
5.4 were dedicated to the main fractures and faults characterized by Sausse et al. (2010) and Dezayes et al.
(2010b). The results of the first approach is illustrated in figure 5.2 in which it can be seen that the fractal
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dimension of D is about 1.04. This value is approximately equal to that determined from Harris et al., 1991,
method through which they proposed to plot the cumulative number of fractures, Ng, as a function of their
mean spacing, S, in a bi-logarithmic diagram, where the N is the number of fracture spacing values higher
than a specific spacing of S (figure 5.3) and is linked to that as follows

Ng =~ §~(P+1)  (5,26)

S is the mean distance along the well path between i" fracture and fractures i-1 and i+1. The fitted line in
figure 5.2, is the best fitting line to the database excluding labels 5 and 6 which are removed from
considerations due to insufficient numbers to be fitted with general trend. In figure 5.4 also the fitted line
is the best fitting line to the whole fracture database spacing. The exponent of this line is -2.0471,
comparison of which with equation 5.26 reveals the fractal dimension of about 1.04; just as equal as the
fractal dimension determined by comparison of fitted line equation in figure 5.3 with equation 5.26 which
yields 1.04 as well.

Genter et al., 1997, analyzed cumulative fracture spacing distribution derived from core of granite of well
ESP1 of Soultz-sous-Foréts and found that the distribution generally follows a power-law in which the
exponent for spacing less than 3 m was about 1. This is also calculated by Valley et al., 2007, where they
did statistical analysis on the segment of spacing distribution of the range 1 to 5 m and found a fractal
dimension close to 1.

Recently, Afshari Moein et al., 2019 and 2021, assessed the borehole image logs of GPK3 and GPK4 wells
of Soultz-sous-Foréts to scale the fracture patterns. They used a two-point correlation function method of
Henteschel and Procaccia, 1983, to determine the fractal dimension of the fracture network at Soultz-sous-
Foréts and showed that the 1D fractal dimension in both wells are 0.88 with an error bar of 0.02 and 0.05
for GPK3 and GPK4 wells, respectively. Considering the fact that, according to Vicsek, 1992, the two-
point correlation function method is more appropriate for natural data sets, then we chose a fractal
dimension of about 0.9 obtained by Afshari Moein et al., 2019 and 2021, using the two-point correlation
function method.

Table 5.5. Data used to plot distribution frequency of fractures in terms of their width (Massart et al., 2010)

Mean Number of
A Labe! & fracture type widths w | S
{cm) 1a¢
1 _|Discontinuous open traces (25%)
2 |Disceontinuous open traces (50%) 3.15 1476
_3_|Discontinuous open traces (75%)
_4 |Vugay Fractures 10.69 125
S |Continous open fractures 6.32 23
6 |Wide open fractures 20.31 13
11 [minor faults 150.11 18
12 |medium faults 269.83 8
14 [major faults 626.53 4
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Figure 5.3. Bi-logarithmic diagram representing the number of fractures as a function of width (Massart et al., 2010)
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Figure 5.4. Bi-logarithmic diagram of cumulative number of fractures as a function of spacing (Massart et al., 2010)
Fracture Length Distribution Exponent

Massart et al., 2010, were linked fracture’s extension/size to its width using Johnston and Mc Caffray (1996)
equation as
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L=kWP (5.27)

in which L is the extension of the fracture, W is its width, k is a coefficient characteristic of the facies, and
D is the fractal dimension of the fracture set. Going back to the equation 5.27, the only parameter which is
required to establish the link between size and width of the fractures at Soultz-sous-Foréts is coefficient of
k. According to observations carried out on veins of lava flow at reservoir scale by Gudmundsson (2000),
k is equal to 400 but with a poor correlation coefficient of R = 0.81. Vermilye and Scholz (1995) performed
the same observation as Gudmundsson (2000) on fractures of various magmatic and sedimentary facies. In
the case of the granodiorite of Florence Lake, quite similar to the monzogranite of Soultz (porphyritic
granite), the coefficient k is equal to 526 with a good squared correlation factor of R? = 0.96. This
characteristic coefficient in Johnston and McCaffray (1996) varies from 20 to 2000 for granitic facies, with
a wide range of 57 to 1231 in extensional context and mean of 402. Massart et al., 2010, assigned 400 to
the characteristic coefficient of k.

Substituting above mentioned D and k in equation 5.27 yields to evaluation of mean extension of the
fractures, results of which are summarized in table 5.5. Figure 5.5 demonstrates a bi-logarithmic diagram
of frequency of fractures in terms of length in which the fractures carrying labels 5 and 6 are eliminated
from consideration, as was the case for width distribution frequency plot of figure 5.3, showing a power-
law exponent of 1.0, which is 1D exponent. According to Darcel et al., 2003b, the relation between the
length distribution exponent in 2D and 3D is

azp = Qqp + 2 (528)
Then, here, the power-law exponent of length distribution in 3D will be 3.

Shapiro et al., 2013, reinvestigated rupture radius of fluid-induced seismic events resulting from some
hydraulic stimulation and fracturing operations and found that it follows a power-law distribution whose
slope is related to the Gutenberg-Richter’s b-value through following equation

a,=2b+1 (5.29)

A list of the b-values of microseismicity at Soultz-sous-Foréts during various hydraulic stimulation
operations and their corresponding rupture area distribution based on equation 5.29 are shown in table 5.7.
It can be seen that a,- is between 2.9 and 4.0.

Table 5.6. Mean fracture extensions by fracture labels (Massart et al., 2010)

Label & Fracture Type Mean Width Mean Extension (m) | Number of Fractures
(cm)
1 Discontinuous Open Traces (25%)
2 Discontinuous Open Traces (50%) 3.15 11 1476
3 Discontinuous Open Traces (75%)
4 Vuggy Fractures 10.69 39 125
5 Continuous Open Fractures 6.32 23 23
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6 Wide Open Fractures 20.31 76 13
11 Minor Faults 150.11 610 18
12 Medium Faults 269.83 1123 8
14 Major Faults 626.53 2697 4
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Figure 5.5. Bi-logarithmic diagram representing the number of fractures as a function of extension
Table 5.7. Gutenberg-Richter b-value of seismic events occurred at Soultz-sous-Foréts
b-value Analyzed Seismic Events Reference a,
1.06 1993 stimulation of GPK1 Shapiro et al., 2013 3.12
1.23 2000 stimulation of GPK2 Dorbath et al., 2009 3.46
0.94 2003 stimulation of GPK3 Dorbath et al., 2009 2.88
1.26 1993 stimulation of GPK1 Cornet et al., 1997 3.52
0.7-2.0 1993 stimulation of GPK1 Cauchie et al., 2020 2.4-5
1.29 2000 stimulation of GPK2 Cuenot et al., 2008 3.58

Fracture Density

As previously mentioned, Valley, 2007, analyzed acoustic televiewer images of GPK2, GPK3 and GPK4
wells of Soultz-sous-Foréts reservoir. They determined 1871 natural fractures along borehole GPK3 and
2215 natural fractures at well GPK4 leading to an average P10 (1D fracture density along a scanline/borehole
in terms of fracture/m which is also called frequency or linear density) of 0.51 and 0.58 fractures per meter
at GPK3 and GPK4, respectively, as shown in figure 2.6. Then, it might be possible to state that the average
fracture density at Soultz-sous-Foréts is 0.55 fracture per meter based on the observations of Valley, 2007,
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on borehole image logs. However, Genter et al., 1997, compared the number of fractures observed on cores
with those on image logs and found that in granite only 17% of the fractures detected on cores were visible
on image logs.
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Figure 5.6. Depth-dependent fracture density along GPK3 and GPK4 wells accompanied by logged borehole length on the left-
hand side (Valley, 2007)

Volumetric fracture density (P3o) is also determined through GPK2, GPK3, and GPK4 wells by Massart et
al, 2010 along about, respectively, 500, 3600, and 3500 meters of TVDSS. The most fractured well was
found to be GPK3 with 0.0056 fractures/m?, while the least one was GPK2 with 0.0015 fractures per cubic
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meter. The fracture density of GPK4 was 0.0052 fractures/m3. Figure 2.7 illustrates fracture density of all
three wells along the true vertical depth of the wells. The point in this figure is that the fracture density of
GPK2 well is only measured in an interval of approximately 500 meters from 3250 to 3750 meters, which
shows a good agreement with fracture densities of two other wells. Therefore, it might be reasonable to
assume that the fracture density of all three wells probably obey a same pattern of distribution and
consequently use an interval-weighted average fracture density using the measurement intervals of each
well. Doing so, an average fracture density of 0.0051 fractures/m? is obtained. But, comparing the total
number of fractures measured from image logs of three deep wells at Soultz-sous-Foréts by Valley, 2007,
Genter et al., 1997, and Massart et al., 2010, one may find that Massart and associates measured as one
third of fractures as Valley, 2007, and Genter et al., 1997, did (1878 fractures on well-logs of three deep
wells by Massart et al, 2010, compared to 4086 fractures for GPK3 & GPK4 reported by Valley, 2007, plus
1792 fractures for GPK2 measured by Genter et al., 1997). If this difference is taken into account, then it
seems plausible to state that volumetric fracture density is on average about 0.016 fractures/m?.
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Figure 5.7. VVolumetric fracture density at the wells GPK2 (red curve), GPK3 (black curve), and GPK4 (blue curve). The curves
corresponding to the wells GPK3 and GPK4 are shifted by addition of 0.05 and 0.1 to the determined densities, respectively
(Massart et al., 2010)

5.2.2 DFN Realization by 3DEC

3DEC can generate both stochastic and deterministic DFN. To generate stochastic DFN, a template
containing size, position, and orientation distribution of fractures is defined. Size distribution in 3DEC can
be uniform, Gauss, power law, bootstrapped, or user-defined distribution using the FISH programming
language of 3DEC. Position distribution also can be defined as uniform, Gauss, bootstrapped, or FISH.
Orientation of fractures is uniform, Gauss, Fisher, or user-defined FISH bases.
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Fractures in 3DEC are generated as circular disks with a defined diameter range of [1,,i,linax]- The number
of fractures whose size is in the range of [L,,,in,lmqs] @and are located inside a volume with side size of L is
given (Bour et al., 2002) by

[17;1%}1_l—a+1

min | Dy (5.30)

lmax
N(lnin < lmax) = flmin n(l)LDM dl=a —a+1

In equation 5.30, L is domain size, and the other parameters are as same as those in equation 5.1. Equation
(5.30) implies that any DFN is, beside orientation of fractures, 6, a function of fracture density, minimum
and maximum fracture length, and power-law exponent of fracture length distribution, domain size, and
fractal dimension of spatial distribution of fractures and can be explained as:

DFN « f(0,a,a,linin, lmax, L, Dyy)  (5.31)

Among those parameters listed in parentheses at the right-hand side of the equation (5.31), 6 is extensively
analyzed by Valley, 2007; D, is also obtained by Afshari Moein et al., 2018 and 2021; L is domain size to
be considered 100 m in the current study; [,,,,, iS also assumed to be 3000 m even though, and according
to the negative power of that in equation (5.30), it has the least effect on the DFN generation. The remaining
parameters of a,a,l,,;, are unknowns which have to be constrained by utilizing observations and
measurements carried out on the field data such as Pio, fracture spacing distribution, number of
intersections, and fractal dimension. Figure 5.8, an iterative forward modeling process shows at which a set
of unknowns (a, a, L,,,;,) are used in combination with known/assumed data (6, L4, L, Dys) t0 generate a
synthetic DFN example. Then, a set of measurements, which are called verification data, are calculated to
be compared with field observations as a validation step for the generated synthetic DFN. If IT is a parameter
that shows the difference between synthetic and real DFNSs, the objective is to minimize I1.

Variable Data in Synthetic Field Observations
Models (Unknown Data) Constraining
“ P10
a Spacing Distribution
lnin Number of Intersections
a Dy
DFN Generation DFN Verification

Verification Data in
Synthetic Models

P10
Spacing Distribution
Number of Intersections

Figure 5.8. Iterative process to constrain unknown DFN parameters of a, a, lin

Field observations were previously explained whereas P1o was in the range of 0.51-0.58 fracture/m with
average of 0.55 fracture/m and D,,=2.7. Spacing distribution and number of intersections of each fracture
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set with each well were also evaluated by Valley, 2007, and summarized in figure 5.9 where the results

correspond to approximately 3600 m of image logs at the granite section of GPK3 and GPK4 wells.
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Figure 5.9. Fracture spacing distribution for the four major fracture sets at each well (Valley, 2007)
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To numerically generate synthetic DFN by 3DEC, four major sets of fractures (sets 1 to 4), encompassing
95% of measured fractures by Valley, 2007, were aimed to be realized. For each fracture set, it was required
to define not only the orientation of the fractures but also the a, L, g Py -

Orientation of these fracture sets, characterized by average dip and dip direction, beside the number of
fractures occurring at each set are shown in figure 5.2. Afshari Moein et al., 2019, introduced Fisher
coefficients of fracture orientation for each of four main fracture sets at each well of GPK3 and 4. These
coefficients for each set at each well and the averages weighted by the number of fractures observed at each
well are shown in table 5.8. The average values of Fisher coefficients for each fracture set were used for
distribution of fracture orientation in the numerical model.

Table 5.8. Average P10 and average Fisher coefficient of fracture orientation distribution for each major fracture sets

2 Number of Fractures Total Number Percent of each Set Mean Fisher Average Fisher
2 = from the Total . C

S 3 (and P1o) of Fractures Number of Coefficient Coefficient
iC GPK3 GPK4 (and ave. P1o) Fractures (%) GPK3 GPK4 (Weighted)

1 608 (0.17) 748 (0.21) 1357 (0.19) 35 15.2 155 15.4

2 570 (0.16) 708 (0.20) 1278 (0.18) 33 14.9 13.9 14.3

3 311(0.09) 411 (0.12) 722 (0.10) 19 10.4 12.4 115

4 288 (0.08) 231 (0.07) 519 (0.08) 13 12.1 12.4 12.2

In table 5.5 and figure 5.5 it can be determined that the fracture length range is between 11 to 2697 meters.
These lengths are not far from the minimum and the maximum fracture size of 8 m and 3000 m reported
by Valley et al., 2007, and Sausse et al., 2010, respectively. However, Cauchie et al., 2020, analyzed seismic
events of 1993 GPK1 hydraulic stimulation and reported a minimum source radius of about 2 meters. Here,
we kept the maximum fracture length at 3000 m and used the minimum fracture length of 2 m as well as
10 m to generate synthetic DFN examples.

Distribution of the fracture position is also opted to be uniform (D,,=3.0; in equation 5.32) in the DFN
generator of 3DEC, even though, according to the obtained fractal dimension of 2.7, the position
distribution of fractures at Soultz-sous-Foréts are not uniform.

In 3DEC, there are many thresholds, which can be benefited from to stop DFN generation when threshold
is met. P1g along a borehole/scanline and total number of fractures are two among existing thresholds. Based
on the data obtained, we generated a few DFN examples using total number of fractures as threshold:

1) By using Py as a validation parameter, different values of L,,,;,,, @, and a were replaced in equation
5.30 to obtain the total number of fractures in the domain of 100x100x100 m3. Assuming that the
contribution of each fracture set (set 1 to set 4) to this total fracture number is analogous to the
contribution of them to the number of fractures observed on the borehole image logs (summarized
in table 5.8), number of fractures belonging to each fracture set and occurring in the defined domain

was obtained and set as threshold for DFN generator.
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2) By using the resulting P1o values of first set of generated DFN examples, values of L,,,;,,, a, and a
in the second set of DFN’s were constrained so as to have P1o closer to the observations (on average

of 0.55 fractures/m).
For the first category, 16 DFN were generated by assigning various values to the ,,,;», a, and a as below:
a) The a exponent was set to 2.5, 3.0, 3.5, and 4.0.
b) The assigned values for L,,,;;, were 2 and 10 meters.

c) The a density term was initially set to 0.1 and then, according to the resulting P1o, the second value
was also defined to have another DFN example for which the P1o approaches the validation value

of 0.55 fracture/m.
The resulting DFN are illustrated in figures 5.10 to 5.13 looking at which reveals that:

Based on Py value of 0.55 fracture/m obtained by Valley et al., 2007, for power-law length exponent of 2.5
(figure 5.7), if L, is assumed to be 2 m then the « tend to be between 0.08 and 0.1, whereas for [,,,;,, equal
to 10 m, @ can be 0.1 and 0.12. By increase of a from 2.5 to 3.0 (figure 5.8), and for the L,,,;,, values of 2
and 10 m, the a will be, respectively, about 0.5 and more than 0.5. One may also observe that for a=3.5
(figure 5.9), a can be less than 2 and more than 2 for [,,;, of 2 and 10 m, respectively, whereas it yields
over 2 and 5 for a=4.0 (figure 5.13).

On the other hand, and according to some preliminary evaluations based on Massart et al., 2010, and Valley
et al., 2007 explained at previous subsection, the total number of fractures occurred in a domain of 1003
m?3 is about 16000. Looking at the total fracture number of each DFN example in figures 5.10-5.13, it can
be seen that when a exponent is larger than 3 and [,,,;,, is 2 m, the total number of fractures, in the cases
with Py close to 0.55, is by far more than 16000 (e.g. second example in both figure 5.14).

Therefore and based on above mentioned observations, the second set of DFN’s were created by refining
geometrical parameters of some examples from the first synthetic DFN set (illustrated in figures 5.10 to
5.13) at which the Py is close to 0.55 fracture/m. So that, in detail,

a) fora=2.5and l,,;;,=2 m, then 0.08 < a < 0.1.
b) fora=2.5and l,,;,=10 m, then 0.1 < a < 0.12.
¢) fora=3.0andl,,;,=2 m, then a = 0.5.

d) fora=3.0and l,;;, = 10 m, then a > 0.5.

e) fora=3.5and l,,;,=10 m, then a > 2.0.

f) fora=4.0and l,,;,=10 m, then a > 5.0.

Using above details, six more DFN examples were generated which are illustrated in figure 5.14. It is aimed
in these six DFN’s, to have a P of approximately 0.55. These six DFN examples were then investigated
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to assess the spacing distribution as well as number of intersections along 17 fictitious scanlines/boreholes
(figure 5.15) generated vertically in the numerical block of 1003 m3. The reason behind the number of
fictitious wellbores was just to distribute wellbores throughout the block to have uniform sampling and
therefore having sufficient data to do a reliable statistical analysis. But, again for the sake of reliability of
the analysis, we just then normalized analyses carried out on the spacing distribution and the number of
intersections so as to have a comparable result in a length of 100 m. The second set of DFN examples are
illustrated in figure 5.14.
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Figure 5.10. DFN examples generated for different values of L,,,;,, and @ where a is kept constant on 2.5; the resulted P1o values
are also shown in the figures
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Figure 5.11. DFN examples generated for different values of ,,,;,, and @ where a is kept constant on 3.0; the resulted P1o are also

shown in the figures
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Figure 5.12. DFN examples generated for different values of ,,,;,, and @ where a is kept constant on 3.5; the resulted P1o are also

shown in the figures
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Figure 5.13. DFN examples generated for different values of ,,,;, and @ where a is kept constant on 4.0; the resulted P10 are also
shown in the figures
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Figure 5.14. DFN examples generated for different values of L,,,;,, whereas a is 2.5 to 4.0; the resulted alpha is also shown in the
figures being around 0.55
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Figure 5.15. Schematic 3-D view of 17 fictitious boreholes distributed in the cubic block of 100x100x100 m3

Spacing distributions of synthetic DFN examples of the second set (figure 5.14) superimposed on those
extracted by Valley, 2007, are shown in figures 5.16 to 5.21 where the Y-axis of the plots are normalized
cumulative number of spacing frequency so as to have them in a length of 100 m. For that and assuming a
uniform distribution of spacing along the GPK3 and 4 Wells as well as 17 fictitious numerical wells,
synthetic cumulative numbers are divided by 17 and the field observations (figure 5.9) are divided by 36,
since the study of Valley, 2007, was carried out on about 3600 meters of GPK3 and 4 wells (from 1420 m
to 5000 m).
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Figure 5.16. Spacing distribution of the first synthetic DFN example (blue curves) superimposed on the observations of Valley,
2007, on image logs of GPK3 and 4 wells (red and black curves, respectively)
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Figure 5.17. Spacing distribution of the second synthetic DFN example (blue curves) superimposed on the observations of
Valley, 2007, on image logs of GPK3 and 4 wells (red and black curves, respectively)
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Figure 5.18. Spacing distribution of the third synthetic DFN example (blue curves) superimposed on the observations of Valley,
2007, on image logs of GPK3 and 4 wells (red and black curves, respectively)
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Figure 5.19. Spacing distribution of the fourth synthetic DFN example (blue curves) superimposed on the observations of Valley,

2007, on image logs of GPK3 and 4 wells (red and black curves, respectively)
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Figure 5.20. Spacing distribution of the fifth synthetic DFN example (blue curves) superimposed on the observations of Valley,
2007, on image logs of GPK3 and 4 wells (red and black curves, respectively)
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Figure 5.21. Spacing distribution of the sixth synthetic DFN example (blue curves) superimposed on the observations of Valley,
2007, on image logs of GPK3 and 4 wells (red and black curves, respectively)

Looking at figures 5.16 to 5.21 shows that, in most of the cases, at small scale the number of occurrences
is reproduced or at least show the same order of magnitude, but at the large scales a poor match between
3DEC results and field data is shown. As previously mentioned, Afshari Moein et al., 2019 and 2021,
obtained 1D fractal dimension of 0.9, which indicates that at Soultz-sous-Foréts position distribution of
fractures are not uniform at which 1D fractal dimension is 1.0. On the other hand in 3DEC, spatial
distribution of fractures can be uniform, Gaussian, bootstrapped, or FISH. Since here we used uniform
spatial distribution of fractures, then it imposed some differences to the numerically generated DFN
examples compared to the field observations by Valley, 2007, as shown in the figures 5.16 to 5.21. Mean
Squared Error (MSE) of the differences between numerical and in-situ spacing distribution frequency at
each fracture set, shown as “Normalized Cumulative Number” on the y-axis of figures 5.16-5.21, were
computed for all spacing values shown on the x-axis of aforementioned figures. The resulting MSE values
for each fracture set then were summed to indicate the total MSE of the numerical DFN example compared
to the in-situ observed DFN by Valley, 2007. In table 5.9, set-based MSE and total MSE values for
numerical DFN examples are summarized.

Table 5.9 reveals that the numerical example of DFN 3 (a=3.0, Inin=2 m) has the most difference with in-
situ DFN while the example DFN 6 (a=4.0, Inin =10 m) shows the least difference. These significant
disagreements between numerically realized DFN examples illustrated in figure 5.14 and in-situ fracture
network scaled by Valley, 2007, probably stem from the fact that the position distribution of the fractures
at Soultz-sous-Foréts is not uniform.
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In current work and in spite of above mentioned disagreement, the fourth example of DFN in figure 5.14
(2=3.0, Imin =10.0 m) is opted afterwards to be embedded in the intact rock block for estimation of effective
elastic moduli of the fractured rock mass. This example benefited from the DFN characteristics mentioned
in the literature.

Table 5.9. MSE values of the difference between numerical and in-situ spacing distribution

DFN Example Fracture Set MSE >MSE

Set1 44.5
Set 2 61.7

DFN 1 115.7
Set 3 5.7
Set4 3.8
Set 1 34.0
Set 2 54.9

DFN 2 99.0
Set 3 7.25
Set 4 2.8
Set 1 53.7
Set 2 79.7

DFN 3 141.4
Set3 5.3
Set 4 2.7
Set 1 43
Set 2 70.5

DFN 4 128.6
Set 3 12.3
Set 4 2.8
Set 1 325
Set 2 56.6

DFN 5 99.5
Set 3 7.6
Set 4 2.8
Set1 229

DFN 6 84
Set 2 51.9
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Set3 6.2

Set 4 3.0

5.3 Estimation of Effective Elastic Moduli

As previously stated, to effectively model the response of geo-material around the injection point as well
as the far field during stimulation, it is necessary to take into account the role of discontinuities on
mechanical behavior of intact rock. Before that, it is recommended to investigate intact rock’s mechanical
properties through a set of numerical benchmarking modeling. In subsection 5.3.1, a brief explanation of
laboratory tests on the rock specimens are presented. Mechanical behavior of discontinuities are described
in subsection 5.3.2. A description regarding the mechanical calculation scheme used in 3DEC is presented
in subsection 5.3.3. In subsections 5.3.4 and 5.3.5 a set of benchmarking modeling on both intact rock and
a rock mass containing an infinite fracture are designed and carried out using 3DEC. Subsection 5.3.6 is
dedicated to describe development of a numerical code that is capable of taking the stress-dependent
fracture stiffness into accounts. In subsection 5.3.7, effective elastic moduli of a fractured rock mass, which
is a 100x100x100 m3 granite specimen of Soultz-sous-Foréts being fractured by a fictitious DFN, is
evaluated by 3DEC and the results are compared to those obtained using no-interaction, self-consistent,
differential schemes as well as the analytical formulation introduced by Davy et al., 2018. Finally and in
subsection 5.3.8, P-wave velocity variation through the numerically generated fractured rock mass models
are assessed.

5.3.1 Mechanical Behavior of intact rock

Here, it is aimed to explain the methodology of evaluation of elastic moduli of a homogeneous, isotropic,
and elastic intact rock block in the laboratory through uniaxial compressive stress, confined uniaxial
compressive stress, and true triaxial compressive stresses tests. Noteworthy that the gravitational effect of
the rock is not taken into account and that only the elastic domain of the mechanical behavior of the rock
block is taken into account.

Uniaxial Compressive Test

This test is usually used to characterize elastic moduli of the rock, its unconfined compressive strength, and
its post-elastic behavior (Cornet, 2015). In this test, a right circular cylinder or prism of rock, with height
of H and diameter or side length of L, is compressed between two parallel rigid plates (Jaeger et al, 2007).
Hence, the stress tensor in such test configuration will be as (Cornet, 2015)

g 0 O

G = [0 0 0] (5.32)
0 0 O

In which it is assumed that the X-, Y-, and Z-direction are respectively I, I,, and I; principal directions.

Analytically, assuming an ideal test condition in which counteraction between test machine and specimen
has negligible effect (an explanation about the effects of loading machine on test results can be found in
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Jaeger et al.,, 2007) on the measurements, the elastic moduli can be determined by doing some
measurements of vertical and lateral displacements, respectively dH and dL, as (Jaeger et al., 2007)

g =-" (539)

01

E=2 (534)
&1
d
82 =& = _TL (535)
9=-2 (536)

€12 =6&3=¢63=0 (537)
Confined Uniaxial Compressive Test

This test, according to the author's knowledge, is not a common experiment in the laboratory, but it is
numerically performed for benchmarking needs. In this test, all sides of the specimen are prevented from
movement in the direction of face-normal except the top side. Hence, the stress tensor in such test
configuration will be as

g 0 O
=0 o 0] (5.38)
0 0 03

Analytically, by taking into account the assumptions of uniaxial compressive stress test about interaction
between the loading machine and the specimen, since the lateral displacement of the specimen is zero, the
strain values in I, and I;directions will be zero.

52 = 53 = 523 = 513 = 812 = 0 (539)

In this case, since the lateral sides are prevented from movement, the vertical stress generates some lateral
stresses through the block according to Newton's third law. This lateral stress can be analytically
expressed as:

The vertical strain, however, will be affected by the lateral stresses and can be calculated as below (Jaeger
etal., 2007)

[0, —9(0, + 03)] (5.41)

o

81 =
Triaxial Compressive Test

This test is one of the most widely used rock mechanics tests which offers useful data of mechanical
behaviors of rocks. Through this test, the sample, which is in a pressure vessel, undergoes a laterally
homogeneous stress, P., perpendicular to the axial stress of ;. Then the stress tensor for such test will be
(Cornet, 2015) as
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og 0 O
6=[0 P. 0 (5.42)

0 0 P

Analytically, the strain values for above-mentioned test can be calculated as below (Jaeger et al., 2007)

& = %[01 — (o, +03)] (5.43)
& = %[02 —9(oy +03)] (5.44)
&g = %[03 —9(0, +0y)]  (5.45)

823 - 813 - 812 - 0 (546)
where the lateral confining pressure, P., is replaced by o, and a5.

5.3.2 Mechanical Behavior of Discontinuities

Mechanical response of discontinuities can be controlled, among other parameters, by their orientation (dip
and dip direction), stiffness matrix, and hydraulic conductivity. Orientation of discontinuities can be
determined from DFN and may have a significant effect on magnitudes of effective normal stress and shear
stress acting on the fracture plane. Stiffness matrix influences fracture’s normal and shear displacement in
a known regime of stresses (according to equation 5.15). This matrix has two diagonals and two non-
diagonals; where the latter components are often assumed to be zero (Cornet, 2015).

()= £

T ksn kss ds

Bandis et al. (1983) performed a series of experiments on fresh and weathered joints of some samples of
five rock types under normal and shear loading conditions. Normal deformability was studied by conducting
loading/unloading and repeated load cycling tests and shear deformability was studied by performing direct
shear tests under a range of normal stresses. In both normal and shear loading scenarios, as shown in figure
5.22, deformability of samples versus applied stresses showed non-linear behavior irrespective of joint type,
indicating non-linearity of normal and shear stiffness of fractures which are, respectively, slope of normal

stress versus normal displacement and shear stress versus shear displacement. According to Bandis et al.,
1983, normal stiffness curve of the tested interlocked fractures can be described as

-2
On
K = g [1 = m] (5.47)
where k,,; is normal stiffness of the fracture at initial state or under in-situ stress state, and V,,, is maximum
closure of the joint. For mismatched joints, at which the two faces of the joints were dislocated for 0.5 to 1
mm relative to each other, the normal stiffness can be described as

_ q.on
fn = Tazss (048)

where g is a constant depending on the rock type. Shear stiffness of the fracture can also be described as
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, Rf]™?
kse = k(o) [1=1] © (5.49)

which is the tangent shear stiffness of a joint at any level of shear and normal stresses and where k; is
stiffness number, n; is stiffness exponent, Ry is failure ratio which is defined as 7 /7, and 7p is peak shear
strength of the fracture which can be explained as (Cornet, 2015)

p =c+uo, (5.50)

at which c is cohesive strength of the fracture, and u is the friction coefficient of that. 7,,;; is shear stress
associated with horizontal asymptote of t,,;; to the hyperbolic of T — wu.
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Figure 5.22. (a) Normal stress versus total deformation relations for fresh and weathered joints in dolerite specimens under cyclic
loading; loading-unloading curves can also be seen on (a) which were resulted from tests carried out on intact samples of the
same size; (b) Shear stress versus shear displacement curves for fresh and weathered joints in dolerite at various normal stress
levels; secant peak shear stiffness values are also included in the graphs (Bandis et al., 1983)

Here, we first assumed that the fracture stiffness parameters are constant and carried out some
benchmarking modeling and then successfully implemented stiffness values variable with respect to the
resulting normal stress acting on the fracture plane to a finite circular fracture. This implementation finally
generalized to the fracture network generated in section 2 and the effect of non-linear fracture stiffhess on
effective elastic moduli of the rock mass was investigated.
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Deformation of Infinite fractures

Although commonly explained in previous reports prepared for this project, we develop the expression of
the contribution of a single infinite fracture on displacement of a boundary of a rock block. Let us consider
a rock block divided into two identical parts by a discontinuity as shown in figure 5.23.

[ ]

Ty
H

Dy Frachure

=

‘[JEA A A

Figure 5.23. Schematic view of a fractured block and imposed stress and displacement boundary conditions

If the above-mentioned block was loaded perpendicular to the fracture wall (ay/), a displacement between
top and bottom of the block will occur. It will have two contributions: (i) the displacement of the intact rock
(dH,.) and (ii) the displacement of the fracture (joint closure, dé) (Goodman, 1976). The magnitudes of
these two displacements not only depend on Young’s modulus of the intact rock (E,) and normal stiffness
of the fracture (k,,), but also on the magnitude of the applied stress (ay,). Therefore, the total displacement
between top and bottom of the block with height of H, dH, will be (Jaeger et al., 2007)

dH = dH, + d6 = —Eirdav - édan (5.51)

From right-hand side of equation (5.51), vertical deformation of intact rock, dH,, can be analytically
determined as

dH, = - ['dh  (552)

in which dh is incremental length of the block height. For rock specimen under in-situ stress condition,
where the minimum and maximum horizontal stress are also acting on the rock, the intact rock’s
deformation can be determined as

dH, = - [ [% — 2 (o + aH)] dh (5.53)

Deformation of fracture or joint closure, dé, depends on magnitude of normal stiffness of the fracture and
effective normal stress acting on the fracture plane. In figure 5.23, the fracture’s normal is parallel with the
applied stress, and therefore the effective normal stress acting on the fracture plane, a,,, is equal to the
applied vertical stress, oy,. For fractures oblique to the direction of the applied vertical stress, the effective
normal stress can be determined by use of Cauchy tetrahedron. The “Cauchy Tetrahedron”, as shown in
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figure 5.24 (Cornet, 2015), is utilized for determination of stress vector components, t;, acting on a surface
from stress tensor components, o;;.

In figure 5.3 the vector n is normal of the ABC surface which can be characterized by its three direction
cosines of ny, n,, and n; as

n, = cosa (5.54)
n, = cosff  (5.55)
nsg = cosy (5.56)

where a, 5, and y are the angles between n and I, I, and I5.
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721 713
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Figure 5.24. Cauchy tetrahedron used to determine stress vector components on a surface element with orientation of n based on
stress tensor components (Cornet, 2015)

According to Cornet, 2015, the three components of the stress vector will be

t1 = 0111 + 012Ny + 01303 (5.57)

t, = 012Ny + 05Ny + 0y3n5  (5.58)

tz = 013Ny + 03N, + 03313 (5.59)
or

ti=oyn; , i,j=123 (560)
or in vector form of
t=dn (561

where t is called a stress vector. Projection of stress vector onto the normal n and onto the fault plane will
respectively result in normal component and shear components of the stress vector as
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(% =tn=dnn= O'lln% + 0'2277.% + 0'3377.?2) + 20’127'11112 + 20-13n1n3 + 20-23712713 (562)
T=t—o,n=n—-(G6nn)n (5.63)

o, is the normal stress acting on the fault which is a scalar and vector t is the shear component of t. The
norm of the shear stress vector will give us the shear stress magnitude acting on the fault plane.

t=|lzl| (5.64)

The effective normal stress acting on the fault plane resulting from equation (5.62) can be substituted in the
second term in the right-hand side of equation (5.51) to determine the fracture’s normal displacement, sum
of which with intact rock’s vertical displacement will yield the displacement of the fractured rock mass in
Z-direction. It is obvious that for an inclined fracture, projection of normal and shear displacement on
principal directions will be added to displacement of intact rock in those directions in order to determine
elastic moduli.

Finite-size circular shaped fractures

The shear and normal displacement, ug and u,,, of a disk shaped fracture which is free to slip and embedded
in an infinite elastic rock matrix can be expressed (Davy et al., 2018; Kachanov & Sevostianov, 2013;
Sneddon & Lowengrub, 1969) as

)2 2
R Y= (ﬁ) (5.65)
by

s n(l_va) mEm

—y2 ] 2
u, = AR minen 0Dy |} (E) (5.66)

T Em Df

where Dy is diameter of the fracture, E,, and v, are intact rock’s Young’s modulus and Poisson’s ratio,
and d is distance to the disk center. It has to be noticed that these equations are developed for freely slipping
disk-shaped fractures, therefore the shear and normal stresses of t,, and a,, are due to deformation of the
rock matrix with the convention that normal stress and displacement are positive in compression (Davy et
al., 2018).

According to Davy et al., 2018, the average shear displacement, ug, calculated by integrating equation
(5.65) over fracture plane, is two third of the displacement at the fracture center, which leads to an apparent
elastic shear stiffness of the matrix surrounding the fracture, k,,,, which will be called the matrix-fracture
stiffness thereafter, such as

T, 3m (1_va) Em
km = ?S = ?(1—V,Z,I)D_f (567)
Above equation can be simplified as
Em
ky = 7 (5.68)



. 3w (-7
En = 8 (1-v2)

E, (5.69)
For the normal displacement, it is worth to note that the normal stiffness of the rock matrix and fracture are
barely operating together. In compressional situations and when the fracture’s normal stiffness is too high,
the fracture walls can hardly interpenetrate and, thus, the deformation of the rock matrix is limited (Davy
et al., 2018). Normal displacement of the fracture is perpendicular to the fracture plane and is controlled by
magnitude of normal stiffness of the fracture, k,,, as
u, =2 (5.70)

kn
Since k,, is larger than kg, the shear displacement is much larger than normal displacement in fractures
(Davy et al., 2018). For a fracture plane with normal vector of n located at a medium under stress tensor of
&, the normal and shear stresses acting on the fracture plane can be expressed by equations (5.62) and (5.63)
or according to Davy et al., 2018, as

o,=nT.o.n (5.71)
t=n'.6.s (5.72)
with the shear direction given by

s=—%  (5.73)
||Sg||

where
sy =n".0.1-n®n") (5.74)

with 1 as the identity matrix. The previous expressions were calculation of displacements in the fracture
plane. To know the contribution of a fracture to the displacement of a specific boundary such as X, the
displacement field should be integrated and projected on X with surface and normal vector of sy and ny,
(Davy et al., 2018) such as

Js tds

u, = (n.n,) (5.75)

Sx

where S is the plane that includes the fracture and u is the displacement vector field in the plane. Equation
(5.75) can be used to determine deformation of a specimen at boundary X and in the, for example, y-
direction as below

Exy = t"lﬂ (5.76)

Where x refers to the surface X and y to a direction vector of n,,. [, is the dimension of the specimen in the

direction perpendicular to X (i.e., in the direction n,.). Knowing that the volume of specimenisV =S, * L,
and substituting (5.75) in (5.76) will yield to (5.77) as
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s (tny)ds

Exy = (M.1y) (5.77)

According to Davy et al., 2018, since most of the displacement takes place at the fracture plane, equation
(5.77) can be expressed as the average displacement at the fracture disk, u, with the surface of S as

Exy = (n. nx)svf(u_f. ny) (5.78)

Equation (5.77) estimates contribution of a fracture to deformation of a specimen. It can be generalized for
contribution of a DFN to specimen’s deformation benefiting from effective theories. Generally, most of the
effective theories are based on incrementally adding fractures into the medium which is already discretized
by previous fractures. Then it can be stated that the total deformation of a specimen is the sum of two
following terms (Davy et al., 2018):
e Deformation of the specimen already discretized by i-1 fractures, &;, due to the far-field stress
tensor, &, applied on the equivalent medium constituted of (i-1) fractures with equivalent elastic

properties, E; and v;;
e Plus deformation generated by the displacement on the additional i fracture.

Then, equation (5.78) might be written (Davy et al., 2018) as

(gxy)i = (Exy)i_l + (ni-nx)%(ﬁ-ny) (5.79)

where S; is the surface of the it" fracture with normal of n;, and £, is the displacement of this additional
fracture.

As an example, the final deformation for non-critically loaded fractures, obtained by summing the
contribution of all fractures can be written as

Si 155 R
(Sxy)i = (Exy)m + Zi(nl’. nx) v <<k1:i+c;:ni s; + z k:in ni) .ny> (580)

By applying equation (5.80) to different boundary planes and directions, the modulus of elasticity and
Poisson's ratio can be calculated.

The normal component of % is assumed to be equal to equation (5.70). The shear component of
displacement, u; can be evaluated as described in Davy et al., 2018 in which a simplified elastic-plastic
behavior is considered, where the elastic resistance of fracture walls is modeled by constant elastic stiffness
coefficients of kg and k,,, respectively for shear and normal displacements. These coefficients are supposed
to be constant over the whole fracture plane. For shear displacement, a plastic limit of ,, is defined above
which the fracture freely slips independent of t, as shown in figure 5.25 and equation (5.81):

T = min(ks * U ,Tp) (5.81)
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It has to be noted that the plastic shear slip which takes place beyond the fracture’s shear strength is out of
the scope of current work, but only the elastic shear displacement is under investigation.

uS
Figure 5.25. Rheological model of fracture slip in terms of shear stress versus shear displacement

In equation (5.80), 7 is shear stress acting on the fracture plane, k; is shear stiffness of the fracture, and u,
is shear displacement. The shear stress acting on the fracture plane, 1, has to overcome to two resisting
parameters of:

1) The resistance to shear displacement across fracture walls or 7, and
2) The elastic stress generated by matrix deformation, t,,, = kg * us.

According to Davy et al., 2018, the shear displacement along the fracture walls, ug, generated by a shear
stress applied to the fracture surface can be expressed as:

2
<k
T 3°m

T=_3" Lk (582

If 7, = 7, i.e. fracture slips, the above equation must be rewritten as:

=" (5.83)

The average displacement can be determined by integrating equations (5.82) and (5.83) over the fracture
plane as

_ 1 R 1 (R
Us =—=J, [y ustdrd0 = — [Fusrdr  (5.84)

In which R is the fracture radius. For slipping fracture the above equation can be

(5.85)
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Nevertheless, for no-slipping fracture the integration result will be

T 2 fR rdr

s = HE 0 %
2
1-(®)

(5.86)

+k;

where

x _ ks
However, Davy et al., 2018, approximated the average displacement of no-slipping fracture (i.e., equation
(5.82)) by below equation with maximum difference of less than 4%.

U = —
ST kmtks

(5.88)

Equations (5.85) and (5.88) quantify the shear stress partitioning between the average resistance of the
fracture plane, 7; , and the resistance to deformation of the surrounding matrix, 7,,.

T=17 +7Tp =min(ksus,7,) + ks (5.89)

The shear component of iz, depends on three terms of i) the shear stress, T = n”. a. s; with s; the direction
of shear, ii) the elastic shear stiffness k; which may depend on each fracture, and iii) the local matrix-
fracture stiffness k,,;, which is a function of the elastic properties of the medium surrounding the fracture
and is the main term in evaluating the &, (Davy et al., 2018). There are different theories to estimate the
matrix-fracture stiffness such as follows.

No-interaction Model

This is the simplest model which considers that the surrounding medium in the vicinity of the fracture is
not damaged, hence the elastic properties are those of the intact rock matrix (E;, and 9,,). It yields to an
expression of k,,; as

)
_3n (-9 E,
- 8 (1—1912,‘) Dfi

ki (5.90)

where Dy; is the length of the i fracture. The no-interaction model is a good description of a system with
a small density of fractures, where fractures are far from each other and any fracture is surrounded by intact
rock, meaning that the contribution of each fracture to the specimen’s deformation is independent of other
fractures. While this model estimates well the Poisson’s ratio of the equivalent medium whatever the
fracture density is, it just gives a dependable estimate for Young’s modulus of medium with low fracture
density.

The Effective Medium Theory

The effective medium theories approximate the interaction between fractures utilizing different schemes
among which the self-consistent theory of O’Connell and Budianski (1974) and the differential scheme of
Hashin (1988) are the most popular theories. A review of effective medium theories can be found in
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Gueguen and Kachanov (2011), Jaeger et al. (2007) and Kachanov (1987). Davy et al., 2018, developed the
differential scheme theory, in which some inconsistencies of this theory at high fracture densities were
avoided (Bruner, 1976). It, in fact, considers that the i" fractures is surrounded by the medium which has
already damaged by i-1 fractures, but with a homogeneous Young’s modulus and Poisson’s ratio which are
average basically average properties of the medium constituted of i-1 fractures, i.e. E;_; and 9;_;.
Therefore, the k,,,; will read
e T
mt 8 (1-9%,) Dy

(5.91)

The effective medium theory evaluates the Young’s modulus less than the no-interaction model since the
medium is supposed to be softer than the no-interaction model due to damage of previous fracture imposed
to the medium in the effective medium theory.

5.3.3 Mechanical Computations in 3DEC

3DEC is a Discrete Element Method (DEM) for discontinuum environment and can simulate the interaction
between blocks. It is best suited to model discontinuous materials that show non-linear behavior. It
comprises many built-in constitutive models for blocks and joints and provides an option for user-written
models by introducing FISH scripting language. In addition to representing or importing any shape of
geometries, it can carry out static and dynamic analysis and considers thermal stress and time-dependent
behavior of geomaterial.

To account for the observed non-linear behavior, a description of the fracture network is required which
may be achieved by definition of a Discrete Fracture Network (DFN). In addition to assigning a DFN to a
numerical model of the target area, it must be built applying mechanical properties of the intact rock and
fractures, pore pressure, and in-situ stress field.

In 3DEC, two blocks which are in contact have interacted with each other when some load is applied. For
these two blocks, a unit normal vector is defined which indicates the contact plane of blocks. Direction of
this unit normal vector continuously changes as the two blocks move relative to one another. A common-
plane (c-p) is also determined which bisects the space between the two blocks and each block is separately
tested for contact with this c-p (figure 5.26).

If a block face is in contact with the c-p, then it is automatically discretized into sub-contacts which keeps
track of the interface forces between blocks, as well as other conditions such as sliding and separation. If
the other side of the interface is also a face, then identical conditions apply, sub-contacts are created, and
relative displacements, and hence forces, are calculated. When two blocks come together, the forces from
both sets are divided by two, so that the overall interface behavior is the average of that of both sets.
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c-p

Figure 5.26. Examples of c-p between two blocks in 3DEC

3DEC is based on a dynamic (time-domain) algorithm that solves the equations of motion of the block
system by an explicit finite difference method. At each timestep, the law of motion and the constitutive
equations are applied. For blocks, sub-contact force-displacement relations are prescribed. The integration
of the law of motion provides the new block positions, and therefore the contact-displacement increments
(or velocities). The sub-contact force-displacement law is then used to obtain the new sub-contact forces,
which are to be applied to the blocks in the next timestep.

The relative velocity across a sub-contact is obtained from the velocity associated with the sub-contact, Vl-V,
and the velocity of the corresponding point on the opposing face, V. If the unit normal, n;, points from
block A to block B, therefore the relative velocity is calculated as:

If the tetrahedral-zone vertex belongs to block A, otherwise it is calculated as:
v,=VvF-vY (592
The increment in relative displacement at the sub-contact for both rigid and deformable blocks is given by:
AU; = VAt (5.93)
which can be resolved into normal and shear components along the common-plane as:
AU™ = AU;n;  (5.94)
AU} = AU; — AUnyin; - (5.95)

The sub-contact displacement increments are used to calculate the elastic force increments. The normal and
shear force increments, taking compressive force as positive, are:

AF™ = —K,AU"'A,  (5.96)
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AF? = —K,AUFA,  (5.97)

where A, is the area of the sub-contact. The sub-contact area is obtained by assigning to the point a region
formed by 1/3 of the areas of the triangular faces containing the sub-contact and lying on the c-p. The area
of the intersection of this region with the other block’s faces lying on the c-p is then calculated.

Then, total normal force and shear force vectors are updated for the sub-contact as:
F':=F" + AF™ (5.98)
Fis: = Fis + AFiS (599)

5.3.4 Benchmarking Modeling for Intact Rock

Here, it is aimed to numerically model a 100x100x100 m*® homogeneous, isotropic, and elastic block
composed of lower granite of Soultz-sous-Foréts geothermal reservoir. The elastic moduli of this granite
are already assessed in many literatures such as Vallier et al., 2019, in which Young’s modulus and
Poisson’s ratio are obtained respectively 25 GPa and 0.29. These values are assigned to the numerical rock
block of the current section and effective elastic moduli are then determined through uniaxial compressive
stress test, confined uniaxial compressive stress test, and true triaxial compressive stress test. Noteworthy
that the gravitational effect of the rock is not taken into account.

Uniaxial Compressive Stress Test

In this test, all sides of the block are free to move except the bottom, which is fixed only in the Z-direction.
The block is discretized by a tetrahedral with a side size of 5 meters. A 10 MPa compressive stress is applied
to the top of the block and the model is let to reach an equilibrium state. It is also assumed that the X-, Y-,
and Z-directions are corresponding with principal directions. Arithmetic average values of strain and stress
increments throughout the block volume are then extracted from the numerical model in order to assess the
effective elastic moduli of the rock block under a uniaxial compressive stress test.

Substituting the values of assigned elastic moduli and applied stress in equations (5.35) and (5.37) will yield
-4.000e-04 and 1.160e-04 for vertical and lateral strains, respectively. Numerical average values of strain
and stress increments are shown in tables 5.10 and 5.11.

Table 5.10. Average numerical strain increment values and corresponding standard deviations

Strain Increments Average Numerical Values Standard Deviation
ZZ-Strain -4.00e-04 1.29e-08
XX-Strain 1.16e-04 4.58e-09
YY-Strain 1.16e-04 4.33e-09
XY-Strain 1.19%-11 5.46e-10
XZ-Strain -1.62e-9 7.92e-09
YZ-Strain -2.68e-09 8.09e-09
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Table 5.11. Average stress increment values and corresponding standard deviation

Stress Increments Average Numerical Values (Pa) Standard Deviation (Pa)
ZZ-Stress -1.00e07 3.09e02
XX-Stress -3.09e01 8.20e01
YY-Stress -3.09e01 8.43e01
XY-Stress 1.78e-01 7.85e00
XZ-Stress -2.62e01 4.16e01
YZ-Stress -4.30e01 5.01e01

Very small standard deviation in above tables indicates that the strain and stress increments distributed in
the block zones are centered on the obtained average values and might be consistent to conclude that the
estimated average values are good representative of the distributed parameters.

Effective elastic moduli can then be determined by doing some reorder in equations (5.34) and (5.36) so as

Eepp = 2222 (5.100)

ZZagve

_ “&xxave _ “Eyyave
Veff = = (5.101)
By substituting average values of ZZ-, XX-, and Y'Y-Strains and ZZ-Stress of tables 5.1 and 5.2 in equations
(5.92) and (5.93), the effective values of elastic moduli yields approximately 25.0 GPa and 0.290. Knowing
that the assigned Young’s modulus and Poisson’s ratio are respectively 25.0 GPa and 0.290, we may
determine relative error of estimations for effective elastic moduli in percent as

numerical—assigned

relative Error = *100 (5.102)

assigned
In this way, and by considering 3 significant figures, a negligible relative error for both Young's modulus
and Poisson's ratio were obtained.

Confined Uniaxial Compressive Stress Test

In this test, all sides of the block are fixed in the direction of face-normal except the top side. The block is
discretized by a tetrahedral with a side size of 5 meters. A 10.0 MPa of compressive stress is applied to the
top of the block and the model is let to reach an equilibrium state. It is also assumed that the X-, Y-, and Z-
directions are corresponding with principal directions. Arithmetic average values of strain and stress
increments throughout the block volume are then extracted from the numerical model in order to assess the
effective elastic moduli of the rock block under a confined compressive stress test.

Substituting the values of assigned elastic moduli and applied stress in equations (5.40) and (5.41) results
in lateral stresses of -4.1 MPa and the vertical strain of -3.1e-04. Numerical average values of strain and
stress increments are shown in tables 5.12 and 5.13. Effective elastic moduli can be obtained by substituting
numerical average strain and stress values in equations (5.40) and (5.41) and doing some reorder so as
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9= Oxxave — Oyyave (5103)

Uxxave"'azzave Uyyave"'azzave

Eeff - gzzluve [O-ZZ‘“’E B ﬁeff(o-xxave + O-YYave)] (5.104)

By substituting average values of ZZ-, XX-, and YY-Strains and ZZ-Stress of tables 5.12 and 5.13 in
equations (5.103) and (5.104), the effective values of Poisson’s ratio and Young’s modulus will be 0.290
and 25.0 GPa, respectively; again with negligible relative errors.

Table 5.12. Average strain increment values and corresponding standard deviations

Strain Increments Average Numerical Values Standard Deviation
ZZ-Strain -3.05e-04 7.54e-09
XX-Strain 1.10e-10 1.62e-09
YY-Strain 1.08e-10 2.61e-09
XY-Strain -2.37e-12 1.75e-09
XZ-Strain 1.02e-09 3.92e-09
YZ-Strain 2.30e-09 4.12e-09

Table 5.13. Average stress increment values and corresponding standard deviation

Stress Increments Average Numerical Values (Pa) Standard Deviation (Pa)
ZZ-Stress -1.00e07 2.71e02
XX-Stress -4.08e06 1.07e02
Y'Y-Stress -4.08e06 1.14e02
XY-Stress -5.34e-02 3.40e01
XZ-Stress 2.09e01 5.03e01
YZ-Stress 4.65e01 5.66e01

Triaxial Compressive Stress

In this test, all sides of the block are free to move except the bottom side, which is fixed only in the z-
direction (the direction of face-normal). A 10.0 MPa of compressive vertical stress is applied to the top of
the block. XX- and Y- stresses are both equal to 1.00 MPa compressive stress. It is also assumed that the
X-, Y-, and Z-directions are corresponding with principal directions. Arithmetic average values of strain
and stress increments throughout the block volume are then extracted from the numerical model in order to
assess the effective elastic moduli of the rock block under triaxial compressive stress test. Substituting the
values of assigned elastic moduli and applied stresses in equations (5.43) to (5.45) yields -3.8e-04 and 8.8e-
05 for vertical and lateral strains, respectively. Numerical average values of strain and stress increments are
shown in tables 5.14 and 5.15.
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Table 5.14. Average strain increment values and corresponding standard deviations

Strain Increments Average Numerical Values Standard Deviation
ZZ-Strain -3.77e-04 1.57e-08
XX-Strain 8.76e-05 5.23e-09
YY-Strain 8.76e-05 4.85e-09
XY-Strain -7.39%-12 5.85e-10
XZ-Strain -1.95e-09 6.55e-09
YZ-Strain -3.25e-09 6.86e-09

Table 5.15. Average stress increment values and corresponding standard deviations

Stress Increments Average Numerical Values (Pa) Standard Deviation (Pa)
ZZ-Stress -1.00e07 3.85e02
XX-Stress -1.00e06 6.98e01
YY-Stress -1.00e06 7.38e01
XY-Stress 9.23e-02 7.89e00
XZ-Stress -3.35e01 4.15e01
YZ-Stress -5.56e01 5.52e01

Effective elastic moduli can be obtained by substituting numerical average strain and stress values in
equations (5.43) to (5.45) and doing some reorder so as

& a. =& g
XXave~ZZave “ZZgye~XXave (5105)

Derr =

Exxave (axxave +a}’)’ave)_szzave (Uzzave +gYYave)

1
Eeff = £27 [Uzzave - 193ff (Uxxave + O-yyave)] (5106)

By substituting average values of ZZ-, XX-, and YY-Strains and ZZ-Stress of tables 5.14 and 5.15 in
equations (5.105) and (5.106), the effective values of Poisson’s ratio and Young’s modulus will be 0.290
and 25.0 GPa, respectively; with negligible relative errors for Young’s modulus and Poisson’s ratio.

Sensitivity Analysis on Intact Rock Behavior

One of the most important parameters in modeling using numerical tools such as 3DEC which affects the
accuracy of the estimates might be the number of zones in the model or, in the other words, the size of
meshing. In 3DEC, the model is discretized to tetrahedral, side size of which in this subsection is going to
be changed from reference value of 5 meters (results of which are explained in above subsections) to 4, 10,
and finally to 20 meters. It is aimed to assess the sensitivity of the strain and stress increments and finally
the estimation of effective elastic moduli against the mesh size change.

Worth to mention that, since the elongations and distortions in a 3D model are independent of each other
(Timoshenko and Goodier, 1970) and distortions were negligible in our estimated data set, the sensitivity
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analysis carried out on principal strain and stress increments. Figures 5.27 to 5.29 illustrate the relative error
evolution of estimated effective moduli in terms of discretization size of the model. Looking at these figures,
one may conclude that the effect of mesh size on the accuracy of estimated effective elastic moduli are not
significant, however it might be time-effective to discretize the model with tetrahedral of side size of 10
meters, since it has the best accuracy among four defined mesh sizes to the model under all three loading
scenarios.

Mesh Size effect on accuracy of Effective Moduli in UCS
Test

—»—E_eff —e—nu_eff
0.0E+00
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-1.5E-02

-2.0E-02 SN—m7 1

-2.5E-D02

Relative Error (%)

-3.0E-D02 = * "

-3.5E-02
0 5 10 15 20 25
Mesh Size (m)

Figure 5.27. Evolution of estimation accuracy of effective elastic moduli against variation of mesh size in uniaxial compressive
stress test

Mesh Size effect on accuracy of Effective Moduli in CUCS
Test
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Figure 5.28. Evolution of estimation accuracy of effective elastic moduli against variation of mesh size in confined uniaxial
compressive stress test
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Mesh Size effect on accuracy of Effective Moduli in TTCS
Test
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Figure 5.29. Evolution of estimation accuracy of effective elastic moduli against variation of mesh size in true triaxial
compressive stress test

5.3.5 Benchmarking Modeling for Rock Block Containing an Infinite Fracture

Here, it is aimed to repeat the numerical tests of subsection 5.3.4 when the block is divided into two identical
parts in height by a horizontal infinite fracture as shown in figure 5.23. The elastic properties of the intact
rock is as same as those of block in subsection 5.3.4. The fracture’s mechanical and physical properties are
summarized in table 5.16, after Gentier et al, 2003 and 2005, to evaluate the response of the numerical
model to the existence of a fracture and its mechanical reaction to the loading.

Table 5.16. Mechanical and physical properties of the fracture embedded in the intact rock block

Property Symbol Value Unit Reference
Normal Stiffness k, 80.0 (GPa/m) Gentier et al., 2005
Shear Stiffness ks 20.0 (GPa/m) Gentier et al., 2005
Initial Hydraulic Aperture hini 14e-05 (m) Gentier et al., 2005
Residual Hydraulic Aperture Ryes 7.0e-05 (m) Gentier et al., 2005
Maximum Hydraulic Aperture Ronax 12e-03 (m) Gentier et al., 2005

Analytically, the normal displacement of the fracture under uniaxial compressive stress test is

ds =22 (5.107)

which yield fracture closure of -1.25e-04 m under -10.0 MPa of normal stress. Vertical displacement of the
intact rock block can be determined using the first term of right-hand side of equation (5.51) as

H
dH, = —doy = —4.00e — 02 m
E,
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Hence, the total vertical displacement of the fractured rock block will be -4.01e-2 m. The vertical strain of
the fractured rock block can then be determined by dividing total vertical displacement by sum of intact
block height and fracture’s initial aperture as -4.01e-04 m.

So, the lateral strain increments will yield 1.2e-04. Below in tables 5.17, the numerical values of average
strain and stress increments of the rock mass block for uniaxial compressive stress loading scenarios are
summarized.

Table 5.17. Average numerical strain increments and corresponding standard deviations

Parameter Average Numerical Values Standard Deviations
ZZ-Strain -4.00e-04 1.56e-08
XX-Strain 1.16e-04 4.40e-08
YY-Strain 1.16e-04 5.09 e-09

Table 5.18. Average stress increment values and corresponding standard deviations

Stress Increments Average Numerical Values (Pa) Standard Deviation (Pa)
ZZ-Stress -1.00e07 3.89e02
XX-Stress 1.38e01 4.33e01
YY-Stress 1.55e01 2.99e01

Substituting the results of tables 5.17 and 5.18 in equations (5.100) and (5.101) yields effective Poisson’s
ratio and Young’s modulus of 0.290 and 25.0 GPa, respectively, with a negligible relative error.

Now, it is aimed to assess the effect of lateral confinement on the resulting effective elastic moduli of the
fractured rock block. For that, like the tests performed on the intact rock, in the first test the lateral
displacement of the block is fixed to zero and then, in the second test, a confining compressive stress of -
1.0 MPa is applied to the side faces of the block in X- and Y-directions.

For the first test, the analytical solution is as:
v
Oxx = Oyy = mav = —4.08e6 Pa

O-Tl
dd =—=-1.25e—4m
kn

H
dH, = E_r [dch — ﬁ(axx + cryy)] =-31le—2m
dHTotal = dHr + d6 = _316 - 2 m
1
Ep7 = 7 [dch — ﬁ(axx + cryy)] =-3.1le—4
T

Exx = Eyy =0
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Numerical average values of strain and stress increments are shown in tables 5.19 and 5.20.

Table 5.19. Average numerical strain increments and corresponding standard deviations

Parameter Average Numerical Values Standard Deviation
ZZ-Strain -3.05e-04 7.79e-09
XX-Strain 1.53e-10 1.79e-09
YY-Strain 1.53e-10 1.79e-09

Table 5.20. Average stress increment values and corresponding standard deviation

Stress Increments Average Numerical Values (Pa) Standard Deviation (Pa)
ZZ-Stress -1.00e07 2.43e02
XX-Stress -4.08e06 9.93e01
YY-Stress -4.08e06 9.94e01

Substituting the results of tables 5.19 and 5.20 in equations (5.103) and (5.104) yields 0.290 and 25.0 GPa
respectively for Poisson’s ratio and Young’s modulus.

For true triaxial compressive stress test, analytical solution yield

—1.25e—4m

QU
>
I
|
I

H
dHT = E—[dO'V — ‘L9(O'h + O'H)] =-377e—2m
r

dHrotq = dHy + d6 = —3.78¢ —2m

1
€z =4 [doy —9(op, + oy)] = —3.77e — 4
r

Exx = 7 [doy —9(oy + 0),)] = 8.76e — 5 = ¢,

1
ET
Numerical average values of strain and stress increments are shown in tables 5.21 and 5.22.

Table 5.21. Average numerical strain increments and corresponding standard deviations

Parameter Numerical Value Standard Deviation
ZZ-Strain -3.77e-04 1.85e-08
XX-Strain 8.76e-05 5.24e-09
YY-Strain 8.76e-05 6.03e-09
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Table 5.22. Average stress increment values and corresponding standard deviation

Stress Increments

Average Numerical Values (Pa)

Standard Deviation (Pa)

ZZ-Stress -10e06 4.61e02
XX-Stress -1e06 5.12e01
YY-Stress -1e06 3.57e01

Substituting the results of tables 5.21 and 5.22 in equations (5.105) and (5.106) yields 0.290 and 25.0 GPa

for Poisson’s ratio and Young’s modulus, respectively.

The true triaxial test will be the only scenario to be investigated afterwards due to the reason that it is more
relevant to the rock masses undergoing in-situ stress states compared to the other two loading scenarios.
Therefore, a true triaxial test on the above-mentioned rock mass block is designed by applying in-situ stress
magnitudes at the depth of 4.7 km of Soultz-sous-Foréts reservoir. For that, the stress magnitudes are
determined based on Cornet et al., 2007, equations which yield 118.5, 64, and 112.6 MPa for vertical,
minimum and maximum horizontal stresses, respectively. It is also assumed that the in-situ stresses are
aligned with principal stress directions and stress variation with depth is negligible through 100 meter of

block height. For such true triaxial compressive stress test, analytical solution yield

Oy

dé = —

kn

H
dH, = —[doy — 9(oy, + oy)] = —2.69¢e —1m

E

=—-148e—3m

dHropq = AHy + d6 = —0.271m

1
&, = —|doy —9(op, + oy)] = —2.69e — 3

E
1

Exx = = dop, —9(oy + oy)] = 1.21e — 4

E

e
vy
E;

1
=—|[doy —9(oy + g)] = —2.39¢ — 3

Numerical average values of strain and stress increments are shown in tables 5.23 and 5.24.

Table 5.23. Vertical displacement values, strain increments, and corresponding errors

Parameter Analytical Values Numerical Values Relative Error (%)
ZZ-Strain -2.69e-03 -2.691e-03 0.0371
XX-Strain 1.21e-04 1.206e-04 0.331
YY-Strain -2.3%-03 -2.387e-03 0.126
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Table 5.24. Average stress increment values and corresponding standard deviation

Stress Increments Applied Values (Pa) Average Nu(r;:)r ical Values Relative Error (%)
ZZ-Stress -118.5e06 -118.49e06 0.008
XX-Stress -64.00e6 -64.00e06 N/A
YY-Stress -112.6e6 -112.59e06 0.009

Substituting the results of tables 5.14 and 5.15 in equations (5.103) and (5.104) yields

It was found from benchmarking modeling using the uniaxial compressive, confined uniaxial compressive,
triaxial compressive, and polyaxial (true triaxial) tests on the block hosting an infinite horizontal dry
fracture show that the numerical results have a good agreement with the analytical counterparts as can be
observed in tables from 3.8 to 3.15. On the other hand, and comparing the numerical effective elastic moduli
with the initially assigned values of 0.290 and 25.0 GPa (respectively for Poisson ratio and Young's
modulus) implies that the embedded dry fractures characterized with parameters in table 3.7 does not
change the elastic behavior of the fractured rock block in comparison to the intact rock block.

Sensitivity Analysis on Fractured Rock Behavior

In the previous subsection equivalent elastic moduli of a fractured rock block was determined through a
true triaxial loading test in which in-situ stress magnitudes at depth of 4.7 km of Soultz-sous-Foréts
reservoir was applied to the block. Here, it is aimed to assess the sensitivity of equivalent elastic moduli to
some of fracture properties such as orientation, normal and shear stiffnesses.

Orientation of fracture can be generalized to the angle between fracture’s normal and direction of maximum
principal stress. This will simultaneously take the effect of fracture’s dip and dip direction into
consideration related to calculation of normal and shear stresses acting on the fracture plane. These two
stresses in collaboration with fracture’s normal and shear stiffnesses will determine normal and shear
displacement of fracture. Noteworthy that shear displacement of fracture planes are assumed to be elastic
as long as the shear stress acting on the fracture plane does not exceed the fracture’s shear strength (equation
5.50). The shear displacement prior to reaching fracture’s shear strength then might be considered as elastic

shear displacement, dJ , and be expressed as

ds; = (5.108)

in which 7 is shear stress acting on the fracture plane and k; is shear stiffness of the fracture.

Normal displacement of the fracture has been already discussed and can be determined using equation
(5.107).
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It is obvious that fracture’s orientation will affect the magnitude of normal and shear stresses acting on the
fracture plane (see Cauchy tetrahedron in figure 5.24) which in turn will have influence on normal and
shear displacements of fracture and hence the elastic response of the rock mass block compared to when
the fracture was horizontal (in which the normal stress acting on the fracture is as equal as vertical stress,
but shear stress is zero).

Here, we have just analyzed sensitivity of equivalent elastic moduli to variation of fracture’s dip. According
to Cornet, 2015, shear and normal stress acting on a surface in which an eigenvector lies (e.g., changing dip
of a fracture) and its normal makes an angle of B with direction of maximum principal stress can be
expressed as

0y = PB4 BT o528 (5.100)

T=-Z5sin2B  (5.110)

Substitution of these stress values in equation (5.109) and (5.110) will yield normal and shear displacement
of the fracture, projection of which onto principal direction will be added to displacement magnitudes of
intact rock and, therefore, will affect elastic moduli.

Figure 5.30 illustrates a fractured block where the fracture’s normal has an angle of  with maximum
principal stress and the eigenvector e, lies on the fracture plane. So, equations (5.105) and (5.106) are valid
for this case. On the other hand, direction cosines of normal and shear displacement in such configuration
will be cos (90-B), cos (90), and cos (B) in X-, Y-, and Z-directions, respectively. These direction cosines
can be employed for determination of projection of normal and shear displacement components in principal
directions.

Figures 3.31 and 3.32 illustrate effective elastic moduli variation against fracture’s dip alteration. Effective
elastic moduli are determined in two principal directions of I, and I;by substituting average numerical
values of stress and strain in equations (3.74) and (3.75). For this case in which the lateral stresses are not
identical, contrary to those which are used to obtain equations (3.74) and (3.75), two more equations are
required to determine effective elastic moduli in both I, and Isdirections. Then, we may reformulate
aforementioned equations as

€20ve%1 gve —€1ape 92
19 — ave_ lave ave” 2ave 5111
effiz €2ave (T3 ave T 2ave) —E1ave (T1ave TO3ave) ( )
1
Berfin = 5 — [01,,. = Yers,,(02,,, + 03,,,)]  (5.112)
&30 =& O
Yerfiy = > —ave —ave (5.113)

€3ave (63 avet02 ave) “E1gpe (aiave +02ave)

Eeff13 - elive [Jlave - ﬁeff13 (Jzave + U3ave)] (5114)
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Figure 5.30. Schematic vertical cross section of a fractured rock mass
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Figure 5.31. Evolution of effective Young’s modulus in I, and I3 directions versus fracture dip
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Figure 5.32. Evolution of effective Poisson’s ratio in I, and I5 directions versus fracture dip

The results summarized in figures 5.31 and 5.32 reveal that the average effective elastic moduli evolution
in Izdirection is relatively more sensitive to fracture dip variation compared to that in I,direction due to the
fact that contribution of the fracture’s elastic displacement to the total displacement of the block in I,
direction is approximately zero. It stems from the azimuth of fracture which is zero in this specific case.
Generally looking, it seems that the variation of elastic moduli is not meaningful at this test; however, in
some cases (e.g., dip of 45° and 70°) show a slight deviation from elastic moduli of the intact rock.

The effect of fracture’s azimuth can be assessed by keeping fracture dip on a constant value, e.g. 71°, and
changing fracture’s azimuth from 0° to 90°. Doing so, yielded the results shown in figures 5.33 and 5.34.
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Figure 5.33. Effective Young’s modulus evolution in I,and I5 directions versus fracture azimuth
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Figure 5.34. Evolution of effective Poisson’s ratio in I,and I5 directions versus fracture azimuth
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Looking at figures 3.33 and 3.34 reveals that the elastic moduli deviation from the assigned values in
Izdirection is negligible compared to that in I,direction. On the other hand, the overall variation of the
effective elastic moduli in these tests is not significant.

Based on the conducted sensitivity analysis, it is observed that the fracture characterized as table 5.16 has
a negligible influence on the effective elastic moduli of the rock mass regardless of its dip and orientation.
In addition to the fracture’s dip and orientation, the normal and shear stiffnesses of the fracture may also
affect the effective elastic moduli of the fractured rock mass, but this effect has not been investigated in the
present work.

5.3.6  Stress-Dependent Fracture Stiffness

In subsection 5.3.5, we assumed that the fracture’s normal and shear stiffnesses are constant or independent
of applied stress. But, many authors such as Kulhawy, 1975, Goodman, 1976, and Bandis et al., 1983,
reported non-linear variation of fracture stiffness depending on the applied normal stress, as explained in
subsubsection 5.3.2. Here, we tried to use 3DEC so as to assign non-linear stiffness to the fractures based
on equations 5.47 to 5.49. For that, an iterative process is defined based on which the normal and shear
stiffnesses of each zone on fracture surface for timestep At; are obtained by replacing local normal and
shear stresses on each zone of fracture surface of timestep At;_, in equations 5.47 to 5.49. Therefore and
benefiting from equation 3.96 to 3.99, the normal and shear stress values for timestep At; were calculated
to be used for calculation of normal and shear stiffness for timestep 4t;,; and so on. In equation form and
at the timestep At;, for mismatched joint case we have

K =l 1 Ll.]_z (5.115)

B mGni+drll_1
AEFY = —kLAULA.  (5.116)
Ef' = E' + AEY (5.117)

Vi, in equation 5.115 is the difference between initial and residual hydraulic aperture. n;, and Ry data of
Soultz granite were not available, therefore in current work those data of dolerite, reported in Bandis et al.,
1983, were used instead. k; is also assumed to be as equal as initial shear stiffness. g parameter in equation
5.48, which is called “stiffness characteristics” (Evans et al., 1992; Zangerl et al., 2008), determined by
Zangerl et al., 2008, by compilation of 115 normal closure experiments carried out on natural and artificial
fractures in granites. They found “stiffness characteristics” spanning from 720 mm* for well-mated
fractures in the laboratory to 3 mm- for an in-situ test on an induced or reactivated hydro-fracture isolated
in a borehole. This parameter is the slope of logarithm of normal stress versus fracture closure curve for
mismatched joints as shown in figure 5.35. According to the compilation of the stiffness characteristic for
first loading path of natural fractures in granitic samples summarized in Zangerl et al., 2008, q ranges from
5-244 mm*, with the majority between 20 and 30 mm™ and the mean of about 88 mm (figure 5.36). In the
current simulation, we used the mean stiffness characteristic of 88 mm™. The model geometry and
mechanical parameters are summarized in table 3.17.
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Table 5.25. Index properties and sampling locations of the samples (Bandis et al., 1983)

Properties Tensile Compressive  Young's ~ Unit
strength strength modulus weight
Rock matenals o, (MPa) ¢, (MPa) E_ (GPa) y(KN/m’)
Slate (Ordovician from
Skiddaw Slates—Quarry nr 149 159.0 66.0 27.7

Keswick, Lake District)
Dolerite (Permo-Carboniferous
—natural exposure at 17.3 165.0 78.0 29.0
Horwick Crags, Teesdale)
Limestone (Lower Carboniferous
—natural exposure, 10.6 152.0 490 27.3
N. Yorks)
Siltstone (Upper Coal Measures
—NCB pit, W. Yorks) 6.3 84.0 28.5 242
Sandstone (Lower Coal Measures
—Shibden Dale Quarry, 5.1 78.0 240 24.1
W. Yorks)

v Slate No. | y » -0.626+23.349x
500 ® Slate No. 2 y =—0.571 + 16,329 x

B O LMST.No. I0y = —0.606+11.158 x
¢ LMST. No. 9 y»-0666+8.872x
m SOST. No. 2 y*-0.758+ 6.987x
200 D SILST. No.2 y=—0731 + 7.80) x

100 -

Normal stress (MPg)
n
[~

y *i09 o, (MPa)

0.50 x = AV, (mm)
0.20
0.10 13 ] 1 1 | L L L

0.0% 040 0I5 020 0.2% 030 035 040
Joint closure (mm)}

Figure 5.35. Semi-log plots of normal stress versus fracture closure of mismatched joints (Bandis et al., 1983)
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Table 5.26. Mechanical and physical properties of the model

Parameter value
Block Height (m) 2
Block Length (m) 1
Block width (m) 1
E (GPa) 40
v 0.1
Density (kg/m3) 2680
Fracture Diameter (m) 0.5
Fracture Dip (°) 45
Fracture Dip Direction (°) 90
ky; (GPa/m) 80
ks; (GPa/m) 20
Friction Angle (°) 39.0
Cohesive Strength (MPa) 6.5
Initial Hydraulic Aperture (m) 14e-05
Residual Hydraulic Aperture (m) 7.0e-05
Maximum Hydraulic Aperture (m) 12e-03
Vin (M) 7e-05
k; (MPa/mm) 20
n; (MPa®/mm) 0.615
Rf 0.652
q (1/mm) 88

Figure 5.37 shows the model and embedded circular finite fracture. Displacement of the area outside of the
circular fracture plane was restricted.

183



11

Frequency

Stiffness Characteristics [1/mm]

Figure 5.36. Histogram of stiffness characteristic values (for natural fractures in granite) based on Zangerl at al., 2008

10 X

Figure 5.37. Parallelepiped block (1x1x2 m”3) with embedded circular finite fracture (black circular surface with diameter of 0.5
m)

Applying loads to intact rock or fractured rock mass specimens in the laboratory experiments are mainly
carried out by two mechanisms of strain (displacement) and stress (load) controlled methods (Alshkane et
al., 2017) among other existing alternative methods (e.g., Pan et al., 2006; Shimizu et al., 2010). In the
current study, we used a strain-controlled loading mechanism considering the fact that in 3DEC/UDEC
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applying a displacement (d) boundary condition is only possible by defining velocity (V) boundary
condition for a time (t) increment (V=d/t) (Itasca, 2016). To avoid detrimental inertial shocks to the model
it is essential to keep the loading velocity small or to increase the loading velocity slowly (Alshkane et al.,
2017). But, keeping loading velocity small will cause time-consuming numerical computations. To
overcome this problem, a FISH (programming language used by Itasca numerical tools) algorithm is
provided by Itasca (ltasca, 2016) to impose strain-controlled loading boundary conditions. This servo-
control mechanism adjusts loading velocity based on the value of “maximum unbalanced force” in order to
avoid internal shock. So, the FISH algorithm of Itasca was used to apply a downward constant normal
velocity of 1e-04 m/s for 100 numerical steps and stop loading to check the total vertical displacement on
top of the model reached the assigned displacement limit. In consequence, a vertical compressive stress
applied to the top of the block shown in figure 5.37. Verification tests stopped when the axial displacement
at the top of the block reached 5e-4 m (half of a millimeter). At each loading step, the average values of
shear and normal stresses acting on the fracture plane were iteratively extracted and the associated values
of k,, and kg were calculated based on equations 5.47 or 5.48 and 5.49. These new stiffness values were
then assigned to the fracture for the next loading step so as to obtain normal and shear displacements of the
fracture using equations 5.109 and 5.110. The results were then compared to the analytical displacement
magnitudes obtained as

ds, = —2'm _ (5117)

- kniVim+on

dé, = (log(on) —p)/q (5.118)

T

dd, = —————
S ks(1-(t/Tu))

(5.119)

for, respectively, normal displacement in interlocked joints, normal displacement in mismatched joints, and
shear displacement. p in equation 5.118 is antilog of initial normal stress which was equal to 0.15 MPa in
Bandis et al., 1983. This p value is in fact the normal stress after which Bandis et al., 1983, have
characterized the mismatched joint stiffness. In the current study we assumed that fracture stiffness for the
normal stress ranging from zero to p were equal to initial value of normal stiffness (k,,;) as is observed in
figure 5.39. Figures 5.38 and 5.39 are comparisons between analytical and numerical variation of normal
displacement in terms of normal stress for interlocked and mismatched joints, respectively. Figure 5.40 is
variation of shear displacement in terms of shear stress acting on the fracture plane. As it can be seen from
the figures, there is a good agreement between the results of numerical and analytical calculations, however
the numerical shear displacement for a given shear stress shows a small deviation from analytical results
which might be caused by the fact that z,,;, in equation 5.112 is a parameter which depends on the condition
of the sample under direct shear test that has not reached residual shear strength (which needs more
displacement). On the other hand, ultimate shear strength is more than residual shear strength but less than
peak shear strength and is unique in each test depending on the situation of the test and sample (Barton,
personal communication). Here, we assumed t,;; to be equal with multiplication of static friction
coefficient to the normal stress.
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Figure 5.38. Fracture normal stress versus normal displacement for interlocked joint type

6
%10

8 T T

7+ |

6 |
©
o #
% P
i e
=40 P & i
w pd
© #

&
E3t- - .
@] >
= P
P
2r # i
~ g = =Analytical-Constant Kn
1L e = -Analytical-Variable Kn ||
P ~ 3DEC-Constant Kn
7 —3DEC-Variable Kn
0 ' :
0 2 4 6 8

Normal Displacement, [m] %10
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Figure 5.40. Fracture shear stress versus shear displacement

The developed code was then slightly reformed by using normal and shear stress values of tetrahedral zones
in equations 5.47 or 5.48 and 5.49 instead of average values of them acting on the fracture plane. This
reformed code was then applied to a DFN containing two fractures to qualitatively validate it for the cases
where a set of fractures are embedded in the model. For that, a block of 100x100x100 m? hosting two
circular finite size fractures was created and underwent the same loading mechanism as that used above for
a single fracture model. The block and embedded two fractures are shown in figure 5.41. The fractures are
F1 and F2 on which the evolution of normal and shear stiffness versus normal stress were investigated. The
results are illustrated in figures 5.42 to 5.43, where, qualitatively, it can be seen that the stress-dependent
fracture stiffnesses are deviated from their constant counterparts; representing non-linear stress-dependent
fracture stiffness as described by Bandis et la., 1983.
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Figure 5.41. Schematic 3-D view of 100x100x100 m? block and two finite size fractures (F1 and F2)
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Figure 5.42. Comparison of F1 and F2 fractures’ normal displacement versus normal stress for constant and stress-dependent

fracture stiffness parameter (Eq. 5.112 to 5.113); interlocked joints (A and B), mismatched joints (C and D)
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Figure 5.43. Comparison of F1 and F2 fractures’ shear displacement versus shear stress for constant and stress-dependent fracture
stiffness parameter (Eq. 5.114); interlocked joints (A and B), mismatched joints (C and D)

5.3.7 Effective Elastic Moduli of the Fractured Rock Mass

Here, the DFN example generated in section 5.2.1 was embedded in the intact, homogeneous, isotropic
rock block of 100x100x100 m? in order to simulate fractured rock mass block of Soultz-sous-Foréts. 4500
fractures generated by the numerical DFN example cut intact rock into small blocks of deformable materials
with E and v of 40 GPa (Villeneuve et al., 2018) and 0.1 (Sausse, 2002). Importing such DFN (shown in
figure 5.44) into the intact rock block of 100x100x100 m? creates a fractured rock mass such as figure 5.45.
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Figure 5.44. Numerical DFN example composed of 4500 fractures with diameters ranging from 10 to 3000 m
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Figure 5.45. Rock block with side size of 100x100x100 m3 fractured with numerical DFN example shown in figure 5.44

Three models of fractured rock mass were created by assigning constant (case 1), mismatched (case 2), and
interlocked (case 3) fracture stiffnesses to the fractures of the DFN in models. The boundaries of models
(except the bottom of the block that was set to be fixed in the Z-direction at all simulations) were subjected
to three stress levels of 1) 10%, 2) 50%, and 3) 100% of in-situ stress state derived from Soultz-sous-Foréts
geothermal reservoir at a depth of 4.7 km. The applied in-situ stress field was computed based on equations
in Cornet et al., 2007, where orientation of maximum horizontal stress was stated 170+10°, but here we
assumed that it is 180°; thus, the applied stresses in X-, Y-, and Z-directions could be considered as principal
stresses of, respectively, S;, S,, and S;. In other words, the principal stress frame of reference is aligned
with the Cartesian frame of reference. After reaching an equilibrium at each stress level (initial state), four
stress perturbation modes (secondary state) were applied to the models. In the three stress perturbation
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modes, the models were subjected to initial stress state and then, respectively, 10%, 1% of the principal
stress values, and a 1 MPa of isotropic stress values were applied to the boundaries of the cubic block. The
fourth perturbation mode was a 1 MPa of isotropic stress values applied to the initial state of the models
which were first subjected to the isotropic stresses equal to the S; at each stress level. These modes are
summarized in table 5.27.

Table 5.27. Summary of simulation scenarios

Stress Level Fracture Stiffness Initial Loading Stress Perturbation Mode
L i . . 1) 10% of in-situ stress
1) 10% of in-situ stress a)  Constant stiffness In-situ stress field ) 0 field

field at 4.7 km

b) Stress dependent In-situ stress field 2) 1% of in-situ stress field

Stiffness (Interlocked

o nf i
2) 50% of in-situ stress Joints)

field at 4.7 km

3) 1 MPa of isotropic

In-situ stress field L
triaxial stress

Stress dependent
Stiffness (Mismatched
Joints)

3) 100% of in-situ stress ©)

field at 4.7 km 4) 1 MPa of isotropic

Isotropic triaxial Sy triaxial stress

By convergence of each loading step (both initial and secondary loadings) the average values of stress and
strain components over zones of the blocks were measured. Subtraction of secondary state components
from those of the initial state were utilized to obtain effective values of Young’s modulus and Poisson ratio
for each simulation. In this study, it was aimed to estimate effective elastic moduli of homogenized fractured
rock mass in order to evaluate P-wave velocity variation in the fractured medium of interest. Therefore, a
grid search algorithm was developed to compute optimum values of elastic moduli for which the difference
between components of the resulting and the computed stress tensors were minimum. In other words, the
least-square method was defined as equation (5.120) aiming to minimize the sum of squared residuals.
F=Y%(o;""—0o*™?, ij=123 (5120

The six components of the computed stress tensor were obtained by substituting of numerical strain tensor
components on Hooke’s law equation introduced for isotropic material subjected to polyaxial loading
(equations 5.114-5.116) and doing grid search on Lame’s coefficients (1 and G) so as to find the Optimum
Aand G for which the computed stress component was closest to the numerically obtained stress. The range
of A and G was defined from zero to 20 GPa with 10000 steps between the minimum and the maximum at
each axis of the grid. Optimum A and G were then utilized to calculate the corresponding Young’s modulus
and Poisson ratio using equations 5.117 and 5.118.

0y = (A +2G);;8;; + Aeyj6ij + A6y = A&y + 2Gey; , L,j =123 (5.121)
o;j =2Ge; , L,j=123 & i#j (5122)
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&y = Zgij6ij B l,] = 1,2,3 (5123)

_(3A+26)G
E=22200 (5.124)
_ A
v=ios (5129)

At which o, €, G, A, v, and E are, respectively, stress, strain, shear modulus, lambda, Poisson ratio, and
Young’s modulus. §;; is Kronecker delta that is zero when i # jand is 1 when i = j. &, is volumetric strain.

Applying above mentioned loading scenarios on the generated fractured rock mass models encountered
with a problem that is common in loading of fractured rock mass blocks using 3DEC. This problem stems
from the volume of geomaterial surrounded by the fracture planes that, in some cases, are small such that
their loading yields zero or negative volume and interrupts numerical computations.

To overcome this issue, the author tried some solutions offered by the Itasca CG such as eliminating the
blocks having small volume in a given range (e.g., less than 1e-6 m®), but the efforts were unsuccessful in
spite of investing an abundant amount of time. Therefore, the DFN built in section 5.1.1 was reformed so
as to decrease the probability of zero/negative volume occurrence in the fractured rock block. For that,
fracture density was decreased by one tenth of the density introduced in section 5.1.1 and distribution of
orientation and position of fractures was changed to uniform distribution. Doing so, the resulting DFN
(shown in figure 5.46) composed of 418 fractures with a exponent of 3.0, Inin and Imax of 10 and 3000 m,
respectively. Embedding that DFN into the intact rock block of 100x100x100 m? created the fractured rock
mass block which is shown in figure 5.47.
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Figure 5.46. Fictitious DFN composed of 418 fractures with diameters ranging from 10 to 3000 m
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Figure 5.47. Rock block with side size of 100x100x100 m3 fractured with fictitious DFN of figure 5.46

Constant, mismatched, and interlocked cases of fractured rock mass models were generated and the loading
scenarios were applied and effective elastic moduli were estimated by using the previously explained grid
search method. As an example, for the interlocked case of fractured rock mass at the third stress level
undergoing the second stress perturbation mode, the effective Young’s modulus and Poisson ratio of 39.91
GPa and 0.1 were obtained for which the least square value was 3.73e8. The resulting effective elastic
moduli of the fractured rock were then normalized by intact rock’s elastic moduli (E=40 GPa and v=0.1).
A total number of 72 simulations were carried out at this step, from which 36 effective values of Young’s
modulus and Poisson Ratio were derived as shown in figure 5.48.

It can be seen in the figures 5.48 that the effective elastic moduli of the fractured rock mass in most of the
cases are not significantly different from those of the intact rock. It might be due to the fact that fracture
density in the models were not high enough to change mechanical behavior of the fractured rock mass.
Assuming that this expression about fracture density is valid and having a closer look at the graphs in figure
5.48, one may deduce that the results of the second stress perturbation mode are consistent in all stress
levels.
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Figure 5.48. Normalized Poisson ratio and Young’s modulus in three fractured models for four stress perturbation modes in three
stress levels

Many authors (e.g., Walsh, 1965; Vakulenko and Kachanov, 1971; Salganik, 1973; Bruner, 1976; Hoenig,
1979; Gottesmann et al., 1980; Hudson, 1980 & 1981, 1986; Kachanov, 1980 & 1987; Henyey and
Pomphery, 1982; Horii and Nemat-Naser, 1983; Case, 1984; Zimmerman, 1984 & 1985; Aboudi and
Benveniste, 1987; Kachanov, 1993; Sayers and Kachanov, 1991 & 1995; Schoenberg and Sayers, 1995;
Grechka and Kachanov, 2006; Gueguen and Kachanov, 2011) investigated influence of discontinuities and
cracks on elastic moduli of materials. Zimmerman, 1985, and Jaeger et al., 2007, summarized most common
methods of no-interaction, self-consistent, and differential scheme as below, respectively,

Ey _ 16(10-3v,)(1-vd)a
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£-1-24 (5127
Eo 9

194



16

£ =¢75% (5.128)
Eo

at which a is fracture density parameter computed as Za®/V where a is fracture radius and V is the volume
of the specimen in the study. E, and v, are intact rock’s Young’s modulus and Poisson ratio, and E is
effective moduli of rock mass.

In order to assess the influence of fracture density on the estimated effective elastic moduli, five more DFN
samples consist of 50, 100, 200, 500, and 1000 fractures were embedded in the modeled intact rock block
and were subjected to stress perturbation mode of 2; again in all three stress levels and by assigning all
three fracture stiffness variations. The results were then compared to the outcomes of methods such as no-
interaction (Walsh, 1965), self-consistent (Budiansky and O’Connell, 1976), differential scheme (Hashin,
1988) and finally the method introduced by Davy et al., 2018, as explained in section 5.3.2, where the
equation (5.91) (effective medium theory) is used in combination with equation (5.80) solved for polyaxial
loading mechanism to compute effective elastic moduli at the fractured rock mass. These comparisons are
demonstrated in figures 5.49 to 5.51 for three stress levels. The X-axis of these graphs is fracture density
defined as p = Na3/V in which N is the number of fractures in the DFN, a is the fracture radius, and V is
the model volume being studied.
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Figure 5.49. Comparison of the normalized Young’s modulus obtained from 3DEC to those of no-interaction, differential
scheme, self-consistent, and Davy et al., 2018 methods for three fractured models underwent the first stress level and the second
stress perturbation mode
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Figure 5.50. Comparison of the normalized Young’s modulus obtained from 3DEC to those of no-interaction, differential
scheme, self-consistent, and Davy et al., 2018 methods for three fractured models underwent the second stress level and the
second stress perturbation mode

196



Stress Level 3
1.2 T T

e *
X v

—Differential Scheme
—Self-Consistent
——No-Interaction
3DEC-Constant Stiffness
3DEC-Mismatched Joints H
3DEC-Interlocked Joints
Davy et al-Constant Stiffness
Davy et al-Mismatched Joints
Davy et al-Interlocked Joints

Vo XV e

Normalized Young's Modulus
&
T

I
~
T

0.2

1
0 0.5 1 1.5 2 2.5 3
Fracture Density

Figure 5.51. Comparison of the normalized Young’s modulus obtained from 3DEC to those of no-interaction, differential
scheme, self-consistent, and Davy et al., 2018 methods for three fractured models underwent the third stress level and the second
stress perturbation mode

Three methods of differential scheme, self-consistent, and no-interaction are based on the stored elastic
strain energy of Eshelby, 1957. The simplest approach to obtain energy perturbation in a fracture/void
containing medium caused by confining/shear stress is to neglect fracture-fracture/ pore-pore interaction
and calculate the effect of each fracture/pore as if it were an isolated fracture/pore in an infinite intact rock,
and then sum up all these energy perturbations for all fractures/pores. This simplification causes significant
divergence of results of three above mentioned from those of Davy et al., 2018, and 3DEC. Another
drawback to the three aforementioned methods is their incapability to consider the stress perturbation
generated by presence of the fracture/pore in the intact rock; which can evolve the direction and magnitude
of the remote stress field in the vicinity of the fracture/pore (Darcel et al., 2021). | can also add another
drawback to these methods as their incapability to take into account the remote stress field as well as fracture
stiffness parameter; but only considering the crack density parameter.

As it can be seen from the figures 5.49 to 5.51, the Davy et al., 2018, results are closest to those of 3DEC.
The reason is that this method considers the remote stress field, fracture's orientation relative to the applied
remote stress field, and fracture stiffness parameters. But, the differences as shown in figures 5.52 to 5.54,
may result from the fact that Davy et al., 2018, does not take into account the stress perturbation caused by
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fractures and also fracture interactions; so that an early stage decrease as well as overestimated effective
moduli can be seen in the graphs.
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Figure 5.52. Evolution of the normalized numerical and analytical effective Young’s modulus versus fracture density parameter
in the three fractured models underwent the first stress level and the second stress perturbation mode
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Figure 5.53. Evolution of the numerical to analytical ratio of effective Young’s modulus versus fracture density parameter in the
three fractured models underwent the second stress level and the second stress perturbation mode
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Figure 5.54. Evolution of the numerical to analytical ratio of effective Young’s modulus versus fracture density parameter in the
three fractured models underwent the third stress level and the second stress perturbation mode

It can also be seen from Figures 5.52 to 5.54 that at all three stress levels, the deviation from the moduli of
elasticity of the intact rock in the 3DEC results occurred at a fracture density of 2.6. On the other hand, this
deviation occurred at the first stress level only in the interlocked joints model, but in all three models
(constant stiffness, mismatched joints, and interlocked joints) at the second and third stress levels.

In addition, at the third stress level, the rock mass hosting fractures, whose normal stiffness is characterized
by the interlocked joints relation (equation 5.47), the effective elastic moduli of fractured rock deviates
from that of intact rock at fracture density of 1.3. The effective moduli of the remaining two cases, i.e., rock
masses containing fractures with constant and mismatched stiffness values, were then evaluated for two
fracture density values between 1.3 and 2.6 to find the density at which the elastic modulus deviation occurs.
It was observed that for fracture densities of approximately 1.9 and 2.2, there was no significant deviation
in the effective moduli.

A closer look at the results of Davy et al. in Figures 5.52-54 also shows that as the stress level increases,
the effect of stress-dependent fracture stiffness decreases, such that Davy et al.'s effective Young’s modulus
at stress levels 2 and 3 are almost superimposed, in contrast to stress level 1. This is only observed in the
numerical results at stress level 3.
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The Poisson ratio variations for the numerical fractured rock mass models were also compared to those
obtained based on the analytical method of Davy et al., 2018. Figures 5.55 to 5.57 show the normalized
Poisson ratio variation as a function of the fracture density parameter for stress levels of 1, 2, and 3,
respectively. The deviation in the numerical Poisson ratio values of the fractured rock mass models only
occurs at a fracture density parameter of 2.6, which is similar to the effective Young's modulus.
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Figure 5.55. Evolution of the normalized numerical and analytical effective Poisson ratio versus fracture density parameter in the
three fractured models underwent the first stress level and the second stress perturbation mode
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Figure 5.56. Evolution of the normalized numerical and analytical effective Poisson ratio versus fracture density parameter in the
three fractured models underwent the second stress level and the second stress perturbation mode
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Figure 5.57. Evolution of the normalized numerical and analytical effective Poisson ratio versus fracture density parameter in the
three fractured models underwent the third stress level and the second stress perturbation mode

5.3.8 P-wave Velocity Variation

As already stated, the objective of the present work was to characterize observed P-wave velocity variation
in the fractured medium of Soultz-sous-Foréts when the stress-dependent fracture stiffness described by
Bandis et al., 1983, were taken into account. Assuming that the rocks are at rest under in-situ stress state
implies that the problems in rock mechanics are static. However, in some situations such as natural
earthquakes or man-made seismicity, the generated stress perturbations are dynamic and their propagation
has to be considered as waves (Jaeger et al, 2007). In such examples, dynamic theory of linear elasticity
can be used to analyze the stresses and the resulting displacements; and the generated waves which are
governed by the laws of linear elasticity and propagate through the medium, are known as seismic waves
(Jaeger et al., 2007). Three types of waves are body waves, surface waves, and free oscillations (Stacey and
Davis, 2008). The body waves are two kinds of compressional (P-wave) and shear (S-wave) (Stacey and
Davis, 2008; Cornet, 2015). Seismic wave propagation depends on the mechanical characteristics of the
medium through which they travel (Cornet, 2015). The velocity of this travel in an isotropic, homogeneous,
and linearly elastic medium for P-waves are
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_ E(1-v)
Vp = /—(1+v)(1_2v)p (5.129)

where p is the bulk density of the medium. Therefore, the elastic moduli of the medium (v and E) are
utilized to evaluate P-wave velocity in the medium of interest. These values for the generated synthetic
fractured mediums of the current study, were previously estimated using the developed grid search
algorithm in section 5.3.7 and were used here to evaluate P-wave velocity through the models. Bulk density
of the intact rock was already opted from literature as 2680 kg/m?, but for the synthetic fractured media of
this project bulk density varied depending on the fracture density. An approximate solution was deployed
to estimate rock mass bulk density in which the total fracture surface per unit volume (often named psz,
Dershowitz and Herda, 1992) multiplied to the initial hydraulic aperture of fractures in order to
approximately compute the void volume throughout the rock block. Figure 5.58 illustrates the ratio of void
volume divided by bulk volume versus fracture density.
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Figure 5.58. Evolution of the ratio of void volume to bulk volume versus fracture density

The void volume was then multiplied to the bulk density of the intact rock so as to obtain the mass
corresponding to the computed void volume. This mass had to be subtracted from the total mass of the
intact rock block (i.e., 2680*100°=2.68e9 kg) to obtain the solid mass of the block. The resulting mass was
then divided by the block volume (i.e., 100x100x100 m®) to achieve the approximate bulk density of the
fractured rock mass (figure 5.59).
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Figure 5.59. Evolution of the bulk density versus fracture density

This density was substituted in equation 5.128 to evaluate P-wave velocity in the fractured medium. By
replacing the elastic moduli of the intact rock and its bulk density in equation 5.129, P-wave velocity in the
intact rock yielded 3.9 km/s. This velocity is by far slower than that measured at Soultz-sous-Foréts
fractured reservoir with approximately 5.5-5.8 km/s according to the literature (Place et al., 2010; Calo et
al., 2011; Cornet, 2012; Calo and Dorbath, 2013; Cauchie et al., 2020). Worth to note the difference between
static and dynamic elastic moduli. The elastic stiffness obtained from elastic wave velocities in conjunction
with density is commonly referred to as dynamic moduli. Conversely, static moduli describe the elastic
stiffness or the slope of the stress-strain curve that relates deformation to applied stress in a quasi-static
loading scenario (Fjaer et al, 2008).

The obtained P-wave velocity through fractured rock models was then normalized to the P-wave velocity
through intact rock and plotted against the fracture density parameter as shown in Figures 5.60 through 5.62
for three different stress levels. Figures 5.60 to 5.62 reveal that, at all three stress levels, the propagation
velocity of P-wave through the rock mass follows the same pattern as effective elastic moduli illustrated in
figures 5.52 to 5.57. Assuming that the 0.01 variation in the P-wave velocity is negligible (normalized P-
wave velocity of 1+0.01), it can be concluded that the numerical scheme at stress level 1 is independent of
the fracture density parameter, contrary to the analytical method of Davy et al., 2018, while at stress levels
2 and 3, some deviations in the P-wave velocity are visible at fracture density 2.6. Similar to the evolution
of Young's modulus as a function of stress level, the difference in the normalized P-wave velocity between
the three fracture stiffness models of constant, mismatched, and interlocked vanishes as the stress level
increases in both the numerical and analytical methods.
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Figure 5.60. Normalized P-wave velocity variation versus fracture density parameter in the three fractured models underwent the
first stress level and the second stress perturbation mode
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Figure 5.62. Normalized P-wave velocity variation versus fracture density parameter in the three fractured models underwent the
third stress level and the second stress perturbation mode

Figure 5.63 demonstrates variation of the normalized P-wave velocity in response to the applied stress level
for both analytical and the numerical methods. As can be seen from this figure, the Davy et al. results (red
triangles in Figure 5.63) at all three stress levels show approximately consistent variation in normalized P-
wave velocity versus applied stress level with a range of approximately [1.00, 0.95]; showing a quasi-stress
independent trend, or in other words, a depth independent trend. This behavior is in contrast to the numerical
results (blue points in Figure 5.63) which vary from a range of [1.00, 0.99] at the first stress level to a range
of about [1.00, 0.96] at the second and third stress levels.
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Figure 5.63. Variation of normalized P-wave velocity versus stress level for all fracture densities
5.4 Conclusion

At this chapter, the scaling of the fracture network of Soultz-sous-Foréts (Valley, 2007; Massart et al., 2010,
Afshari Moein et al., 2019 and 2021) is adopted to numerically realize the stochastic DFN of the study field
using 3DEC. A numerical DFN containing 4500 fractures with length (diameter) range of 10 to 3000 m,
power law length distribution exponent of 3.0, and uniform spatial distribution of fractures was generated
in a cubic domain of 100x100x100 m? at which the fracture orientations were adopted from Valley, 2007,
work. This DFN was then inserted into a homogeneous, isotropic, and elastic intact rock block so as to
create a fractured rock mass block of 100x100x100 m®. Three models of the rock mass blocks were created
based on the type of normal and shear stiffness values assigned to the fractures of DFN. These three models
were: i) hosting fractures with constant normal and shear stiffness, ii) hosting fractures with interlocked
normal stiffness and stress-dependent shear stiffness, and iii) hosting fractures with mismatched normal
stiffness and stress-dependent shear stiffness.

Generated rock mass blocks were then located at three different in-situ stress levels (stress level 1, 2, and
3) and underwent four various stress perturbation modes (mode 1, 2, 3, and 4) in order to evaluate effective
elastic moduli and P-wave velocity variation in each case. Due to the high number of fractures in the used
DFN, the fractured rock mass model contained some blocks with very small volume magnitudes which tend
to be zero or negative when undergoing in-situ stress state as well as stress perturbation phase. To overcome
this issue, the DFN was simplified by decreasing the fracture number (from 4500 to about 420 fractures) as
well as switching from non-uniform distribution of fracture orientation (introduced by Valley, 2007) to the
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uniform distribution. Inserting such DFN into the intact rock block generated a fractured rock block that
was then put under various loading scenarios so as to estimate effective elastic moduli. The results showed
that for the used DFN the second stress perturbation mode had the most consistent outcomes.

After that and with the aim of assessing fracture density influence on the effective elastic moduli, a set of
fractured models were created hosting 50, 100, 200, 400, 500, 600, 700, and 1000 fractures; each of which
containing three different models distinguished by the assigned fracture stiffness (constant or stress-
dependent) and subjected to a secondary stress perturbation mode at all three stress levels. The numerical
results showed that among all assigned DFN examples, the effective moduli of the rock mass deviated from
that of the intact rock only when the fracture number of the DFN was 1000 (i.e., fracture density parameter
of 2.6), whereas in the analytical method of Davy et al. this deviation occurred at lower fracture density
values.

The P-wave velocity through the generated rock mass examples was also obtained based on the calculated
elastic moduli and then normalized to the P-wave velocity in the intact rock block. The resulting figures,
analogous to the effective elastic moduli, showed that the deviation in the numerical P-wave velocity
occurred only when the number of fractures in the DFN was 1000 (i.e., fracture density parameter of 2.6),
while it occurred at lower fracture density parameters in the analytical model. In addition, it was also found
that the difference in normalized P-wave velocity between the three fracture stiffness models of constant,
mismatched, and interlocked vanishes as the stress level increases in both numerical and analytical methods,
however, this phenomenon occurs at the second and third stress levels in the analytical model but at the
third stress level in the numerical scheme.

The difference between the analytical and numerical results might be justified by the effect of fracture
interaction and corresponding stress perturbation in the rock mass models, which is inherently accounted
for in the 3DEC calculation but not in the analytical model (Davy et al., 2018).
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Chapter 6

6 Conclusion

This research aimed to numerically characterize the origin of observed P-wave velocity variation during
hydraulic stimulation of GPK2 well. Occurrence of this P-wave velocity anomaly was faster and more
extended compared to that usually happens during a classical fluid diffusion process, as noted by Calo et
al., 2011. These P-wave velocity changes were also observed at large scale (~1 km), which suggest that
large scale elastic moduli of the reservoir rock had changed rapidly.

First phase of the present work was to address the timing aspect of the observation. It was aimed at
understanding the pressure migration during this hydraulic stimulation process by simulating it using
3DEC. It was found that the fluid pressure migrates in time and space following a process controlled by
fracture opening rather than fluid pressure. A very rapid migration of fluid pressure was observed, with a
much higher effective diffusivity (~13 m?/s) than that classically observed at Soultz-sous-Foréts (~0.05
m?/s; see e.g. Shapiro et al., 2002). This rapid process is compatible with the results of Calo et al. who
observed a migration of over 1000 m in 3 hours. So, for the time effect, we have highlighted a process
consistent with observation.

In the second phase, it was purposed to explore the large scale value of the elastic moduli at Soultz-sous-
Foréts reservoir and analyze its sensitivity to stress perturbations in order to understand how pressure
changes studied in the first phase would impact P-wave velocity. It was found that large scale elastic moduli
through fractured rock mass deviates from that of intact rock in the conditions of high fracture density
parameter. Furthermore, investigation of related P-wave velocity as a function of the applied stress level
revealed that it is almost independent of the applied stress level.

Considering the low permeability medium addressed by Weidler et al. (2002), in addition to the existence
of a fluid pressure/fracture opening front that propagates along the fracture faster than fluid diffusion in the
fracture surrounding medium, as demonstrated in this study, it can be stated that the overpressure generated
by the injected fluid in the fracture acts as an additive component to the confining pressure of the rock mass,
instead of playing the role of pore pressure enhancement. In this situation, and according to the literature
already mentioned, especially Todd and Simmons (1972), any increase in confining pressure can cause an
increase in P-wave velocity.

Further research is required to fully answer the thesis question. For example, the process highlighted in the
first phase could also have implications for the magnitude of pressure perturbation away from the well, or
it would be interesting to add fluid pressure to the second phase simulations in order to study the effect of
pore pressure on P-wave velocity variation.
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Appendix Al

Numerical and analytical results of mechanical benchmarking

A) For the cases for which the gravity was not taken into account:
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Figure A1.1. Numerical (upper) and analytical (middle) vertical displacement magnitudes and corresponding error (lower) in
Uniaxial Stress case
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Figure A1.2. Numerical (upper) and analytical (middle) lateral displacement magnitudes in X-direction and corresponding error
(lower) in Uniaxial Stress case
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Figure A1.3. Numerical (upper) and analytical (middle) lateral displacement magnitudes in Y direction and corresponding error
(lower) in Uniaxial Stress case
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Figure A1.4. Numerical (upper) and analytical (middle) vertical displacement magnitudes and corresponding error (lower) in
Uniaxial Strain case
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Figure A1.5. Numerical (upper) and analytical (middle) vertical displacement magnitudes and corresponding error (lower) in
Polyaxial Stresses case
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Figure A1.6. Numerical (upper) and analytical (middle) lateral displacement magnitudes in X direction and corresponding error
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Figure A1.7. Numerical (upper) and analytical (middle) lateral displacement magnitudes in X direction and corresponding error
(lower) in Polyaxial Stresses case
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B) For the cases in which the gravity was taken into account:
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Figure A1.8. Numerical (upper) and analytical (middle) vertical displacement magnitudes and corresponding error (lower) in
Uniaxial Stress case

234



©2016 ltasca C_nnsulling Group, Inc.
Step 1801
11/17/2019 10:02:04 PM 100 m
X-displacement ANAYAVAVARARAN
7.0761E-02 y ;'A AV
7.0000E-02 L7 TAVAVANINN
X NN
6.0000E-02 VAVAVAVA
5.0000E-02 AVAVAVAY,
4.0000E-02 {AVAVAVAVA
3.0000E-02 SAYAVATAY
2.0000E-02 VAYAYAA
1.0000E-02 K/ g;;
0.0000E +00 1\ ‘ﬁ S
-1.0000E-02 e B LK S
-2.0000E-02 P o §§P »
-3.0000E-02 8 < EE’
-40000E-02 = !ﬂi <]
-5.0000E-02 gﬂgﬁig
-6.0000E-02 S K
~7.0000E-02 ) ;nnﬁgﬁj
-7.0961E-02 Avav) vy
Z 1 ZAVAVAVA VAV,
Y X
X-Direction (m)
6‘100 -90 -80 -70 60 -50 -40 -30 -20 -10 o
E
§
g
a
N
0.0711 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.0696
X-Displacement({m)
150
100
50
_/ o
F -100 20 60 r -40 20
ey ———Error xdisp
E .
Pt
-100
-150
-200

X-Direction (m)

Figure A1.9. Numerical (upper) and analytical (middle) lateral displacement magnitudes in X direction and corresponding error
(lower) in Uniaxial Stress case
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Figure A1.10. Numerical (upper) and analytical (middle) lateral displacement magnitudes in Y direction and corresponding error
(lower) in Uniaxial Stress case
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Figure A1.11. Numerical (upper) and analytical (middle) vertical displacement magnitudes and corresponding error (lower) in
Uniaxial Strain case
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Figure A1.12. Numerical (upper) and analytical (middle) vertical displacement magnitudes and corresponding error (lower) in
Polyaxial Stresses case
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Figure A1.13. Numerical (upper) and analytical (middle) lateral displacement magnitudes in X direction and corresponding error
(lower) in Polyaxial Stresses case
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Figure A1.14. Numerical (upper) and analytical (middle) lateral displacement magnitudes in Y-direction and corresponding error
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Appendix A2

Simulation results using “Fast Flow” option of 3DEC

Here, we are trying to illustrate some of the results for which the “fast flow” option of the 3DEC is used to simulate
the 24 hours of fluid injection into the center of the fault of 3 km diameter. As already stated, the final result such
as maximum WHP or the results of sensitivity analysis was approximately identical with the results where the “fast
flow” option is not utilized, but the process of approaching to those results was different. For example, the fluid
pressure evolution in time exhibited a waveform oscillation when using “fast flow” option while this curve showed
a smooth increase to the maximum pressure in the simulations without using “fast flow” option. Figure A2.1 is an
example of pressure oscillation at injection point for the reference case. This waveform oscillation showed a time
period of 5.7 hours along the injection duration as illustrated in figure A2.2 which is fast Fourier transform (FFT)
of spectra shown in figure A2.1.
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Figure A2.1. Numerical WHP oscillation at injection point of approximately 4.7 km; the average value of the oscillating WHP of
14.6 MPa has good agreement with field observation of WHP being approximately 11-12 MPa
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Figure A2.2. FFT of instantaneous WHP oscillation at injection point shown in figure A2.1; spectrum frequency is about 48.8e-6
Hz which yields to a time period of about 5.7 hours

The same oscillation behavior was also observed for fluid pressure evolution at other measuring points along the
fracture diameter as can be seen from figure A2.3. The time period of the spectra at all the measuring points
illustrated the same value of 5.7 hours by doing FFT on the waveform observations.
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Figure A2.3. Pressure front migration from injection point at about 4.7 km to the top and bottom of the fracture; the linear
pressure propagation with depth in the left-hand side sub-figure is caused by a wrong strategy in picking the pressure build-up
onset time at sampling points, however the pressure evolution in time at all sampling points exhibited oscillation behavior as at

injection point
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These type of observations were also detected for fracture aperture opening along the fracture. The same time-
period for oscillations and the same waveform propagation. These results were then explored that are sensitive
to the magnitude of fluid time-step in numerical calculations. In figure A2.4, the impact of fluid timestep on
pressure evolution in time is demonstrated. As can be seen in the figure, the decrease of the fluid timestep
decreases the waveform oscillation of the pressure curve, however the final value for the maximum WHP is
approximately the same. This is in fact the main opportunity that the “fast flow” option offers to the users of
3DEC when simulating a fully coupled hydro-mechanical process; the fast convergence of the model to a final
result with minimum magnitude of error. But, if the process of this convergence is important to the user, it might
be affected by the “fast flow” option even if the user limits the fluid-timestep to a lower value as equal as the
timestep automatically calculated and used by the 3DEC when doing simulation without using “fast flow” option.

——FastFlow-Timestep 15~ ——Normal Flow ——FastFlow-Timestep 25 ~ ——FastFlow-Timestep 5s

L B e e L A = I s

0 10000 20000 30000 40000 50000 60000 70000 80000 30000

Time (s)

Figure A2.4. Comparison of fluid pressure evolution in time at injection point for normal flow and fast-flow with different fluid
timesteps; as it can be seen, the maximum value of the WHP is identical for all cases, but the process of convergence to that
maximum value is different between normal flow and fast-flow options where there is not any oscillation in normal flow
calculations contrary to the fast-flow calculations

It is worth to note that, the upper bound for fluid time-step can be controlled by the user of 3DEC; so that, if the
automatically calculated fluid timestep by 3DEC is more than that of assigned by the user, then it will not pass
beyond. Using this possibility, we tried to compensate the oscillation behavior of the fluid pressure curves by
assigning 5s, 2 s, and finally 1 s as upper bound to fluid timestep (initially it was 10 second in calculation of the
results shown in figure A2.1 and A2.3) and found that the oscillation behavior has not been completely removed,
however the amplitude of oscillation decreased a bit and convergence of the curve to the smooth line towards
the maximum value happened at earlier times as can be seen from figure A2.4. Furthermore, and importantly,
the fluid timestep of 1 second is in fact close to the timestep automatically calculated by 3DEC in normal flow
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run (the red curve in figure A2.4), but still there was a significant difference between the curves of normal flow
and fast-flow with 1 second of fluid timestep (blue curve in figure A2.4).

The set of sensitivity analyses carried out on the fracture’s hydromechanical behavior using fast-flow option
were also illustrated the same conclusion as those of normal flow calculations. The results can be found in below

figures from A2.5 to A2.14 where the fracture’s normal stiffness has the most effect on the mechanical behavior
of the no-slip fracture.
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Figure A2.5. The pressure propagation velocity versus normal stiffness of the fracture for (a) upward propagation and (b)
downward propagation, for the cases with fixed Ks; it can be seen in the figures that the velocity decreases by increase of normal
stiffness from 10 to 80 GPa/m, but after that the velocity variation is not significant.
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Figure A2.6. The pressure propagation velocity versus normal stiffness of the fracture for (a) upward propagation and (b)
downward propagation, for the cases with fixed Kn; it can be seen in the figures that there is not a meaningful variation in the
pressure propagation velocities of normal stiffness from 10 to 300 Gpa/m
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Figure A2.7. Maximum WHP evolution at injection point versus (a) shear stiffness and (b) normal stiffness of the
fracture
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Figure A2.8. Oscillation period evolution versus (a) shear stiffness and (b) normal stiffness of the fracture
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Figure A2.10. WHP (a) and oscillation period (b) variations versus different angles between fracture strike and direction of the
maximum horizontal stress
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Figure A2.11. Upward (a) and downward (b) pressure propagation velocities versus fracture dip
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Figure A2.14. WHP (a) and oscillation period (b) variations versus fracture size

Having all these results in hand, it might be of crucial importance to run a reference model of the problem using
both options of normal flow calculation and fast-flow calculations to compare the target results of simulation to
have a solid conclusion regarding the type of flow calculation desired to be opted according to the requirements
of the project. This, hence, will help the modeler to save the time budget of the project by minimizing the time
spend on the wrong choose of modeling strategy and method.
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Insér Cette recherche vise a caractériser numériquement I'origine de la variation de vitesse de I'onde

P observée pendant la stimulation hydraulique du puits GPK2. L'apparition de cette anomalie de
vitesse des ondes P a été plus rapide et plus étendue que celle qui se produit habituellement au cours
d'un processus classique de diffusion des fluides, comme l'ont noté Calo et al. en 2011. Ces
changements de vitesse des ondes P ont également été observés a grande échelle (~1km), ce qui
suggere que les modules élastiques a grande échelle de la roche réservoir ont changé rapidement.

La premiére phase du présent travail a consisté a étudier I'aspect temporel de I'observation. Elle visait
a comprendre la migration de la pression au cours de ce processus de stimulation hydraulique en la
simulant a I'aide de 3DEC. Il a été constaté que la pression du fluide migre dans le temps et I'espace
suivant un processus controlé par I'ouverture des fractures plutét que par la pression du fluide. Une
migration trés rapide de la pression de fluide a été observée, avec une diffusivité effective beaucoup
plus élevée (¥13 m2/s) que celle classiquement observée a Soultz-sous-Foréts (~0,05 m2/s ; voir par
exemple Shapiro et al., 2002). Ce processus rapide est compatible avec les résultats de Calo et al. qui
ont observé une migration de plus de 1000 m en 3 heures. Ainsi, pour |'effet temps, nous avons mis
en évidence un processus compatible avec I'observation.

Dans la deuxiéme phase, il était prévu d'explorer la valeur a grande échelle des modules élastiques
du réservoir de Soultz-sous-Foréts et d'analyser sa sensibilité aux perturbations des contraintes afin
de comprendre comment les changements de pression étudiés dans la premiére phase auraient un
impact sur la vitesse des ondes P. Il a été constaté que les modules élastiques a grande échelle ont
un impact sur la vitesse des ondes P. Il a été constaté que les modules élastiques a grande échelle a
travers la masse rocheuse fracturée s'écartent de ceux de la roche intacte dans les conditions d'un
parameétre de densité de fracture élevé. En outre, I'étude de la vitesse des ondes P en fonction du
niveau de contrainte appliqué a révélé qu'elle est presque indépendante du niveau de contrainte

appliqué.

Des recherches supplémentaires sont nécessaires pour répondre pleinement a la question de la
these. Par exemple, le processus mis en évidence dans la premiére phase pourrait également avoir
des implications sur I'ampleur de la perturbation de la pression loin du puits, ou il serait intéressant
d'ajouter une pression de fluide aux simulations de la deuxiéme phase afin d'étudier I'effet de la
pression interstitielle sur la variation de la vitesse de I'onde P.

Mots clés : Réservoirs géothermiques, stimulation hydrauliqgue, glissement asismique, vitesse des
ondes P, écoulement des fluides, réseau de fractures discrétes, modélisation numérigue
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This research aimed to numerically characterize the origin of observed P-wave velocity variation during
hydraulic stimulation of GPK2 well. Occurrence of this P-wave velocity anomaly was faster and more
extended compared to that usually happens during a classical fluid diffusion process, as noted by Calo et
al., 2o11. These P-wave velocity changes were also observed at large scale (~1km), which suggest that large
scale elastic moduli of the reservoir rock had changed rapidly.

First phase of the present work was to address the timing aspect of the observation. It was aimed at
understanding the pressure migration during this hydraulic stimulation process by simulating it using
3DEC. It was found that the fluid pressure migrates in time and space following a process controlled by
fracture opening rather than fluid pressure. A very rapid migration of fluid pressure was observed, with a
much higher effective diffusivity (~13 m2/s) than that classically observed at Soultz-sous-Foréts (~0.05 m2/s;
see e.g. Shapiro et al., 2002). This rapid process is compatible with the results of Calo et al. who observed a
migration of over 1000 m in 3 hours. So, for the time effect, we have highlighted a process compatible with
observation.

In the second phase, it was purposed to explore the large scale value of the elastic moduli at Soultz-sous-
Foréts reservoir and analyze its sensitivity to stress perturbations in order to understand how pressure
changes studied in the first phase would impact P-wave velocity. It was found that large scale elastic moduli
through fractured rock mass deviates from that of intact rock in the conditions of high fracture density
parameter. Furthermore, investigation of related P-wave velocity as a function of the applied stress level
revealed that it is almost independent of the applied stress level.

Further research is required to fully answer the thesis question. For example, the process highlighted in the
first phase could also have implications for the magnitude of pressure perturbation away from the well, or
it would be interesting to add fluid pressure to the second phase simulations in order to study the effect of
pore pressure on P-wave velocity variation.

Keywords : Geothermal Reservoirs, Hydraulic Stimulation, Asesimic Slip, P-wave Velocity, Fluid
Flow, Discrete Fracture Network, Numerical Modeling
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