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1. Introduction

Malgré l’évolution rapide des méthodes de conception de candidat-médicaments,

notamment celles basées sur la structure des protéines cibles, la prédiction exacte de

l’énergie libre (affinité) de complexes protéine-ligand à partir de leur structure tri-

dimensionnelle (3D) reste un problème important en chimie théorique. Les progrès

récents amenés par diverses architectures de réseaux de neurones (NN) à la reconnais-

sance d’image, de texte ou de son, ont infusé le domaine pharmaceutique, et laissent

un champ ouvert à de meilleures prédictions d’affinité de ligands pour leurs protéines

cibles, particulièrement en raison de la facilité croissante avec laquelle des structures

3D de complexes protéine-ligand peuvent être obtenues.

Les NNs parviennent à résoudre avec succès des problèmes sur lesquels ont butés

les modèles d’apprentissage automatique de la génération précédente, et suscitent donc

un intérêt grandissant en chémoinformatique. Malgré le nombre croissant de modèles

incorporant des architectures NN modernes visant à lier la prédiction d’affinité [1],

il reste des questions ouvertes sur l’état de préparation de ces solutions actuelle-

ment disponibles à une application directe au monde réel (ex: criblage virtuel de

chimiothèques) en raison de la quantité limitée de données expérimentales à partir

desquels ces NNs ont été entrainés. Par ailleurs, le domaine d’applicabilité de tels

modèles à usage général reste discutable [2].

Mon projet de thèse est dédié à l’étude de l’applicabilité des modèles NN de

prédiction d’affinité de liaison entrâınés sur l’ensemble des données structurales actuelle-

ment disponibles. Je me suis concentré sur des architectures de réseaux neuronaux

de graphes (GNN) qui ont démontré leur applicabilité à la chimie théorique [3] et

ont suscité un intérêt exceptionnel en raison de leur applicabilité directe aux données

moléculaires représentées sous forme de graphes, tout en nécessitant une ingénierie

limitée des descripteurs utilisés par le GNNs. Les interactions protéine-ligand peuvent

être naturellement représentées sous forme de graphes moléculaires, ce qui rend les

approches GNN applicables au problème de prédiction de l’affinité de liaison.

2. Résultats et discussion

2.1. Développement de GNNs et prédiction d’énergies libres de liaison.

VOLKOV Mikhail - PhD. Thesis 11



Nous avons utilisé la base de données PDBbind [4] comme source de données

de structures de complexes protéine-ligand d’affinité connues. PDBbind est un sous-

ensemble de la Protein Data Bank (PDB), pour lequel à la fois les structures 3D et

l’affinité du ligand (Kd, Ki, IC50) pour sa cible ont été déterminés expérimentalement.

Ce jeu de données a été divisé en trois sous-ensembles: (i) un jeu d’entrainement se

limitant au données publiés avant le 01/01/2016 (10565 entrées), (ii) un jeu de test

externe (”core set”, 257 entrées) classiquement utilisé à des fins de prédiction, (iii)

un second jeu externe étendu (”2019 hold-out”) à l’ensemble des complexes publiés

après le 01/01/2017 (3386 entrées) et mimant ainsi un scénario réaliste ou des données

nouvelles sont prédites par un modèle entrainé sur des données plus anciennes. [5]

Afin de développer une architecture de GNN, j’ai mis au point la représentation

d’objets moléculaires (protéine, ligand, interactions protéine-ligand) sous forme de

graphes (Figure 1). Pour ce faire, les interactions moléculaires ont été détectées à

la volée au moyen du logiciel IChem précédemment développé au laboratoire [6] et

converties en un premier graphe. Un second graphe décrivant le site de liaison de la

protéine cible a été développé ad-hoc, en positionnant les nœuds du graphe sur des

pseudoatomes caractéristiques de l’acide aminé en interaction avec le ligand, puis en

reliant ces nœuds par des arêtes selon des critères de distance. Enfin, un troisième

graphe est construit de manière classique à partir de la structure 2D du ligand en

plaçant les nœuds sur les atomes et les arêtes sur les liaisons (Figure 1).

L’architecture GNN utilisée pour lire ces graphes descripteurs est basé sur un

réseau de neurones à transmission de message (MPNN), tel que publié récemment par

Gilmer et al. [3]. Ce type de GNN peut être appliqué à nos trois graphes déconnectés

qui sont lus simultanément. Nous avons donc pu estimer la contribution exacte de

chacun des trois graphes ligand (L), protéine (P) et interactions (I), ainsi que leur

combinaison afin de prédire l’affinité de chaque ligand pour sa protéine cible.

La première surprise a été de constater que les graphes protéine et ligand, utilisés

seuls, sont suffisants pour atteindre de bonnes prédictions, et que le graphe interaction,

supposé être le plus pertinent, n’apporte aucune valeur ajoutée à la précision de modèles

où les graphes sont utilisés simultanément. Ces résultats laissent entrevoir un biais

sérieux dans le jeu de données PDBbind. Afin de le définir, j’ai donc mis au point

12 VOLKOV Mikhail - PhD. Thesis



Figure 1. Graphes décrivant le ligand (A), la protéine cible (B) et les interactions protéine-

ligand (C) (PDB ID 2PSV).

VOLKOV Mikhail - PhD. Thesis 13



des modèles simples de mémorisation dans lesquels l’affinité du complexe protéine-

ligand à prédire est déduite de la moyenne des affinités enregistrées pour le ligand

le plus similaire ou la protéine la plus similaire. Ces modèles simples sont presque

aussi précis que les modèles MPNN, notamment celui basé sur la simple similarité des

ligands, et attestent que ces derniers n’ont pas capturé les détails physicochimiques fins

d’une interaction moléculaire, mais fonctionnent par simple mémorisation et rappel des

données connues pour les objets les plus similaires (Table 1).

Modèle Jeu de test ”2016 core set” Jeu de test ”2019 hold-out set”

Rp
a RMSEb Rp RMSE

PLI MPNNc 0.813 1.511 0.652 1.481

Similarité Ligandd 0.663 1.624 0.509 1.641

Similarité Protéinee 0.547 1.765 0.310 1.794

Table 1: a) Coefficient de correlation de Pearson, b) erreur quadratique moyenne de prediction

(unite de pKi), c) Modèle de MPNN à trois composantes (protéine, ligand, interactions, d)

prédiction égale à la moyenne de l’affinité des cinq complexes du jeu d’entrainement avec les

ligands les plus similaires de celui du jeu de test (exprimée par le coefficient de Tanimoto

calculé sur des empreintes circulaires ECFP4), e) prédiction égale à la moyenne de l’affinité

des cinq complexes du jeu d’entrainement avec les protéines les plus similaires de celui du jeu

de test (exprimée par la distance Euclidienne calculé entre empreintes de cavité)

J’ai essayé de déterminer l’origine de ces biais en sous-échantillonnant l’ensemble

d’apprentissage via l’élimination séquentielle de paires protéine-ligand dont l’affinité

est facilement prévisible, ou en développant des modèles spécifiques tenant compte

de l’enfouissement des ligands dans leur protéine cible. Aucune de ces approches n’a

pu conduire à l’élimination de la dépendance aux ligands et aux protéines. Comme

approche alternative, un nouvel ensemble de données PDBbind de faible parcimonie

a été conçu. Nous avons remarqué que les mises à jour annuelles de l’ensemble de

données PDBbind n’entrâınent pas d’améliorations visibles de la qualité des modèles

de prédiction d’affinité de liaison entrâınés sur l’ensemble de données, ce qui peut être

lié à la faible parcimonie de la matrice des paires protéine-ligand possibles. En rai-

son du faible nombre de cibles pour lesquelles l’affinité de liaison de leurs complexes

14 VOLKOV Mikhail - PhD. Thesis



avec plusieurs ligands est mesurée, nous en avons construit un nouveau sous-ensemble

avec un nombre limité de protéines uniques (10 protéines les plus représentées, 2030

complexes) pour lesquelles plusieurs complexes avec des ligands différents d’affinité

différente est connue. Une augmentation significative de la qualité du modèle d’interaction

a été observée pour le modèle GNN entrâıné sur cet ensemble de données à faible

parcimonie par rapport à celui entrâıné sur l’ensemble complet. Afin de débiaiser de

manière définitive nos modèles, nous avons enfin supprimé les graphes P et L et con-

servés uniquement les graphes I en les complexifiant par prise en compte d’interactions

moléculaires non plus à 4 mais à 6 Å de distance, ce qui a amélioré grandement la

précision des modèles, sans biais induits par la prise en compte des graphes P et L qui

ne sont plus lus par le MPNN (Fig. 2).

2.2. Application de modèles GNN au criblage virtuel

L’application directe des modèles de prédiction d’affinité à partir de structures

cristallographiques (ou de cryo-microscopie électronique) est limitée par plusieurs fac-

teurs:

• la flexibilité du ligand peut lui permettre d’être amarré dans différentes conforma-

tions d’enthalpie de liaison similaire à celle observée dans la structure aux rayons

X, alors qu’il n’est pas garanti que l’ensemble des interactions soit préservé.

• l’ absence d’échantillons négatifs (de faible affinité ou de mode de liaison incor-

rect) dans l’ensemble d’apprentissage, ce qui entrâıne une incertitude dans la

prédiction de l’affinité pour les modes de liaison sous-optimaux et l’impossibilité

de filtrer les ligands de faible affinité dans un criblage virtuel.

Nous supposons que les interactions protéine-ligand représentées sous la forme

d’un graphe d’interaction peuvent être appliquées à des données de criblage virtuel

obtenu par docking moléculaire, à deux conditions: (i) disposer d’un modèle de prédiction

de pertinence d’une pose de docking (classifieur binaire), (ii) disposer d’un modèle

spécifique de prédiction d’affinité à partir de poses de docking préalablement retenues

par le classifieur.

J’ai donc développé un modèle de prédiction d’affinité à partir de poses de docking

en deux temps. Dans un premier temps, j’ai mis un point un classifieur binaire basé

VOLKOV Mikhail - PhD. Thesis 15



Figure 2. Performance (coefficient de Pearson) de modèles MPNN de prédiction d’affinité

à partir de graphes de protéine (P), de graphe de ligand (L) et de graphes d’interactions (I)

utilisés seuls ou en combinaisons. Par défaut, les interactions sont calculées dans une limite

de distance de 4 Å. Le modèle dit ’étendu” enregistre les interactions non covalentes protéine-

ligand jusqu’à 6 Å de distance. Les prédictions sont réalisées sur les deux jeux externe ”core

set” et ”2019 hold-out.
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Figure 3. Prédiction d’affinité en deux étapes à partir de poses de docking.
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sur la même architecture MPNN que notre prédicteur d’affinité de liaison qui peut être

appliqué au graphe d’interaction pour le pré-filtrage visant à la sélection des bonnes

poses de docking, qui peuvent être ensuite traités avec un modèle de régression pour

en prédire l’affinité [Fig. 3]. L’ensemble de données augmentée pour cette étude a été

préparé via le docking des ligands de la base de données PDBbind 2019 à leur protéine

cible au moyen de trois logiciels de docking différents (Surflex-dock, Plants, Dock 6).

Figure 4. Précision de modèles MPNN de classification binaire de poses de docking, en-

trainés sur des graphes d’interaction protéine-ligand enregistrés à une distance maximale de

6 Å (B). Les valeurs de précision dont données pour toutes les poses (Acc), les vrais positifs

(poses correctes, Acc+) et les vrais négatifs (poses incorrectes, Acc-). Les courbes ROC sont

définies à partir des valeurs de probabilités de pose correcte émises par le modèle pour chaque

pose.

L’ensemble des 4,5 millions de poses obtenues (au maximum 100 poses/ligand/logiciel)

a ensuite été divisé en sous-ensembles de poses ”correctes” et ”incorrectes” en fonction

de l’écart quadratique moyen (RMSD) des coordonnées atomiques par rapport à la

18 VOLKOV Mikhail - PhD. Thesis



pose cristallographique du ligand (correct: RMSD<2 Å; incorrect: RMSD>2 Å) ainsi

que la similarité des interactions protéine-ligand comparant pose de docking et pose

cristallographique (correct: similarité>0.6). La première étape de classification binaire

d’une pose de docking comme ”correcte” ou ”incorrecte”, est satisfaisante avec une

précision de l’ordre de 80% pour les deux labels (Figure 4). Les valeurs d’aires sous

la courbe ROC calculés sur les deux jeux de tests sont supérieures à 0.80 et illustrent

donc une bonne capacité du modèle de classification à distinguer les bonnes poses des

mauvaises.

La seconde étape de prédiction d’affinité par régression, à partir de seules poses

prédites correctes, permet de comparer des modèles de prédiction basées sur des struc-

tures cristallographiques ou sur des poses de docking. Afin de déterminer si un modèle

entrainé sur un type d’objet moléculaire (structure cristallographique) peut être ap-

pliqué à l’autre (pose de docking), nous avons envisagé trois scénarios: (i) modèle

entrainé et appliqué à des structures cristallographique, (ii) modèle entrainé sur des

structures cristallographiques et appliqué à des poses de docking, (iii) modèle entrainé

et appliqué à des poses de docking (Table 2).

Jeu Scenario 1 a Scenario 2 b Scenario 3 c

Incd R2e Rp
f Inc R2 Rp Inc R2 Rp

Core 0.222 0.521 0.750 0.557 0.386 0.706 0.556 0.612 0.803

Hold-out 0.316 0.306 0.564 0.428 0.103 0.485 0.428 0.399 0.644

Table 2. Performance de modèles MPNN de prédiction d’affinité selon trois scénarios après

élimination des structures d’entrainement par le classifieur de poses. a Entrainement et test

sur des structures cristallographiques, b Entrainement sur des structures cristallographiques

et test sur des poses de docking, c Entrainement et test sur des poses de docking, d Inc:

Fraction de poses prédites incorrectes, e R2: Coefficient de détermination, f Rp coefficient de

correlation de Pearson.

Les résultats obtenus montrent clairement qu’il est préférable d’entrainer et de

tester les MPNNs sur les mêmes objets moléculaires (comparer les scénarios 1 et 3 au

scénario 2). L’augmentation des données d’apprentissage à partir des poses de docking

semble avoir un effet bénéfique sur la précision des poses de docking (Table 2). Plus le
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jeu d’apprentissage est différent du jeu d’entrainement (jeu hold-hold), plus le modèle

a des difficultés à prédire les valeurs d’affinité.

La taille relativement grande de l’ensemble des jeux de tests nous permet d’évaluer

les performances de prédiction de l’affinité de liaison sur les sous-ensembles de celui-

ci (Figure 5), consistant en des complexes formés par des ligands et des protéines,

qui étaient soit nouveaux soit non nouveaux par rapport à l’ensemble d’apprentissage.

L’évaluation sur quatre ensembles de données (nouvelle protéine et nouveau ligand,

nouvelle protéine et ligand connu, protéine connue et nouveau ligand, protéine con-

nue et ligand connu) démontre la généralisation insuffisante des modèle MPNNs à

l’ensemble de données composé de protéines et de ligands complètement nouveaux.

En général, nos observations correspondent aux résultats obtenus pour le problème

de régression, avec des prédictions trop optimistes pour le jeu de test core (facile

car très similaire au jeu d’entrainement) et des performances inférieures sur un jeu

de données plus complexe mais plus réaliste (hold-out). La tendance du modèle de

graphe d’interaction étendu à produire des prédictions plus précises est également

restée cohérente avec nos résultats précédents. Cette tendance est observée pour les

trois scénarios, parmi lesquels le troisième, qui impliquait un prédicteur d’affinité en-

trâıné sur les poses d’amarrage, a clairement démontré les meilleures performances sur

les graphes d’interaction calculés jusqu’à 6 Å, montrant l’avantage de l’augmentation

des données dans ce cas d’utilisation.

3. Conclusions générales

Au cours de mon projet de thèse, j’ai utilisé des réseaux de neurones profonds de

type GNN pour développer des modèles de prédiction d’affinité de complexes protéine-

ligand à partir de leur structure 3D ainsi que des modèles de classification de poses

de docking, fonctionnant sur la même représentation en graphes que les modèles de

régression. Ces modèles sont utilisables avec précaution, pour analyser des données de

criblage virtuel et enrichir une sélection de touches virtuelles en ligands actifs.

Néanmoins, il a été démontré que la parcimonie de données d’entrainement reste

un obstacle important pour le développement de modèles de prédiction d’affinité de

liaison à usage général, non seulement en raison du manque de données, mais également
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Figure 5. Croisement des entrées des jeux tests ”core 2016” (287 entrées) et ”hold-out 2019”

(3386 entrées) avec le jeu d’entrainement (11820 entrées). A) Nombre de ligands identiques,

B) nombre de protéines identiques, C) Composition comparée des jeux core et d’entrainement,

D) Composition comparée des jeux hold-out et d’entrainement.
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en raison de biais cachés dans l’ensemble de données, qui complexifient l’extraction de

données pertinentes. Un effort coordonné de la communauté scientifique ainsi que des

agences de financement sera nécessaire afin de disposer de matrices protéine-ligand

plus denses et pour lesquelles à la fois la structure 3D et l’affinité auront pu être

déterminés de manière expérimentale. Les méthodes d’apprentissage développées ici-

même pourront dès lors exprimer tout leur potentiel et accélérer l’identification précoce

de molécules bioactives.
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The thesis manuscript covers the work carried out by the PhD candidate during

studies at the ED 222 of the University of Strasbourg, which was devoted to the

investigation of applicability of machine-learning based scoring functions to the problem

of binding affinity prediction in protein-ligand complexes with the main focus on graph

neural network architectures. The thesis manuscript consists of three main chapters.

In the first chapter, the state-of-the-art in the field of machine-learning based

scoring functions is given. The most frequently used neural network architectures,

which are applied in the design of binding affinity predictors are introduced, then, the

main part of the review discusses the architectural and performance details of existing

deep neural network-based scoring functions.

The second chapter is devoted to the development and application of graphs

neural network (GNN) models for binding affinity prediction from protein-ligand X-

ray structures. We propose an architecture that enables training on protein, ligand,

or interaction input and the combinations of them allowing the user to evaluate the

performance of models trained using different input representations, as well as the com-

patible graph representations of all types of inputs. Then, the performance of GNN

models trained on the PDBbind dataset and evaluated on its benchmarking subsets is

evaluated. The potential sources of biases to protein and ligand inputs are discussed.

In order to determine them, a series of additional computational experiments, inves-

tigating the effects of ligand buriedness, the complexity of the interaction graph, as

well and the sparsity of the matrix of protein-ligand combinations are performed. The

contribution of the training set memorization into the performance of the final model

is estimated with the help of simple memorization models we introduce in this chapter.

Finally, the general conclusions on the applicability of the best models obtained in the

course of the current study are given, and the possible directions of further research in

the field are discussed.

The third Chapter is dedicated to the development of a method relying on pre-

viously developed binding affinity prediction models for possible virtual screening ap-

plications. Their major limitation was the inclusion of only X-ray structural data of

complexes with true binders into the training set, while in a real use-case scenario the

results of docking of not necessarily truly active small molecules are supposed to be
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used. We therefore proposed a pipeline, containing a pose classifier, which filters out

presumably incorrect docking results, and a binding affinity predictor, which is applied

only to those poses, which have been previously classified as good. As the training and

validation sets for this study, we used the results obtained by re-docking all PDBbind

ligands into their protein targets, obtaining a set of docking poses of different qual-

ity. We assessed the performance of an architecture, based on two separate models

for classification and regression, and the multitarget architecture, which performs two

predictions simultaneously. The role of the novelty of structures (ligand, protein) in

the time-split test set is evaluated and discussed. It appears that models trained on

X-ray structures are poorly applicable to docking poses and vice-versa. Even with up-

to-date GNN architectures and all available structural data from PDBbind, the best

performing models still generalize poorly and are not widely usable for daily virtual

screening applications.
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CHAPTER 1

Application of neural network

models for binding affinity

prediction in protein-ligand

complexes
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1.1 Introduction

State-of-the-art drug design is a difficult and expensive problem due to both the com-

plexity of the object of interest, which is a living organism, the incompleteness of

information about the processes involved into the development of a certain pathology,

as well as the attention paid to the security of substances, which are supposed to get

a regulator’s approval, which requires multistage assessment of efficacy and safety of

the substance, boosting the development costs, reaching $868M to $1,241M, according

to the FDA estimates [1], while the failure rate of clinical trials remains very high

(more than 90% [2]). Thus any contribution to the simplification of the drug design

pipeline, which can potentially lead to the higher success rate of the lead compounds

accepted for preclinical and clinical trials is valuable for drug design projects. With the

breakthrough in the development of computational hardware in the recent decades and

the accompanying advancements of chemoinformatics and molecular modeling tech-

niques and software, the computational methods in drug design methods have become

an integral part of research pipelines in the pharmaceutical industry. The success of

computer-aided drug design techniques has attracted significant investments not only

to the companies, which perform the full cycle of drug design related research, but also

to developers of mainly software solutions drug design research can benefit from.

A significant percent of approved drugs are small molecules, which selectively

bind with their macromolecular targets in a human body, thus affecting the biologi-

cal function of these targets. A successful medicine in this case is a molecule, which

can strongly and selectively bind to the appropriate site on the surface of the macro-

molecule. The strength of binding can be characterized by the Gibbs free binding

energy ∆fG , which can be experimentally determined by measuring the dissociation

constant of the corresponding protein-ligand complex (Eq. 1.1).

∆fG = RTlnKd (1.1)

where Kd = [Prot][Lig]
[Complex]

in a reaction Complex ⇌ Prot + Lig

Determination of binding affinity of different ligands to a particular macro-

molecule is important in order to rank compounds from a certain set (compound li-
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brary) and select those, which bind stronger, thus being able to selectively interact

with this target in a human organism. While a rigorous calculation of binding affin-

ity in a protein-ligand complex via quantum chemistry methods is hardly feasible in

practical applications due to the extreme complexity of the system considered, meth-

ods, applying classical molecular mechanics approaches such as MM/GBSA proved

their reliability in computation of binding energy in protein-ligand complexes [3]. In

structure-based drug-design, though, that the pipeline of hit identification involves so-

called “high-throughput screening” stage, on which molecules from a large library of

compounds are tested in an assay aimed at determination of “activity” towards the

target of interest. The aim of high-throughput virtual screening campaigns, though,

is to either emulate the in vitro high-throughput screening stage in order to select

“hit” molecules for further experimental investigation, or to simply reduce the number

of compounds to be tested by filtering out structures from a large library of small

molecules. Virtual screening campaigns often involve estimation of binding affinities of

a huge number of protein-ligand complexes, which makes estimations even with clas-

sical molecular dynamics methods too expensive to be applicable in a real use-case

scenario.

One of the methods often used in virtual screening in structure-based drug design

(a type of drug design campaign, in which the structure of a macromolecular target of

interest is known) is molecular docking. It is a computational procedure aimed at the

determination of the energetically favorable conformations of molecules in which they

can bind with each other. It can be broken down into two subsequent procedures –

conformation sampling (generation of possible mutually compatible conformations of

two molecules) and conformation scoring (estimation of binding energy of a conforma-

tion yielded on the previous stage). Molecular docking procedures can be classified by

the types of molecules, which are fitted to each other e.g. protein and small molecule

(protein ligand docking), two proteins (protein-protein docking), protein and nuclear

acid. In the score of the current work only the former is discussed. Another possible

classification encounters the consideration of flexibility (usually, rotations around ro-

tatable bonds) of two molecules: in rigid docking neither receptor nor ligand flexibility

in the course of docking is considered, in semi-rigid docking the receptor is treated as

rigid and the ligand as flexible, in flexible docking both molecules are treated as flexible
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(thus the docking procedure can emulate the induced fit mechanism).

A scoring function (SF) associates a value with a particular protein-ligand com-

plex conformation, which, ideally, should correlate with the binding affinity of this

particular complex. The scoring function quality can be determined according to their

ability to solve problems occurring in drug design tasks such as [4, 5]:

• Scoring: ability to predict binding affinities that have a linear correlation with

experimental data. The scoring power is usually measured by the Pearson’s

correlation coefficient Rp (see Evaluation metrics in section 1.4)

• Ranking: ability to rank binding affinities of known ligands of the same target

protein. Unlike in scoring, where assessment is performed on a series of protein-

ligand complexes of different ligands and proteins, in ranking the ligands of the

same target molecule are examined. While the correct order of ligands scored

by an SF, the linearity of score correlation with binding affinity is irrelevant for

ranking. Thus, SFs with high-ranking power are more suitable for virtual screen-

ing campaigns. Ranking power is measured by computing the rate of correct

identification of the best binder in a set of complexes. Alternatively, Kendall’s

tau and Spearman coefficient can also be used.

• Docking: ability to identify the “correct” binding conformations, or those con-

formations of a ligand which are close to it, from poses generated by docking

software. Docking power is measured a the success rate of identifiying correct

poses among the top ranked ones. A general appreciation of correcteness is pro-

vided by the root-mean-square deviation (RMSD) of heavy atoms to the native

X-ray pose, that should be lower than 2.0 Å.

• Screening: ability to discriminate a target protein’s true binders from presumed

inactive decoy ligands. Metrics used to quantify the screening power is the en-

richment factor in true actives among the 1% top-raking ligands.

Alternatively, scoring functions can be characterized according to the method-

ology behind binding affinity determination, a common classification [6] names the

following scoring function categories:
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• physics-based scoring functions– scoring based on force fields, solvation models,

quantum mechanics models (e.g. DOCK)

• empirical scoring functions – score is based on contribution of different types of

interactions, steric clashes, etc. These scoring functions benefit from low compu-

tational cost, but they perform worse in determining the exact binding affinity.

Construction of a representative training set is crucial in development of these

scoring functions.

• Knowledge-based scoring functions – scoring based on pairwise potentials

• Machine-learning based scoring functions – a family of scoring functions relying

on machine learning algorithms (SVM, RF, NN, DNN).

In the scope of the current review we will focus on the discussion of machine

learning based scoring functions using deep neural network architectures. The review

consists of three parts in which we discuss the basic architectures, which are being

used as building blocks in the design of protein-ligand affinity prediction; the available

public datasets on which training and evaluation of DNN-based scoring functions is

usually performed; then we perform a review of existing models, discussing their unique

features, strengths, and weaknesses.

1.2 Deep neural network architectures commonly

used in binding affinity prediction models

1.2.1 Convolutional neural networks (CNN)

First proposed in 1988 [7], the CNN architecture revolutionized image recognition field

in the recent decade due to development of powerful hardware solutions for large-scale

parallelism (GPUs, TPUs). In 2013, AlexNet [8] showed the best performance in the

image classification challenge on ImageNet. This result was beaten by the ResNet

model, introduced by Microsoft in 2015 [9], causing the outbreak of interest to neural

network applications in various branches of science and technology.

The basic convolutional neural network includes three types of layers: convolu-
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Figure 1.1 LeNet-5 – an example of a CNN architecture for image classification

tional, pooling layer, and fully-connected layers or multilayer perceptrons (MLPs) [10].

The most characteristic part of a convolutional architecture are convolutional layers,

which extract characteristic features of an image or another euclidean object. The

convolutional layer consists of kernels, which “move” along the image retrieving infor-

mation from different parts of an image, thus the model becomes capable of identifying

a pattern, which occurs in different parts of the object. The output of a convolutional

layer is a feature map, each neuron of which is connected to an area (receptive field) of

an input image. A feature map is produced via a convolution operation with a kernel

and an application of a non-linear activation function. For a 2D convolution a feature

map value zli,j,k with the coordinates (i, j) is expressed in the Eq. 1.2:

zli,j,k = W lT
k xl

i,j + blk (1.2)

(1) , where l is the layer index, k is a feature map number in a current layer, W l
k is

a learnable kernel tensor, blk is a bias term, xl
i,j is a input fragment with a center at

(i, j). The kernel weights are shared for the current feature map. The feature map

value after an activation is computed as in Eq. 1.3.:

ali,j,k = a(zli,j,k) (1.3)

where a is a non-linear activation function e.g. sigmoid, tanh, ReLU.

The pooling layer in a CNN serves for preservation of invariance to shifts via

reduction of the feature map resolution. The action of a pooling layer is shown at the

Eq. 1.4:

yli,j,k = pool(ali,j,k),∀(m,n) ∈ Ri,j (1.4)
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where Ri,j is a local neighborhood of (i, j).

The most frequent pooling operations are average or max pooling. In the former,

the average value of pixels in a local neighborhood is taken. In the latter, the maximal

value in a local neighborhood.

A deep convolutional network consists of multiple convolutional layers with pool-

ing, the feature maps of the first layers detect low-level features (such as simple shapes),

while subsequent feature maps recognize more complex patterns.

The output of a stack of convolutional layers with pooling is further processed

with fully connected layers which take a latent representation of the CNN block as an

input and perform “high-level reasoning” producing the desired output of the entire

model – a vector of probabilities (logits) for a classification problem, or a single value for

a regression problem. Despite their advantages such as easier explainability, easiness to

apply techniques developed for image processing tasks, convolutional neural networks

still possess some drawbacks, which make alternative solutions more preferable in some

applications. CNNs are invariant to translations, but the correct treatment of rota-

tions by this architecture requires data augmentation. The input grid feature tensor is

also sparse – only a small fraction of the volume, containing a protein-ligand complex,

contains interacting atoms and functional groups thus being relevant for proper deter-

mination of binding energy. This redundancy leads to computational inefficiency such

as increased memory requirements and necessity to perform more costly computations.

1.2.2 Graph neural networks (GNN)

Graph neural networks are a novel emerging methodology in machine learning, which

shows great results when applied to train neural network models for processing of data,

which are more naturally represented in a form of graphs, rather than regular grids.

Graph irregularity does not allow feature extraction via convolution with CNN-like fil-

ters; thus several alternative approaches were developed. A major breakthrough in the

development of GNN architectures took place in 2016-2017 when several independent

research groups introduced graph convolution architectures, which remain the state-

of-the-art in machine learning on chemical data, namely, graph convolutional neural

networks (GCN) [11] and message passing neural networks (MPNN) [12], followed by
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Graph Attention Networks (GAT) [13], which resolve some of the issues of the original

Kipf’s GCN. Despite scalability issues (the dependency of the node representation on

its neighborhood of potentially very high complexity leads to increased computation

costs for large and/or highly connected graphs), this family of architectures causes

particular interest due to their applicability in many chemoinformatics-related tasks.

Convolutional neural networks (GCN)

Despite all GNN architectures, which are discussed in this review, technically belong

to the family of models with a graph convolutional operator [14], the term “graph

convolutional network” (GCN) is commonly used to describe an approach proposed by

Kipf et al. in 2016, is a modification of a spectral graph convolution approach that

stems from graph signal processing methods [11]. The convolution operation in this

architecture is performed on a graph equipped with self-loops for every node, which

prevents considering feature vectors of neighboring edges only but not the current node

itself on the convolution stage. The graph structure is represented as an adjacency

matrix , the graph nodes are equipped with node feature vectors stored in a matrix ,

where N is the number of nodes, D is the node feature length of an input graph. The

output of the convolution layer is defined by the equation 1.5:

H l+1 = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (1.5)

where l is the layer number, Ã is the adjacency matrix of G, D̃ is a degree matrix,

W (l) is a weight matrix, H(l) is the matrix of activation of the current layer (H(0) =

X), σ is the activation function (e.g. ReLU). The D̃− 1
2 ÃD̃− 1

2 multiplication here

performs symmetric normalization of node features, which prevents gradient explosion

or vanishing.

Message passing neural networks (MPNN)

The message passing neural networks were first introduced in 2017 in [12]. In this

framework the graph G = (V,E) is represented by the set of nodes equipped with node

feature vectors hv connected with edges equipped with edge feature vectors evw. Each

message passing step consists of two operations: message computation and node feature
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update, expressed by the message function and update function. The third operation

–– “readout” — is performed afterwards. All three functions should be differentiable

and should be invariant to node permutations.

The message function (usually, the sum) computes messages on graph edges

taking the feature vector of this edge and feature vectors of nodes this edge connects

as arguments. Then for each node the message it receives is computed via summation

of messages coming from all outbound/inbound edges as shown in the Eq. 1.6:

m(l+1)
v =

(l+1)∑
w∈N(v)

Mt(h
l
v, h

l
w, evw) (1.6)

where Mt is the sum of all messages the node receives, ht
v is the feature vector of node

v, ht
w is the feature vector of a neighbor node w, evw is the feature of edge between

nodes v and w.

The update function changes the node feature vectors considering the incoming

message. The update function (Eq. 1.7) is usually the average between the message

the node receives and its previous feature vector.

h(l+1)
v = Ut(h

t
v,m

(t+1)
v )) (1.7)

where Ut is the update function, m
(t+1)
v is the message received by the node v.

The message passing step can be repeated multiple times, the number of steps

plays a role of one on the model hyperparameters.

The final graph representation after message passing should further be trans-

formed into a tensor of a regular shape, so that it can be further processed by other

neural network layers. This is achieved by applying a readout function to the graph

(e.g. sum or average of node feature vectors) (Eq. 1.8).

ŷ = R(hT
v |v ∈ G) (1.8)

where ŷ is the output tensor, R is the readout function, T is the number of message

passing steps.

The capability of processing edge information is one of the advantages of this

method in comparison with GCN, but at the same time the necessity to store not only
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node features, but also edge messages can be a limiting factor of application of this

method.

Graph isomorphism networks (GIN)

Despite their ability to demonstrate the breakthrough in graph learning with respect

to their ability to linearly scale with the number of nodes in the graph, the GCN

framework still suffers from limited capability of distinguishing isomorphic and non-

isomorphic graphs. In the Graph isomorphism architecture (GIN), first proposed by

Xu et al. [15], node feature update is performed according to the Eq. 1.9:

h(k)
v = MLP (k)((1 + ϵ(k)) · h(k−1)

v +
∑

u∈N(v)

h(k−1)
u ) (1.9)

where hv is the node feature vector, hu are the feature vectors of neighbor nodes,

k is the layer index, MLP is the multilayer perception, ϵ is a parameter, which can be

learnable or static (NNs with a static ϵ are unable to distinguish some non-isomorphic

graphs, although being almost as powerful as the NNs with learnable ϵ on real bench-

mark datasets).

Graph attention networks (GAT)

The graph attention architecture (GAT) proposed by Veličković et. al. [13] in 2017

was developed with an aim to make implicit attribution of different weights to different

nodes in a neighborhood of a certain node possible without performing expensive matrix

operations or without a prior knowledge of a graph structure. The latter is a drawback

of spectral approaches and their successors, such as GCNs, which require a computation

of a graph Laplacian, that depends on graph connectivity. This condition restricts the

applicability of these methods to graphs having a structure, which differs from the

training set samples.

Attention mechanisms in the state-of-the-art machine learning are a standard

technique to resolve problems involving operations on sequences such as machine trans-

lation. One of the benefits brought by this technique is an ability to operate on inputs

of variable length.
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In the GAT architecture the latent representations are computed for each node

of the graph using self-attention, assigning neighbor nodes different weights based on

their importance. This operation can be performed without a prior knowledge of the

global graph structure, the graph also can be either directed or undirected.

As an input, the attention layer uses a set of node features h = {h⃗1, h⃗2, ..., h⃗N}, h⃗i ∈

RF , where N is the number of nodes, F is the number of node features. As an output

the layer produces a set h′ = {h⃗′
1, h⃗

′
2, ..., h⃗

′
N}, h⃗′

i ∈ RF ′
, where the number of node

features can be different.

A self-attention operation on the nodes (Eq. 1.10) yields an attention coefficient,

which corresponds to the importance of node j to node i. These coefficients eij are

computed only for nodes, which belong to a neighborhood of node i, and normalized

using a softmax function (Eq. 1.11).

eij = a(Wh⃗i,W h⃗j) (1.10)

where W is a learnable weight matrix W ∈ R(F ′×F )

aij = softmaxj(eij) =
exp(eij)∑

k∈Ni
exp(ejk)

(1.11)

These values are further used as coefficients of corresponding node features in a

linear combination of node feature vectors, which is used to compute new node features

after applying a nonlinear function σ.

h⃗′
i = σ(

∑
j∈Ni

αijWh⃗j) (1.12)

A multi-head attention approach, which can be used to stabilize learning, sup-

poses that several independent attention procedures with their own W matrices are

applied, and their outputs are concatenated into new node feature vectors h′. If multi-

head attention is performed in a final neural network layer, averaging of outputs can

be used instead of concatenation.

VOLKOV Mikhail - PhD. Thesis 41



1.3 Datasets

1.3.1 Structural datasets

PDBbind

In the scope of the current work we investigated predictability of binding affinity in

protein-ligand complexes from their structures. In order to perform training of such

models, a dataset of protein-ligand 3D structures annotated with binding affinities

of the corresponding complexes is needed. X-ray crystallography and more recently

cryo-electron microscopy (cryo-EM) [16] remain the main source of high-quality struc-

tural data in molecular biology nowadays, and the Protein Data Bank (PDB) serves

as the main public library of resolved X-ray structures of biomolecules. Thus, struc-

tural datasets, containing information about protein ligand binding are usually being

developed as curated derivatives of the PDB —- duplicates of the same complex are

discarded, the information on binding constants is retrieved from literature. The most

commonly used dataset of this type is PDBBind, developed and maintained by R.

Wang’s group [17, 18]. It contains protein-ligand, protein-nucleic acid nucleic acid-

ligand, the inhibition constant (Ki), the half maximal inhibitory concentration (IC50)

[18]. In case if multiple types of binding affinity measurements are available, the prior-

ity is given to Kd over Ki over IC50 values. If multiple binding affinity measurements

are available, only those, which were performed at room temperature and neutral pH

or at the closest conditions to these standard ones were considered. The dataset is

regularly updated, its most recent version was released in 2020 [19]. Its 2016 version

contained more than 13300 complexes. 4057 of which belong to the so-called “refined

set” – a subset of structures of higher quality. In order to be admitted to this data

set the complex must satisfy the resolution criteria (resolution <2.5 Å and R-factor

<0.25). The available affinity value should be either Kd or Ki, the ligand should not

be bound covalently, etc.

The first release of PDBbind took place in 2004 and was based on current state of

the PDB database by 2003 (release #103) [17]. Afterwards, the dataset was updated

annually, the most recent release is PDBbind v.2020, which contains data on 19443

protein-ligand, 2852 protein-protein, 1052 protein-nucleic acid, and 149 nucleic acid-
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ligand complexes [19].

CASF Benchmark sets

The CASF benchmark is a popular benchmark for assessment of structure-based bind-

ing affinity prediction models evaluating their performance in docking, ranking, screen-

ing and scoring tasks. One of the ideas behind the creation of CASF was decoupling

scoring benchmarks from docking benchmarks in order to be able to evaluate scoring

quality independently from sampling quality [5], the dataset thus contains high-quality

structures of protein-ligand complexes from the “core set” of PDBbind. Its first release

took place in 2007 (derived from the PDBbind set of the same year), with subsequent

updates in 2013 and 2016. The “core set” is designed on the basis of the “refined

set”. Complexes, which make it up, are picked from clusters of similar protein targets

so that each cluster is represented by three structures with high, medium, and low

binding affinity.

The core set construction principles for the CASF 2016 core set [20] are listed

below:

1. All refined set complexes are clustered by protein sequence similarity with a 90%

sequence similarity cutoff, so that each cluster normally corresponds to a single

protein target.

2. Cluster less than six members are discarded. From the remaining clusters five

representative complexes are chosen – the one with the highest binding affinity,

the one with the lowest one, and three complexes with intermediate affinity values.

The range between binding affinities for complexes with max Ka and min Ka

should be at least two logarithmic units, the intermediate affinities are picked so

that they evenly cover the binding affinity range with at least one logarithmic

unit gap between affinity values.

3. The quality of the electron density map is examined to guarantee the correctness

of the 3D structure of a complex in PDB.

The core set of PDBbind v.2016 (CASF 2016) consists of 285 protein-ligand

complexes belonging to 57 clusters of protein sequences (5 complexes per cluster). The
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core sets used in previous CASF versions included 195 complexes (65 protein clusters,

3 complexes per cluster) for CASF-2013 and CASF-2007.

Binding MOAD

Binding MoAD [21–24] is an alternative dataset of protein-ligand structured with pro-

vided binding affinity annotations, which was developed with an intention to address

the redundancy issue in datasets such as PDBbind, which is inherited from PDB

database that can contain multiple structures of the same complex.

Complexes included into the database have resolution better than 2.5 Å, and the

ligands in structure files are additionally validated. Accepted ligands are biologically

relevant small molecules, including peptides with amino-acid chain length of 10 or less

as well as oligonucleotides with four or less nucleic acid residues. Covalently bound

molecules are discarded as well as small molecules serving as additives in crystallization.

The developers of Binding MOAD analyzed sequence similarity of protein targets

and clustered them by 90% sequence identity cutoff, for each cluster a ligand with the

highest affinity was picked.

Binding MOAD is also updated on an annual basis, its first release in 2005 [21]

contained 5331 protein-ligand complexes, while the most recent update (http://www.bindingmoad.org/)

contains 41409 structures, 15223 (36.8%) of which have binding affinity annotations

(Ka, Kd, Ki, or IC50).

Astex Diverse Set

The Astex diverse set [25] was developed as a validation set for molecular docking con-

structed according to the following quality criteria for a benchmarking set proposed

by the authors: 1) Protein-ligand complexes should be relevant for drug discovery; 2)

The dataset should contain diverse ligands and protein targets; 3) Crystal structures

in the dataset should have very high quality; 4) Ligand should not form contacts with

multiple protein subunits; 5) The dataset should be sufficiently large; 6) It should

include recently resolved structures; 7) It should be freely available. The authors ana-

lyzed electron densities of complexes and considered only those for which the electron

density corresponded to the ligand geometry in a PDB structure. The dataset was
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composed based on the protein sequence clustering, protein clusters of little interest

to drug design or agrochemistry were not considered, non-drug-like ligands were also

discarded. Electron density maps were examined on order to exclude ambiguous struc-

tures. The resulting set is composed of 85 diverse protein-ligand complexes, for which

binding affinity is given in either Ki, Km, Kd, or IC50 units. Approximately 90% of

protein targets in the dataset are targets in drug-discovery or agrochemical campaigns.

Among the ligands, 23 are approved drugs and six participated in clinical trials.

1.3.2 Non-structural datasets

Metz

The dataset proposed by Metz et. al. contains screening data for 172 different kinases

and more than 3000 kinase ligands [26]. The binding affinity is provided for 42.1% [27]

of possible drug-target pairs in pKi units.

Davis

The Davis dataset [28] includes data on 72 known kinase inhibitors and 442 target

kinases, representing >80% of the human protein kinome. The results of a screening

assay are provided, Kd values are given for protein-ligand pairs with measurable binding

affinity (Kd <10 µM) on a primary screen. The pKd values in the Davis dataset lie in

the interval from 5.0 to 10.8 [29].

KIBA

The KIBA dataset [30] is another public dataset of kinase inhibitor bioactivity data.

It was originally developed with an aim to obtain a database with comparable binding

affinity values obtained from multiple sources under an assumption that the condi-

tions of measurement of the corresponding affinity values were the same. The authors

collected drug-target affinity data experimentally measured in Ki, Kd, and IC50 units

from multiple databases, and transformed these values into “KIBA scores” in order to

achieve the uniformity of them. KIBA score is computed according to the following

rules:
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KIBA =


Ki adj, if IC50, Ki are available

Kd adj, if IC50, Ki, Kd are available

(Ki adj + Kd adj) / 2, if IC50, Ki, Kd are available

(1.13)

where

Ki adj =
IC50

1 + Ld(IC50/Ki)
(1.14)

Kd adj =
IC50

1 + Ld(IC50/Kd)
(1.15)

The pairwise matrix of KIBA scores is provided for 52498 compounds (with given

ChEMBL IDs) and 467 kinase targets (with given Uniprot IDs). The score values cover

the range from 0.0 to 17.2.

In evaluation of binding affinity prediction models a modified version of the KIBA

dataset is often used, in which drugs and targets for which less than 10 measurements

of affinity were available, are removed. The resulting dataset contains 2116 unique drug

molecules and 229 target molecules and achieves the protein-ligand matrix coverage of

24.4% [27].

1.4 DNN-Based Binding Affinity Prediction Mod-

els

1.4.1 Binding Affinity Prediction models classified by model

architectures

While most of the existing DNN-based binding affinity predictors are using the NN ar-

chitectures described in the previous part of the current review, a significant difference

between models, which rely on the same architecture may be in the way, a protein-

ligand complex is represented for a subsequent treatment by a NN model. In this part
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of the review, we describe various binding affinity prediction models, paying attention

to both the model architecture and the input featurization applied. The summaries of

model performance of different benchmarking sets are given in Tables 1.1-1.5.

Prediction of protein-ligand binding affinities solely from ligand and protein

string representation.

DeepDTA [31] was one of the first DNNs, outperforming previous baseline models

KronRLS (linear regression on a similarity matrix), and SimBoost (gradient boosting

trees) on Davis and KIBA datasets. In its best performing version, protein and ligand

embeddings learned from SMILES strings of ligands and protein sequences are used

as inputs for two 1D-CNN blocks, which generate latent representations of a protein

and a ligand. These latent vectors are then concatenated, and used as an input of a

three-layer MLP, which predicted the target affinity value. A WideDTA model released

by the same research group one year later uses a similar architecture with its CNN part

extended to four CNN blocks. Each of these blocks processes Ligand SMILES string,

ligand maximum common substructure, protein sequence, protein motifs and domains.

The learned latent representations of these four inputs are then processed similarly to

as it is performed in DeepDTA.

An innovation in the AttentionDTA architecture, derived from DeepDTA, was

the inclusion of an attention mechanism to correlate protein and ligand information

in the latent representations generated by the CNN blocks [32]. The resulting model

demonstrated the level of performance of the WideDTA model on KIBA and Davis

datasets without more complex feature engineering and inclusion of additional convo-

lutional blocks.

The next substantial improvement in binding affinity prediction from protein and

ligand information for kinase datasets took place with the release of GNN models such

as DgraphDTA in 2020 [33]. The general framework of the architecture being used

inherited the one used in DeepDTA, but unlike in the case of its predecessor, the CNN

module was replaced by Kipf’s GCN layers. This modification required changes in the

input preparation –– instead of plain text strings ligand and protein were represented

in a form of graphs —- a 2D molecular graph for the former and a contact map-based
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Figure 1.2 A flowchart representation of the DeepDTA architecture.
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representation for the latter.

Unlike in DgraphDTA, in GraphDTA the CNN-based learning on protein se-

quences is kept, while the GNN module is introduced for ligand information processing

only. The authors of the corresponding study [34] examined the performance of binding

affinity predictors using several GNN architectures, namely, GIN, GCN, GAT, and a

combination of GAT and GCN. Testing on the Davis dataset showed superior perfor-

mance of GAT and GIN with a concordance index (CI) of 0.892 and 0.893. On the

KIBA dataset, all models except GAT demonstrated approximately equal performance

of CI 0.89, still standing behind DgraphDTA. A similar level of performance was

achieved with a MATT-DTI model [35], in which a CNN-block for ligand information

was used. The difference from AttentionDTA was the multihead attention operation

to combine ligand and protein latent representations as well as a self-attention layer

applied to ligand embeddings prior to convolutional layers.

SimCNN-DTA [36] is a method that applies a 2D CNN to the outer products

between column vectors of Tanimoto similarity matrix of the drugs and column vectors

of Smith–Waterman similarity matrix of the targets for continuous DTA prediction.

The product of two vectors – a 2D matrix – is used as an input for the neural network,

consisting of two convolutional layers with max pooling and two fully connected layers.

A FingerDTA [37] model uses two representations of both drug and target. 1D-

fingerprints (extended connectivity fingerprints for ligand representations and word2vec-

based encoder of amino acid sequences for target representations) are processed by

FC-blocks, while two-dimensional one-hot encoded amino-acid sequence and SMILES

string representations serve as inputs for 1D-CNN layers. Afterwards, the vector prod-

ucts of outputs of FC-blocks and CNN blocks for both protein and ligand are computed.

This operation plays a role of an attention mechanism, introducing global information

generated by CNNs. The resulting vectors get concatenated and serve as an input of

the final regression FC-block, that generates binding affinity prediction.

The best self-reported* benchmarking results on the Davis dataset (CI=0.907)

among the models, which are in the scope of the current review, is demonstrated by the

DTITR model released in 2022 [38]. In this architecture protein and ligand embeddings
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are processed by transformer-encoder blocks followed by cross-attention transformer-

encoder blocks, enabling information exchange between protein and ligand branches of

the networks. The latent representations given by both branches are concatenated and

processed by an MLP as it was implemented in the most basic DeepDTA architecture.

A similar level of performance was achieved by GSAML-DTA model, in which

the ligand graph and protein graph (constructed from a contact map) are processed

by GAT and GCN layers in parallel with a subsequent self-attention operation. The

resulting vectors are concatenated to form learned ligand and protein feature vectors,

which are concatenated with each other before being processed by an MLP. Denoising

of learned features is performed using the mutual information principle [39].

There are several other recently published DNN architectures which are applied in

the same domain, and which demonstrate performance close to the previously described

ones, using various architectural innovations. The MGraphDTA model uses multiscale

graph convolutions, conceptually similar to residual CNNs for image processing, where

skip-connections allow to propagate information from prior layers passing by some sub-

sequent layers. This technique allows to mitigate the vanishing gradient problem (the

weights of the network remain unchanged as the derivative vanishes, so the network

cannot learn) as well as to learn both global and local features of the graph [40]. In

FusionDTA the fusion layer, which consists of several multi-head attention blocks, ap-

plied to protein sequence, ligand SMILES string and a combined latent representation

of them [41]. The ELECTRA-DTA is an example of an alternative approach to the

problem, in which the embeddings for protein and ligand string representations were

generated by the ELECTRA language model, which demonstrated better efficiency

then BERT for small model sizes. Before being used for binding affinity predictions,

ELECTRA is pre-trained on SMILES and sequences corpora extracted from PubChem

and Uniprot. The latter part of the network consists of separate CNN branches with

SE modules for protein and ligand [42]. In a method proposed by Ma et. al. in [43]

the protein features are extracted by the SAGE network, while the ligand graph is

processed by a two-layer Simple Graph Convolution model (SGC), which is a variant

of a GCN without non-linearity between GCN layers. This technique allows to simplify

the network, keeping its performance comparable to regular GCNs.
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3D-CNN models for structure-based affinity prediction

Three-dimensional CNN architectures are naturally applicable to three-dimensional

chemical data such as the 3D structures of protein-ligand complexes. One of the first

implementations of a CNN network able to operate on chemical structural data and ap-

plied to the binding affinity prediction problem, was Pafnucy [44] released in 2017. The

model uses the voxelized representation of the complex as a 4D tensor, where the first

three dimensions correspond to the coordinates in a Cartesian space, the 4th dimen-

sion being a vector of 19 features, encoding atom types, atom hybridization, number of

bonds with heavy atoms and heteroatoms, binary properties such as hydrophobicity,

aromaticity, electron pair donor or acceptor and being a part of a ring. The neural

network consists of three convolutional layers with cubic filters, the flattened output

of the final layer is processed by a 3-layer fully connected network, the final layer of

which outputs a single value.

A major weakness of a convolutional architecture is its vulnerability to affine

transformations, which may lead to a significant difference in predicted values for an

input and its affine-transformed (e.g. rotated) copy. Thus, data augmentation with

transformed inputs is used to minimize the influence of this effect. In the Pafnucy

model, 24 different orientations of a complex (all combinations of 90° rotations) are

used.

The KDEEP model [45] also relies on a slightly alternative approach to grid

featurization of a 3D structure of the complex. The 3D atomic features (hydrophobic,

hydrogen-bond donor or acceptor, aromatic, positive or negative ionizable, metallic

and total excluded volume) are generated for protein and ligand atoms. Each grid

point feature vector of length 16 (concatenated vector for protein and ligand features)

accumulates the feature values from all atoms inside the grid box with respect to its

distance from the contributing atom, the contribution dependency on distance being

similar to the VdW term.

Repurposing of previously published architectures due to their universality be-

came a common practice in machine-learning. For instance, KDEEP relies on a

SqueezeNet network [46] –– a model initialy developed for image classification, which
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was simplified (less convolutional layers used) and adoped to processing of a multi-

channel 3D-grid. The convolutional modules in this architecture consist of “expand”

and “squeeze” modules. The former performs convolutions with 1x1 and 3x3 kernels,

the outputs of which are further merged, forming a tensor with a x8 higher number of

filters then in the input. The “squeeze” module performs convolution with 1x1 kernels.

The DeepAtom model [47] is an adaptation of another convolutional architecture

for image processing –– ShuffleNet [48]. The 3D grid of a protein ligand complex

prepared similarly to the previous approaches is first processed by 1x1 convolutional

filters, followed by shuffle blocks, producing a 1024x2x2x2 tensor as an output. The

last module – a “global affinity regressor” splits this tensor into 8 single-dimensional

vectors of length 1024. Because of previously applied shuffle modules, the receptive

field of all eight vectors fully covers the input grid box, therefore it can be processed

by an MLP module, which yields the final prediction used for loss computation.

A more sophisticated approach to protein-ligand binding affinity prediction was

proposed by Gomes et. al. [49] and implemented in atomic convolutional neural

networks (ACNN). This method models the thermodynamic cycle, predicting Gibbs

free energies of formation for protein, ligand, and protein-ligand complex and computes

the target value — ∆fG of the complex from apo-protein and unbound ligand according

to the Eq. 1.16:

∆fG = Gcomplex −Gprotein −Gligand (1.16)

All three terms on the right side are predicted by identical NNs with shared

weights. The loss function value used for backpropagation is computed for the ∆fG.

The thermodynamic cycle is thus directly included into model optimization.

Unlike in previously discussed CNNs in the ACNN model an alternative featur-

ization of input is applied. Instead of working with a 4D tensor analogous to a 3D

image with multiple color channels, the authors represent a protein-ligand complex in

a form of two 2D matrices —- a distance matrix and an atom type matrix. The atom-

type convolution is performed on these two matrices yielding a 3D tensor of a shape

(N,M,A), where N equals to the number of atoms in a complex, M is equal to the
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number of neighbors considered in a proximal environment of each atom, A corresponds

to the number of unique atom types. A radial pooling layer is further applied to the

atom type expansion tensor. The output has shape (N,Nat, Nr), where Nr is a number

of radial filters. It is flattened thus yielding a tensor E(N,Nat ∗Nr), which is further

processed by a fully connected network, which treats rows corresponding to different

atoms separately, that produces an output of shape (N, 1), where Ei is an energy of the

i-th atom. The total energy of the molecule is computed as a sum of individual atomic

contributions and is thus invariant to atom permutation. This architecture, the fully

connected part of which does not depend on the size of the system (nor the number

of atoms due to the atom-wise application of the neural network, nor the volume of it

due to the featurization approach, which is used) does not have technical limitations

on applicability to systems of various size contrary to 3D grid convolution methods.

In 2017 the better performance of a CNN-based Gnina scoring function [50] in

comparison with the Autodock Vina scoring function was demonstrated in a D3R 2017

challenge [51].

1D and 2D CNN models for structure-based affinity prediction

The TopologyNet [52] model introduced in 2017 used a multichannel 1D topological in-

variants of protein-ligand complexes, which are processed by 1D-convolutional network.

The TopDP-DL model [53] takes three inputs: a 2D topological map of a protein-ligand

complex and two 1D barcode vectors representing interatomic distances and charges.

The outputs of convolution blocks are therefore flattened and concatenated before being

further processed by fully connected layers.

In OnionNet [54] a relatively lightweight model consisting of 3 2D convolutional

layers followed by three fully connected layers was used for binding affinity prediction

from structure, showing state-of-the art results on PDBbind core set benchmarks. A

2D-matrix of a shape (60x64), where y coordinate corresponded to the interactions

in all possible combinations of atom types in ligand and in protein and x coordinate

corresponded to the index of a shell around a certain atom in which an interaction

may take place (in total 60 shells with 0.5 Å width each starting from 1 Å distance

from the atom center and covering the range of 30.5 Å around the atom of interest) –
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a modified approach first introduced for the RF-score model [55].

An improved version of OnionNet called SE-OnionNet [56], which was published

in 2021, uses the same featurization approach as the original model, but the CNN archi-

tecture used there is modified —- between CNN layers 1 and 2, 2 and 3 the squeeze-and-

exitation blocks, which were first proposed in SE-Net [57] are inserted. These blocks

allow the model to learn relationships between different feature maps produced by con-

volutional layers. On PDBbind 2016 core set, the SE-Onionnet model demonstrated

an increase of Rp by 0.037 (Rp=0.853 vs Rp=0.816 for the original model).

Graph Neural Network Architectures for structure-based affinity prediction

Although unlike convolutional architectures, graph neural network architectures make

direct learning on graph data possible, engineering of node and edge features still plays

an important role in the model development as well as the choice of how to represent

graph-like structures, which, unlike organic small molecules, do not have a standard

definition or a standard form of representation.

In GraphDelta [58] — a graph neural network model based on the MPNN archi-

tecture, the input consists of ligand graphs, node features of which included Behler-

Parinello-like symmetric functions, capturing the information of the protein environ-

ment of a given ligand atom. A particularity of the GNN architecture used in GraphDelta

was the readout implementation —- instead of more common sum or average of node

features a fuzzy histogram approach indroduced by Kearnes et. al. [59] was used to

capture the distribution of node feature values and prevent information loss at the

readout stage.

A GraphBAR [60] model is an example of utilization of a GCN architecture for

binding affinity prediction. The graph representation of a complex applied in this

approach considers interatomic distances of different range between all atoms in the

binding site, which are represented in a form of several adjacency matrices for various

distance cutoffs, graph convolutions on all of them independently in different graph

convolutional blocks.

An important class of binding affinity prediction models are the architectures,
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in which protein, ligand, and interaction inputs are processed in independent clocks of

the network, which makes the examination of a contribution of each of the inputs into

the final prediction. One of the examples of this approach is a DEELIG model [61].

In the corresponding study, two versions of the model were examined —- the one, that

included only the 3D-convolutional block, which took a protein-ligand feature grid

as an input similarly to previously discussed 3D-CNN models; and the “composite”

model, which includes an additional fully connected block, which processes a ligand

fingerprint. The study shows superiority of the composite model over the basic one

(∆Rp = 0.03). In InteractionGraphNet all three inputs are represented as graphs.

First, the intramolecular convolutions are performed on ligand and protein graphs,

then the intermolecular graph convolution block performs message passing over edges

in the interaction graph [62].

In order to combine the strengths of 3D-CNNs and GNNs, an architecture consist-

ing of two independent GNN blocks and one 3D-CNN block was suggested in HAC-Net

[63]. The CNN part includes SE modules, the GNN part is based on graph attentional

aggregation similar to the mechanism used in GGNNs.

The SS-GNN [64] model used a single undirected graph of protein-ligand inter-

actions as an input, the core of which consists of the nodes corresponding to ligand

atoms connected via edges, corresponding to ligand covalent bonds. Protein nodes are

included into the graph, if the corresponding atoms are located closer to certain ligand

atoms, then the preset distance cutoff. The neural network architecture include two

GIN layers for node feature extraction and a three layer MLP for edge feature aggre-

gation. The node features generated by GIN and edge feature generated by MLP are

concatenated, producing a resulting edge-level set of features, which are then processed

by another MLP before the final pooling operation (the sum of all edge features), which

becomes a final output value generated by the model.

The PIGNet [65] model relies on a similar initial representation of the protein-

ligand complex. Two adjacency matrices representing covalent and non-covalent bonds

are used to discriminate intramolecular bonds and intermolecular interactions. The

Gated GAT module performing node feature update using the adjacency matrix of

covalent interactions followed by the interaction network, which considers a feature
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matrix of non-covalent intermolecular interactions and generates node-level latent rep-

resentations, from which energy terms are computed. These terms correspond to VdW

energy, H-bonds energy, hydrophobic contacts and metal chelatation. The energy con-

tribution of each interaction is computed as a sum of these terms divided by the rotor

penalty in order to consider an entropy contribution into the protein-ligand binding

energy. The total energy of a complex is calculated as a sum of affinity contributions

of protein-ligand interactions. The loss function implemented in this study, in addition

to the MSE loss of energy prediction, contains two additional terms – a derivative loss

to learn the shape of the potential energy curve and a loss term, which considers the

contribution of data augmentation to the predicted binding energy.

In a study by Moesser et. al. [66], several combined model architectures were

analyzed. The authors used a combination of an MLP operating on ligand fingerprints

and a GNN block operating on a graph representation of a ligand. The third optional

block was a 1D CNN processing the protein sequence. Two alternative graph represen-

tations were used –– a ligand graph with atom-level features generated by RDKit, and

another representation, in which a feature vector that reflected the presence of each of

22 possible protein atom types in the environment of a ligand atom, was concatenated

with the RDKit atomic feature vector (the PLIG model). The list of examined GNN ar-

chitectures included GAT, GCN, GIN, SGC, SageNet and GAT+GCN combinations.

The architecture based on GAT with PLIG graph representation demonstrated the

highest performance on PDBbind 2016 core set.
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Figure 1.3 An example of a NN architecture for binding affinity prediction (Moesser et al.

[66]) that combines protein, ligand, and interaction inputs.
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1.4.2 Training, Validation, and Test Set Composition

The construction of training, validation, and test sets plays a crucial role in machine

learning and determines the applicability domain of the resulting model. Moreover, for

a rigorous comparison of ML-models solving the same problem, a uniformity of test sets

used by developers of the corresponding methods is necessary to make a comparison of

self-reported results possible. In publications, discussing the development of machine-

learning models for binding affinity prediction from protein and ligand information

only using the non-structural datasets of kinase inhibitors activity, a common approach

used for train-test splitting is the one published be He et al. [27] introducing a GBT-

based SimBoost architecture. Training and validation of a model there is performed

using a five-fold cross validation, the folds are constructed in such a way, that each

protein target is included at least into two folds, to ensure, that it its used both for

training and testing. The cross-validation is performed ten times, and the reported

values include the mean and the SD of each metric. The procedure is independent

for each of the datasets used in the study [27]. In order to verify the generalization

capabilities of a model, the developers of DeepDTA modified this approach, splitting

the dataset into six equal parts. Five parts are therefore used for model training and

hyperparameter optimization (four of five subsets are used for training, the fifth one

becomes the validation set), the remaining one plays a role of an independent test set.

The reported metric values are measured on the test set using predictions given by five

models trained previously.

For structure-based binding affinity prediction models, the PDBbind core set

usually serves as the benchmarking set, which allows to compare different ML-based

scoring functions. At the same time, the core set reportedly possesses biases to protein

and ligand structures, which makes it possible to get relatively high scores on the

benchmark with the models, predicting binding affinity exclusively from protein or

ligand structure [81, 82]. In order to better examine the generalization capabilities of a

resulting model, additional more complex datasets for validations are often constructed,

but the absence of an acknowledged benchmarking set complexifies the comparison of

affinity predictors on more advanced datasets.

Another issue the developers of structure-based affinity prediction models have
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to deal with is the limited size of available datasets of experimentally obtained protein-

ligand structures, which even causes concerns about the applicability of these data

for training of general purpose machine learning models for binding affinity prediction

[83]. The most basic approaches, which do not incorporate data augmentation (be-

sides augmentation with rotations of a grid box, which is an irreplaceable procedure

in 3D-CNNs), involve training on the general + refined ([62]) or only the refined set

of PDBbind [44, 45], with the core set excluded, a part of the dataset is taken out

and served as a validation set (e.g. 1000 randomly selected complexes in [44]). Among

the data augmentation approaches the procedure implemented in [65], consisting of

docking augmentation, random screening augmentation and cross screening augmenta-

tion deserves mentioning. In this study each of the augmentation techniques generated

more than 100 000 complexes, which were used for model training. Despite the ob-

served increase of docking success rate and screening power of a model trained on an

augmented dataset, the scoring benchmark showed lower performance in comparison

with a model trained exclusively on PDBbind. No performance increase of models

trained on docking pose augmented datasets is also reported in [54, 60, 84].

1.5 Evaluation metrics

Concordance index – CI

The CI of two sets of data is equal to the probability of two random pairs with

different label values to be predicted in the correct order.

CI = 1/Z
∑
dx>dy

h(bx− by) (1.17)

where bx and by are predicted values, for higher and lower affinities ( dx, dy), Z is the

normalization constant, h(x) is the Heavyside function

h(x) =


1, if x > 0

0.5, if x = 0

0, if x < 0

(1.18)
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Pearson correlation coefficient – Rp

Rp =

∑N
i=1(xi − x)(yi − y)√∑N

i=1(xi − x)2
√∑N

i=1(yi − y)2
(1.19)

where N is the sample size, xi the experimental value, yi the predicted value, x the

mean of experimental values, and y the mean of predicted values.

Root mean squared error – RMSE

RMSE =

√∑N
i=1(yi − ypred)2

N
(1.20)

where N is the sample size, yi the experimental value, ypred the predicted value.

Determination coefficient – R2

R2 = 1 −
∑N

i=1(yi − ypred)
2∑N

i=1(yi − y)2
(1.21)

where y is the mean value of y: y = 1
N

∑N
i=1 yi, xi — the experimental value, yi — the

predicted value.

Standard deviation – SD

SD =

√∑N
i=1(yi − y)2

N − 1
(1.22)

where N is the total sample size, y is the mean value of y in a sample, yi — the

predicted value.

Mean squared error - MSE

MSE =
1

N

N∑
i=1

(yi − ypred)
2 (1.23)

where N is the total sample size, yi — the experimental value, ypred — the predicted

value.

Mean absolute error – MAE

MAE =
1

N

N∑
i=1

|yi − ypred| (1.24)

where N is the total sample size, yi — the experimental value, ypred — the

predicted value.
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Spearman’s coefficient

ρ =
1
N

∑N
i=1(R(yi)) −R(y)) · (R(ŷi) −R(ŷ))√

1
N

∑N
i=1(R(yi) −R(y))2 ·

∑N
i=1(R(ŷi) −R(ŷ))2

(1.25)

where R(ŷ) is the predicted value rank, R(yi is the real value rank, R(ŷ)) is the mean

of value ranks predicted by the model, R(y) is the mean of the real ranks [38].

1.6 Conclusions

Deep learning application to drug design is a rapidly developing field of research, and

the development of DNN-based binding affinity prediction models is one of the top-

ics the research community is focused on. At the moment, the leaderboard of both

structure based and sequence/text-based models for this purpose consists of multiple

models, relying on different architectures, although the inclusion of GNN architectures

and attention mechanisms becomes more and more common in the most recent publica-

tions. For structure-based affinity prediction the low amount of available experimental

data remains an actual problem, which causes interest in the implementation of data

augmentation techniques. Despite the progress made in the field of development of

structure-based DNN models for binding affinity prediction, the biases to protein and

ligand information, which are found in popular benchmarking sets, cause concerns

about potential practical applicability of such models for completely new data.

This review covers a broad range of emerging field of research, thus for deeper

review of details, which are out of the scope of the current chapter, the author can

recommend several reviews of adjacent topics. A deeper review of graph neural archi-

tectures with respect to their genealogy as well as to their applications can be found

in a publication by Zhou et. at. [14], similarly, for a more complete review of convolu-

tional neural network architectures we refer to Gu et al. [10]. A publication by Meli et.

al. [85] and an older paper by Li et al. [86] offer a broader discussion of structure-based

ML models for binding affinity prediction.
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2.1 Introduction

Predicting absolute binding free energies (affinities) from three-dimensional atomic

coordinates of protein–ligand complexes remains one of the grand challenges of com-

putational chemistry. [1] For example, drug discovery would immediately benefit from

key advances in this topic, by better triaging potentially interesting molecules among

virtual screening hits [2, 3] and proposing viable analogs in emerging ultra-large chem-

ical spaces [4] for hit to lead optimization. With the ever increasing amount of high-

resolution experimentally determined protein–ligand structures, [5] binding affinity pre-

diction algorithms have switched from physics-based [6] to empirical scoring functions,

[7] and in the last years to machine learning [8] and deep learning methods. [9, 10]

The latter category of descriptor-based scoring functions has notably led to numerous

protein–ligand affinity models [11–38] (see a non-exhaustive list Table 2.1), notably

because deep learning does not require explicit descriptor engineering and is ideally

suited to find hidden nonlinear relationships between 3D protein–ligand structures and

binding affinity. The first deep neural networks (DNNs) to predict binding affinities

were convolutional neural networks (CNNs) reading a protein–ligand complex as an en-

semble of grid-based voxels with multiple channels corresponding to pharmacophoric

properties. [22, 34, 35] The CNN architecture is relatively inefficient from a computa-

tional point of view because most of the voxels do not carry any relevant information.

Moreover, the search for the best possible hyperparameters is very demanding with

respect to memory usage and CPU time. Last, the same object must be presented

in multiple orientations in a 3D grid to remove the dependency on the initial atomic

coordinates. To overcome these issues and speed-up the training process, most recently

developed DNNs read inputs in the form of a molecular graph [39] where nodes are

represented by atoms and edges by bonds and/or non-covalent intra and intermolec-

ular interactions. Atoms and edges are embedded with user-defined atomic and/or

pharmacophoric properties, enabling all graph components to be updated according to

their surroundings all along the network during the training phase.

A gold standard dataset to probe DNN models is the PDBbind database, de-

veloped by Wang et al. [40] and updated on a regular basis. [41] In its last version

(v.2020), it stores 19443 protein–ligand X-ray structures of known binding affinity ex-
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pressed as either inhibition constant (Ki), dissociation constant (Kd) or half-maximum

inhibition concentrations (IC50). The general set which encompasses all data is further

split in a refined set (5316 entries in the v.2020 release) containing high-quality X-ray

structures and the most reliable affinity data (Ki and Kd only), and a core set (290

entries) made of a set of 58 proteins cocrystallized with five different ligands of various

affinities. Despite several warnings on the composition [21] and completeness [42] of the

PDBbind archive, it remains the largest resource to train machine learning models for

structure-based prediction of binding affinities. Many graph neural networks (GNNs),

used as end-to-end standalone architecture, [12, 16, 31, 33, 38] in cascade [30] or in

combination with CNNs, [26] have been described recently. None of them significantly

outperforms first-generation CNNs, most models presenting rather similar accuracies

(Pearson correlation coefficient in the 0.80-0.85 range; root-mean square error (RMSE)

around 1.2-1.3 pK unit) in predicting affinities for the PDBbind core set (Table 2.1)

but significantly lower accuracies for true external test sets. [24, 26, 28]

Despite the strong commitment of data scientists, we believe that drug discovery

has not really benefited from the already described models for the major reasons that

machine (deep) learning scoring functions still generalize poorly and are not readily

applicable to virtual screening of large compound libraries. [25] This major discrepancy

does not prevent computer scientists to propose novel deep learning models, almost on

a monthly basis, usually focusing on the novelty of the DNN architecture but often

omitting to answer three questions: (i) Is the apparent performance biased by either

the chosen descriptors, [43, 44] or the protein–ligand training space? [21, 45] (ii)

Does the model generalize well to external test sets? (iii) Has the model captured

the physics of intermolecular interactions and does it achieve good predictions for

meaningful reasons?

A first warning has been raised by several groups noticing that CNNs trained on

voxelized protein–ligand complexes or graphs do not really learn the physics of protein–

ligand recognition because ligand-only or protein-only models exhibit performances

quite similar to those reached by protein–ligand reading models. [21, 28, 33, 44, 46]

Comparison of the performance of 24 recently-published DNNs [11–38] reveals that the

model accuracy is independent of the size of the training set (e.g. PDBbind general
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vs. refined set; Table 2.3), contradicting the general idea that more high-quality input

protein–ligand structures are required to generate better models. Data augmentation

strategies consisting of adding high-quality docking poses to PDBbind X-ray structures

also lead to contradictory results. [14, 20, 26, 31] Although very few attempts to

predict a true thermodynamic cycle, considering proteins and ligands in their free and

bound states have been reported; [21, 22, 28] it remains counter-intuitive that the best

models are not obtained with architectures explicitly taking into account the three

bound/unbound species. Moreover, there is no relationship between the complexity of

protein (sequence vs. structure) and ligand (SMILES strings vs. 2D graphs vs. 3D

structures) descriptors and the accuracy of the resulting DNN models. [39, 47, 48]

Simple models even omitting to consider the protein–ligand bound state are equally

good at predicting binding affinities. [24, 42, 47, 48] It is therefore tempting to speculate

that DNNs just memorize hidden patterns in either the ligand or protein spaces on

which the models have been trained. As a consequence, modifications of protocols

used to split input data into training, validation and test sets have a major impact on

the accuracy and applicability domain of obtained models. [21, 22]

Since the publicly available training set is limited to the world of PDBbind

protein–ligand complexes, there is a need for better identifying still hidden biases in the

PDBbind archive, as well as to remove probable redundancies in the choice of descrip-

tors. In the current study, we present a critical evaluation of a modular message passing

graph neural network architecture to predict binding affinities from three independent

graphs describing proteins, ligands and their complexes. The modularity of the DNN

architecture enables depicting the true contribution of each state (free vs bound) of

the two partners and to clearly evidence serious biases in both the ligand and protein

composition of the PDBbind space. The current study suggests that descriptors focus-

ing on non-covalent interactions with no additional ligand/protein information are the

most suited to unbiased learning.
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Table 2.1. Structure-based deep neural networks to predict protein-ligand binding affinities.
Model Type Objects Descriptor Training set Test set Split  Rp RMSE Reference

TNet-BP CNN PL Topological fingerprints PDBbind 2016 refined (n=3767) PDBbind 2016 core (n=290) PDBBind original 0.826 1.37 11

ACNN CNN P, L, PL Atom type-labelled distances (Nat*25 atom types*12 closest 
neighbors)

PDBbind 2015 refined (n=2965) PDBbind 2015 refined (n=741) Temporal 0.727 - 12

Brendan CNN PL 3D grid (21*21*21 Å) * 256 bit SPLIF vector PDBbind 2016 general (10000) PDBbind 2016 general (1500) Random 0.704 - 13

PotentialNet GNN P, L, PL Protein-ligand graph PDBbind 2007 refined (n=1095) PDBbind 2007 core (n=195) PDBBind original 0.822 1.39 14

KDEEP CNN L, PL 1-Å 3D grid (25*25*25 Å) * 16 features PDBbind 2016 refined (n=3767) PDBbind 2016 core  (n=290) PDBbind original 0.820 1.27 15

Pafnucy CNN L, PL 1-Å 3D grid (21*21*21 Å) * 19 features PDBbind 2016 general (11906) PDBbind 2016 core (n=290) PDBBind original 0.780 1.42 16

DeepATom CNN PL 1-Å 3D grid (25*25*25 Å) * 24 features PDBbind 2016 refined (n=3390) PDBbind 2016 core  (n=290) PDBbind original 0.807 1.32 18

DeepBindRG CNN PL ligand (84) * protein (41) atom pair distances < 4 Å PDBbind 2018 general (n=13500) PDBbind 2018 general (n=925) Random 0.593 1.50 21

OnionNet CNN PL Atom type-labelled distances (Nat*25 atom types*12 closest 
neighbors)

PDBbind 2016 general (n=11906) PDBbind 2016 core  (n=290) PDBbind original 0.816 1.28 22

RosENet CNN PL voxelized Rosetta interaction energies + pharmacophoric 
descriptors

PDBbind 2016/2018 refined 
(n=4463)

PDBbind 2016 core  (n=290) PDBBind original 0.820 1.24 23

graphDelta GNN L, PL One-hot encoded ligand atoms + protein environmental 
descriptors (373)

PDBbind 2018 general (n=8766) PDBbind 2016 core  (n=285) PDBbind original 0.870 1.05 24

AK-Score CNN PL id Kdeep PDBbind 2016 refined (n=3772) PDBbind 2016 core  (n=285) PDBBind original 0.827 1.22 25

SE-OnionNet CNN PL 1-Å grid (21*21*21)* 64 protein-ligand element distance 
counts

PDBbind 2018 general (n=11663) PDBbind 2018 refined  (n=463) Random 0.853 1.59 27

Progessive 
multitask 
network

CNN P, L, PL ligand ECFP + Protein ECFP + Protein-Ligand SPLIF PDBbind 2016 refined (n=3568) PDBbind 2016 core  (n=290) PDBbind original 0.740 0.98 28

ACNN CNN P, L, PL Atom type-labelled distances (Nat*25 atom types*12 closest 
neighbors)

PDBbind 2015 refined (n=3706) PDBbind 2015 core (n=195) PDBBind original 0.730 - 29

Pair CNN PL protein-ligand distance pairs PDBBbind 2018 refined 
(n=2675)

PDBBbind 2018 refined (n=891) Random split 0.660 1.61 30

DEELIG CNN L, PL Atomic model: 3D grid (10*10*10 Å) * 19 bits (atomic model);
Composite model: 3D grid (10*10*10 Å) * 44 bits (pocket) + 
14716 bits (ligand)

in-house set (n=4041) PDBbind 2016 core  (n=290) Random 80/10/10 0.889 - 31

Interaction
GraphNet

GNN P, L, PL independent GNN for intra and inter-molecular interactions PDBbind 2016 general  
(n=10366)

PDBbind 2016 core  (n=290) PDBBind original 0.837 1.22 32

midlevel 
fusion

CNN+
GNN

PL CNN: 1-Å grid (48*48*48)* 19 atomic features; GNN: 
covalent ( d < 1.5 Å) and non-covalent  edges (1.5 < d < 4.5 Å) 

Pdbbind 2016 general+refined 
(13283)

PDB2016 core set (n=290) PDBBind original 0.810 1.31 33

SMPLIP RF+
CNN

L, PL IFP (140) + interaction distances (140) + SMF descriptors 
(2282)

Pdbbind 2016 general+refined 
(13283)

PDB2016 core set (n=290) PDBBind original 0.770 1.51 34

OctSurf CNN PL 1-Å 3D grid (64*64*64 Å) * 24 features/octant PDBbind 2018 general (n=16126) PDBbind 2016 core  (n=285) PDBBind original 0.793 1.45 35

BAPA CNN PL Protein-ligand interaction descriptors + 6 Vina terms PDBbind 2016 refined (n=3689) PDBbind 2016 core  (n=285) PDBbind original 0.819 1.31 36

APMNet GNN+
GNN

P, L 75 DeepChem atomic features PDBbind 2016 general  
(n=11844)

PDBbind 2016 core  (n=290) PDBBind original 0.815 1.27 37

GraphBAR GNN PL 13 features * 200 protein-ligand atoms PDBbind 2016 general  
(n=11146)

PDBbind 2016 core  (n=290) PDBbind original 0.764 1.44 38

S1



2.2 Results and discussion

Describing ligands, proteins and protein–ligand complexes as graphs

Ligand graphs were generated from PDBbind mol2 input files, defining atoms as nodes

and bonds as edges. Each node was annotated by the corresponding atom element,

whereas each edge was annotated by the corresponding bond length (Figure 2.2 A).

Protein graphs were described from ligand-binding sites, defined as any amino

acid, ion or water molecule for which one heavy atom is less than 4 Å away from

any ligand heavy atom (Figure 2.2 B). In the protein graph, nodes correspond to

protein pseudoatoms (PPA), as previously defined by Schmitt et al., [49] and placed

at key main chain/side chain positions and annotated by the molecular interaction

properties of the corresponding residue (Figure 2.1). A total of six properties were

used to annotate protein nodes with the following labels and interaction properties: CA,

aliphatic (hydrophobic interactions); O, hydrogen-bond acceptor (hydrogen bond); CZ,

aromatic (π-π interaction); OG, hydrogen-bond acceptor and donor (hydrogen bond);

N, hydrogen-bond donor (hydrogen bond); ZN, metal (metal chelation). To avoid

keeping protein residues whose side chains are pointing outward the ligand-binding

cavity, a residue-based filtering was performed based on the angle between the ligand

center of mass, the residue c-alpha atom and all residue-specific PPAs. PPAs of amino

acid side chains, for which the corresponding angle was higher than 90°were removed

from the binding site definition. Finally, edges were added between final protein nodes

distant by less than 4.0 Å and further annotated according to the distance between the

corresponding PPAs.
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Figure 2.1 Location and pharmacophoric properties of protein pseudoatoms (grey, aliphatic;

red, hydrogen-bond acceptor; cyan, hydrogen-bond donor; green, aromatic; metal-chelating,

steel blue)
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Table 2.2. Geometric rules to define protein-ligand non-covalent inter-

actions.

Interaction Rule 1a Rule 2b

H-bond ||
−−→
DA|| ≤ 3.5Å <

−−→
DH,

−−→
HA >∈ [−π

4
, π
4
]

Ionic ||−→+−|| ≤ 4.0Å

Hydrophobe ||
−−→
Y1Y2|| ≤ 4.5Å

Aromatic (Face to face) ||−−−→ac1ac2|| ≤ 4.0Å < −→n1,
−→n2 >∈ [−π

6
, π
6
]

Aromatic (Edge to face) ||−−−→ac1ac2|| ≤ 4.0Å < −→n1,
−→n2 >∈ [π

6
, 5π

6
]

π-cation ||−−→ac−|| ≤ 4.0Å < −→n ,
−−→
ac+ >∈ [−π

6
, π
6
]

Metal ||
−−→
MA|| ≤ 2.8Å

a D: H-bond donor; A: H-bond acceptor; +: cation; -:anion; Y: hydrophobe; ac: geo-

metric center of an aromatic ring; M: metal.

b H: hydrogen; n: normal to the aromatic ring.

Noncovalent interactions (hydrophobic, aromatic, hydrogen bonds, ionic bonds,

metal chelation; see details in Table 2.2) between protein and ligands were computed

on the fly with the GRIM routine of the IChem v5.2.9 package. [50]

For each interaction, IPAs are placed at the two atoms of the interacting pair

(Figure 2.2 C). The resulting representation was converted to a graph where nodes rep-

resent either protein or ligand-interacting atoms. Edges between nodes were added in

two consecutive steps. First, the principal edges were added between interacting IPAs.

Then, secondary edges were added between noninteracting IPAs under the conditions

that the corresponding IPAs originate from the same molecule (protein or ligand) and

that their distance is less than 4 Å. Each node was annotated by one of the following

labels, according to the nature of the corresponding noncovalent interaction: CA, hy-

drophobic; NZ; ionic (the interacting protein atom is positively charged); N, hydrogen-

bond (the interacting protein atom is a donor); OG, hydrogen-bond (the interacting

protein atom is both an acceptor and donor); O, hydrogen-bond (the interacting pro-

tein atom is an acceptor); CZ, aromatic; OD1, ionic (the interacting protein atom is

negatively charged); ZN: metal coordination. An additional binary label was added

to nodes to account for their belonging to either the protein or the ligand. The only
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Figure 2.2 Encoding protein, ligand and protein–ligand structures (PDB ID 2PSV) in

graphs. A) Nodes are set at ligand atomic coordinates, and labelled by atomic element. Edges

represent bonds, annotated by bond length. B) Proteins are represented by ligand-binding

site pseudoatoms (slate blue spheres) placed at amino acid-specific positions. Nodes are

set at protein pseudoatom coordinates and annotated by pharmacophoric properties. Edges

link two nodes distant by less than 4.0 Å. C) protein–ligand interactions are represented by

interaction pseudoatoms (pink and blue spheres) set at protein and ligand-interacting atoms.

Edges are placed between two nodes (protein, blue; ligand, red) in direct interaction, or

between protein or ligand notes if distant by less than 4.0 Å. Each edge is annotated by the

distance between the corresponding nodes.
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edge feature is the distance between pseudoatoms corresponding to the graph nodes

(edge length). Therefore, the information on the spatial structure of the binding site

was partially preserved, while the representation remained invariant to binding site

rotations and node numbering.
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DNN architecture

We used a graph CNN architecture that belongs to the family of message passing neu-

ral networks (MPNNs), recently shown to exhibit excellent performance in predicting

quantum chemical properties. [51] The MPNN is here applied to an undirected graph

G with node features xv and edge features evw. In an MPNN, each node v in the graph

has a hidden state ht
v (feature vector). For each node v, a function of hidden states

and edges of all neighboring nodes is aggregated. The hidden state of the node Vt is

then updated with the obtained message mt+1
v and its previous hidden state. Three

main equations characterize the MPNN on graphs. First, the message mt+1
v obtained

from all neighboring nodes N(v) is given by equation 2.1:

mt+1
v =

∑
w∈N(v)

Mt(h
t
v, h

t
w, evw) (2.1)

where Mt is the aggregation function applied at step t, ht
v the hidden state of

node v, hw
t the hidden state of the neighboring node w, ewv is the feature of edge between

v and w. The hidden state ht+1
v of the node v is then updated according to equation

2.2:

ht+1
v = Ut(h

t
v,m

t+1
v ) (2.2)

where Ut, the update function, is another neural network used to update the hidden

state by taking into account both the sum of all previous messages and the previous

hidden state. The message passing algorithm is repeated a user-defined number of

times until the readout phase generates a final feature vector ŷ describing the entire

graph G according to equation 2.3:

ŷ = R(hT
v |v ∈ G) (2.3)

where R is the readout function, T is the number time steps.

The message functions Mv, node update function Uv and readout function R

are all learned differentiable functions. The complete architecture of the graph con-

volutional network (Figure 2.3 A) includes an MPNN module with a customizable

hidden size and a two-layer dense module with a top layer size of hidden size / 4. The

VOLKOV Mikhail - PhD. Thesis 83



Figure 2.3 General architecture of a MPNN with two message passing steps. A) Initial

graph with node and edge labels. B) Transformation of node and edge feature vectors with

fully connected layers (fc) C) Application of linear layers to node and edge feature vectors. D)

Message generation. E) Message passing. F) Node features update using a standard LSTM

cell architecture. G) Graph with updated node features. H) Readout. I) Fully connected (fc)

layers.
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invariance of the MPNN readout function to node and edge re-enumeration enables ap-

plying MPNNs to a merged input consisting of multiple disconnected graphs describing

protein, ligand, and protein–ligand interactions without modifying the network archi-

tecture. In the current study, MPNN models have been derived from graphs describing

the two molecular species (protein and ligand) in both their liganded and unliganded

states, thereby enabling to evaluate the exact contribution of each state. To ascertain

the fairest possible comparison, all models were trained on the same training/validation

set using exactly the same input graphs.

DNN models are heavily biased by ligand and protein features

Starting from three possible input graphs describing the protein, the ligand and their

noncovalent interactions, seven combinations (one graph, two graphs, three graphs)

were first tested as baselines with two objectives: (i) benchmark the performance of

MPNN in predicting binding affinities with respect to other DNN architectures, [11–

24, 26–38] (ii) analyze the contribution of each input graph and assess their potential

synergistic use (Table 2.3).

Despite our customized protocol to process PDBbind entries, we were able to

reproduce the performance of the native Pafnucy model, [35] estimated by the Pearson’s

correlation coefficient Rp in predicting experimentally derived affinities for samples of

the PDBbind 2016 core set (Rp = 0.777; Table 2.3). Our seven MPNN models exhibit

various performances with Rp values ranging from 0.687 to 0.813. Intuitively, one

would have expected that a model trained on protein–ligand interactions (I model)

achieves better performance than models trained solely on either the ligands (L model)

or the proteins (P model). However, the P and L models exhibit a better performance

than the I model (Table 2.3). Out of the one-component models, the ligand-based

model is clearly the one leading to the best results (Rp = 0.749, RMSE = 1.567).

Combining two graph inputs increases the accuracy of the corresponding predictions,

with a clear advantage to the PL model (Rp = 0.812, RMSE = 1.553) omitting protein–

ligand interaction features. The most sophisticated model, taking into account the

three graph inputs (PLI model), does not provide any clear advantage compared to the

PL model, suggesting that explicitly defined molecular interactions are not required

to predict binding affinities of the core set sample. Applying the models to a much
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larger (n=3386) and more difficult hold-out set, obtained by temporal splitting of the

PDBbind dataset (hold-out 2019 set) illustrates a moderate generalization capacity,

with the Rp value decreasing by ca. 0.15 unit for all models (Table 2.3).

Table 2.3. Performance of modular MPNN models in predicting affini-

ties for the external 2016 core set and the 2019 hold-out set.

modela 2016 core set 2019 hold-out set

Rp RMSE Rp RMSEb

P 0.725 1.569 0.570 1.528

L 0.749 1.567 0.611 1.455

I 0.687 1.605 0.538 1.563

PL 0.812 1.553 0.645 1.512

PI 0.777 1.462 0.613 1.485

LI 0.780 1.477 0.630 1.425

PLI 0.813 1.511 0.652 1.481

Pafnucyc 0.773 1.429 0.456d 1.642

a) P: protein graph, L: ligand graph, I: interaction graph; PL: merged protein and

ligand graphs, PI: merged protein and interaction graph; LI: merged ligand and interaction

graph; PLI: merged protein, ligand and interaction graph. b) Root-mean square error, in pK

unit. c) In-house Pafnucy prediction (Rp = 0.78 in the original paper). [35] d) Predictions

failed for 29 entries.

From a pure statistical point of view, the performance of four out of the seven

MPNN models is superior to that achieved with the CNN Pafnucy model, when applied

to the 2016 external core set (Table 2.3). Extending predictions to the challenging 2019

hold-out set suggests that all models outperform Pafnucy. Assuming that a Pearson

Rp threshold value of 0.600 is commonly used in pharmaceutical industrial settings

to qualify a good predictive QSAR model, [52] five out of the seven MPNN models

could be considered as satisfactory. However, these models remain enigmatic from a

physicochemical point of view since ligand-only and protein-only models still outper-

form the interaction model. Moreover, the impact on model predictive performance of

the explicit consideration of protein–ligand interactions in the two or three-component
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models remains very limited (Table 2.1). Noteworthy, focusing the analysis on three

target classes for which enough samples are present in the hold-out set (GPCRs, 47

samples; kinases, 572 samples; nuclear receptors, 106 samples) did not change the above

observations (Figure 2.4 ).

Figure 2.4 Performance of modular MPNN models in predicting affinities for specific

target classes of the 2019 hold-out set. Mapping of protein target classes (GPCRs, G-

protein-coupled receptor; NRs, Nuclear hormone receptors) from the Pharos database

(https://pharos.nih.gov/) to PDB entries was performed using the Pharos-to-PDB code

(https://github.com/ravila4/Pharos-to-PDB).

Several conclusions can be drawn from these results. First, the herein imple-

mented MPNN architecture provides a lower accuracy to previously reported CNN

and GNN models, when just protein–ligand interactions are taken as input. Pafnucy,

used here as a state-of-the-art CNN achieves a better accuracy than the MPNN I
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model (Table 2.3). Second, protein–ligand binding affinities of the 2016 core set can

apparently be predicted from sole protein or ligand structures. Third, the explicit de-

scription of protein–ligand interactions does not provide any clear advantage compared

to the corresponding interaction-agnostic models (e.g. compare P to PI, L to LI, and

PL to PLI models, Table 2.3). Fourth, all models exhibit a decreased accuracy when

applied to a hold-out set of newly described complexes, suggesting a probable over-

training. Most of these observations are counter-intuitive and cannot been rationally

explained by first-principle physics. They evidence, to our viewpoint, potential biases

in the composition of the PDBbind training/test sets suggesting that the derived mod-

els have partly memorized input data but not learned the physics of protein–ligand

non-covalent interactions. This phenomenon has already been described for many

ligand-based machine learning models and frequently happens when training and test

sets exhibit significant redundancies. [53] Another alert, that we already mentioned

for both machine learning and DNNs, [43, 54] is their propensity to predict binding

affinities with apparently satisfactory performance metrics (Rp, RMSE), but where the

predicted values are in fact contained within a very tiny range centered on the mean

value of training samples. This tendency is again observed for the current predictions

of all MPNN models, whatever the chosen input graph(s) and external test set (Figure

2.5 ).

Whereas experimental affinities of the two external test sets are spread over 10

pk units, MPNN and Pafnucy predictions are restricted to ca. 6 pk units. Considering

only the 25th and 75th percentiles of the distributions (boxes in Figure 2.5 ), 50 % of

the predicted data are centered on a mean value ±1.5 pK unit, Pafnucy predictions

lying even in a narrower range for 2019 hold-out set predictions (Figure 2.5 ). The

prediction error is statistically minored if the output value is close to the mean of

trained samples. This may be a reason why machine learning models tend to yield

narrow distribution of predicted values. This phenomenon might be even amplified

in machine learning models for which the loss function aims at minimizing the root-

mean-square error. Altogether, we suspect significant biases in the ligand and protein

composition of the PDBbind archive which, to our viewpoint, should prevent the blind

usage of DNN models in prospective applications.
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Figure 2.5Distribution of experimental and predicted affinities for the 2016 core set (n=257)

and the 2019 hold-out set (n=3386). Exp: experimental affinity; P, L, I, PL, PI, LI, PLI:

predicted by MPNN models using protein(P), ligand(L) and protein–ligand interaction (I)

graphs used alone or in combinations; Paf: predicted by the Pafnucy model. The boxes

delimit the 25th and 75th percentiles, and the whiskers delimit the 1st and 99th percentiles.

The median and mean values are indicated by a horizontal line and a filled square in the box,

respectively. Outliers are indicated by a diamond.
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Simple memorization models suggest that ligand and protein neighborhoods

contribute massively to MPNN predictions

To estimate the relative contribution of simple memorization vs true learning when

applying MPNNs to predict affinities for PDBbind samples, we generated simple mem-

orization baseline models in which the predicted affinity of a test sample was just in-

ferred by ligand or protein similarity to the five closest training samples (Table 2.4). Of

course, such memorization models are meaningless and just define baselines to quantify

the amount of biases in the training data set.

Table 2.4. Performance of simple memorizing models in predicting

affinities for the external 2016 core set and the 2019 hold-out set.

model 2016 core set 2019 hold-out set

Rp RMSE Rp RMSE

PLI MPNNa 0.813 1.511 0.652 1.481

ligand similarityb 0.663 1.624 0.509 1.641

protein similarityc 0.547 1.765 0.310 1.794

a) Three-component (protein, ligand, and protein–ligand interactions) MPNN model of Table

2.3. b) Prediction is equal to the average affinity of the five training samples with the

most similar ligands, similarity being expressed by a Tanimoto coefficient on ECFP4 circular

fingerprints (see the Experimental Section). c) Prediction is equal to the average affinity of

the five training samples with the most similar proteins, similarity being expressed by an

Euclidean distance on protein cavity fingerprints (see the Experimental Section).

Given its simplicity, the ligand memorization model performs remarkably well

on the two external test sets (Table 2.4) and is almost equivalent in accuracy to the

protein–ligand interaction MPNN model (I model, Table 2.3). The protein similarity

model exhibits a decreased but still noticeable performance. The observed dependency

was relatively insensitive to the number of closest training samples (ligands, proteins)

used to infer average affinity values for prediction (Figure 2.6 ). We can therefore

conclude that simple memorization probably accounts for a large part of the excellent

performance of the MPNN model using ligand, protein and protein–ligand interaction

graphs as input (Table 2.4).
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Figure 2.6 Influence of the number of closest ligands or proteins used to average binding

affinities in the performance of simple memorization models, assessed by the Pearson r cor-

relation coefficient.

Undersampling the training set does not remove ligand and protein biases

The goal of this procedure was to reduce the bias originating from the sampling of

proteins and ligands present in the PDBbind data set. Thus, we undersampled the

PDBbind training set by removing progressively the protein–ligand pairs which are

easily predictable if we rely solely on protein or ligand graphs, while ignoring the

interaction graphs. Intuitively, those are probably the most biased datapoints. As a

first approach to remove potential ligand and protein biases in the training set, we

filtered out all training samples whose affinities were easily predicted by ligand-only

or protein-only five-fold cross-validation MPNN models. The protocol was repeated

for batches of 50 samples to get a good tradeoff between speed and precision of the

unbiasing algorithm.

Undersampling reduced the size of the training set from 9662 to 4635 samples,

but marginally affected the accuracy of all MPNN models, whatever the graphs used

as inputs (Figure 2.7 ). Interestingly, decreasing the size of the training set by 50 %

did not alter the quality of the predictions for both external sets. However, the same

obvious biases (good performance of ligand-only and protein-only models, no benefit

of explicitly considering protein–ligand interactions) were found again, suggesting that

the hidden biases reported above are still present in the undersampled training set.
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Figure 2.7 Effect of undersampling the PDBbind training set on the on the scoring power

of MPNN models in predicting binding affinities for the 2016 core set and the 2019 hold-

out set. Default models were trained on the full set (9653 entries) whereas undersampled

models were trained only on 4658 samples. P: protein graph model, L: ligand graph model,

I: interaction graph model; PL: merged protein and ligand graphs model, PI: merged protein

and interaction graphs model; LI: merged ligand and interaction graphs model; PLI: merged

protein, ligand and interaction graphs model.
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Influence of ligand buriedness

In a second approach, we looked whether the buriedness of the protein-bound ligands in

the training and external sets may be a source of potential biases. Indeed, a fully buried

ligand would generate quite complementary protein and ligand graphs that implicitly

encode all possible non-covalent protein–ligand interactions. In such cases, it might

be conceivable to predict albeit with a moderate accuracy the binding affinity of the

corresponding complex from sole ligand or protein graphs.

Computing the buried surface area of all PDBbind ligands in their bound state

shows a similar distribution for the three sets (training, 2016 core set, 2019 hold-out

set) centered on a mean value close to 60-65 % (Figure 2.8 A).

Figure 2.8 Effect of ligand buriedness on MPNN predictions. (A) Distribution of the

buried surface area of protein-bound PDBbind ligands. (B) Influence of the protein-bound

ligand buriedness on the scoring power of MPNN models in predicting binding affinities for

the core set and the 2019 hold-out set. P: protein graph model, L: ligand graph model, I:

interaction graph model ; PL: merged protein and ligand graphs model, PI: merged protein

and interaction graphs model; LI: merged ligand and interaction graphs model; PLI: merged

protein, ligand and interaction graphs model.

We then trained novel MPNN models on two subsets of the PDBbind training

set defined by ligand buriedness. The first subset contained the samples with the 50%

less buried ligands, whereas the second subset encompassed complexes with the 50 %

more buried ligands. Using these new MPNN models to predict the binding affinities
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of samples from the two external sets gave disappointing results (Figure 2.8 B). First,

all new models were less accurate than the former models trained on the full training

set. Second, neither the ligand nor the protein dependency was removed in the new

models because novel ligand-only (I models) and protein-only models (P models) were

still able to predict binding affinities of both external test samples (Figure 2.8 B). We

can therefore safely conclude that ligand buriedness is not the cause of protein and

ligand biases in the PDBbind data set.

Complexity of the protein–ligand interaction descriptors

As a third approach, we made the hypothesis that the importance of protein and ligand

descriptors with respect to the interaction descriptors may originate from the different

complexity level of the input graphs. Indeed, interaction graphs computed in IChem

are far simpler than the cognate protein and ligand graphs, when considering the

number of nodes, edges and the graph density. By default, protein–ligand interactions

have been computed using strict geometrical rules (distances and angles), [55] notably

interaction-specific upper distance thresholds (hydrogen bond: 3.5 Å, aromatic π-π

interactions: 4.0 Å, ionic bonds: 4.0 Å, hydrophobic interactions: 4.5 Å), leading to

relative simple graphs with respect to the number of nodes and edges (Figure 2.9 ).

To increase the importance of protein–ligand interactions in our MPNN models, we

therefore increased the complexity of interaction graphs by registering non-covalent

interactions up to of 6.0 Å. The new interaction graphs (”int6” label) contain much

more nodes and edges, are definitely denser, and are now comparable with protein and

ligand graphs (Figure 2.9 ).

Using the new interaction graphs as input to MPNN models increased signifi-

cantly the scoring power of the interaction-only I model for the two external test sets

(core set, Rp = 0.728; hold-out set, Rp = 0.607; Figure 2.10 ). Interestingly, this mod-

ification did not increase the accuracy of two-component and three-component models

(Figure 2.10 ). Given the marginal benefit of combining the new interaction graph

with either protein and/or ligand graphs, using the single new interaction graph def-

inition appears as the best possible compromise between prediction accuracy, model

applicability, and lower risk of memorization effects.
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Figure 2.9 Distribution of the number of nodes (A), number of edges (B) and density (C) for

interaction (int), protein (prot) and ligand graphs derived from PDBbind protein–ligand com-

plexes (n=14 215). The graph density is defined as density =
Nedges

Nnodes(Nnodes−1) where Nedges is

the number of edges and Nnodes is the number of nodes. By default, protein–ligand interac-

tions are computed using interaction-specific upper distance thresholds (hydrogen bond: 3.5

Å, aromatic π-π interactions: 4.0 Å, ionic bonds: 4.0 Å, hydrophobic interactions: 4.5 Å).

In the extended mode (int6), a larger distance cut-off of 6.0 Å is applied to all non-covalent

interactions.
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Figure 2.10 Influence of the interaction graph complexity on the on the scoring power of

MPNN models in predicting binding affinities for the 2016 core set and the 2019 hold-out set.

By default, (blue bars), protein–ligand interactions are computed using interaction-specific

upper distance thresholds (hydrogen bond: 3.5 Å, aromatic π- π interactions: 4.0 Å, ionic

bonds: 4.0 Å, hydrophobic interactions: 4.5 Å). In the extended mode (tan bars), a larger

distance cut-off of 6.0 Å is applied to all non-covalent interactions. P: protein graph model,

L: ligand graph model, I: interaction graph model; PL: merged protein and ligand graphs

model, PI: merged protein and interaction graphs model; LI: merged ligand and interaction

graphs model; PLI: merged protein, ligand and interaction graphs model.
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Figure 2.11 Yearly evolution of the PDBbind dataset. A) Number of unique entries

(protein–ligand complexes, proteins, ligands), B) Sparsity of the protein–ligand matrix, C)

Ten most frequent proteins (PDBbind 2020 release) labelled by their UniProt identifier, D)

Ten most frequent ligands (2020 release) labelled by their PDB ligand identifier.
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Sparsity of the training protein–ligand matrix

Despite a regular increase in the number of entries in PDBbind (Fig. 8A), the accuracy

of machine learning models in predicting binding affinities has reached a plateau (Rp

= 0.80 ± 0.05), whatever the DNN architecture, the chosen descriptors and the size of

the training set (Table 2.1, Table 2.3). Higher accuracies are not necessarily required,

given the experimental error associated with heterogeneous binding assays use to collect

PDBbind affinities. However, better models are still desirable, notably to achieve

accurate and stable predictions when applied to external test sets. Looking at the

yearly increase in the number of PDBbind samples, it appears that the number of

unique complexes grows faster that the number of unique proteins, the latter increasing

faster than the number of unique ligands (Fig. 8A).

Considering a matrix of x proteins, y ligands and z protein–ligand complexes

of known structure, the sparsity S of the PDBbind matrix is defined by the following

equation:

S = 1 − z

x · y
(2.4)

In other words, the sparsity index describes the fraction of the overall matrix with

a missing value (here a protein–ligand complex of known structure and binding affinity).

The sparsity S value is very high for the PDBbind dataset (ca. 0.95) and even tends

to slightly increase with time (Figure 2.11 B). By comparison with high-performance

QSAR models, that rely on a minimal number of compound annotations per assay

(usually >200), and now reach the accuracy of four-concentration IC50 determinations,

[52] the sparsity of the corresponding protein–ligand matrices may reach values as low

as 0.65. [52, 56, 57]

The PDBbind matrix contains very few targets annotated by multiple ligands

(Figure 2.11 C). The number of single ligands annotated by multiple proteins is even

lower and mostly concerns target-permissive cofactors and nucleotides (e.g., ATP, ADP,

AMP, SAM; Figure 2.11 D). To check the influence of the training matrix sparsity, we

selected the 2030 PDBbind entries from the ten most frequent proteins (Figure 2.11 D)

to design novel training (n=1505), validation (n=147), and external test sets (core 2016,
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n=49; hold-out 2019, n=329). Importantly, the set membership (training, evaluation,

core, hold-out) of selected entries was kept unchanged, as well as the distribution of

experimental affinities (Figure 2.12). The previously described extended interaction

model (int6) was here used to describe noncovalent interactions. Altogether, the new

subset contains only 10 unique proteins and 1777 unique ligands, thereby achieves a

lower sparsity (S = 0.885) with respect to the full PDBbind 2019 dataset (S = 0.958).

The performance of the MPNN models on the new subset is higher than that

obtained on the full set (Figure 2.13). Unfortunately, neither protein nor ligand depen-

dencies have been removed when predicting affinities for the two external test sets still

focusing of the 10 most frequent proteins. The protein-only and ligand-only models

remain very accurate, notably for predicting affinities of core set samples. Interest-

ingly, the interaction model is the only one for which the performance is significantly

increased for the two external test sets (core set, Rp = 0.852, RMSE = 1.256; hold-out

set, Rp = 0.605, RMSE = 1.363; Figure 2.13). The I model appears again as a rea-

sonable choice for predicting affinities of novel protein–ligand complexes. The current

study suggests that increasing the density of the training protein–ligand matrix is an

attractive path to increase the accuracy of affinity prediction models. From a practical

point of view, it will necessitate a coordinated effort from the drug design community

and research financing agencies to solve a wide array of protein–ligand structures in

which the same target is repeatedly pictured with different ligands of various affinities,

and vice-versa.

2.3 Experimental section

Dataset preparation

The index files of the PDBbind 2019 release were downloaded from the PDBbind

website. [41] For each registered protein–ligand complex, the corresponding atomic

coordinates (PDB format) were retrieved from the RCSB Protein Data Bank [58] and

processed with Protoss v.4.0 [59] to generate atomic coordinates of hydrogen atoms

while optimizing the protonation and ionizable states of both ligand and protein amino

acids. Each structure was then postprocessed using an in-house script to keep only
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Figure 2.12 PDBbind low sparsity subset. A) Split into four subsets for training, validation

and external test sets (core 2016, hold-out 2019), B) Distribution of experimental affinities

for the training (n=1,505), core (n=49) and hold-out sets (n=329). The boxes delimit the

25th and 75th percentiles, and the whiskers delimit the 1st and 99th percentiles. The median

and mean values are indicated by a horizontal line and a filled square in the box, respectively.

Outliers are indicated by a diamond.
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Figure 2.13 Increasing the density of training protein–ligand matrices to predict binding

affinities for the 2016 core set and the 2019 hold-out set. P: protein graph model, L: ligand

graph model, I: interaction graph model; PL: merged protein and ligand graphs model, PI:

merged protein and interaction graphs model; LI: merged ligand and interaction graphs

model; PLI: merged protein, ligand and interaction graphs model.
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water molecules exhibiting , according to IChem [50] rules, at least two hydrogen

bonds to either protein or ligand atoms. Entries with covalently bound ligands were

excluded. Remaining protonated ligand and protein (including all remaining bound

water molecules, cofactors, prosthetic groups and ions) were saved separately in mol2

file format. A curated set of 14215 complexes, for which graphs generation succeeded

without any failure, was further split in two parts according to the release date (part

1: until 2016-12-31, part 2: after 2017-01-01). Part 1 complexes, corresponding to the

general and refined 2016 sets, were divided into training (9662 entries), validation (903

entries) and test (257 entries) as previously described. [35] Part 2 (3386 entries) was

saved as an external hold-out set, mimicking a real temporal split scenario in which

binding affinities for newly released structures are predicted by a model trained on past

structural data. Analyzing the distribution of pairwise ligand similarities evidence a

large scaffold diversity of each set (training set, 2016 core set, 2019 hold-out set) as

well as the absence of obvious similarity biases when comparing the training set to the

two external sets. The pairwise similarity and UMAP [60] plots of all PDBbind ligands

are provided on (Figure 2.14).

Molecular descriptors

Proteins, ligands, and protein–ligand interactions were represented as graphs using

in-house scripts and the IChem package. [50] The graph processing pipeline was im-

plemented using the Networkx framework v.2.5. [61]

Message passing neural networks

The neural network models were implemented using PyTorch v.1.6.0 [62]and PyTorch

Lightning v.1.5.1. [63] The graph convolution procedure was implemented with a Deep

Graph Library framework v.0.5.0. [64] Two approaches were tested in order to consider

the three molecular graphs. In the ’merged approach’ the feature vectors of the three

input graphs are simply merged. An alternative architecture (parallel approach) was

tested, which included separate MPNNs for each input, yielding parallel hidden vectors,

which were concatenated before applying fully connected layers to them. Preliminary

trials indicated that the parallel architecture had higher memory requirements and

demanded longer computational time, while having an accuracy close to that obtained
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Figure 2.14 Chemical diversity of PDBbind ligands. A) Pairwise similarity of Murcko

superstructures for ligands from the training, 2016 core and 2019 hold-out sets. The similarity

is expressed by the Tanimoto coefficient computed from ECFP4 fingerprints. B) Uniform

Manifold Approximation and Projection (UMAP)of PDBbind ligands, performed in umap-

learn 0.5.3 with a number of neighbours of 30 and a dice distance metric. The Morgan

fingerprints of radius 2 (nBits=1024) were computed in rdkit v.2020.09.1.
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with the merged approach. Thus, the graph merging was selected as the preferable

procedure of multiple graph inputs. The parameter optimization aimed to increase the

determination coefficient R2 in predicting binding affinities using a stochastic gradient

descent approach with the ADAM optimizer. The learning rate (lr) was changed over

time by the factor of 0.9 after 20 epochs with no improvement for the first lr modifi-

cation and after 40 epochs for the subsequent lr modifications. The weight decay and

dropout rate were set to values of 0.001 and 0.2, respectively. Other hyperparameters

(batch size, size of hidden layers, number of message passing steps) were systematically

optimized by a grid search as follows:

Batch size: search space [32 , 64, 128, 256 ], final value 256

size of hidden layers: search space [256 , 512, 1024, 2054], final value 2054

message passing steps: search space [1, 2], final value 1

Data undersampling

Data undersampling was performed using an iterative fivefold cross-validation approach

on the whole PDBbind 2016 training set. At each iteration, ligand-only and protein-

only MPNN models were trained using one fold as a test set and the remaining folds as

a training set. Binding affinity was predicted for all test complexes with both models.

At each iteration, training samples with the lowest sum of binding affinity prediction

errors given by the two protein and ligand models were removed from the dataset. One

hundred iterations of undersampling were performed and 50 complexes were removed

at each iteration. The final undersampled training set contains 4635 protein–ligand

complexes.

Prediction of binding affinities with Pafnucy [35]

The package was downloaded from the Pafnucy website. [65] In a first step, 3D grids

were prepared for each protein–ligand complex in mol2 file format, to create an HDF

file with atoms’ coordinates and features. In the second step, the recommended model

(batch5-2017-06-05T07:58:47-best) was used to rescore each protein–ligand complex,

expressing results in pKd unit.
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Estimation of ligand buriedness

Ligand buriedness was computed with IChem v5.2.9 [50] using bound states of protein

and ligand in separate mol2 files.

Ligand and protein pairwise similarity

Pairwise ligand similarities were computed from circular ECFP4 fingerprints [66] de-

termined in PipelinePilot v.2019 (Dassault Systèmes Biovia Corp., San Diego, U.S.A).

Protein similarities were estimated from the Euclidean distance of 89 cavity descriptors

generated by IChem v5.2.9. [50]

Evaluation metrics

The scoring power of the different DNN models was evaluated using the Pearson’s

correlation coefficient (Rp; equation 2.5) and the root-mean square error metric (RMSE,

equation 2.6).

Rp =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y )2
(2.5)

RMSE =

√∑n
i=1(Xi − Yi)2

n
(2.6)

2.4 Conclusions

Predicting binding affinities of protein–ligand complexes by considering both the cor-

responding free and bound states appears frustrating because the explicit description

of non-covalent intermolecular interactions does not provide any statistical advantage

with respect to simpler approximations omitting fine details of protein–ligand interac-

tions. The current study confirms the protein and ligand biases already observed in

several studies using DUD-E and PDBbind data sets as sources of three-dimensional

information. [21, 22, 25, 26, 28, 32, 33, 44, 46] However, important controversies

still remain regarding the interpretation of these observations. On one side, many

computer scientists are not alerted and keep focusing on a pure metrics-based analy-

sis which usually shows that adding descriptors of protein–ligand interactions indeed
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produce prediction models with slightly better performance metrics (Pearson R cor-

relation, RMSE). [22, 25, 28, 32, 33] On the other side, several warnings have been

raised by a few groups [21, 44, 46] arguing that a machine learning model must be

interpretable from a physicochemical ground. We totally agree with the latter studies,

but we were unable to find obvious ways to remove hidden protein and ligand biases in

the PDBbind archive of protein–ligand complexes. Neither undersampling, nor consid-

ering ligand buriedness and sparsity of the protein–ligand training matrix could remove

the observed tendency of deep neural models to accurately predict binding affinities

from sole ligand or protein descriptors. The approach proposed by Yang et al. [21] to

split the data set according to ligand scaffold and protein sequence/structure similarity

is efficient in reducing protein and ligand biases but remains artificial and not satisfac-

tory for daily practice where affinity data have to be predicted for new proteins bound

to ”old ligands” (repurposing), ”old proteins” bound to new ligands (hit to lead opti-

mization) and new proteins bound to new ligands (virtual screening). In the current

study, we therefore privileged a temporal splitting protocol in which affinities for novel

protein–ligand complexes are predicted from a model trained on past structural data.

The sparsity of the protein–ligand training matrix appears to be the most important

parameter, notably for models trained only on protein–ligand interactions. To avoid

building models relying on ligand-specific and protein-specific features, we disfavor an-

notating the non-covalent interactions with explicit ligand and protein descriptors, as

often seen in GNNs with attention procedures to annotate graph nodes with ligand

and binding pocket connectivity atomic tables. [18, 25, 33, 38] As a conclusion, we

recommend training DNN models on pure interaction descriptors in order to reduce

the risk of overfitting. Only the latter models appear robust enough to be used for

prospective applications.

2.5 Supporting information

Location and pharmacophoric properties of protein pseudoatoms; Performance of mod-

ular MPNN models in predicting affinities for specific target classes of the 2019 hold-

out set; Influence of the number of closest ligands or proteins used to average binding

affinities in the performance of simple memorization models; PDBbind low sparsity
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subset; Chemical diversity of PDBbind ligands; Structure-based deep neural networks

to predict protein–ligand binding affinities; Geometric rules to define protein–ligand

non-covalent interactions (PDF). This material is available free of charge via the In-

ternet at http://pubs.acs.org

Data availability

Data. Input files (curated mol2 input files for PDBbind samples; ligand, protein and

interaction graphs; training, validation and test set membership) are freely available

at http://bioinfo-pharma.u-strasbg.fr/labwebsite/downloads/pdbbind.tgz. Software.

Pafnucy version 1.0 was downloaded from https://gitlab.com/cheminfIBB/pafnucy,

and used with default settings. Rescoring was performed using the recommended

model batch5-2017-06-05T07:58:47-best. IChem (version 5.2.9) was downloaded from

http://bioinfo-pharma.u-strasbg.fr/labwebsite/download.html. IChem is freely avail-

able for non-profit academic research and subjected to moderate license fees for com-

panies.
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ABSTRACT: Accurate prediction of binding affinities from protein−ligand atomic coordinates remains a major challenge in early
stages of drug discovery. Using modular message passing graph neural networks describing both the ligand and the protein in their
free and bound states, we unambiguously evidence that an explicit description of protein−ligand noncovalent interactions does not
provide any advantage with respect to ligand or protein descriptors. Simple models, inferring binding affinities of test samples from
that of the closest ligands or proteins in the training set, already exhibit good performances, suggesting that memorization largely
dominates true learning in the deep neural networks. The current study suggests considering only noncovalent interactions while
omitting their protein and ligand atomic environments. Removing all hidden biases probably requires much denser protein−ligand
training matrices and a coordinated effort of the drug design community to solve the necessary protein−ligand structures.

■ INTRODUCTION

Predicting absolute binding free energies (affinities) from
three-dimensional (3D) atomic coordinates of protein−ligand
complexes remains one of the grand challenges of computa-
tional chemistry.1 For example, drug discovery would
immediately benefit from key advances in this topic, by better
triaging potentially interesting molecules among virtual
screening hits2,3 and proposing viable analogues in emerging
ultra-large chemical spaces4 for hit to lead optimization. With
the ever increasing amount of high-resolution experimentally
determined protein−ligand structures,5 binding affinity pre-
diction algorithms have switched from physics-based6 to
empirical scoring functions,7 and in the last few years to
machine learning8 and deep learning methods.9,10 The latter
category of descriptor-based scoring functions has notably led
to numerous protein−ligand affinity models11−38 (see a
nonexhaustive list Table S1) notably because deep learning
does not require explicit descriptor engineering and is ideally
suited to find hidden nonlinear relationships between 3D
protein−ligand structures and binding affinity. The first deep
neural networks (DNNs) to predict binding affinities were

convolutional neural networks (CNNs) reading a protein−
ligand complex as an ensemble of grid-based voxels with
multiple channels corresponding to pharmacophoric proper-
ties.12,15,16 The CNN architecture is relatively inefficient from
a computational point of view because most of the voxels do
not carry any relevant information. Moreover, the search for
the best possible hyperparameters is very demanding with
respect to memory usage and CPU time. Finally, the same
object must be presented in multiple orientations in a 3D grid
to remove the dependency on the initial atomic coordinates.
To overcome these issues and speed-up the training process,
most recently developed DNNs read inputs in the form of a
molecular graph39 where nodes are represented by atoms and
edges by bonds and/or noncovalent intra and intermolecular
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interactions. Atoms and edges are embedded with user-defined
atomic and/or pharmacophoric properties, enabling all graph

components to be updated according to their surroundings all
along the network during the training phase.

Figure 1. Encoding protein, ligand, and protein−ligand structures (PDB ID 2PSV) in graphs. (A) Nodes are set at ligand atomic coordinates (2D
sketch in the inset), and labeled by atomic elements. Edges represent bonds, annotated by the bond length. (B) Proteins are represented by ligand-
binding site pseudoatoms (slate blue spheres) placed at amino acid-specific positions. Nodes are set at PPA coordinates and annotated by
pharmacophoric properties. Edges link two nodes distant by less than 4.0 Å. (C) Protein−ligand interactions are represented by interaction
pseudoatoms (IPAs) (pink and blue spheres) set at protein and ligand-interacting atoms. Edges are placed between two nodes (protein, blue;
ligand, red) in direct interaction, or between protein and ligand notes if distant by less than 4.0 Å. Each edge is annotated by the distance between
the corresponding nodes.
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A gold standard data set to probe DNN models is the
PDBbind database, developed by Wang et al.40 and updated on
a regular basis.41 In its last version (v.2020), it stores 19443
protein−ligand X-ray structures of known binding affinity
expressed as either the inhibition constant (Ki), dissociation
constant (Kd), or half-maximum inhibition concentrations
(IC50). The general set which encompasses all data is further
split in a refined set (5316 entries in the v.2020 release)
containing high-quality X-ray structures and the most reliable
affinity data (Ki and Kd only) and a core set (290 entries) made
of a set of 58 proteins cocrystallized with five different ligands
of various affinities. Despite several warnings on the
composition29 and completeness42 of the PDBbind archive, it
remains the largest resource to train machine learning models
for structure-based prediction of binding affinities. Many graph
neural networks (GNNs), used as end-to-end standalone
architecture,14,19,20,24,38 in cascade37 or in combination with
CNNs,33 have been described recently. None of them
significantly outperforms first-generation CNNs, most models
presenting rather similar accuracies (Pearson correlation
coefficient in the 0.80−0.85 range; root-mean square error
(RMSE) around 1.2−1.3 pK unit) in predicting affinities for
the PDBbind core set (Table S1) but significantly lower
accuracies for true external test sets.31,33,35

Despite the strong commitment of data scientists, we believe
that drug discovery has not really benefited from the already
described models for the major reasons that machine (deep)
learning scoring functions still generalize poorly and are not
readily applicable to virtual screening of large compound
libraries.32 This major discrepancy does not prevent computer
scientists to propose novel deep learning models, almost on a
monthly basis, usually focusing on the novelty of the DNN
architecture but often omitting to answer three questions: (i)
Is the apparent performance biased by either the chosen
descriptors43,44 or the protein−ligand training space?29,45 (ii)
Does the model generalize well to external test sets? (iii) Has
the model captured the physics of intermolecular interactions
and does it achieve good predictions for meaningful reasons?
A first warning has been raised by several groups noticing

that CNNs trained on voxelized protein−ligand complexes or
graphs do not really learn the physics of protein−ligand
recognition because ligand-only or protein-only models exhibit
performances quite similar to those reached by protein−ligand
reading models.14,46,44,29,35 Comparison of the performance of
24 recently published DNNs11−38 reveals that the model
accuracy is independent of the size of the training set (e.g.,
PDBbind general vs refined set; Table S1), contradicting the
general idea that more high-quality input protein−ligand
structures are required to generate better models. Data
augmentation strategies consisting of adding high-quality
docking poses to PDBbind X-ray structures also lead to
contradictory results.22,28,33,38 Although very few attempts to
predict a true thermodynamic cycle considering proteins and
ligands in their free and bound states have been
reported,12,29,35 it remains counter-intuitive that the best
models are not obtained with architectures explicitly taking
into account the three bound/unbound species. Moreover,
there is no relationship between the complexity of protein
(sequence vs structure) and ligand (SMILES strings vs 2D
graphs vs 3D structures) descriptors and the accuracy of the
resulting DNN models.39,47,48 Simple models even omitting to
consider the protein−ligand bound state are equally good at
predicting binding affinities.31,42,47,48 It is therefore tempting to

speculate that DNNs just memorize hidden patterns in either
the ligand or protein spaces on which the models have been
trained. As a consequence, modifications of protocols used to
split input data into training, validation, and test sets have a
major impact on the accuracy and applicability domain of
obtained models.12,29

Because the publicly available training set is limited to the
world of PDBbind protein−ligand complexes, there is a need
for better identifying still hidden biases in the PDBbind
archive, as well as to remove probable redundancies in the
choice of descriptors. In the current study, we present a critical
evaluation of a modular message passing graph neural network
architecture to predict binding affinities from three independ-
ent graphs describing proteins, ligands, and their complexes.
The modularity of the DNN architecture enables depicting the
true contribution of each state (free vs bound) of the two
partners and to clearly evidence serious biases in both the
ligand and protein compositions of the PDBbind space. The
current study suggests that descriptors focusing on non-
covalent interactions with no additional ligand/protein
information are the most suited to unbiased learning.

■ RESULTS AND DISCUSSION
Describing Ligands, Proteins, and Protein−Ligand

Complexes as Graphs. Ligand graphs were generated from
PDBbind mol2 input files, defining atoms as nodes and bonds
as edges. Each node was annotated by the corresponding atom
element, whereas each edge was annotated by the correspond-
ing bond length (Figure 1A).
Protein graphs were described from ligand-binding sites,

defined as any amino acid, ion, or water molecule for which
one heavy atom is less than 4 Å away from any ligand heavy
atom (Figure 1B). In the protein graph, nodes correspond to
protein pseudoatoms (PPAs), as previously defined by Schmitt
et al.,49 and are placed at key main chain/side chain positions
and annotated by the molecular interaction properties of the
corresponding residue (Figure S1). A total of six properties
were used to annotate protein nodes with the following labels
and interaction properties: CA, aliphatic (hydrophobic
interactions); O, hydrogen-bond acceptor (hydrogen bond);
CZ, aromatic (π−π interaction); OG, hydrogen-bond acceptor
and donor (hydrogen bond); N, hydrogen-bond donor
(hydrogen bond); ZN, metal (metal chelation). To avoid
keeping protein residues whose side chains are pointing
outward the ligand-binding cavity, a residue-based filtering was
performed based on the angle between the ligand center of
mass, the residue c-alpha atom, and all residue-specific PPAs.
PPAs of amino acid side chains, for which the corresponding
angle was higher than 90°, were removed from the binding site
definition. Finally, edges were added between final protein
nodes distant by less than 4.0 Å and further annotated
according to the distance between the corresponding PPAs.
Noncovalent interactions (hydrophobic, aromatic, hydrogen

bonds, ionic bonds, metal chelation; see details in Table S2)
between protein and ligands were computed on the fly with the
GRIM routine of the IChem v5.2.9 package.50

For each interaction, IPAs are placed at the two atoms of the
interacting pair (Figure 1C). The resulting representation was
converted to a graph where nodes represent either protein or
ligand-interacting atoms. Edges between nodes were added in
two consecutive steps. First, the principal edges were added
between interacting IPAs. Then, secondary edges were added
between noninteracting IPAs under the conditions that the
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corresponding IPAs originate from the same molecule (protein
or ligand) and that their distance is less than 4 Å. Each node
was annotated by one of the following labels, according to the
nature of the corresponding noncovalent interaction: CA,
hydrophobic; NZ; ionic (the interacting protein atom is
positively charged); N, hydrogen-bond (the interacting protein
atom is a donor); OG, hydrogen-bond (the interacting protein
atom is both an acceptor and donor); O, hydrogen-bond (the
interacting protein atom is an acceptor); CZ, aromatic; OD1,
ionic (the interacting protein atom is negatively charged); ZN:
metal coordination. An additional binary label was added to
nodes to account for their belonging to either the protein or
the ligand. The only edge feature is the distance between
pseudoatoms corresponding to the graph nodes (edge length).
Therefore, the information on the spatial structure of the
binding site was partially preserved, while the representation
remained invariant to binding site rotations and node
numbering.
DNN Architecture. We used a graph CNN architecture

that belongs to the family of message passing neural networks
(MPNNs), recently shown to exhibit excellent performance in
predicting quantum chemical properties.51 The MPNN is here
applied to an undirected graph G with node features xv and
edge features evw. In an MPNN, each node v in the graph has a
hidden state hv

t (feature vector). For each node v, a function of
hidden states and edges of all neighboring nodes is aggregated.
The hidden state of the node Vt is then updated with the
obtained message mv

t + 1and its previous hidden state. Three
main equations characterize the MPNN on graphs. First, the
message mv

t + 1 obtained from all neighboring nodes N(v) is
given by eq 1:

∑=+
∈

m M h h e( , , )v
t

w N v
t v

t
w
t

vw
1

( ) (1)

where Mt is the aggregation function applied at step t, hv
t the

hidden state of node v, hw
t the hidden state of the neighboring

node w, evw is the feature of edge between v and w.
The hidden state hv

t + 1 of the node v is then updated
according to eq 2:

=+ +h U h m( , )v
t

t v
t

v
t1 1
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where Ut, the update function, is another neural network used
to update the hidden state by taking into account both the sum
of all previous messages and the previous hidden state.
The message passing algorithm is repeated a user-defined

number of times until the readout phase generates a final
feature vector ŷ describing the entire graph G according to eq
3:

̂ = { | ∈ }y R h v G( )v
T

(3)

where R is the readout function, T is the number of time steps.
The message functions Mt, node update function Ut, and

readout function R are all learned differentiable functions. The
complete architecture of the graph convolutional network
(Figure 2A) includes an MPNN module with a customizable
hidden size and a two-layer dense module with a top layer size
of hidden size/4. The invariance of the MPNN readout
function to node and edge re-enumeration enables applying
MPNNs to a merged input consisting of multiple disconnected
graphs describing protein, ligand, and protein−ligand inter-
actions without modifying the network architecture. In the
current study, MPNN models have been derived from graphs

describing the two molecular species (protein and ligand) in
both their liganded and unliganded states, thereby enabling to
evaluate the exact contribution of each state. To ascertain the
fairest possible comparison, all models were trained on the
same training/validation set using exactly the same input
graphs.

DNN Models Are Heavily Biased by Ligand and
Protein Features. Starting from three possible input graphs
describing the protein, the ligand, and their noncovalent
interactions, seven combinations (one graph, two graphs, and
three graphs) were first tested as baselines with two objectives:
(i) benchmark the performance of the MPNN in predicting
binding affinities with respect to other DNN architec-
tures11−31,33−38 and (ii) analyze the contribution of each
input graph and assess their potential synergistic use (Table 1).
Despite our customized protocol to process PDBbind

entries, we were able to reproduce the performance of the
native Pafnucy model,16 estimated by the Pearson’s correlation
coefficient Rp in predicting experimentally derived affinities for
samples of the PDBBind 2016 core set (Rp = 0.777; Table 1).
Our seven MPNN models exhibit various performances with

Figure 2. General architecture of an MPNN with two message
passing steps. (A) Initial graph with node and edge labels. (B)
Transformation of node and edge feature vectors with fully connected
layers (fc). (C) Application of linear layers to node and edge feature
vectors. (D) Message generation. (E) Message passing. (F) Node
feature update using a standard LSTM cell architecture. (G) Graph
with updated node features. (H) Readout. (I) Fully connected (fc)
layers.
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Rp values ranging from 0.687 to 0.813. Intuitively, one would
have expected that a model trained on protein−ligand
interactions (I model) achieves better performance than
models trained solely on either the ligands (L model) or the
proteins (P model). However, the P and L models exhibit a
better performance than the I model (Table 1). Out of the
one-component models, the ligand-based model is clearly the
one leading to the best results (Rp = 0.749 and RMSE =
1.567). Combining two graph inputs increases the accuracy of
the corresponding predictions, with a clear advantage to the PL
model (Rp = 0.812 and RMSE = 1.553) omitting protein−
ligand interaction features. The most sophisticated model,
taking into account the three graph inputs (PLI model), does
not provide any clear advantage compared to the PL model,
suggesting that explicitly defined molecular interactions are not
required to predict binding affinities of the core set sample.
Applying the models to a much larger (n = 3386) and more
difficult hold-out set obtained by temporal splitting of the
PDBbind data set (hold-out 2019 set) illustrates a moderate
generalization capacity, with the Rp value decreasing by ca.
0.15 unit for all models (Table 1).
From a pure statistical point of view, the performance of four

out of the seven MPNN models is superior to that achieved
with the CNN Pafnucy model, when applied to the 2016
external core set (Table 1). Extending predictions to the
challenging 2019 hold-out set suggests that all models
outperform Pafnucy. Assuming that a Pearson Rp threshold
value of 0.600 is commonly used in pharmaceutical industrial
settings to qualify a good predictive QSAR model,52 five out of
the seven MPNN models could be considered as satisfactory.
However, these models remain enigmatic from a physicochem-
ical point of view because ligand-only and protein-only models
still outperform the interaction model. Moreover, the impact
on model predictive performance of the explicit consideration
of protein−ligand interactions in the two or three-component
models remains very limited (Table 1). Noteworthy, focusing
the analysis on three target classes for which enough samples
are present in the hold-out set (GPCRs, 47 samples; kinases,
572 samples; nuclear receptors, 106 samples) did not change
the above observations (Figure S2).
Several conclusions can be drawn from these results. First,

the herein implemented MPNN architecture provides a lower

accuracy to previously reported CNN and GNN models, when
just protein−ligand interactions are taken as input. Pafnucy,
used here as a state-of-the-art CNN, achieves a better accuracy
than the MPNN I model (Table 1). Second, protein−ligand
binding affinities of the 2016 core set can apparently be
predicted from sole protein or ligand structures. Third, the
explicit description of protein−ligand interactions does not
provide any clear advantage compared to the corresponding
interaction-agnostic models (e.g., compare P to PI, L to LI, and
PL to PLI models, Table 1). Fourth, all models exhibit a
decreased accuracy when applied to a hold-out set of newly
described complexes, suggesting a probable overtraining. Most
of these observations are counter-intuitive and cannot be
rationally explained by first-principles physics. They evidence,
to our viewpoint, potential biases in the composition of the
PDBbind training/test sets suggesting that the derived models
have partly memorized input data but did not learn the physics
of protein−ligand noncovalent interactions. This phenomenon
has already been described for many ligand-based machine
learning models and frequently happens when training and test
sets exhibit significant redundancies.53 Another alert, that we
already mentioned for both machine learning and DNNs,43,54

is their propensity to predict binding affinities with apparently
satisfactory performance metrics (Rp, RMSE), but where the
predicted values are in fact contained within a very tiny range
centered on the mean value of training samples. This tendency
is again observed for the current predictions of all MPNN
models, whatever the chosen input graph(s) and external test
set (Figure 3).

Whereas experimental affinities of the two external test sets
are spread over 10 pK units, MPNN and Pafnucy predictions
are restricted to ca. 6 pK units. Considering only the 25th and
75th percentiles of the distributions (boxes in Figure 3), 50%
of the predicted data are centered on a mean value ±1.5 pK
unit, Pafnucy predictions lying even in a narrower range for
2019 hold-out set predictions (Figure 3). The prediction error

Table 1. Performance of Modular MPNN Models in
Predicting Affinities for the External 2016 Core Set and the
2019 Hold-Out Set

modela 2016 core set 2019 hold-out set

Rp RMSEb Rp RMSE

P 0.725 1.569 0.570 1.528
L 0.749 1.567 0.611 1.455
I 0.687 1.605 0.538 1.563
PL 0.812 1.553 0.645 1.512
PI 0.777 1.462 0.613 1.485
LI 0.780 1.477 0.630 1.425
PLI 0.813 1.511 0.652 1.481
Pafnucyc 0.773 1.429 0.456d 1.642

aP: protein graph, L: ligand graph, I: interaction graph; PL: merged
protein and ligand graphs, PI: merged protein and interaction graph;
LI: merged ligand and interaction graph; PLI: merged protein, ligand
and interaction graph. bRoot-mean square error, in pK unit. cIn-house
Pafnucy prediction (Rp = 0.78 in the original paper).16 dPredictions
failed for 29 entries.

Figure 3. Distribution of experimental and predicted affinities for the
2016 core set (n = 257) and the 2019 hold-out set (n = 3386). Exp:
experimental affinity; P, L, I, PL, PI, LI, PLI: predicted by MPNN
models using protein (P), ligand (L), and protein−ligand interaction
(I) graphs used alone or in combinations; Paf: predicted by the
Pafnucy model. The boxes delimit the 25th and 75th percentiles, and
the whiskers delimit the 1st and 99th percentiles. The median and
mean values are indicated by a horizontal line and a filled square in
the box, respectively. Outliers are indicated by a diamond.
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is statistically minored if the output value is close to the mean
of trained samples. This may be a reason why machine learning
models tend to yield narrow distribution of predicted values.
This phenomenon might be even amplified in machine
learning models for which the loss function aims at minimizing
the root-mean-square error. Altogether, we suspect significant
biases in the ligand and protein composition of the PDBbind
archive which, to our viewpoint, should prevent the blind usage
of DNN models in prospective applications.
Simple Memorization Models Suggest that Ligand

and Protein Neighborhoods Contribute Massively to
MPNN Predictions. To estimate the relative contribution of
simple memorization vs true learning when applying MPNNs
to predict affinities for PDBbind samples, we generated simple
memorization baseline models in which the predicted affinity
of a test sample was just inferred by ligand or protein similarity
to the five closest training samples (Table 2). Of course, such
memorization models are meaningless and just define baselines
to quantify the amount of biases in the training data set.

Given its simplicity, the ligand memorization model
performs remarkably well on the two external test sets
(Table 2) and is almost equivalent in accuracy to the
protein−ligand interaction MPNN model (I model, Table
1). The protein similarity model exhibits a decreased but still
noticeable performance. The observed dependency was
relatively insensitive to the number of closest training samples
(ligands, proteins) used to infer average affinity values for
prediction (Figure S3). We can therefore conclude that simple
memorization probably accounts for a large part of the
excellent performance of the MPNN model using ligand,
protein, and protein−ligand interaction graphs as input (Table
2).
Undersampling the Training Set Does Not Remove

Ligand and Protein Biases. The goal of this procedure was
to reduce the bias originating from the sampling of proteins
and ligands present in the PDBBind data set. Thus, we
undersampled the PDBbind training set by removing
progressively the protein−ligand pairs which are easily
predictable if we rely solely on protein or ligand graphs,
while ignoring the interaction graphs. Intuitively, those are
probably the most biased datapoints. As a first approach to
remove potential ligand and protein biases in the training set,
we filtered out all training samples whose affinities were easily
predicted by ligand-only or protein-only fivefold cross-

validation MPNN models. The protocol was repeated for
batches of 50 samples to get a good tradeoff between speed
and precision of the unbiasing algorithm.
Undersampling reduced the size of the training set from

9662 to 4635 samples but marginally affected the accuracy of
all MPNN models, whatever the graphs used as inputs (Figure
4). Interestingly, decreasing the size of the training set by 50%

did not alter the quality of the predictions for both external
sets. However, the same obvious biases (good performance of
ligand-only and protein-only models, no benefit of explicitly
considering protein−ligand interactions) were found again,
suggesting that the hidden biases reported above are still
present in the undersampled training set.

Influence of Ligand Buriedness. In a second approach,
we looked whether the buriedness of the protein-bound ligands
in the training and external sets may be a source of potential
biases. Indeed, a fully buried ligand would generate quite
complementary protein and ligand graphs that implicitly
encode all possible noncovalent protein−ligand interactions.
In such cases, it might be conceivable to predict albeit with a
moderate accuracy the binding affinity of the corresponding
complex from sole ligand or protein graphs.
Computing the buried surface area of all PDBbind ligands in

their bound state shows a similar distribution for the three sets
(training, 2016 core set, and 2019 hold-out set) centered on a
mean value close to 60−65% (Figure 5A).
We then trained novel MPNN models on two subsets of the

PDBbind training set defined by ligand buriedness. The first
subset contained the samples with the 50% less buried ligands,
whereas the second subset encompassed complexes with the
50% more buried ligands. Using these new MPNN models to
predict the binding affinities of samples from the two external
sets gave disappointing results (Figure 5B). First, all new
models were less accurate than the former models trained on
the full training set. Second, neither the ligand nor the protein
dependency was removed in the new models because novel
ligand-only (I models) and protein-only models (P models)

Table 2. Performance of Simple Memorizing Models in
Predicting Affinities for the External 2016 Core Set and the
2019 Hold-Out Set

model 2016 core set 2019 hold-out set

Rp RMSE Rp RMSE

PLI MPNNa 0.813 1.511 0.652 1.481
ligand similarityb 0.663 1.624 0.509 1.641
protein similarityc 0.547 1.765 0.310 1.794

aThree-component (protein, ligand, and protein−ligand interactions)
MPNN model of Table 1. bPrediction is equal to the average affinity
of the five training samples with the most similar ligands, similarity
being expressed by a Tanimoto coefficient on ECFP4 circular
fingerprints (see the Experimental Section). cPrediction is equal to the
average affinity of the five training samples with the most similar
proteins, similarity being expressed by an Euclidean distance on
protein cavity fingerprints (see the Experimental Section).

Figure 4. Effect of undersampling the PDBbind training set on the
scoring power of MPNN models in predicting binding affinities for
the 2016 core set and the 2019 hold-out set. Default models were
trained on the full set (9662 entries), whereas undersampled models
were trained only on 4635 samples. P: protein graph model, L: ligand
graph model, I: interaction graph model; PL: merged protein and
ligand graph model, PI: merged protein and interaction graph model;
LI: merged ligand and interaction graph model; PLI: merged protein,
ligand, and interaction graph model.
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were still able to predict binding affinities of both external test
samples (Figure 5B). We can therefore safely conclude that
ligand buriedness is not the cause of protein and ligand biases
in the PDBbind data set.
Complexity of the Protein−Ligand Interaction De-

scriptors. As a third approach, we made the hypothesis that
the importance of protein and ligand descriptors with respect

to the interaction descriptors may originate from the different
complexity level of the input graphs. Indeed, interaction graphs
computed in IChem are far simpler than the cognate protein
and ligand graphs, when considering the number of nodes,
edges, and the graph density. By default, protein−ligand
interactions have been computed using strict geometrical rules
(distances and angles),55 notably interaction-specific upper

Figure 5. Effect of ligand buriedness on MPNN predictions. (A) Distribution of the buried surface area of protein-bound PDBbind ligands. (B)
Influence of the protein-bound ligand buriedness on the scoring power of MPNN models in predicting binding affinities for the core set and the
2019 hold-out set. P: protein graph model, L: ligand graph model, I: interaction graph model; PL: merged protein and ligand graph model, PI:
merged protein and interaction graph model; LI: merged ligand and interaction graph model; PLI: merged protein, ligand, and interaction graph
model.

Figure 6. Distribution of the number of nodes (A), number of edges (B), and density (C) for interaction (int), protein (prot), and ligand graphs

derived from PDBbind protein−ligand complexes (n = 14215). The graph density is defined as = −density
N

N N( 1)
edges

nodes nodes
, where Nedges is the

number of edges and Nnodes is the number of nodes. By default, protein−ligand interactions are computed using interaction-specific upper distance
thresholds (hydrogen bond: 3.5 Å, aromatic π−π interactions: 4.0 Å, ionic bonds: 4.0 Å, hydrophobic interactions: 4.5 Å). In the extended mode
(int6), a larger distance cut-off of 6.0 Å is applied to all noncovalent interactions.
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distance thresholds (hydrogen bond: 3.5 Å, aromatic π−π
interactions: 4.0 Å, ionic bonds: 4.0 Å, and hydrophobic
interactions: 4.5 Å), leading to relatively simple graphs with
respect to the number of nodes and edges (Figure 6). To
increase the importance of protein−ligand interactions in our
MPNN models, we therefore increased the complexity of
interaction graphs by registering noncovalent interactions up
to of 6.0 Å. The new interaction graphs (″int6″ label) contain
much more nodes and edges, are definitely denser, and are
now comparable with protein and ligand graphs (Figure 6).
Using the new interaction graphs as input to MPNN models

increased significantly the scoring power of the interaction-
only I model for the two external test sets (core set, Rp =
0.728; hold-out set, Rp = 0.607; Figure 7). Interestingly, this

modification did not increase the accuracy of two-component
and three-component models (Figure 7). Given the marginal
benefit of combining the new interaction graph with either
protein and/or ligand graphs, using the single new interaction
graph definition appears as the best possible compromise
between prediction accuracy, model applicability, and lower
risk of memorization effects.
Sparsity of the Training Protein−Ligand Matrix.

Despite a regular increase in the number of PDBbind entries
(Figure 8A), the accuracy of machine learning models in
predicting binding affinities has reached a plateau (Rp = 0.80 ±
0.05), whatever the DNN architecture, the chosen descriptors,
and the size of the training set (Tables 1 and S1). Higher
accuracies are not necessarily required, given the experimental
error associated with heterogeneous binding assays use to
collect PDBbind affinities. However, better models are still
desirable, notably to achieve accurate and stable predictions
when applied to external test sets. Looking at the yearly
increase in the number of PDBbind samples, it appears that the
number of unique complexes grows faster than the number of

unique proteins, the latter increasing faster than the number of
unique ligands (Figure 8A).
Considering a matrix of x proteins, y ligands, and z protein−

ligand complexes of known structure, the sparsity S of the
PDBbind matrix is defined by the following equation:

= − ·S
z

x y
1

(4)

In other words, the sparsity index describes the fraction of
the overall matrix with a missing value (here a protein−ligand
complex of known structure and binding affinity). The sparsity
S value is very high for the PDBbind data set (ca. 0.95) and
even tends to slightly increase with time (Figure 8B). By
comparison with high-performance QSAR models that rely on
a minimal number of compound annotations per assay (usually
>200) and now reach the accuracy of four-concentration IC50
determinations,52 the sparsity of the corresponding protein−
ligand matrices may reach values as low as 0.65.52,56,57

The PDBbind matrix contains very few targets annotated by
multiple ligands (Figure 8C). The number of single ligands
annotated by multiple proteins is even lower and mostly
concerns target-permissive cofactors and nucleotides (e.g.,
ATP, ADP, AMP, SAM; Figure 8D). To check the influence of
the training matrix sparsity, we selected the 2030 PDBbind
entries from the 10 most frequent proteins (Figure 8D) to
design novel training (n = 1505), validation (n = 147), and
external test sets (core 2016, n = 49; hold-out 2019, n = 329).
Importantly, the set membership (training, evaluation, core,
hold-out) of selected entries was kept unchanged, as well as the
distribution of experimental affinities (Figure S4). The
previously described extended interaction model (int6) was
here used to describe noncovalent interactions. Altogether, the
new subset contains only 10 unique proteins and 1777 unique
ligands and thereby achieves a lower sparsity (S = 0.885) with
respect to the full PDBbind 2019 data set (S = 0.958).
The performance of the MPNN models on the new subset is

higher than that obtained on the full set (Figure 9).
Unfortunately, neither protein nor ligand dependencies have
been removed when predicting affinities for the two external
test sets still focusing on the 10 most frequent proteins. The
protein-only and ligand-only models remain very accurate,
notably for predicting affinities of core set samples.
Interestingly, the interaction model is the only one for which
the performance is significantly increased for the two external
test sets (core set, Rp = 0.852, RMSE = 1.256; hold-out set, Rp
= 0.605, RMSE = 1.363; Figure 9). The I model appears again
as a reasonable choice for predicting affinities of novel
protein−ligand complexes. The current study suggests that
increasing the density of the training protein−ligand matrix is
an attractive path to increase the accuracy of affinity prediction
models. From a practical point of view, it will necessitate a
coordinated effort from the drug design community and
research financing agencies to solve a wide array of protein−
ligand structures in which the same target is repeatedly
pictured with different ligands of various affinities, and vice-
versa.

■ CONCLUSIONS
Predicting binding affinities of protein−ligand complexes by
considering both the corresponding free and bound states
appears frustrating because the explicit description of non-
covalent intermolecular interactions does not provide any
statistical advantage with respect to simpler approximations

Figure 7. Influence of the interaction graph complexity on the scoring
power of MPNN models in predicting binding affinities for the 2016
core set and the 2019 hold-out set. By default, (blue bars), protein−
ligand interactions are computed using interaction-specific upper
distance thresholds (hydrogen bond: 3.5 Å, aromatic π−π
interactions: 4.0 Å, ionic bonds: 4.0 Å, and hydrophobic interactions:
4.5 Å). In the extended mode (tan bars), a larger distance cut-off of
6.0 Å is applied to all noncovalent interactions. P: protein graph
model, L: ligand graph model, I: interaction graph model; PL: merged
protein and ligand graph model, PI: merged protein and interaction
graph model; LI: merged ligand and interaction graph model; PLI:
merged protein, ligand, and interaction graph model.
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omitting fine details of protein−ligand interactions. The
current study confirms the protein and ligand biases already

observed in several studies using DUD-E and PDBbind data
se t s a s sources o f three -d imens iona l in fo rma-
tion.12−14,29,32,33,35,46,44 However, important controversies
still remain regarding the interpretation of these observations.
On one side, many computer scientists are not alerted and
keep focusing on a pure metrics-based analysis which usually
shows that adding descriptors of protein−ligand interactions
indeed produce prediction models with slightly better
p e r f o rmance me t r i c s (Pe a r s on R co r r e l a t i on ,
RMSE).12−14,32,35 On the other side, several warnings have
been raised by a few groups29,46,44 arguing that a machine
learning model must be interpretable from a physicochemical
ground. We totally agree with the latter studies, but we were
unable to find obvious ways to remove hidden protein and
ligand biases in the PDBbind archive of protein−ligand
complexes. Neither undersampling nor considering ligand
buriedness and sparsity of the protein−ligand training matrix
could remove the observed tendency of deep neural models to
accurately predict binding affinities from sole ligand or protein
descriptors. The approach proposed by Yang et al.29 to split
the data set according to ligand scaffolds and protein
sequence/structure similarity is efficient in reducing protein
and ligand biases but remains artificial and not satisfactory for
daily practice where affinity data have to be predicted for new
proteins bound to ″old ligands″ (repurposing), ″old proteins″
bound to new ligands (hit to lead optimization) and new

Figure 8. Yearly evolution of the PDBbind data set. (A) Number of unique entries (protein−ligand complexes, proteins, and ligands), (B) sparsity
of the protein−ligand matrix, (C) ten most frequent proteins (PDBbind 2020 release) labeled by their UniProt identifier, and (D) ten most
frequent ligands (2020 release) labeled by their PDB ligand identifier.

Figure 9. Increasing the density of training protein−ligand matrices to
predict binding affinities for the 2016 core set and the 2019 hold-out
set. P: protein graph model, L: ligand graph model, I: interaction
graph model; PL: merged protein and ligand graph model, PI: merged
protein and interaction graph model; LI: merged ligand and
interaction graph model; PLI: merged protein, ligand, and interaction
graph model.
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proteins bound to new ligands (virtual screening). In the
current study, we therefore privileged a temporal splitting
protocol in which affinities for novel protein−ligand complexes
are predicted from a model trained on past structural data. The
sparsity of the protein−ligand training matrix appears to be the
most important parameter, notably for models trained only on
protein−ligand interactions. To avoid building models relying
on ligand-specific and protein-specific features, we disfavor
annotating the noncovalent interactions with explicit ligand
and protein descriptors, as often seen in GNNs with attention
procedures to annotate graph nodes with ligand and binding
pocket connectivity atomic tables.14,19,26,32 As a conclusion, we
recommend training DNN models on pure interaction
descriptors to reduce the risk of overfitting. Only the latter
models appear robust enough to be used for prospective
applications.

■ EXPERIMENTAL SECTION
Data set Preparation. The index files of the PDBbind 2019

release were downloaded from the PDBbind website.41 For each
registered protein−ligand complex, the corresponding atomic
coordinates (PDB format) were retrieved from the RCSB Protein
Data Bank58 and processed with Protoss v.4.059 to generate atomic
coordinates of hydrogen atoms while optimizing the protonation and
ionizable states of both ligand and protein amino acids. Each structure
was then postprocessed using an in-house script to keep only water
molecules exhibiting, according to IChem50 rules, at least two
hydrogen bonds to either protein or ligand atoms. Entries with
covalently bound ligands were excluded. Remaining protonated ligand
and protein (including all remaining bound water molecules,
cofactors, prosthetic groups and ions) were saved separately in
mol2 file format. A curated set of 14215 complexes, for which graph
generation succeeded without any failure, was further split in two
parts according to the release date (part 1: until 2016-12-31, part 2:
after 2017-01-01). Part 1 complexes, corresponding to the general and
refined 2016 sets, were divided into training (9662 entries), validation
(903 entries) and test (257 entries) as previously described.16 Part 2
(3386 entries) was saved as an external hold-out set, mimicking a real
temporal split scenario in which binding affinities for newly released
structures are predicted by a model trained on past structural data.
Analyzing the distribution of pairwise ligand similarities evidences a
large scaffold diversity of each set (training set, 2016 core set, 2019
hold-out set) as well as the absence of obvious similarity biases when
comparing the training set to the two external sets. The pairwise
similarity and UMAP60 plots of all PDBbind ligands are provided in
the Supporting Information (Figure S5).
Molecular Descriptors. Proteins, ligands, and protein−ligand

interactions were represented as graphs using in-house scripts and the
IChem package.50 The graph processing pipeline was implemented
using the Networkx framework v.2.5.61

Message Passing Neural Networks. The neural network
models were implemented using PyTorch v.1.6.062 and PyTorch
Lightning v.1.5.1.63 The graph convolution procedure was imple-
mented with a Deep Graph Library framework v.0.5.0.64

Two approaches were tested to consider the three molecular
graphs. In the ’merged approach’ the feature vectors of the three input
graphs are simply merged. An alternative architecture (parallel
approach) was tested, which included separate MPNNs for each
input, yielding parallel hidden vectors, which were concatenated
before applying fully connected layers to them. Preliminary trials
indicated that the parallel architecture had higher memory require-
ments and demanded longer computational time, while having an
accuracy close to that obtained with the merged approach. Thus, the
graph merging was selected as the preferable procedure of multiple
graph inputs. The parameter optimization aimed to increase the
determination coefficient R2 in predicting binding affinities using a
stochastic gradient descent approach with the ADAM optimizer. The
learning rate (lr) was changed over time by the factor of 0.9 after 20

epochs with no improvement for the first lr modification and after 40
epochs for the subsequent lr modifications. The weight decay and
dropout rate were set to values of 0.001 and 0.2, respectively. Other
hyperparameters (batch size, size of hidden layers, and number of
message passing steps) were systematically optimized by a grid search
as follows:

Batch size: search space [32, 64, 128, 256], final value 256.
size of hidden layers: search space [256, 512, 1024, 2054], final

value 2054.
message passing steps: search space [1,2], final value 1.
Data Undersampling. Data undersampling was performed using

an iterative fivefold cross-validation approach on the whole PDBbind
2016 training set. At each iteration, ligand-only and protein-only
MPNN models were trained using one fold as a test set and the
remaining folds as a training set. Binding affinity was predicted for all
test complexes with both models. At each iteration, training samples
with the lowest sum of binding affinity prediction errors given by the
two protein and ligand models were removed from the data set. One
hundred iterations of undersampling were performed and 50
complexes were removed at each iteration. The final undersampled
training set contains 4635 protein−ligand complexes.

Prediction of Binding Affinities with Pafnucy.16 The package
was downloaded from the Pafnucy website.65 In a first step, 3D grids
were prepared for each protein−ligand complex in mol2 file format, to
create an HDF file with atoms’ coordinates and features. In the
second step, the recommended model (batch5-2017-06-05T07:58:47-
best) was used to rescore each protein−ligand complex, expressing
results in pKd unit.

Estimation of Ligand Buriedness. Ligand buriedness was
computed with IChem v5.2.950 using bound states of protein and
ligand in separate mol2 files.

Ligand and Protein Pairwise Similarity. Pairwise ligand
similarities were computed from circular ECFP4 fingerprints66

determined in PipelinePilot v.2019 (Dassault System̀es Biovia
Corp., San Diego, USA). Protein similarities were estimated from
the Euclidean distance of 89 cavity descriptors generated by IChem
v5.2.9.50

Evaluation Metrics. The scoring power of the different DNN
models was evaluated using Pearson’s correlation coefficient (Rp; eq
5) and the root-mean square error metric (RMSE, eq 6).
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Figure  S1.  Location  and  pharmacophoric  properties  of  protein  pseudoatoms  (grey,  aliphatic;  red, 

hydrogen‐bond acceptor; cyan, hydrogen‐bond donor; green, aromatic; metal‐chelating, steel blue)  
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Figure S2. Performance of modular MPNN models in predicting affinities for specific target classes of 
the 2019 hold‐out set. Mapping of protein target classes  (GPCRs, G‐protein‐coupled receptor; NRs, 
Nuclear hormone receptors) from the Pharos database (https://pharos.nih.gov/) to PDB entries was 
performed using the Pharos‐to‐PDB code (https://github.com/ravila4/Pharos‐to‐PDB). 
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Figure S3. Influence of the number of closest ligands or proteins used to average binding affinities in 

the performance of simple memorization models, assessed by the Pearson r correlation coefficient. 
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Figure S4. PDBbind low sparsity subset. A) Split into four subsets for training, validation and external 

test  sets  (core  2016,  hold‐out  2019),  B)  Distribution  of  experimental  affinities  for  the  training 

(n=1,505), core (n=49) and hold‐out sets (n=329). The boxes delimit the 25th and 75th percentiles, and 

the whiskers delimit  the 1st and 99th percentiles. The median and mean values are  indicated by a 

horizontal line and a filled square in the box, respectively. Outliers are indicated by a diamond. 
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Figure S5. Chemical diversity of PDBbind ligands. A) Pairwise similarity of Murcko superstructures for 
ligands  from  the  training,  2016  core  and  2019  hold‐out  sets.  The  similarity  is  expressed  by  the 
Tanimoto  coefficient  computed  from  ECFP4  fingerprints. B) Uniform Manifold Approximation  and 
Projection (UMAP)of PDBbind ligands, performed in umap‐learn 0.5.3 with a number of neighbours of 
30 and a dice distance metric. The Morgan fingerprints of radius 2 (nBits=1024) were computed in rdkit 
v.2020.09.1.   
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Table S1. Structure‐based deep neural networks to predict protein‐ligand binding affinities. 

 
Model  Type  Objects  Descriptor  Training set  Test set  Split   Rp  RMSE  Reference 

TNet‐BP  CNN  PL  Topological fingerprints  PDBbind 2016 refined (n=3767)  PDBbind 2016 core (n=290)  PDBBind original  0.826  1.37  11 

ACNN  CNN  P, L, PL  Atom type‐labelled distances (Nat*25 atom 

types*12 closest neighbors) 

PDBbind 2015 refined (n=2965)  PDBbind 2015 refined (n=741)   Temporal  0.727  ‐  12 

Brendan  CNN  PL  3D grid (21*21*21 Å) * 256 bit SPLIF vector   PDBbind 2016 general (10000)  PDBbind 2016 general (1500)  Random  0.704  ‐  13 

PotentialNet  GNN  P, L, PL  Protein‐ligand graph  PDBbind 2007 refined (n=1095)  PDBbind 2007 core (n=195)  PDBBind original  0.822  1.39  14 

KDEEP  CNN  L, PL  1‐Å 3D grid (25*25*25 Å) * 16 features  PDBbind 2016 refined (n=3767)  PDBbind 2016 core  (n=290)  PDBbind original  0.820  1.27  15 

Pafnucy  CNN  L, PL  1‐Å 3D grid (21*21*21 Å) * 19 features  PDBbind 2016 general (11906)  PDBbind 2016 core (n=290)  PDBBind original  0.780  1.42  16 

DeepATom  CNN  PL  1‐Å 3D grid (25*25*25 Å) * 24 features  PDBbind 2016 refined (n=3390)  PDBbind 2016 core  (n=290)  PDBbind original  0.807  1.32  18 

DeepBindRG  CNN  PL  ligand (84) * protein (41) atom pair distances < 

4 Å 

PDBbind 2018 general (n=13500)  PDBbind 2018 general (n=925)  Random  0.593  1.50  21 

OnionNet  CNN  PL  Atom type‐labelled distances (Nat*25 atom 

types*12 closest neighbors) 

PDBbind 2016 general (n=11906)  PDBbind 2016 core  (n=290)  PDBbind original  0.816  1.28  22 

RosENet  CNN  PL  voxelized Rosetta interaction energies + 

pharmacophoric descriptors 

PDBbind 2016/2018 refined 

(n=4463) 

PDBbind 2016 core  (n=290)  PDBBind original  0.820  1.24  23 

graphDelta  GNN  L, PL  One‐hot encoded ligand atoms + protein 

environmental descriptors (373) 

PDBbind 2018 general (n=8766)  PDBbind 2016 core  (n=285)  PDBbind original  0.870  1.05  24 

AK‐Score  CNN  PL  id Kdeep  PDBbind 2016 refined (n=3772)  PDBbind 2016 core  (n=285)  PDBBind original  0.827  1.22  25 

SE‐OnionNet  CNN  PL  1‐Å grid (21*21*21)* 64 protein‐ligand 

element distance counts 

PDBbind 2018 general (n=11663)  PDBbind 2018 refined  (n=463)  Random  0.853  1.59  27 

Progessive 

multitask 

network 

CNN  P, L, PL  ligand ECFP + Protein ECFP + Protein‐Ligand 

SPLIF 

PDBbind 2016 refined (n=3568)  PDBbind 2016 core  (n=290)  PDBbind original  0.740  0.98  28 

ACNN  CNN  P, L, PL  Atom type‐labelled distances (Nat*25 atom 

types*12 closest neighbors) 

PDBbind 2015 refined (n=3706)  PDBbind 2015 core (n=195)  PDBBind original  0.730  ‐  29 

Pair  CNN  PL  protein‐ligand distance pairs  PDBBbind 2018 refined (n=2675)  PDBBbind 2018 refined (n=891)  Random split  0.660  1.61  30 

DEELIG  CNN  L, PL  Atomic model: 3D grid (10*10*10 Å) * 19 bits 

(atomic model); Composite model: 3D grid 

(10*10*10 Å) * 44 bits (pocket) + 14716 bits 

(ligand) 

in‐house set (n=4041)  PDBbind 2016 core  (n=290)  Random 

80/10/10 

0.889  ‐  31 

Interaction 

GraphNet 

GNN  P, L, PL  independent GNN for intra and inter‐

molecular interactions 

PDBbind 2016 general  (n=10366)  PDBbind 2016 core  (n=290)  PDBBind original  0.837  1.22  32 
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midlevel fusion  CNN+GNN  PL  CNN: 1‐Å grid (48*48*48)* 19 atomic features; 

GNN: covalent ( d < 1.5 Å) and non‐covalent  

edges (1.5 < d < 4.5 Å)  

Pdbbind 2016 general+refined 

(13283) 

PDB2016 core set (n=290)  PDBBind original  0.810  1.31  33 

SMPLIP  RF+ 

CNN 

L, PL  IFP (140) + interaction distances (140) + SMF 

descriptors (2282) 

Pdbbind 2016 general+refined 

(13283) 

PDB2016 core set (n=290)  PDBBind original  0.770  1.51  34 

OctSurf  CNN  PL  1‐Å 3D grid (64*64*64 Å) * 24 features/octant  PDBbind 2018 general (n=16126)  PDBbind 2016 core  (n=285)  PDBBind original  0.793  1.45  35 

BAPA  CNN  PL  Protein‐ligand interaction descriptors + 6 Vina 

terms 

PDBbind 2016 refined (n=3689)  PDBbind 2016 core  (n=285)  PDBbind original  0.819  1.31  36 

APMNet  GNN+GNN  P, L  75 DeepChem atomic features  PDBbind 2016 general  (n=11844)  PDBbind 2016 core  (n=290)  PDBBind original  0.815  1.27  37 

GraphBAR  GNN  PL  13 features * 200 protein‐ligand atoms  PDBbind 2016 general  (n=11146)  PDBbind 2016 core  (n=290)  PDBbind original  0.764  1.44  38 
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Table S2. Geometric rules to define protein‐ligand non‐covalent interactions. 

Interaction  Rule 1a  Rule 2b 

H‐bond  ÅDA 5.3   





4
,

4
,


HADH  

Ionic  Å0.4    

Hydrophobe  ÅYY 5.421     

Aromatic (Face to face)  Åacac 0.421    





6
,

6
, 21


nn  

Aromatic (Edge to face)  Åacac 0.421    





6

5
,
6

, 21


nn  

pi‐cation  Åac 0.4   





6
,

6
,


acn  

Metal  ÅMA 8.2    

a D: H‐bond donor; A: H‐bond acceptor; +: cation; ‐:anion; Y: hydrophobe; ac: geometric center of an 

aromatic ring; M: metal. 

b H: hydrogen; n: normal to the aromatic ring. 
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CHAPTER 3

Binding affinity prediction from

docking poses

135



3.1 Introduction

One major challenge of structure-based drug design is the ability to predict, preferably

at a high throughput, the affinity (absolute binding free energy) of small molecules

to macromolecular targets (proteins, nucleic acids) from their corresponding three-

dimensional (3D) structures [1]. To achieve this goal, a mathematical scoring function

[2] is asked to iteratively solve three related but slightly different problems: (i) dis-

criminating native from irrelevant binding modes (docking accuracy), (ii) predicting

the absolute binding free energy of the selected solution (scoring accuracy), (iii) discrim-

inate true from false binders upon virtually screening a compound library (screening

accuracy). Despite the advent of many benchmarking initiatives involving hundreds

of research groups [2–9], and the development of orthogonal approaches (empirical,

force-fields, potential of mean forces, machine learning) [10] , we must admit that no

robust solution has yet been found to this crucial issue. At best, binding free energy

differences of congeneric compounds may be reproduced satisfactorily with free energy

perturbation (FEP) methods [11], at the cost of a computational burden that is un-

fortunately incompatible with high-throughput screening of large compound libraries.

This bitter statement is even more frustrating at the light of spectacular develop-

ments in structural biology [12] and automated synthesis of drug-like compounds from

multibillion compounds spaces [13] opening novel avenues in computer-driven drug

discovery.Unreasonable hopes have been raised the last decade with the application of

machine learning (ML) approaches [14] ranging from simplistic Random Forest mod-

elling of protein-ligand atom pair distributions [15] to physics-informed graph neural

networks [16]. In brief, each of the above-cited three problems (docking, scoring, screen-

ing) have found suitable solutions. Predicting the binding mode of a small molecular

compound to a protein can be achieved with accuracies up to 90% but the same mod-

els cannot rank compounds by decreasing affinities [17] . Predicting affinities from

protein-ligand X-ray structures is achievable within 1.5 pK unit but does not gener-

alize to unseen complexes (other X-ray/cryo-EM structures, 3D models) and cannot

therefore be used for virtual hit identification [18] . Since, the affinity of a ligand to

its target protein is usually known far before solving the corresponding 3D structure,

such scoring functions are of very limited use in daily drug design scenarios. Binding
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affinity and binding mode predictions are two sides of the same problem. The fact that

a single model cannot solve simultaneously both issues [17, 19] is an explicit acknowl-

edgement of weaknesses due to many sources. Some are easily preventable, e.g. the

lack of self-criticism in the interpretation of results (just focusing on statistics and not

on their physicochemical meaning [20]), the frequently observed disconnection between

academic studies and real drug design needs [21], the lack of scientific rigor, or the blind

usage of datasets exhibiting major biases [22–26]. Some other are harder to solve, for

example the unavailability of sufficiently dense and diverse protein-ligand matrices of

known affinities and structures [18].

From the simple ascertainment that docking poses are not X-ray structures (nor

zebra are horses), we reasoned that predicting binding affinities from machine learning

models should be done on the same molecular objects (docking poses) than those to

which they are supposed to be applied next. This approach enables a clear augmenta-

tion of input data (there are many more docking poses than X-ray structures) in favor

of machine learning, but requires first to select the ”good” docking poses for a proper

labeling of input instances. In other words a first ML model dedicated to predict the

suitability of a binding pose should be applied prior to a binding affinity regressor. If

ML/DNN models are indeed able to discriminate with 80-90% accuracies good from

erroneous docking poses [17] , obtained results on binding affinity prediction and vir-

tual screening accuracies remain controversial. Whereas some deep neural networks

(DNNs) supplemented with docking poses exhibit indeed better docking, ranking or

virtual screening accuracies [16, 27–29] , some others reported the opposite behavior

[30–32] or no significant effects [33]. A fair analysis of these studies is impossible be-

cause of the different level of noise and biases that significantly impact observed results.

Hence, many studies report the use of datasets (DUD [34] , DUDE-E [35], PDBbind

[36]) with significant biases [33], notably stemming from too close chemical neighbor-

hoods between training and test samples [20] . Therefore, any ML model explicitly

describing test proteins and ligands at the atomic level will memorize the later infor-

mation more than really learning protein-ligand interactions [18] . This observation

explains why adding ligand descriptors to protein-ligand interaction feature helps in

better predicting binding affinities [32].
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It is therefore still unknown whether truly unbiased affinity prediction ML models

trained on X-ray structures may be applied to docking poses or if docking pose-specific

models are required for this task. If yes, would the accuracy of these predictions be

higher and would docking-based models better generalize to unseen complexes?

To address the above questions, we here report a follow-up study of a previous

contribution [18] reporting that sophisticated message-passing graph neural networks

(MPNNs) aimed at predicting binding affinity from protein-ligand X-ray structures

mostly memorize but do not learn protein-ligand interactions, because of severe biases

arising from simple protein and ligand descriptors. Moreover, we reported a temporal

splitting procedure of the PDBbind gold standard set, enabling to test MPNNs on a

hold-out set of 3,386 entries that is much larger and diverse than the commonly used

core set of 290 entries [18]. Herein, we investigate the usage of ligand and protein-

debiased DNN architectures fed with molecular objects (X-ray structures, docking

poses) and check whether such models may be applied to objects they have not been

trained on. We further verified if augmenting input instances by switching X-ray poses

to docking poses leads to better binding affinity predictions and wider generalization.

3.2 Results and discussion

A temporal splitting procedure of the PDBbind set enables to define a more

realistic hold-out set for challenging ML models.

The PDBbind dataset [36] of protein-ligand complexes of known structure and affinity

has become a gold standard for predicting affinities from 3D structures, training on

either the general or the refined set and testing on a small and diverse external core

set. Many studies reported that the core set is a far too easy external test set since

alternative splitting protocols based on similarity clustering (protein sequence or ligand

scaffold) significantly reduced the models’ performance [26, 32] . We therefore recently

proposed a novel temporal splitting procedure [18] in which the model is trained on

data released until Dec. 31st 2016 and tested on a novel hold-out set consisting in

3,386 entries released from year 2017 on (Figure 3.1).

A Venn diagram analysis of shared ligands and proteins between the three sets
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Figure 3.1 Overlap between core (287 entries), hold-out (3,386 entries) and training-

validation sets (11,820 entries). A) Count of shared ligands, B) Count of shared proteins, C)

Core set vs. training set composition, D) Hold-out set vs. training set composition.
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(Figure 3.1) clearly shows that the herein proposed hold-out set if much more diverse

in terms of ligand (PDB heteromer three-letter code) and protein (SwissProt accession

number) composition, than the core set used in all previous studies. The hold-out set

features more realistic scenarios in which new data have to be predicted from the past:

i) both the protein and the ligand are unknown to the model (hit identification), ii)

only the ligand is unknown (hit to lead optimization), iii) only the protein is unknown

(hit profiling), iv) neither the protein nor the ligand are unknown (drug repurposing).

We therefore believe that predictions on the novel hold-out set will be much more

representative of the true generalizability of ML models.

Setting-up a data set of docking poses of varying accuracy by self-docking

PDBbind ligands into their cognate targets.

In order to generate a dataset of possible binding modes of different correctness, we

redocked each PDBbind ligand to its corresponding protein target using three state-of-

the art docking utilities relying on different sampling algorithms, namely PLANTS (ant

colony optimization) [37] , Surflex (incremental construction) [38] and DOCK 6 (genetic

algorithm) [39]. Up to 200 poses were saved for each entry and each docking tools,

yielding 4.5 million registered docking poses that were next labeled as “good” or ”bad”

according to the root-mean square deviation (RMSD) of their heavy atoms to the X-ray

pose (good: RMSD<2.0 Å, bad: RMSD>4.0 Å), and split into training, validation and

test sets (core, hold-out) as previously described [18] . Since the splitting protocol is

based on the PDB identifier of the corresponding protein-ligand complexes, any pose

of one protein-ligand pair never appears in both training and/or validation/test sets.

While the RMSD distribution of docked poses generated with PLANTS and Surflex

was shifted to the range of high-quality poses (Figure 3.2), DOCK 6 poses generated

by our settings (Table S1) were clearly of lower quality (mean RMSD = 7.5 Å, Figure

3.2 ) thus serving as the main source of poses of lower quality in the current study.

Altogether, ca. 1.23 million poses were annotated as good (Figure 3.3), therefore

requiring to undersample the set of bad poses to achieve the equity of the number of

good and bad poses in training, validation, and test sets (Figure 3.2).

Since the DNN models are reading protein-ligand interaction graphs, we reasoned

that an additional metric focusing also on pairwise interactions, should be used to
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Figure 3.2 Distribution of RMSD of docked poses to the X-ray structure of PDBbind

ligands. A) full set, B) training, validation, core and hold-out sets (no balancing of good vs.

bad poses), C) training, validation, core and hold-out sets (balancing of good vs. bad poses).
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Figure 3.3 Cumulative enrichment in good poses for the three docking tools.
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qualify a good pose. We thus calculated the similarity of protein-ligand interaction

fingerprints (IFPs) [40] between docked and X-ray poses. Although RMSD values are

inversely proportional to IFP similarities (Figure 3.4), using a double selection criterion

(good pose: RMSD<2.0 Å AND IFP similarity >0.6; bad pose: RMSD>4.0 Å AND

IFP similarity <0.4) permits to refine the pose labeling procedure with good only poses

being now defined by a RMSD lower than 2 Å while the IFP similarity is higher than

0.6. This procedure prevents erroneous labeling of many docking poses considered

correct by the RMSD criterion but incorrect by the IFP similarity criterion (Figure

3.4). For the test set, the class of inaccurate poses was augmented by the factor of 2

via addition of the equal number of poses of intermediate quality (2.0 Å <RMSD<4.0

Å) to the set of “bad” poses.

The final balanced set of docking poses, used for model training, validation and

test comprises 272,839 good and 289,519 bad poses, picked among the three docking

tools’ proposals (Table 3.1).

Table 3.1. Statistics on docking poses of PDBbind ligands

Docking tool Number of good posesa Number of bad posesb

Full set Balanced set Full set Balanced set

PLANTS 414,301 106,037 275,104 53,005

Surflex 268,327 94,129 77,684 21,213

DOCK 6 151,947 72,673 1,002,372 215,301

Total 834,575 272,839 1,355,160 289,519

a RMSD <2.0 Å and IFP similarity >0.60; b RMSD ≥ 2.0 Å

Binary classification of docking poses with MPNN models operating on

interaction graphs.

The lack of structural data on complexes with weak binders as well as the high sparsity

of the protein-ligand training matrix leads to a limited applicability of machine learning

based models to real virtual screening problems, in which the model should either

attribute low scores to weak binders or discard them in another way. In order to apply

a binding affinity regressor to docking poses, a binary classifier using exactly the same
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Figure 3.4 Variation of RMSD with respect to the similarity of protein-ligand interactions,

upon comparing docking and X-ray poses of the full set of PDBbind ligands. Docking poses

are labelled good if located in the lower right green quadrant, and bad if located in the upper

left quadrant or anywhere else outside the green quadrant.
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protein-ligand interaction graph input as the affinity prediction model, needs to be

developed to properly select the predicted good poses that are then passed to a next

affinity prediction model. The same MPNN architecture as that previously described

for affinity regression [18] to train a model reading protein-ligand interaction graphs

generated by IChem [41] and predict the pose label (good vs. bad).

Two binary classification models were trained using two either 4 or 6 Å pairwise

distance cut-offs to register non covalent interactions (Figure 3.5). Both models ex-

hibit and excellent classification accuracy with area under the receiver-operating curve

(ROC AUC) above 0.80 for almost all evaluated sets (Figure 3.5). The herein obtained

accuracies are in line with previous reports, attesting that our MPNN models compete

with state-of-the-art pose classification models [17, 18, 33]. In agreement with the

previously reported affinity prediction model trained on X-ray structures [18] , inter-

action graphs using the 6 Å pairwise distance led to better pose classifications than

the shorter 4 Å distance range (Figure 3.4). As to be expected, the ROC AUC value

slightly decreases when switching from the ligand-biased core set (0.849 and 0.882 for

the 4 Å and 6 Å graphs, respectively) to the diverse and larger hold-out set (0.796 and

0.795 Å, respectively; Figure 3.5). At this high level of accuracy, the MPNN models

were equally accurate to assign good labels to the native docking poses (Figure 3.5)

although the classification accuracy varies with the MPNN probability output used

as a threshold to score good and bad labels. As previously reported [19], the usu-

ally considered threshold of 0.5 for good/bad pose labelling does not correspond with

the optimal classification of the three investigated set (Figure 3.5). Since the optimal

threshold is clearly test set-dependent, we further used the regular 0.50 threshold in

the next studies. It ensures an accuracy of ca. 80% on the two test sets investigated

here.

Predicting binding affinities from docking poses with prior filtering of pre-

dicted incorrect binding modes.

We implemented a binding affinity prediction pipeline consisting of two DDN models, a

first pose classifier and a second binding affinity regressor. In a first stage, an interaction

graph was generated for each protein-ligand complex. Then the class label (good, bad)

was first predicted with the pose classification model and only predicted good poses
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Figure 3.5 Binary classification accuracy of MPNN models trained on protein-ligand inter-

action graphs defined from protein-ligand interactions registered at 4 Å (A) or 6 Å cut-off

distances (B). Accuracies are given for all poses (Acc), positive samples (good poses, Acc+)

and negative samples (bad poses, Acc-). ROC curves are defined from the model probability

output values generated for every docking pose.
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are next passed to a binding affinity regression model predicting the binding affinity in

pK unit (Figure 3. 6).

Figure 3.6 A flowchart of the binding affinity prediction pipeline with prior pose filtering

In the current study, two different pose classification models trained on the bal-

anced dataset of docking poses were used from protein-ligand interactions detected at

either 6 or 4 Å pairwise distances. Importantly, the same interaction graph has been

used for pose classification and binding affinity regression models. To ascertain the

applicability of the affinity prediction models, they were trained and applied to either

X-ray structures or docking poses, thereby enabling to test whether training and test-

ing on different molecular objects is desirable or not. In the first scenario, the pose
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classifier and affinity regressors were applied on X-ray structures. Surprisingly, the

classifier previously trained on docking poses failed to predict as ”good” true X-ray

structures in 22 to 31% of test cases (Table 3.2), suggesting that the pose classifier

is very sensitive to the origin of the test samples. This discrepancy probably arises

from the different treatment, notably with respect to encountered force-fields, of X-ray

structures and docking poses. Harmonization of this treatment was recently shown

to diminish the sensitivity to the origin of atomic coordinates [31]. Affinity predic-

tions on the remaining X-ray structures were of good quality as estimated by the R2

determination coefficient and the Pearson Rp coefficient of the regression applied to

core set samples (R2=0.521, Rp=0.750). As to be expected, the quality of the predic-

tion significantly decreased when applied to the more difficult hold-out set (R2=0.316,

Rp=0.564). It is important to notice that the erroneous pre-filtering of X-ray structures

by the pose classifier had a minor impact on the affinity predictions since the regression

statistics on the non-filtered test samples were almost equivalent, as reported in our

original study (core set: Rp=0.728, hold-out set, Rp=0.607) [18] .

Table 3.2. Performance of binding affinity prediction models with prior

filtering of incorrect poses. Protein-ligand interactions are detected within

a 6 Å distance range.

Set Scenario 1a Scenario 2b Scenario 3c

Incd R2e Rp
f inc R2 Rp inc R2 Rp

Core 0.222 0.521 0.750 0.557 0.386 0.706 0.556 0.612 0.803

Hold-out 0.316 0.306 0.564 0.428 0.103 0.485 0.428 0.399 0.644

a regressor trained and applied on X-ray stuctures, b regressor trained on X-ray structures

and applied to docking poses, c trained and applied to docking poses, d Inc: frequency of bad

pose classification, e R2: determination coefficient, f Rp Pearson r coefficient.

In the second scenario, the affinity regressor trained on X-ray structures was

applied to good docking poses, a situation mirroring most previous studies. Unfor-

tunately, this translational application is operated at the cost of the quality of the

predictions since the R2 and Rp coefficients significantly decreased for both core and

hold-out test samples (Table 3.2). In the last scenario, both the classifier and the re-
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gressor operated in the same set of docking poses, which brings the affinity prediction

back to statistical values (core set: Rp=0.803, hold-out set, Rp=0.644) even higher

than obtained in the first scenario where classifier and regressor was operating on X-

ray structures. Reassuringly, the failure rate of the pose classifier to properly label

docking poses is now close to 50%, a value expected from the balanced nature of good

vs. bad poses on which the classifier has been trained on.

Again, we observed better results when testing core set samples with respect to

hold-out samples. The obtained value for the core set (Rp = 0.803) is undoubtedly

overoptimistic due to inherent ligand and protein biases previously observed for this

set. The accuracy obtained on the hold-out set (Rp = 0.644) is more representative

of the true accuracy of our DNN models in predicting binding affinities for a realistic

set of novel entries (recall Figure 3.1). Although augmenting input data with docking

poses clearly help making better affinity predictions (compare scenarios 2 and 3), the

obtained model still meets difficulties in generalizing to unseen complexes. We last

verified whether the previous observation [18] that more complex interaction graphs

registered at a 6 Å pairwise distance, leads to better prediction with respect to simpler

graphs registered at a maximal 4 Å distance (Table 3.3). The same behavior was

observed again, whatever the scenario (Table 3.3). In all cases, observed R2 and Rp

coefficients were significantly lower, than those derived from 6 Å interaction graphs.

Table 3.3. Performance of binding affinity prediction models with prior

filtering of incorrect poses. Protein-ligand interactions are detected within

a 4 Å distance range.

Set Scenario 1a Scenario 2b Scenario 3c

Incd R2e Rp
f inc R2 Rp inc R2 Rp

Core 0.128 0.435 0.660 0.568 -0.275 0.381 0.568 0.316 0.568

Hold 0.196 0.087 0.445 0.450 -0.739 0.250 0.450 0.136 0.460

a regressor trained and applied on X-ray stuctures, b regressor trained on X-ray structures

and applied to docking poses, c trained and applied to docking poses, d Inc: frequency of bad

pose classification, e R2: determination coefficient, f Rp Pearson r coefficient.

The two DNN models trained and applied on the same objects (scenario 1: X-
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ray poses, scenario 3: docking poses) are clearly different and yielded different affinity

predictions notably when the test samples were more distant from the training samples

(Figure 3.7).

Figure 3.7 Comparison of affinity predictions for models trained and applied on the same set

of molecular objects (X-ray structures, scenario 1 ; docking poses, scenario 3). A) Correlation

of binding affinity predictions with a regression model trained on X-ray structures and on

docked poses (6 Å interaction detection range), B) Box-and-whisker plot of predicted affinity

values. The boxes delimit the 25th and 75th percentile, and the whiskers delimit the 1st and

99th percentiles. The median values are indicated by a horizontal line in the box, respectively.

Outliers are indicated by a circle.

We notably verified whether the previously noticed tendency of affinity prediction

ML models, trained and on X-ray structures [18, 23, 42] to output affinity values within

a narrow range centered on the mean of value of training samples, is still verified when

the ML model has been specifically trained and applied to an augmented set of docking

poses (Figure 3.7). The distribution of predicted affinities is significantly shifted to

lower values in case docking poses are used for training an application, still within a
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narrow range as observed when X-ray structures are used (Figure 3.7).

The best possible DNN model operating on an augmented set of docking

poses still hardly generalize.

Since the composition of the hold-out set in terms of ligand and protein novelty with re-

spect to the training data was previously assessed (Figure 3.1), we decomposed affinity

prediction values obtained after training and testing docking poses (scenario 3, Table

3.3) for the four possible categories of hold-out complexes (Table 3.4). Please notice

than the notion of ”novelty” of ligand and protein partners was here very conservative

as ligand and protein identity, according to PDB HET codes and SwissProt accession

numbers, were considered.

Table 3.4. Generalizability of binding affinity predictions with respect

to the novelty of protein and ligand composition of the hold-out test set.

Ligand Protein R2 Rp RMSE

known Known 0.437 0.664 1.329

known Unknown 0.503 0.713 1.472

unknown Known 0.393 0.639 1.371

unknown unknown 0.302 0.597 1.506

a regressor trained and applied on X-ray stuctures, b regressor trained on X-ray structures

and applied to docking poses, c trained and applied to docking poses, d Inc: frequency of bad

pose classification, e R2: determination coefficient, f Rp Pearson r coefficient.

As to be expected, the quality of the predictions decreases with the level of

uncertainty with respect to ligand and protein composition of the external test set

(Table 3.4.) Despite being trained on a large set of docking poses, the MPNN model

still does not generalize well to complexes between new ligands and new proteins. Given

the tendency of the model to predict binding affinities in a narrow range (Figure 7), this

observation suggests that memorization still dominates true learning of protein-ligand

interactions in the herein developed DNN models.
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Multitask classification and regression models do not compete with the

step-by-step pipeline.

As an alternative version to the iterative workflow beginning with pose classification

and ending with binding affinity prediction, we implemented a multi-task model com-

bining both tasks simultaneously. In this model the protein-ligand interaction graph is

processed first with a unique MPNN, its readout vector being then treated separately

by two fully connected networks aimed at pose classification and binding affinity predic-

tion. Despite being computationally more efficient, these models demonstrated worse

performance than their counterpart pipelines of two single-purpose models (Table 3.5).

Table 3.5. Performance of a multi-task binding affinity prediction

model.

Set 6 Å interaction graph 4 Å interaction graph

Inca R2b Rp
c Inca R2b Rp

c

Core 0.424 0.264 0.686 0.386 0.254 0.511

Hold 0.309 -0.255 0.500 0.266 0.064 0.415

a Inc: frequency of bad pose classification, b R2: determination coefficient, c Rp Pearson r

coefficient.

One of the possible causes can be the difficulty of the model to optimize two loss

functions simultaneously. The classification loss overfitting starts much earlier than

the convergence of the regression loss is achieved(Figure 3.8).

3.3 Experimental section

PDBbind dataset.

The dataset composition, preparation and and splitting was identical to that reported

in our previous study [18]. We filtered out PDB ids, for which the 6 Å interaction

graph construction failed, thus obtaining the training, validation, core, and hold out

set sizes of 4508, 463, 143, and 1326, respectively.
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Figure 3.8 Delayed convergence of the regression loss and early overfitting of classification

loss in a multi-task model. Model training on 4 Å graphs (A —- classification loss, C —-

regression loss) and 6 Å graphs (B –– classification loss, D –– regression loss)

Self-docking of PDBbind entries.

PLANTS docking. Molecular docking was performed in PLANTS v.1.2 [37] using the

chemplp scoring function and a search speed of 1. The center of mass used for delimiting

the cavity was defined as the center of mass of the PDBbind ligand. The radius for the

search space was set as the largest distance between the center of mass and any binding

site heavy atom as provided by PDBbind in the pocket.mol2 file. Sampled conformers

were clustered with an RMSD of 0.25 Å, a maximum of 100 poses being finally saved.

An example configuration file is provided in Table S1.

Surflex-dock docking. Molecular docking was performed in Surflex v.4543 [38].

The protomol was generated from the X-ray pose of the ligand using standard pa-

rameters. Docking was performed with -pgeom and +macrocyc ligand preparation

parameters. A maximum of 100 docking solutions were saved.

DOCK doking. Protein surface was computed with the WriteDMS script imple-

mented in UCSF Chimera [43]. Sphere selection was performed with a 4.0 Å cutoff.

An example parameter file is provided in Table S3. Clustering of conformations was

performed with an RMSD threshold of 1.0 Å, a maximum of 100 poses were finally
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saved.

The RMSD of heavy atoms between all sampled conformers and the original

X-ray structure of a ligand was computed with the sf-dock rms utility of Surflex-Dock.

Preparation of interaction graphs.

Protein-ligand interactions were computed in IChem v.5.2.9. [41], using either a 4.0 Å

or a 6.0 Å maximal cut-off distance and saved in a json format, as previously described

[18].

Interaction fingerprints.

Protein-ligand interaction fingerprints were calculated with the IFP module of the

IChem v.5.2.9 package.

Docking pose labelling.

A binary labeling (good vs. wrong) of all docking poses was done according to the

RMSD of heavy atoms to the X-ray pose, and the similarity of protein-ligand interaction

fingerprints, measured by a Tanimoto coefficient (Tc-IFP). The pose was labelled as

”good” if the RMSD was less or equal to 2 Å and the Tc-IFP value higher than 0.6.

The pose was labelled as ”wrong” if the RMSD was higher or equal to 6 Å and Tc-IFP

lower or equal to 0.4. Poses not labelled ”good” or ”wrong” were nor retained further.

To achieve an equal number of good and poses poses for each PDBbind entry, poses of

the overrepresented class were randomly removed until their number reached that of

the underrepresented class. Afterwards, the randomly sampled poses of intermediate

quality (RMSD between 2.0 Å and 4.0 Å) were added to the core set and hold out being

labeled as “wrong poses”. Altogether, the final dataset comprises 272 839 ”good” poses

and the 289 519 ”wrong” poses (the sizes of classes for training and validation sets are

identical).

Binding affinity regression models.

The MPNN architecture recently described for predicting binding affinities from X-ray

structures [18] was used herein. The node and edge feature vectors were transformed
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by linear layers, then the latent node feature vectors were iteratively updated with the

message passing neural network. The readout vector was further used as an input of a

two-layer fully connected network. Hyperparameters were optimized with ADAM using

MSELoss as a loss function. The dropout rate for the graph convolution subnetwork

was set to 0.2, the weight decay to 0.001. The size of the latent node feature vector

was 2048, the number of message-passing steps was set to 2, the initial learning rate

was 2·10-4 with subsequent multiplications by 0.9 after the first 20 epochs with no

validation loss decrease, and then multiplied by 0.9 every 40 epochs.

Binary classification models.

The MPNN for binary classification was based on the previous regression MPNN with

a sigmoid function applied to the output of the last linear layer. The learning rate of

1·10-5 was constant. Hyperparameters were optimized with ADAM using BCELoss as

a loss function.

Binding affinity prediction with prior classification.

In order to apply pose classification and binding affinity prediction models in a pipeline,

the interaction graph representation was generated first. Then, separate prediction of

binding affinity and pose class was performed with regression and classification models.

The predicted value of a binding affinity logarithm was returned only for those poses,

which were characterized as “correct” ones by a classifier (otherwise returning None).

Multitask classification and regression models.

The architecture of a mixed predictor was based on that used for classification and

regression models. After performing a graph convolution operation with the MPNN

module, the resulting latent vector was processed by two independent fully connected

networks, working as a regressor and as a classifier. The loss function was set as a sum

of classification and validation losses (Eq. 3.1)

Loss = CLoss(target, predictionclass) + α ·RLoss(target, predictionregr) (3.1)

where α=0 if prediction <positive class cutoff, else α = 1.
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Evaluation metrics.

The quality of classification models was determined using ROC AUC, accuracy (Acc),

positive (PPV) and negative (NPV) predictive values as follows (Eq. 3.2–3.4)

PPV =
TP

TP + FP
(3.2)

NPV =
TN

TN + FN
(3.3)

Acc =
Ncorr.pred.

Npred

(3.4)

where TP are true positives, FP false positives, TN true negatives, FN false negatives,

Ncorr.pred. — the number of correct predictions, and Npred the number of predictions.

The quality of the binary affinity regression models was determined using the

Pearson’s correlation coefficient (Rp) and the root-mean square error (RMSE) of the

prediction as follows (Eq. 3.5–3.6)

Rp =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y )2
(3.5)

RMSE =

√∑n
i=1(Xi − Yi)2

n
(3.6)

where n is the number of samples, Xi the experimental affinity value, Yi the predicted

affinity value, X the mean of experimental values, and Y the mean of predicted values.

3.4 Conclusions

Predicting binding affinities from 3D coordinates of protein-ligand complexes remains

a major challenge in drug discovery. Despite apparent advances in retrospective anal-

yses, machine learning models still suffer from poor generalizability mainly because of

the limited set of diverse 3D structures they are trained on. We believe that most

previous studies are unfortunately biased by significant flaws concerning the respective

contribution of ligand and protein instances in training and external test sets. Given

that all previous studies rely on the PDBbind dataset of protein-ligand X-ray struc-

tures of known affinity, we here evidenced that the PDBbind core set, usually taken
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as an external test set to evaluate the predictive power of ML models, is too close

to the general training set and therefore leads to overoptimistic results where memo-

rization dominates true learning. This observation explains why adding explicit ligand

descriptors to protein-ligand attributes always enhance the apparent predictivity of ML

models. We therefore recommend abandoning the usage of the core set for evaluating

binding affinity ML models and propose a much more realistic temporal split to define

a truly diverse hold-out split for external validation.

Having a debiased test set in our hands, we then asked the question whether

augmenting input data with docking poses could help define more accurate and gen-

eralizable models. This requires a first selection of near-native docking poses by a

classifier trained to distinguish good from bad poses. Again, we noticed that the com-

mon practice of using as a single criterion the RMSD of docking poses to the X-ray

structure is not optimal since RMSD only partially correlates with the conservation

of protein-ligand interactions that ML models reads as input. We herein propose to

additionally use the similarity of protein-ligand interactions to refine the pose labelling

and to prevent selecting, as native, a significant proportion of incorrect poses.

With a debiased training set and a refined labeling of docking poses, we un-

ambiguously shown that our MPNN models should be applied to the same molecular

objects than those they have been trained on. In other words, models trained on X-ray

structures should be applied to X-ray structure but not to docking poses. Accordingly,

models trained on docking poses should be tested on docking poses only. Whatever

the source of input structures (X-ray diffraction, docking), the best ML models in our

hands exhibit a comparable accuracy (Rp = 0.55–0.56) in predicting affinities of the

hold-out samples. The observed accuracy is much lower than that reported in most bi-

ased retrospective studies challenging the core set, and unfortunately not sufficient for

their wide application to real life cases where proteins and ligands are usually unknown

to the training samples.
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3.6 Supplementary materials

Table S1. DOCK 6 configuration files

conformer search type flex

write fragment libraries no

user specified anchor no

limit max anchors no

min anchor size 6

pruning use clustering yes

pruning max orients 500

pruning clustering cutoff 100

pruning conformer score cutoff 100.0

pruning conformer score scaling factor 1.0

use clash overlap no

write growth tree no

use internal energy yes

internal energy rep exp 12

internal energy cutoff 100.0

ligand atom file ligand.mol2# ligand to dock (mol2 file format)

limit max ligands no

skip molecule no

read mol solvation no

calculate rmsd no
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use database filter no

orient ligand yes

automated matching yes

receptor site file selected spheres.sph

max orientations 500

critical points no

chemical matching no

use ligand spheres no

bump filter yes

bump grid prefix grid

max bumps anchor 10

max bumps growth 10

score molecules yes

contact score primary no

contact score secondary no

grid score primary yes

grid score secondary no

grid score rep rad scale 1

grid score vdw scale 1

grid score es scale 1

grid score grid prefix grid

multigrid score secondary no
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dock3.5 score secondary no

continuous score secondary no

footprint similarity score secondary no

pharmacophore score secondary no

descriptor score secondary no

gbsa zou score secondary no

gbsa hawkins score secondary no

SASA score secondary no

amber score secondary no

minimize ligand yes

minimize ancho yes

minimize flexible growth yes

use advanced simplex parameters no

simplex max cycles 5

simplex score converge 0.1

simplex cycle converge 1.0

simplex trans step 1.0

simplex rot step 0.1

simplex tors step 10.0

simplex anchor max iterations 50

simplex grow max iterations 50

simplex grow tors premin iterations 5
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simplex random seed 42

simplex restraint min yes

simplex coefficient restraint 20

atom model all

vdw defn file vdw AMBER parm99.defn

flex defn file flex.defn

flex drive file flex drive.tbl

ligand outfile prefix dock6 res

write orientations no

num scored conformers 1000

write conformations yes

cluster conformations yes

cluster rmsd threshold 1.0

rank ligands yes

max ranked ligands 1

Table S2. PLANTS configuration files

# scoring function and search settings

scoring function chemplp

search speed speed1

# input

protein file protein.mol2 #protein file

ligand file ligand random.mol2 #ligand file (random starting orientation)
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# output

output dir ./results

write protein conformations 0

# write single mol2 files (e.g. for RMSD calculation)

write multi mol2 0

# binding site definition

bindingsite center x y z

# center of mass of residues-lining cavity

bindingsite radius r

# cluster algorithm

cluster structures 100

cluster rmsd 0.25
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General conclusions

167



The recent progress of machine learning using deep neural architectures has raised

exceptional interest in the possible application of these techniques in many multidisci-

plinary fields, including drug design, where development of scoring functions for molec-

ular docking still remains an actual problem. In addition to that, the development of a

lightweight and accurate method for binding affinity prediction in protein-ligand com-

plexes, would be beneficial for both virtual screening campaigns and lead optimization

stages of drug development. As a result of the grown interest of the community in

neural network approaches, a variety of neural network-based models aimed at binding

affinity prediction from protein-ligand structures emerged in the recent years, which

rely on different architectures and achieve remarkable performance on common bench-

marking sets.

Due to their relevance in structure-based drug design campaign and their theo-

retical capability of generalization, structure-based binding affinity prediction models

have caused our exceptional interest. The work presented in the scope of this doc-

toral thesis included the development of a binding affinity prediction model, relying of

one of the most prominent architectures applied in this field – message passing neural

networks (MPNN), operating on graph representation of the protein-ligand complex

structure. We performed the assessment of its performance on commonly used and cus-

tom benchmarking sets and investigated the potential generalization problems coming

from the training set memorization. As a result, we propose a binding affinity pre-

diction model, which is comparable with the state-of-the-art in terms of performance

on the PDBbind 2016 test set, stressing its potential limitations. In order to obtain a

model suitable for virtual screening, we introduce a pipeline combining a docking pose

classifier with a binding affinity predictor. In the perspective of further applications,

the models, developed in the course of the current project, still needs a more complete

assessment of ranking and screening performance, ideally of the datasets, developed

with a consideration of previously reported biases in broadly used test sets such as the

one, which is a part of the CASF benchmark.

In addition to that, it is important to stress, that for structure based bind-

ing affinity prediction with neural network model, the scarcity of data available for

training remains an important issue. The possible directions of research, aimed at
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overcoming of this limitation, can lie in the domain of development of new neural net-

work architectures with higher generalization capability, but also in further expansion

of experimentally retrieved structural datasets, not only in absolute values, but also

in terms of increased density of coverage of potential protein-ligand combinations for

promiscuous ligands, and the implementation of new data augmentation strategies for

the improvement of model scoring performance.
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