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φi The orientation angle of cable #i

ξ The damping ratio

aij The flexible mode

Ai The exit point of the cable #i

Ark The elements of the matrix A

bm(t) The measurement noise signal

Bi The attachment point of the cable #i at the platform

c Actuation redundancy

cα The torque exerted around the center of mass Op of the platform

Cd The derivative gain of the PID (or PD) controller

Ci The integral gain of the PID controller

Cp The proportional gain of the PID (or PD) controller

d(t) The disturbance signal

d The number of the degree of freedom

e(t) The error signal

g The gravity

j0 The inertia of the drum wrench

ji The inertia of the drum wrench #i

jp The inertia of the platform
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K The kinetic energy of the whole system

k The number of variables in flexible cable model o = 3n+ 3

Kp The kinetic energy of the platform

Kr The kinetic energy relative to qr

kt The stiffness of the linear spring of the transmission unit

Kwi
The kinetic energy of the winch drum and of the coaxial tension winch drum

li0 The initial unwounded length of cable #i

li The length of the cable #i

lt The total length of the cables

m The mass of the platform

Mi A point located on the unwound portion of the flexible cable #i in chapter ‘3

N The number of flexibility modes

n The number of cables

nu The number of controlled inputs

nw The dimensions of the exogenous inputs w(t)

ny The number of measured outputs

nz dimensions of the performance outputs z(t)

Qi The generalized force for each variable #i

r(t) The reference signal

r Radius of the winch drum

rt Radius of the coaxial tension winch drum

sk The longitudinal position

Ti The tension of cable #i

Tm The mean tension of cables

T r
m The reference of mean tension of cables

u(t) The control signal

V The total potential energy associated with the conservative forces exerted by
spring of the whole system

Vi The potential energy associated with the conservative forces exerted by each
spring of the transmission unit
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Vpi The gravitational potential energy of each cable #i

vxi
The velocity of the point Mi of the cable #i along x direction

vyi The velocity of the point Mi of the cable #i along y direction

w(t) The exogenous input in chapter 4

wc The bandwidth

wi The new representation of the flexible mode of cable #i

x(t) The state space vector in chapter 4

xAi
The position of the the point Ai along x axis

xBi
The position of the the point Bi along x axis

xK(t) The state space vector of the controller K(s) in chapter 4

xMi
The position of the the point Mi along x axis

xp0 The initial translation of the platform along x axis

xp The translation of the platform along x axis

ym(t) The measurement signal

yAi
The position of the the point Ai along y axis

yBi
The position of the the point Bi along y axis

yMi
The position of the the point Mi along y axis

yp0 The initial translation of the platform along y axis

yp The translation of the platform along y axis

z(t) The performance output

Vectors

pei Column vector of the fixed position of the point Bi in Rp

q̈ Column vector of the second time derivative the generalized coordinate

θ̇ Column vector of the angular velocity of the motors

q̇ Column vector of the time derivative of the generalized coordinate

q̇r Column vector of the time derivative of the new generalized coordinate

Ẋ Column vector of the velocities of the platform

η Column vector of the null space of the matrix W

Γ Column vector calculated as Γ = H−1 F
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l̂i Column vector of the unit vector in the direction of li

λ Column vector of the multipliers of Lagrange

µ An arbitrary column vector

Ψp Column vector of the orientation of the platform

θ Column vector of the position of the actuators

q̃i Column vector of the generalized coordinate of each cable calculated as q̃i =[
x wi φi

]T
C Column vector of the partial derivative of the kinetic energy

Cr Column vector of the partial derivative of the kinetic energy relative to qr

ei Column vector of the position of the point Bi in Rp

F Column vector of the equations of the right side of the equation (3.18)

F1 The bloc (1,1) of the matrix F with dimension (3n+ 3× 1)

F2 The bloc (1,2) of the matrix F with dimension (2n× 1)

Fp Column vector of the external forces applied on the platform

fp Column vector of the force exerted at the center of mass Op of the platform

h Column vector of the constraints equations

Ji Row vector of the inverse kinematic jacobian matrix

l(X) Column vector of the cable lengths

l(X0) Column vector of the initial unwounded cable lengths

Pp Column vector of the position of the platform

PAi
Column vector of the position of the exit point Ai of the cable #i

PBi
Column vector of the position of the attachment point Bi of the cable #i at
the platform

Q Column vector of generalized forces

q Column vector of the generalized coordinate that is presented as q =
[
xp yp α

]T
in section (2.3.5) and presented as q =

[
qT1 . . . qTn xp yp α

]T in section
(3.2)

q∗ Column vector of the desired trajectory and is presented as q∗ =
[
x∗
p y∗p α∗]T

q0 Column vector of the generalized coordinate in the center on the workspace

qe Column vector of the operation point
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qi Column vector of the generalized coordinate of each cable calculated as qi =[
li wi φi

]T
Qr Column vector of the generalized forces relative to qr

qr Column vector of the new generalized coordinate

T Column vector of the cable tensions

T Column vector of the tensions of the cables

u1 Column vector that ensures the cable’s tensions remain positive

Vp Column vector of the velocity of the platform

X Column vector of the pose of the platform

X0 Column vector of the initial pose of the platform
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Résumé de thèse en français

Contexte et problématique
L’idée et l’histoire de la robotique remontent au monde antique, mais la première
apparition du mot robot remonte à la pièce de l’écrivain tchèque Karl Chapek
"Rossum’s Universal Robots" (R.U.R) publiée en 1920, où le terme a été inventé
par son frère Josef du mot tchèque "robota", signifiant travail ou servage.

Au cours de la deuxième révolution industrielle, la capacité de l’ingénierie struc-
turelle à contrôler l’électricité a été développée afin que de petits moteurs puissent
alimenter des machines. Les premières utilisations des robots modernes ont eu lieu
dans les usines en tant que robots industriels. En 1954, George Devol a déposé une
demande de brevet pour la fabrication d’un bras robotique, qui a été accordé en 1961.
En coopération avec Joseph Engelberg, George Devol a ouvert une entreprise pour
produire des robots sous le nom d’Unimation, ce qui signifie mouvement, en 1956.
Les robots créés étaient basés sur le modèle de base de George Devol et ces robots
étaient appelés à l’époque des machines de transport programmées car leur fonction
était de transporter des objets d’un endroit à un autre. Victor Scheinman a inventé le
premier bras robotique articulé composé de six articulations rotatives à l’Université
de Stanford en 1969. Cette invention a permis l’utilisation de robots dans des ap-
plications plus complexes telles que les opérations de soudage et d’assemblage. Au
fil des ans, plusieurs catégories de robots ont été créées en fonction du type de leurs
structures, de leur articulation et de leur espace de travail.

Les manipulateurs parallèles ont été introduits à la fin des années 1970 et ont
révolutionné de nombreux secteurs industriels. Ces manipulateurs se caractérisent
par une disposition parallèle de moteurs et de segments rigides fixés à une plate-
forme. L’architecture Gough-Stewart est l’architecture de robot parallèle la plus
courante (Jianjun et al. (2013)).

Depuis quelques années, une nouvelle catégorie de robots parallèles est apparue,
appelée robot parallèle à câbles (CDPR), où les câbles remplacent les liaisons rigides.
Un robot à câbles parallèles est équipé d’une plate-forme (ou d’un effecteur) reliée
à une base par des câbles, avec laquelle il est possible de déplacer la plate-forme en
modifiant sa longueur. Cette architecture particulière combine des robots parallèles
et les propriétés des câbles, ce qui conduit à des mécanismes efficaces.

Ces robots ont de nombreuses caractéristiques intéressantes, telles qu’un rap-
port charge utile sur poids élevé (Albus et al. (1992)), des structures légères avec
une faible inertie de mouvement et un grand espace de travail comme présenté par
Cone (1985). Comme les actionneurs de ces robots sont fixés à la base, la masse et
l’inertie de la plate-forme mobile sont réduites, ce qui rend ce type de robot parfait
pour une utilisation dans des applications à grande vitesse (Kawamura et al. (1995)).
Les principaux problèmes rencontrés lors de l’étude des CDPR sont la nature physique
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des câbles qui ne permettent de produire que des efforts unilatéraux: les câbles ne
peuvent exercer qu’une force de traction et doivent donc être maintenus sous une
tension positive pendant le fonctionnement. De plus, les câbles sont souples, ce
qui introduit des vibrations transversales qui peuvent entraîner des imprécisions et
retarder le positionnement de la plate-forme. Il est donc nécessaire d’atténuer ces
vibrations, pour atteindre des performances satisfaisantes. De plus, en augmentant
la bande passante des CDPR, les correcteurs classiques basés sur un modèle de
robot à câbles à segments linéaires deviennent moins efficaces et n’offrent plus les
performances souhaitées.

Objectifs de la thèse
Dans cette thèse, deux objectifs principaux sont explorés : premièrement, une anal-
yse systématique de la modélisation, de la simulation et de la synthèse des modèles
d’équations différentielles-algébriques (EDA), et deuxièmement, surmonter le prob-
lème de la flexibilité des câbles en contrôlant le mouvement de la plate-forme tout en
assurant l’amortissement. En raison des complexités liées à la synthèse des modèles
DAE, le premier objectif n’a pas donné lieu à une contribution, alors que le second
objectif a donné lieu à une contribution scientifique. Cette contribution est réalisée
en deux étapes : modéliser la flexibilité du système et améliorer son amortissement
par une approche de synthèse de loi de commande.

Modélisation de robot à câble flexible
Les robots parallèles à câbles sont composés de points d’attaches reliés à une plate-
forme par l’intermédiaire des câbles enroulables (voir Figure 1). Ce type de robot
possède plusieurs avantages tels que le faible coût de construction et de maintenance
ainsi que le déplacement rapidement dans des grands espaces.

Figure 1: Structure d’un robot parallèle à à 8 câbles et 6 degrés de liberté.

Dans la littérature sur la modélisation des robots à câble, différentes hypothèses
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sont envisageés. Dans cette thèse, nous avons modélisé la flexibilité des câbles en
considérant l’approche des modes supposés et nous contribuons à étendre le modèle
présenté par Ayala Cuevas et al. (2017) pour obtenir un modèle dynamique 2D avec
3 degré de liberté en utilisant le formalisme d’Euler-Lagrange.

Dans la thèse, on considère un robot parallèle plan à 4 câbles flexibles (Figure
2).

Figure 2: Représentation d’un robot parallèle plan à 4 câbles flexibles.

Chaque câble est considéré comme flexible, inextensible et caractérisé par trois
variables : sa longueur li (pour le câble #i, ou i = 1, 2, 3, 4), son orientation au
point d’attache φi et son mode de flexibilité wi obtenu en utilisant la méthode des
modes supposés pour modéliser le déplacement transversal.

Le système est paramétré avec un vecteur de coordonnées généralisées q de 3n+3
variables de position, ses variables sont les trois paramètres qui caractérisent chaque
câble (longueur, mode de flexibilité et orientation) ainsi que les coordonnées de
position (xp, yp) et la orientation α de la plate-forme où n est le nombre de cables
considéré.

Les robots parallèles à câbles sont des mechanismes en chaîne cinématique fermée
car la position de chaque extrémité de câble (xpi(q̄i), ypi(q̄i)) coïncide avec la posi-
tion de point d’attache de la plate-forme (xBi

, yBi
). Les équations de la fermeture

géometrique correspondantes forment l’ensemble de deux contraintes algébriques
pour chaque câble :

h(q) = 0 ⇔
{
xi(q̄i)− xBi

= 0
yi(q̄i)− yBi

= 0
(i = 1, ..., 4) (1)

avec q̄i =
[
li, wi, φi

]T .
La flexibilité des câbles a été modélisée en considérant la méthode des modes

supposés. Nous avons choisi une forme polynomiale pour représenter cette flexibilité.
Le nombre de modes de flexibilité est estimé à partir de l’observation. En considérant
un seul mode de flexibilité wi, le déplacement selon xi peut s’exprimer comme suit :
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δyMi
(x, t) =

x2

li
wi(t) (i = 1, . . . , 4). (2)

La position de point mobile Mi dans le repère global Rg = (Og,xg,yg) peut
donc s’exprimer comme:{

xi(q̃i) = cos(φi)xMi
− sin(φi) yMi

+ xAi

yi(q̃i) = sin(φi)xMi
+ cos(φi) yMi

+ yAi

for i = 1, . . . , n (3)

où q̃i =
[
x wi φi

]T et (xMi
, yMi

) =
(
x − 1

2

∫ x

0

(
∂ δyMi

(x, t)

∂x
)2 dx, δyMi

)
est la

postion de point Mi dans le repère local Ri = (Ai,xi,yi).

Choix de la position des points d’attache

Nous avons effectué une étude l’atteignabilité de l’espace de travail qui vise à choisir
le design de la plateforme (les points d’attache) qui augmente la manoeuvrabilité en
orientation après avoir constaté sa faiblesse dans le cas d’une la configuration (1)
(voir Figure 2.12), et aussi d’assurer la stabilité de la plate-forme pendant le mou-
vement car notre plate-forme flotte dans l’espace, ce qui la rend sujette à basculer
hors plan x− y.

Les résultats de l’étude pour les différentes géométries sont illustrées dans le
tableau (1).

(1) (2)

(3) (4)

Figure 3: Différents scénarios pour différents points d’attache de câbles.

D’après les résultats présentés dans le tableau (1), la géométrie (2) est considérée
pour notre étude, car la plate-forme est stable durant le mouvement et aussi cette
configuration offre une meilleure manoeuvrabilité en orientation.

Validation de modèle geometrique

La validation expérimentale a été réalisée à l’aide d’un prototype de robot à câble
plan appelé prototype INCA qui existe dans le laboratoire ICube. Lors de l’exploitation
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Orientation maximale
Géométrie (1) Une orientation qui ne dépassent pas ±2, 29o
Géométrie (2) Une orientation jusqu’à ±30o
Géométrie (3) Une orientation jusqu’à ±42.39o mais la platform est unstable
Géométrie (4) Une orientation jusqu’à ±85, 94o mais la platform est unstable

Table 1: L’orientation maximale que les configurations dans la Figure (3) peuvent
effectuer

du prototype INCA, nous avons observé que les câbles sont flexibles. La validation
a pour objectif de calculer les positions des points du câble dans le plan INCA à
partir d’une vidéo et de les comparer avec le modèle de câble flexible que nous avons
proposé lors de la modélisation (dans l’équation 3). Pour effectuer cette étude, une
vidéo du mouvement du câble a été prise pendant le fonctionnement du robot. Dans
un premier temps, les points du câble ont été extraits (voir Figure 4) en utilisant les
outils de traitement d’image (dans le plan de l’image), puis les positions de ses points
ont été tranformés dans le plan de l’INCA en utilisant une matrice de projection
(en éffectuant une calibration de la caméra) et comparées au modèle géométrique
considéré durant la modélisation en utilisant l’approche des moindres carrés. Les
résultats montrent que le modèle géométrique de câble flexible proposé représente
bien le comportement réel du câble (voir Figure 5).

Figure 4: Extraction de câble à partir d’un flux vidéo (a. image originale b. image
binaire c. extraction d’un câble d. extraction des câbles avec intersection).

Modèle dynamique à câble flexible

Le modèle dynamique a été obtenu en utilisant l’équation d’Euler-Lagrange avec des
multiplicateurs adaptée aux systèmes dynamiques à contraintes géométriques. Le
modèle dynamique a été obtenu comme :

Ṁ(q, q̇)q̇ +M(q)q̈ =
∂K(q, q̇)

∂q︸ ︷︷ ︸
C

+Q(q, τ) + A(q)Tλ (4)

où M est la matrice d’énergie cinétique, K est l’énergie cinétique, τ est le
vecteur des couples des enrouleurs, Q est le vecteur des forces généralisées, λ =[
λ1, . . . , λ2n

]T est le vecteur des multiplicateurs de Lagrange, A est la matrice jacobi-
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Figure 5: La reconstruction du câble à partir de la vidéo

enne des contraintes géométriques (dans l’équation 1) avec q vérifiant les contraintes
cinématiques Ȧ q̇ = 0. La matrice M est inversible dans l’espace de travail.

En combinant la dérivé par rapport au temps de contraintes geometriques et le
modèle dynamique (4), nous avons obtenu un modèle algèbro-différentielle représenté
comme: [

M(q) −A(q)T
A(q) O

]
︸ ︷︷ ︸

V

[
q̈
λ

]
=

[
C(q, q̇) +Q(q, τ)− Ṁ(q, q̇) q̇

−Ȧ(q, q̇) q̇

]
︸ ︷︷ ︸

F

(5)

Transformation de modèle EDA au modèle EDO

Comme le but de la thèse est de synthétiser un correcteur H∞, alors une linéarisa-
tion du modèle dynamique obtenu est primordiale. Dans la thèse, nous avons suivre
deux approches pour linéariser le modèle DAE qui n’ont pas abouti en raison de la
non-commandabilité et de la non-observabilité du modèle linéaire obtenu. Ensuite,
le modèle dynamique a été transformé en un modèle donné sous la forme d’un en-
semble d’équations différentielles ordinaires (EDO) pour éviter la dépendance entre
les variables qui causent la non-commandabilité et la non-observabilité.

Ce modèle EDO linéaire d’ordre minimal est obtenu en trasformant la paramétri-
sation d’origine q en un ensemble réduit de paramètres qr. La première étape consiste
à supprimer les contraintes géométriques en exprimant certaines variables en fonc-
tion d’autres. Ceci a été fait en exprimant les longueurs li et les orientations φi des
câbles en fonction de la pose de la plate-forme X =

[
xp yp α

]T et les modes de
flexibilité wi comme suit :

li(wi, X) = 3

√
(xBi
− xAi

)2 + (yBi
− yAi

)2

9− 3w2
i + 4w4

i

(6)

φi(wi, xp, yp, α) = atan2(yBi
− yAi

, xBi
− xAi

)− βi (7)

avec :
βi = atan2(δyi, li − δxi) (8)
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où (xBi
, yBi

) sont les positions des points d’attache de la plate-forme et (xAi
, yAi

)
sont les positions de points d’attache des câbles avec la base.

Ainsi, le modèle dynamique (5) a une représentation différentielle ordinaire équiv-
alente :

Mr(qr) q̈r =
∂Tr(qr, q̇r)

∂qr︸ ︷︷ ︸
Cr

+Qr − Ṁr(qr, q̇r) q̇r. (9)

avec Cr =
1
2
q̇Tr (∇qr Mr) q̇r, Qr = −1

r
(∇qr li) and qr ∈ Rn+3.

La linéarisation du modèle différentielle ordinaire autour de centre de l’espace
de travail fournit un modèle linéaire commandable et observable.

Synthése H∞ et simulation
Les robots parallèles à câbles sont soumis aux variations de leur propre inertie ainsi
qu’aux perturbations extérieures, ce qui justifie la nécessité de choisir une com-
mande pouvant assurer une bonne robustesse. La commande H∞ est une méthode
de synthèse qui traite des systèmes multivariables linéaires dans le but d’assurer les
performances souhaitées tout en assurant de bonnes propriétés de rejet des pertur-
bations, de suivi de trajectoire et de robustesse vis-à-vis de les dynamiques négligées.

La synthèse H∞ a été introduite par Zames et Helton à la fin des années 1970
et au début des années 1980 en (Helton (1978), Zames (1981)). Cette méthode a
de multiples applications dans des domaines très variés et est devenue ces dernières
années l’une des méthodes de la commande robuste.

Le contrôle des robots à câbles s’effectue généralement en deux étapes : le con-
trôle de la position de la plateforme et la gestion des tensions des câbles. Le plus
souvent, ces deux étapes sont réalisées séparément. La contribution scientifique de la
thèse est de développer un schéma de synthèse H∞ pour les robots à câbles planaires
à 3 degrés de liberté prenant en compte la flexibilité des câbles. Ce schéma synthé-
tise un contrôleur H∞ qui gère à la fois la tension moyenne des câbles et également
la pose de la plate-forme.

La figure 6 montre la forme générale du schéma de synthèse à quatre blocs.
Les entrées exogènes et les sorties de performance sont v1(t), v2(t)) et (z1(t), z2(t))
respectivement. Des fonctions de pondérations sont imposées sur les signaux d’erreur
We(s), les signaux de commande Wu(s), les signaux de perturbations Wd(s) et les
signaux de référence Wr(s).

Un schéma de synthèse à 4 blocs a été envisagée pour le pilotage de la pose de la
plateforme et de la tension moyenne des câbles. Les résultats de la synthèseH∞ sont
représentés sur la figure 7. Pour les aspects fréquentiels, on voit que tous les gabarits
fréquentiels (ligne en pointillé) sont respectés, car ils sont au-dessus des transferts.
Nous avons obtenu un correcteur d’ordre 30 et avec un critère de performance en
boucle fermée γ = 0.7729 < 1.

Les résultats de simulation du système non-linéaire commandé par le correcteur
H∞ obtenu sont présentés sur les Figures 8 à 12.

Les résultats de simulation montrent que le correcteur synthétisé contrôle par-
faitement le mouvement de la plate-forme en position et oreintation ainsi que la
moyenne des tensions des câbles toute et en rejetant les perturbations en amortis-
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Figure 6: Le schéma de synthèse à quatre blocs.
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Figure 7: Réponse fréquentielle de la boucle fermée avec les gabarits fréquentiels
(pointillé) avec schéma de synthèse H∞ à quatre blocs.

sant les oscillations produites par la flexibilité des câbles (la fléxibilité des cables est
montrée dans la Figure (12)).

Organisation de la thèse
Après une introduction générale, les différents chapitres de cette thèse sont présentés
comme suit :

• Le chapitre 1 est consacré à l’état de l’art des différents travaux ayant étudié
les robots parallèles à câble. Dans un premier temps, les différentes approches
envisagées pour modéliser ces robots sont rapportées. Puis, la’état de l’art
s’attache également à présenter les travaux dédiés au contrôle de ces robots
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Figure 9: Trajectoires d’orientation de la plate-forme pour le contrôle H∞ avec la
synthèse à quatre blocs.

en termes de gestion de la tension des câbles et de positionnement de la plate-
forme.

• Le chapitre 2 est consacré à la modélisation dynamique des robots à câbles
rectilignes en basant sur l’architecture du prototype INCA. Ce modèle permet
d’ajuster la loi de commande PID et d’évaluer l’espace de travail.

• Le chapitre 3 présente la forme plus complexe du modèle dynamique qui prend
en compte les flexibilités du câble. La linéarisation de ce dernier est calculée
algébriquement pour obtenir un modèle convenable pour le contrôle H∞.

• Le chapitre 4 présente la méthodologie de synthèse H∞. Commençant par
une brève présentation des outils mathématiques nécessaires pour effectuer la
synthèse H∞, le chapitre met également en évidence les différentes approches
pour calculer le contrôleur H∞.
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Figure 10: Suivi et erreur des trajectoires xp et yp avec correcteur H∞ avec la
synthèse à quatre blocs.
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Figure 11: Tensions des câbles et tension moyenne de référence avec la synthèse H∞.

• La dernière partie 4.7 est la conclusion à tirer de ce travail et les perspectives
envisagées pour accomplir des travaux futurs.
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General introduction

Context and research problem

The idea and history of robotics date back to the ancient world, but the first appear-
ance of the word robot dates back to Czech writer Karl Chapek’s play "Rossum’s
Universal Robots" (R.U.R) published in 1920, where the term was invented by his
brother Josef from the Czech word "robota", meaning work or serfdom.

During the second industrial revolution, the ability of structural engineering to
control electricity was developed so that small motors could power machines. The
first uses of modern robots were in factories as industrial robots. In 1954, George
Devol applied for a patent for the manufacture of a robotic arm, which was granted in
1961. In cooperation with Joseph Engelberg, George opened a company to produce
robots under Unimation, which means movement, in 1956. The created robots were
based on the basic model of George Devol and these robots were called programmed
transport machines at that time because their function was to transport objects
from one place to another. Victor Scheinman invented the first articulated robotic
arm consisting of six rotating joints at Stanford University in 1969. This invention
enabled the use of robots in more complex applications such as welding and assembly
operations. Over the years, several categories of robots have been created based on
the type of their structures, their articulation, and their workspace.

Parallel manipulators were introduced at the end of the 1970s and revolution-
ized many industrial sectors. These manipulators are characterized by a parallel
arrangement of motors and rigid segments attached to a platform. Gough-Stewart
architecture is the most common parallel robot architecture (Jianjun et al. (2013)).

In recent years, a new category of parallel robots has appeared, called the cable-
driven parallel robot (CDPRs), where cables replace rigid links. A parallel cable
robot is equipped with a platform (or an end-effector) connected to a base through
cables, with which it is possible to move the platform by modifying its length. This
particular architecture combines parallel robots and cables’ properties, which leads
to efficient mechanisms.

These robots have many interesting features, such as a high payload/weight ra-
tio (Albus et al. (1992)), light structures with low inertia of movement, and a large
workspace as presented reported by Cone (1985). As the actuators in these robots
are attached to the fixed robot base, the mass, and inertia of the moving platform
are reduced, making this type of robot perfect for use in high-speed applications
(Kawamura et al. (1995)).
The main problems that have been encountered when studying the CDPRs are the
physical nature of the cables that allow producing only unilateral efforts. The cables
can only exert a pulling force and must therefore be maintained under a positive
tension during operation. Moreover, the cables are flexible, which introduces trans-
verse vibrations that may cause inaccuracy and delay the platform’s positioning. It
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is therefore necessary to attenuate these vibrations, to reach satisfying performance.
Furthermore, by increasing the bandwidth of CDPRs, the classic controllers based
on a straight-line segments cable robot model become less efficient and no longer
provide the desired performances.

Thesis objectives

In this thesis, two main objectives are explored: first, a systematic analysis of the
modeling, simulation, and synthesis of differential-algebraic equation models (DAE),
and second, overcoming the problem of cable flexibility by controlling the platform
movement while ensuring damping. Because of the complexities involved in the
synthesis of DAE models, the first objective did not result in a contribution, whereas
the second objective led to a scientific contribution. This contribution is achieved in
two steps: modeling the flexibility of the system and improving its damping using
a synthesis approach.

• Modeling of cable’s flexibility

In the cable robots modeling literature, different hypotheses have been taken
into account. In this thesis, we modeled the flexibility of the cables consid-
ering the assumed mode approach and we contribute to extending the model
presented by Ayala Cuevas et al. (2017) to obtain a 2D dynamic model with 3-
DOF using the Euler-Lagrange formalism. This obtained model is a non-linear
DAE model.

As the control purpose in this thesis is to synthesize a linear controller, then
a linearization of the non-linear obtained dynamic model is paramount. In
this thesis, we present two approaches to linearize the DAE model which did
not come to fruition due to the non-controllability and non-observability of
the obtained linear model. Then, the dynamic model has been transformed
into an ordinary differential equation (ODE) model to avoid the dependency
between variables that cause the non-controllability and the non-observability.

• H∞ synthesis

The control of the cable robots is generally performed through two steps:
controlling the platform’s position and managing the cables’ tensions. Most
often, these two steps are performed separately. The scientific contribution
of this thesis is to develop an H∞ synthesis scheme for a 3DOFs planar cable
robot considering cable flexibility. This scheme synthesizes an H∞ controller
that manages both the mean tension of the cables and also the pose of the
platform.

Thesis organisation

After this general introduction, the different chapters in this thesis are presented as
follows:

• Chapter 1 devotes to the state-of-the-art of various works that studied cable-
driven parallel robots. First, the different approaches considered for modeling
these robots are reported. Then, since the model of the studied cable robot in
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this thesis considers flexibility, the approaches for modeling the cable’s flexi-
bility are detailed. The state-of-the-art also focuses on presenting the works
dedicate to the control of these robots in terms of cable tension management
and platform positioning.

• Chapter 2 dedicates to the modeling of parallel straight-line segments cable
robots. First, we present in detail the description of the robot prototype
that was considered for the experimental study. The robot prototype is the
INCA prototype developed by the Haption company. The robot prototype is
presented as it served as a set-up for the development and validation of the
modeling approaches. Then, based on the same architecture of the prototype,
we propose a dynamic model of a planar parallel robot with straight-line seg-
ments using the Euler-Lagrange formalism. In addition, it is used to adjust
the PID control law and to evaluate the workspace.

• Chapter 3 presents the more complex form of the dynamic model that takes
into account the cable’s flexibilities. The assumed mode approach is used to
model the flexibility and the Euler-Lagrange formalism is used to obtain the
DAE dynamic model with 4 cables and 3DOFs. The geometry of the model is
validated experimentally by considering a video obtained during the operation
of the INCA cable robot prototype. A contribution to the transformation of
the DAE model into an ODE model by reducing the geometric constraints is
presented in this chapter. The linearization of this latter is calculated alge-
braically to obtain a suitable model for the H∞ control.

• Chapter 4 presents the H∞ synthesis methodology. Starting with a brief pre-
sentation of the mathematical tools required to perform the H∞ synthesis, the
chapter highlights also the different approaches to calculate the H∞ controller.
This chapter contributes to present in detail an H∞ synthesis methodology,
where we tried different H∞ synthesis schemes from two-block scheme up to
four-block scheme to chose the suitable for better trajectory tracking and dis-
turbance rejection. The obtain H∞ controller manages the mean tension of
cables and the 3DOFs of the platform ((x − y) translation and orientation).
In addition, the results of the frequency response and the simulation of the
closed-loop system controlled with the obtained H∞ controller are detailed
and discussed. The H∞ obtained controller has not yet been validated exper-
imentally.

• Last part 4.7 is the conclusion to draw from this work and the perspectives
envisaged to accomplish in future work.

14





Chapter 1

Literature review on cable robots

1.1 Introduction
In recent years, the CDPRs have played an increasingly important role in the re-
search sector, as well as in industry, where they are used for a large range of appli-
cations. Several approaches in the literature have been proposed and studied in the
design, the modeling, and control of CDPRs.

The purpose of this chapter is to present a general overview of the description of
the CDPRs, their classification by architecture, their applications and their advan-
tages and disadvantages. The current research and problems that face the modeling,
control, design and analysis of the workspace of the CDPRs are also detailed.

1.2 Rigid-link serial and parallel robots
Based on their structure, two types of robot architectures can be distinguished:
serial robots and parallel robots.

1.2.1 Serial robots

Serial manipulators, also known as robotic arms, are ubiquitous in industry and have
the shape of a human arm. These mechanisms are generally made up of rigid links
connected by actuated revolute or prismatic joints that provide the end-effector with
a certain mobility and a given number of degrees of freedom (DOF). Even though
this type of robot is the most studied and used in industry, serial manipulators have
several shortcomings such as :

• A limited precision can be caused by the accumulation of errors from link to
link.

• A low ratio of load carrying capacity over its own weight result in the need to
have bulky and powerful actuators to sustain both weight and dynamic forces
of successive links and of the end-effector.

• A low stiffness caused by the open kinematic structure.

Among typical examples of robots with this architecture are the SCARA assem-
bly robot used for pick and place tasks (Figure (1.1a)) or collaborative robots used
in close interaction with a human operator (Figure (1.1b)).
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(a) FANUC SR-3iA SCARA robot
(source: fanuc.eu)

(b) KUKA LBR iiwa cobot (source:
kuka-robotics.com)

Figure 1.1: Serial robots (Cobot and SCARA robot)

1.2.2 Rigid-link parallel robots

Rigid-link parallel robots can be described as closed kinematic chain mechanisms
consisting of several segments (independent kinematic chains) attached to a base
and motorized to support an end-effector or a platform as formulated by Merlet
(2012). Thanks to the presence of multiple kinematic chains attached to the base,
good load distribution and platform precision is achieved, which is harder to obtain
using serial robots. In addition, parallel robots can be operated at high speed but
generally have a smaller workspace. These robots can be used as motion simulators
or precise positioning devices. The Stewart platform in Figure (1.2a) and the Delta
robot in Figure (1.2b) illustrate the concept of parallel robot.

(a) Stewart platform (Jianjun et al.
(2013))

(b) Delta robot (Opl et al. (2012))

Figure 1.2: Parallel robots (Stewart platform and Delta robot)

17



1.3 Cable-driven parallel robots description
Cable-driven parallel robots are a particular variant of parallel robots where cables
replace the rigid-link chains 1 (see Figure 1.3). Each cable connects the base to an
attachment point on the movable platform (end-effector). The actuators generally
consist of motors coupled to drums to store the cables and are often equipped with
deflection pulleys for guiding the cables. By rotating the drums, it is possible to
unwind and rewind the cables and then change the position and the orientation of
the platform. A cable is a unidirectional transmission element which can only act on
the platform in traction (produces only positive tension). Generally, the actuators
and the cable deflection pulleys are fixed to the base.

Figure 1.3: Elements of cable-driven parallel robot.

A cable parallel robot’s geometry and setup are determined by the choice of the
platform and the form of the robot base as well as the place of the attachment
points and of the output points (see the cable robot attached to the aerostat BOB
in Figure (1.4a) and CAREX prototype in Figure (1.4b)), by the number of cables
and their arrangement (suspended and non-suspended CDPRs) and also by number
of the degrees of freedom of the platform movement.

1.3.1 Classifications

Suspended and non-suspended CDPR

Two kinds of CDPRs can be reviewed according to the number of cables and how
they are arranged.

• The suspended CDPRs are robots where all cables are located above the plat-
form and the equilibrium is ensured by the gravity as virtual cable such as

1Landsberger and Sheridan are the first to replace the rigid-link of a Stewart platform with
cables in the work (Landsberger and Sheridan (1985)).
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(a) Aerostat with cable robot (Lambert
et al. (2007))

(b) CAREX prototype (Cui et al. (2016))

(c) The INCA 6D prototype (d) The The MARIONET-CRANE
prototype (Merlet and Daney (2010))

Figure 1.4: Cable robot applications

the FAST robot in Figure (1.5a) (Sai et al. (2018)) and CoGiRo robot (with 8
cables and 6 DOFs) in Figure (1.5b) (Gouttefarde et al. (2007)). The robots
with this geometry can carry a heavy load charge and the cables are less likely
to interfere with other objects in the workspace. However, these robots have
a low stiffness along the vertical direction which makes them very sensitive to
external disturbances that cause instability and vibrations. In addition, their
ability to generate acceleration is limited.

• The non-suspended CDPRs are robots where at least one cable is located below
the platform such as IPAnema robot in Figure (1.6a) (Pott et al. (2013)) and
the horizontal planar cable robots in Figure (1.6b) (Bayani et al. (2016)) in
which the gravity has no effect on the equilibrium of the platform. For these
robots, the internal cable forces are increased which implies good stiffness
and accuracy of platform positioning. However, the construction costs can
be increased due to the use of powerful motors to ensure this rise in cable
tensions.

19



(a) The FAST (Sai et al. (2018))

(b) The CoGiRo robot (source:
www.lirmm.fr/cogiro)

(c) The Laval university
prototype (Gosselin (2013))

Figure 1.5: Suspended cable robots

(a) IPAnema robot (Pott et al. (2013)) (b) Horizontal planar robot (Bayani
et al. (2016))

Figure 1.6: Non-suspended cable robots

Redundant/ Non-redundant actuated CDPRs

The actuation redundancy c is defined based on the number of cables n and the
degrees of freedom d of the platform as c = n − d. The CDPRs are classified
according to their actuation redundancy as outlined below:

• The redundant actuated CDPRs configuration requires more cables than de-
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grees of freedom of the platform (n ≥ d+1), with this configuration the robot
can generate forces in all directions. In this configuration, in general, the pose
of the platform is entirely defined by the lengths of the cables. CDPRs in
this case are redundant robots with output points located above and below
the platform. Non-suspended robots are an example of this configuration such
as IPAnema robot (with 8 cables and 6 DOFs) in Figure (1.6a) (Pott et al.
(2013)) and SkyCam robot (with 4 cables and 3 DOFs) 2. The redundancy
occurs when adding a cable which improves stiffness, positioning accuracy
and safety and can help singularity avoidance which makes these robots well
suited for applications requiring high speed and/or accelerations. However,
this configuration increases the risk of cable collision.

• In the case of non-redundant actuated CDPRs configuration (n ≤ d), robots
can generate forces only in specific directions. the pose of the platform is not
completely defined by the lengths of the cables in the case where we have
a less number of cables than degrees of freedom (n < d). A preliminary
geometrico-static study is proposed by Carricato and Merlet (2010) for this
configuration of robots for a crane robot (with 6 DOFs and a number of cables
2 ≤ n ≤ 5) and by Mishra and Caro (2021) for a spatial CDPR (with 4 cables
and 6 DOFs). The suspended robots are an example of this configuration
(for instance see the Laval university prototype (with 3 cables and 3 DOFs) in
Figure (1.5c)) (Gosselin (2013)) and the Fast robot (with 6 cables and 6 DOFs)
in Figure (1.5a) (Sai et al. (2018)). The suspended CDPRs are suitable for
pick and place applications due to their capacity to transport heavy charges
as presented by Belzile et al. (2020).

1.3.2 Advantages and disadvantages

Advantages

CDPRs have several interesting advantages due to their cable-based design by over-
coming the drawback of rigid-link parallel robots:

• A cable is an easily stored mechanical element with little clutter, reducing
interference risks and allowing a clear view of the workspace.

• Due to the low masses and inertia of their kinematic chains, CDPRs can move
with higher dynamics.

• Low cost of construction and maintenance.

• A large workspace ranging in size from one meter to hundreds of meters and
the ability to work in an encumbered environment.

• A high payload capability for cable compared to robot mass.

• They are easily transportable and reconfigurable due to their simple structure.

• The lightness of the cables.
2http://www.skycam.tv/.
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Disadvantages

Despite all these attractive benefits, the use of cables poses some challenges:

• The workspace is limited by the unilateral actuation (the cables can only
produce traction forces in the direction of the cable), by the maximum and
minimum cable tensions, and by the collisions of the cables with the platform,
or with the environment.

• Cables are deformable continua which leads to a more complex behavior.

• Cable self-collisions add complexity to the path planning of the moving plat-
form.

Despite these disadvantages which create specific problems during the design and
control of the CDPRs, many applications of these robots highlight their particular
advantages.

1.3.3 Applications

The numerous advantages of cable-driven parallel robots make them popular in
a wide range of applications, whether in research or industry. The following are
examples of some applications:

• The characteristics of CDPRs make them particularly suitable for heavy ob-
ject handling and high dynamics application. For example, the NIST
ROBOCRANE with 6 cables and 6 DOFs presented by Albus et al. (1992) can
lift and position objects or power tools weighing up to 1 ton suspended from a
conventional crane. The CoGiRo robot which is a highly dynamic robot with
a large workspace (15 meters long, 11 meters wide, and 6 meters high) has the
capacity to lift loads of 500kg (CoG). Furthermore, the industrial two versions
of the IPANEMA that are used for medium to large-scale inspection, handling,
and assembly operations (Figure (1.6a) are very appropriate for high velocity
and/or acceleration applications. In addition, the FALCON robot can achieve
a maximum speed of 13 m/s and is used for ultrahigh speed applications as
presented by Kawamura et al. (1995).

• The lightness and flexibility of the cable robots have allowed their use in neu-
rorehabilitation applications, whether to identify and optimize human move-
ments or for rehabilitation tasks. For example, cable-driven arm exoskeleton
CAREX (Figure (1.4b), the leg rehabilitation system by Homma et al. (2003),
and MARIONET-REHAB by Merlet (2010) that is used during rehabilitation
tasks to measure the human joint motion.

• The structure of CDPRs has also allowed them to be used in aeronautical and
astronautical applications. By suspending an airplane model in a wind tun-
nel, the WDPSS-8 robot by Yangwen et al. (2010) simulates the free flight of
airplanes and studies aerodynamic behavior. A CDPR has been used by Yiğit
et al. (2021) to suspend an omnidirectional aerial manipulator by a spring.
For an aeronautical application, the work developed by Mankala et al. (2006)
presented an MXER-type tether system that proposed to transfer payloads
from low-energy orbits to higher-energy orbits using propellant-free thrust.
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• The large workspace of the CDPRs made them eligible to move sensors or cam-
eras for metrology applications. For example, the SkyCam robot 3 designed
by August Design Company is used to carry a camera in a large stadium for
live transmission, and the 6 cable robot presented by Deschenes et al. (2007)
that manipulates accurately a camera to capture images along hemispheric
trajectories. In addition, the giant FAST prototype with a 500 meters cable
length presented in Figure (1.5a) is built for the orientation of radio telescope
receivers while the multi-tethered system illustrated in Figure (1.4a) is used
for positioning an aerostat.

• Having the ability to be transported and reconfigured, CDPRs can be easily
installed on natural disaster sites for search and rescue operations. For
instance, the proposed system by Bosscher et al. (2005) utilizes vehicles placed
around a disaster site to attach sensor equipment to the cable robot, which
scans the area for victims as well as the MARIONET-CRANE in Figure (1.4d)
(Merlet and Daney (2010)) that is equipped with a thermal camera that can
locate a body from more than fifty meters away.

• A CDPR is well suited for haptic applications that offer force feedback to
the user by exploring a virtual remote environment, where the end-effector is
generally a joystick. These include the various generations of SPIDAR robots
proposed by (Chamaret et al. (2009), Poitrimol and Igarashi (2020)) for ma-
nipulating virtual objects or for manipulating virtual simulators of movements
as presented by Perreault et al. (2010). Furthermore, the cable robot proto-
type INCA 6D that was developed by the company Haption and installed at
the ICube laboratory in Strasbourg (see Figure (1.4c)).

• CDPRs have also been considered for construction application. For instance,
the robots presented by (Barnett and Gosselin (2015), Izard et al. (2017),
Chawla et al. (2021) ) which are dedicated to the 3D printing.

1.4 Current research and problematics
The disadvantages stated on CDPRs presented in the general introduction and in
section (1.3.2) make their study even more complex. The last decades have seen
significant progress in research to take into account these technical difficulties on
CDPRs. Several approaches in modeling, control, and workspace analysis and design
have been presented in the literature and this section briefly discusses these recent
works on CDPRs.

1.4.1 Modeling

It is common to ignore the cable behavior when modeling cable-driven parallel
robots. Generally, a simplistic modeling approach is considered where the cables
are modeled as inextensible rigid straight-line segments with neglected mass in
which these segments connect the exit points to the platform such as presented
by (Williams II and Gallina (2003), Pham et al. (2009), Filipovic et al. (2014)).

3http://www.skycam.tv/.
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In reality, the cables can only apply tensile force to the platform and are not
rigid links. Furthermore, for large workspace applications and under the action of
gravity, the cables are subject to deformations due to their length and weight. As a
result of these deformations, the platform cannot be precisely positioned. Then, the
simplifying assumption of straight and inextensible cables should be reconsidered
due to the fact that the dynamics are very fast and the weight of the cables is not
negligible compared to the mass of the platform. In some studies, as presented in
the following, these deformations and the cable’s elasticity were studied.

The force applied to the end of cables can extend it. Then, the cables have been
modeled as massless virtual springs with linear stiffness by Weber et al. (2014), with
non-linear stiffness by Kawamura et al. (1995), or as tension and damping springs
by Bedoustani et al. (2008). Furthermore, the work presented by Sugahara et al.
(2022) considers the effect of the viscoelasticity of a synthetic fiber cable.

Some authors consider the mass of cables that introduce the sagging effect and
present a static study such as in the works (Kozak et al. (2006), Riehl et al. (2009),
Arsenault (2013), Ottaviano et al. (2015)), and also the work of Gouttefarde et al.
(2012) that proposes a simplified study to this model. In addition, a dynamic analy-
sis is proposed by (Yuan et al. (2015a), Yuan et al. (2015b)) considering the dynamic
stiffness matrix method. Note that the Catenary elastic model that describes the
cable sagging was considered first in the domain of civil engineering to construct the
cable-stayed bridges as reported by Irvine (1981). Unlike the previously proposed
approach, dynamic modeling considering inextensible cables with varying masses
was presented by Aref et al. (2008). A stiffness analysis for massless virtual spring
cables was presented by (Suilu et al. (2012), Surdilovic et al. (2013)).

In order to take into account the transverse vibrations, the cables are discretized
as finite rigid segments interconnected by ball joints including small stiffness and
damping effects by Collard et al. (2011), where several models with one to ten
segments per cable were compared regarding their static equilibria, their elevated
platform behaviors, and their eigen frequencies. In the work of Du et al. (2012) the
time-varying cable lengths were discretized as elastic segments and in the work of
Du et al. (2014) the finite element method was extended to include the dynamic
behavior of the cables. On the other hand, the cables were considered as particular
cases of flexible segments modeled using the assumed mode approach as sums of
contributions of a given base approximating the shape of flexibility. Considering
this approach, the flexible cable dynamic models were driven using the Lagrange
formalism by Ayala Cuevas et al. (2017) for 2DOF CDPR, by Godbole et al. (2019)
for 1DOF CDPR, and by Saadaoui et al. (2022a) for 3DOF CDPR. Furthermore,
the dynamic model was driven by Du and Agrawal (2015) using the Hamiltonian
principle for 6DOF. The previous works were considered polynomial and trigono-
metric function to represent the shapes of flexibility. The Cosserat beam theory
model was considered by Tempel et al. (2019) to formulate the deflection configu-
ration through higher-order Bézier curves for the case of elastic-flexible CDPR with
time-varying length. In addition to cable robots, this approach is also used to model
the soft robotics manipulators, as described by Boyer et al. (2020) and by Armanini
et al. (2023), where the dynamic models were obtained considering the Lagrangian
or Hamiltonian principle.

Based on the dynamic models presented in this section, different control ap-
proaches are synthesized as introduced in the next section.
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1.4.2 Control

The synthesis of the controller for CDPRs aims to track well the pose of the platform.
During this synthesis, the tensions of the cables must be monitored so that to remain
in a region of achievable tensions to reduce the vibrations and the deformations of
the cables and increase the stiffness of the mechanism. Then, the control of the
CDPRs is divided into two steps, the control of the platform’s position and the
management of the tensions of cables.

Distribution of cables tension

CDPR’s static and dynamic equilibrium is ensured by the cable’s tensions. These
tensions are determined by the motor torques and the external forces applied to
it. In the case of non-homogeneous distribution of cable tensions, these tensions
may approach the upper and lower limits, causing the cable to be damaged or
relaxed. CDPR control may be lost due to the cable’s relaxation which reduces the
platform’s stiffness. Using a tension distribution algorithm, we are able to control
the cable tension in order to avoid this problem. By identifying and tuning cable
tensions based on a given criterion, these algorithms can choose a solution among an
infinity of possible solutions of tensions that satisfy the criterion. In the case of cable
robots with actuation redundancy, solving the distribution of cables tension problem
presents a tension distribution algorithm that makes it possible to distribute the
tension of the cables while tracking accurately the platform’s trajectory is present
the work of Lafourcade (2004).

A direct calculation of cable tensions is possible in the case of simple actuation
redundancy (n = d+1), by proposing a simple calculation algorithm as in the work
by Bruckmann et al. (2006), or by determining an analytical solution to the problem
in the case of CDPR (with 7 cables and 6 DOFs) in the work of Fang et al. (2004).

The study of the distribution of cable tension is a bit more complex in the case
of multiple actuation redundancy (n > d+1). In this case, two different approaches
can be used:

• Iterative algorithms: these methods formulate a constrained optimization
problem to choose an optimal admissible tension vector while minimizing a
criteria which is in general the norm of the cable tension vector in order to
minimize the energy consumption of the actuators. An iterative algorithm with
linear criteria solved by linear programming while minimizing the 1−norm as
presented by Vafaei et al. (2010) or while minimizing the∞-norm as presented
by Gosselin and Grenier (2010). These methods are relatively simple but do
not ensure the continuity of the tensions in the cables. Other methods with
quadratic criteria are solved by quadratic programming, generally minimizing
the 2−norm of the vector of the tensions of the cables as in the work of Agahi
and Notash (2009). These methods ensure the continuity of the tensions in
the cables.

• Non-iterative algorithms: these methods are considered to improve the
problem of calculation time of the iterative approach with quadratic program-
ming. Among these methods, we can cite the one based on the projection
technique proposed by (Pott et al. (2009)) which calculates an analytical so-
lution by the projection of a desired tension belonging to the set of feasible
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tensions. Another non-iterative method proposed by Mikelsons et al. (2008)
is based on the construction of the polytope of admissible solutions by deter-
mining the vertices of this polytope.

Position and force control

The control strategies have been implemented to manage the forces applied by the
platform in contact with an environment and/or manage the position trajectory of
this platform.

For the force control, we mention, the admittance control law coupled with a
closed-loop velocity controller proposed by Fortin-Côté et al. (2014) for the haptic
interfaces based on cable-driven parallel mechanisms by introducing adaptations for
smooth surfaces and sharp edges.

The aim of the hybrid position-force control is to apply process forces in a pro-
grammable direction to a surface while the movement perpendicular to the force
vector is position controlled as formulated by Kraus et al. (2015). For instance, this
hybrid control has been applied in the case of the 9-cable-driven parallel Mechanism
presented by Yi et al. (2019) to adjust the cable force precisely while controlling the
cable length, and in the case of redundant pneumatic muscles-cable-driven ankle
rehabilitation robot presented by Liu et al. (2022) to keep all pneumatic muscles
and cables in tension.

Several position control approaches have been reported in the literature. The
adaptive control was considered with CDPRs with uncertainties by Babaghasabha
et al. (2015) for a control strategy that does not require a measurement of the end-
effector acceleration and keeps all cables in tension, and by Harandi et al. (2021)
while separating the determinant and adjugate of Jacobian matrix to represent them
into a new regressor form. The model predictive control (MPC) proposed by Katliar
et al. (2017) to control the acceleration and angular velocity of cable robot-based
motion simulator and to improve the prediction of the reference trajectories of the
simulator, whereas linear variant MPC has been used by Xiang et al. (2020) to
plan dynamic transition trajectories to general periodic motions that extend be-
yond the static workspace of the mechanism for a 3DOFs cable-suspended parallel
robot. The work presented by Qian et al. (2021) proposes an adaptive sliding mode
impedance control (ASMIC) algorithm for a 6DOFs compliant upper limb rehabili-
tation robot (ULRR) driven by series elastic actuators (SEAs) to reduce impedance
error, whereas a second-order sliding mode control based on projection neural net-
work was designed by Rahmani et al. (2020) for position tracking of a parallel cable
robot to control torque generation. This approach was based on a synchronization
control strategy for a good disturbance rejection as presented in the work of Jia et al.
(2020). A kinematic approach for the control-based on a cascaded architecture has
been presented by Chellal et al. (2015) to ensure an accurate end-effector positioning
and management of the cable’s tension of parallel cable robot with 6DOFs.

Some position control strategies have been implemented for the CDPRs to re-
duce the vibration and properly track the trajectory of the platform and reject the
disturbance. The work presented by Yousefzadeh and Tourajizadeh (2017) proposed
an approach that considers only the feedback from the joints to reduce vibration in
the case of a 6DOFs cable-suspended parallel robot with elastic cables, in addition,
a filtration method is employed to prevent excitation of natural modes. A model
predictive control was designed by Khayour et al. (2020) to reject the vibration on
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elastic cable-driven parallel robots by computing the control law and allocating the
control signals to the available actuators by assigning their binary on-off states. A
neuro-fuzzy intelligent control algorithm was designed by Ahouee et al. (2017) to
better detection of reference routes and model in simulation a 3DOFs planar CDPRs
with elastic cables. TheH∞ control strategy is known for their ability to manage well
flexibility. Thus, the H∞ based controller have been designed for flexible links by
Farruggio and Menini (2000) and by Yazdanpanah (1997). Then, this strategy has
been extended in the case of CDPRs, as the work presented by Chellal et al. (2017)
to limit the inappropriate effects of cable flexibility for 6DOFs CDPRs. The H∞
control strategy has been considered also in other robotic applications as presented
by Zasadzinski et al. (1997) for its ability to produce reduced-order controllers.

The control in the joint space is performed considering the motor position or cable
length references using the inverse geometric model, such as in the work proposed
by Ming and Toshiro (2004) where a PD controller was designed and combined with
a non-linear term in the joint space to compensate the dynamics of the platform,
or as the work of Gholami et al. (2008) where a PD controller was designed with a
feed-forward loop to satisfy the required tracking performance.

The control in the operational space is performed by estimating the current pose
of the platform from the robot measurements of the motor positions, such as a
design of a PD controller with two feed-forward loops in the operational and joint
space allowing the separate compensation of the dynamics of the platform and the
actuators as presented by Lamaury and Gouttefarde (2013).

1.4.3 Design and workspace analysis

In the CDPR literature, most considered CDPR prototypes were designed based on
intuition and experience, such as the Falcon robot presented by Kawamura et al.
(1995) and the giant robot LAR presented by Bouchard and Gosselin (2007). How-
ever, some design methods have been proposed for optimizing the geometry of CD-
PRs, taking as a criterion the reachable workspace as presented by Azizian and
Cardou (2012) or the capacity to generate forces as proposed by Perreault and Gos-
selin (2008).

The workspace of a parallel cable robot is defined by the set of poses where the
geometric constraints due to the maximum cables’ lengths and static constraints
that ensure positive cable tensions and the static and dynamic equilibrium of plat-
form must be satisfied as formulated by Chellal (2016). Several workspaces and
equilibrium conditions have been studied in the literature and they are described as
follows:

Wrench-closure workspace (WCW)

The WCW is an approach that is based on the static equilibrium of the platform.
The whole set of platform poses belongs to the WCW if the static equilibrium of
the platform is assured by positive cable tensions without any upper limits. For
example, a determination and analysis of the wrench-closure workspace of planar
parallel have been presented by Gouttefarde and Gosselin (2004) and by Gouttefarde
and Gosselin (2006) to determine the constant-orientation wrench-closure workspace
by means of a graphical representation of its boundary and to disclose the parts of
the reachable workspace which belong to the WCW, respectively.
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Wrench-feasible workspace (WFW)

This approach is based on the feasible static equilibrium of the platform. The WFW
is the set of all platform poses for which cables can balance any wrench among a
given set of wrenches that can be applied to the platform while cable tensions are
limited by given upper and lower limits. The lower Tmin and upper Tmax limits
of the cable tension are defined to avoid the relaxation and damage of the cables
respectively. For instance, Gouttefarde addressed the problem of the determination
and analysis of the WFW of n-degree-of-freedom parallel mechanisms in the works
(Gouttefarde et al. (2007), Gouttefarde et al. (2011)) by given an approximation of
a set of n-dimensional boxes such that each box of the set is fully included in the
WFW.

Static Equilibrium Workspace

The Static Feasible Workspace is a particular case of the WFW, where all poses of the
platform can be reached by compensating only its weight and without any external
wrench applied to it. For instance, the work presented by Alp and Agrawal (2002)
presents a static equilibrium analysis for a 6-cable-suspended parallel robot and the
work presented by Pusey et al. (2004) aims to tackle some aspects of the optimal
design of a 6DOFs cable robot by addressing the variations of the workspace volume
and the accuracy of the robot using different geometric configurations, different sizes,
and orientations of the moving platform.

Dynamic workspace

As it was reported by Barrette and Gosselin (2005), the dynamic workspace is defined
with the set of all poses and dynamic conditions (accelerations) for which all cables
are in positive tension. The work proposed by Gagliardini et al. (2018) presents a
more general definition of the dynamic feasible workspace (DFW) and, in the same
work, defined the Required Wrench Set (RWS) as the set of wrenches that cables
need to apply on the moving platform to achieve dynamic equilibrium.

1.5 Conclusion
An overview of the cable robot literature has been presented in this chapter. First,
we discussed the difference between serial and parallel robots and then we intro-
duced in detail the description of the cable-driven parallel robots. The classification
of these robots has been presented based on their geometry and their actuation re-
dundancy. Moreover, we mentioned the advantages and disadvantages of the CDPRs
and presented their different applications.

Additionally, several approaches for the modeling and the control of the CDPRs
have been reported in the literature. Furthermore, we have provided a description
of the different algorithms used for cable tension distribution and the analysis of the
workspace. In the next chapters (2 and 3), we present the different hypotheses and
approaches of the modeling that have been considered to solve the problematic in
this thesis.
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Chapter 2

Dynamic modeling of a straight-line
segments cable-driven parallel robots

2.1 Introduction
This chapter starts with a description of the hardware and software of the cable robot
prototype. This prototype is developed by the Haption company and is located in
the ICube laboratory. In its original version, the robot prototype includes 8 cables.
For our study we have attached the cables so as to obtain a planar robot with 4
cables. Having an experimental system served us as a basis for conceptualizing and
putting forward modeling hypotheses, as well as performing experimental tests to
geometrically validate the theoretical model afterward.

Several approaches and assumptions are considered and presented in the lit-
erature to model cable-driven parallel robots. This chapter presents a dynamic
modeling methodology for planar CDPRs with n cables using the Euler-Lagrange
formalism. The dynamic model was developed based on a simplistic modeling ap-
proach that assumes the cables are straight-line segments without mass. This mod-
eling hypothesis allows us to study and analyze the dynamics of CDPRs and it was
presented in this chapter in order to be used for the study of the reachability of the
workspace. Furthermore, this model is also considered for the design of PD and PID
controllers.

2.2 Experimental system description
The experimental system considered for the study in this thesis is an INCA prototype
with a planar geometry. The Haption company1 developed the INCA prototype for
manipulating objects in virtual environments. This prototype is a force feedback
haptic interface driven by cables and it was inspired by work of Hirata and Sato
(1992): the SPIDAR. It owns a large workspace and high forces and is considered
for the following applications: ergonomic studies, accessibility studies, and assembly
simulation.

During this thesis, the INCA 6D prototype is retrofitted to a horizontal plane
robot with four cables and a platform to address handling problems (see Figure
2.1). In this section, we describe the hardware and software architecture of the
planar INCA robot.

1https://www.haption.com/fr.
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Figure 2.1: The INCA plane robot with 4 cables and platform.

The INCA 6D robot (see Figure 1.4c) consists of a cubic base of about 2.800 m
side with 8 cables to move the platform and 8 other cables that are connected to the
return springs to ensure pre-tension in the cables attached to the platform. In the
case of our study for a planar robot, only 4 displacement cables are used to move
the platform.

2.2.1 Platform

A square platform of 20 cm and weighing 130 g is attached by 4 cables and is
located in the center of the workspace (see Figure 2.2), the platform is equipped
with 4 markers.

Figure 2.2: The platform of the INCA
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2.2.2 Actuators

In the case of the planar robot, 4 cables are fixed at the 4 vertices of the cubic base
by the mean of the output points. Each outpoints is connected to an actuator (see
Figure 2.3) that consists of a DC motor of type Maxon 144877, to mechanize two
kinds of drums: the winch drum that stores the cable driven towards the platform
and the coaxial tension winch drum that stores another cable driven towards its free
end to a linear spring, while the other end of the spring remains fixed to the base.

(1)

(3)

(9)(1)

(7)

(5)

(4)

(4)

(2)

(2)

(5)

(7)

(6)

(8)

Figure 2.3: Actuator scheme of the INCA robot prototype.

2.2.3 Proprioceptive sensors

Two kinds of proprioceptive sensors are installed for the intrinsic measurement: four
incremental optical encoders of type GIO 24 with 4× 3600 pulses per revolution to
measure the angular positions of the DC motors and four current sensors to measure
the currents absorbed by the motors.

2.2.4 Computers

The real-time control architecture of the INCA required the use of three calculators
(see Figure (2.4)):

• Vicon computer: is a Dell Inspiron computer that runs under a Windows 10
operating system, in this computer is installed the Vicon tracker software for
tracking the platform’s movement as will be detailed in the next section.

• Control computer: is a Dell Inspiron computer also where the Simulink is
installed to implement the controller.

• INCA computer: is an Intel Pentium M 1.6 GHz that runs under a Linux-
Xenomai real-time operating system. This computer contains An AXT power
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supply, a MEANWELL SP300−48 power supply, a CPU NEXCOM EBX 562
card, a TOR 01LEMS010 card, and two industrial PCI cards (01LEMS015).
All these cards are embedded in the computer by Haption to drive the motors.

Vicon 
tracker 

 vrpn server 

Bonita system (cameras)

Pose of the  
platform 

 vrpn spit server 

I/O sockets
block (RPIt)

I/O sockets
block (RPIt)

Simulink model

inca

Vicon

INCA 
GUI

   INCA 
controller 

rpit socket server 

INCA computer:
192.168.10.142

incremental 
   encoder 

 motor 
current 

Control computer:
 192.168.10.143

Vicon computer:
  192.168.10.1

Figure 2.4: Real-time control architecture of the INCA.

2.2.5 Bonita motion capture system

The Bonita motion capture system is composed of six exteroceptive sensors that are
used for extrinsic measurement. These sensors are infrared cameras with a maximum
image acquisition frequency of 240 Hz with a VGA resolution to offer a good capture
accuracy even for the movement of fast objects. The system is fixed to the top of the
base to measure the platform’s pose, while the platform is equipped with markers
that reflect the radiation emitted by infrared diodes of cameras (see Figure (2.5)).

The tracking of the platform’s movement is performed by the Vicon tracker
software 2. This software is used by the six infrared cameras (Bonita system) to
stream the precise marker’s motion (by detecting the reflection of the markers that
are made of reflective material) and also to construct the 3D pose.

To track the motion of a rigid body and for data streaming recording, we create
the object (the rigid body) with a fixed frame reference that we capture with the
cameras by arranging at least three markers asymmetrically.

After calibrating the object to be tracked, the pose of the object (the platform) is
then measured and subsequently made accessible to a second computer with a VRPN
(Virtual-Reality Peripheral Network) server running on the tracking software.

The time delay estimated between the start of the image acquisition with the
Bonita system and the availability of the platform pose measurement is 10.7 ± 0.7

2A software developed by the company Vicon version 5.
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(a) Bonita system placed in the INCA. (b) Infrared camera.

Figure 2.5: Bonita motion capture system.

ms as reported by Chellal (2016). The pose accuracy is estimated as 1.7± 0.4 mm
from the root mean square error in the images between the current position and
that estimated by the sensor system as reported by Chellal (2016).

2.2.6 Communication between the computers

The Vicon tracker software communicates with the INCA robot prototype (INCA
computer) directly via the local network through an I/O socket block rpit. The
closed-loop control can be implemented directly on Simulink which is installed on
the control computer. Simulink’s network requests are handled in the following two
phases (see Figure 2.4):

• Phase one: A local server (vrpn-rpit-server) runs on the local PC (control’s
computer) to communicate between the Vicon tracker (Vicon computer) and
the Simulink to recover the pose of the tracked object.

• Phase two: A network server (rpit-socket-server) runs on the INCA controller
computer associated with the real-time controller and responds to Simulink
requests (see the Simulink scheme in Figure (2.6)).

To model this INCA cable robot prototype, we considered its architecture and
applied the laws of physics to find the dynamic model that suits it. Based on this
architecture, we have proposed a dynamic model of a straight-line segments cable
parallel planar robot that is demonstrated in detail in the next section (2.3).

In order to verify the acquisition of the position by the Bonita system and also
to verify that we are on the plane, we have excited the prototype with currents on
the 4 motors so that the platform can follow a square trajectory. The results of the
pose measurements (6D) are shown in Figures (2.7, (2.8)). The results confirm the
hypothesis of the 3DOFs, the horizontal translation, as well as the two out-of-plane
orientations are quite negligible.
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Figure 2.7: Open-loop trajectories of the platform positions (x− y − z).
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Figure 2.8: Open-loop trajectories of the platform orientations about axis (x−y−z).

2.3 Simplified modeling
We first develop a simple model with the following modeling hypothesis: cables
are straight-line segments without mass, flexibility, and extensibility. Despite this
simplification, this modeling approach can be successfully used for studying the
reachable workspace of CDPRs operating in a two or three dimensions space as by
(Pusey et al. (2004), Chellal et al. (2017)).
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2.3.1 CDPR description

We consider a planar CDPR with n cables attached to a moving platform P , this
setup is illustrated in Figure (2.9) with n = 4 cables and it is inspired by system
experimental in Figure (2.1). The points Ai and Bi denote the proximal and distal
anchor points of each cable. These points’ positions are measured using a fixed
global reference frame Rg = (Og,xg,yg) and a reference frame Rp = (Op,x,y)
attached to the moving platform at its center of mass.

Figure 2.9: Schematic representation of a planar four straight-line segment cable
robot.

Figure 2.10: Working principle of a transmission unit for straight-line segment cable
i.

The figure 2.10 describes the working principle of a transmission unit. The DC
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motors rotate with an angle θi in both directions so that the cables can be unwound
and wound around a winch drum of radius r. The actuators exert a torques τi on
these winch drums. A second cable of total length l̃t is coiled on a coaxial tension
winch drum of radius rt and attached at its free end to a linear spring of stiffness
kt.

Based on the considered hypothesis, the cables are modeled as straight-line seg-
ments without mass, and their exit point, the Ai position, is considered fixed because
the relative size of the output pulley at this point is small compared to the overall
setup size. The CDPR is assumed to move in the horizontal plane. Therefore the
following assumptions holds: the cable’s tension is high enough so that the plat-
form remains in the plane then all off-plane movements are neglected, which implies
that gravity does not affect the movement on the plane. With an appropriate robot
construction, we can observe that when we fully unwind the cable linked to the
platform, then the pre-tension cable is also fully unwound, which means that we
will obtain:

l̃t =
rt
r
lt (2.1)

where lt is the total length of the cable i.

2.3.2 Position analysis

Considering the work in this thesis, the robot is planar, so the platform translates
only on the x− y plane and rotates about the z-axis with 3 DOFs. The kinematics
of the robot is the relationship between the pose of the platform X =

[
xp yp α

]T
and the joint coordinates, ie the actuator positions θ =

[
θ1 . . . θn

]T .
The position PAi

of the exit point Ai of the #i cable is a fixed position inRg. The
other end of the cable #i is attached to the platform at point Bi, and its position in
Rg is denoted PBi

. The length of the #i cable can be calculated by the Euclidean
norm li(X) = ∥li∥2 = ∥AiBi∥2 between the position of the attachment point PBi

and the position of the exit point PAi
as:

li(X) = ∥PBi
− PAi

∥2 =

∥∥∥∥∥∥∥Pp +
gRp(α)

pei︸ ︷︷ ︸
ei(α)

−PAi

∥∥∥∥∥∥∥
2

(2.2)

where ei(α) = Op Bi is the position of the point Bi in Rp, and can be calculated
using the fixed coordinates pei =

pOP Bi in Rp, and gRp(α) is the rotation matrix
represented as:

gRp(α) =

[
cos(α) −sin(α)
sin(α) cos(α)

]
(2.3)

in which the homogeneous coordinates of a vector v in a reference frame Rj being
denoted by jv.

The initial configuration of the platform X0 =
[
xp0 yp0 α0

]T chosen at the
center of the workspace, corresponds to the zero configuration of the actuators (θi0 =
0) with an initial unwounded cable lengths l(X0) =

[
l10 . . . ln0

]T .
The inverse kinematic model can be written as follows:
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θ(X) = − l(X)− l(X0)

r
(2.4)

where l(X) =
[
l1 . . . ln

]T .

2.3.3 Velocity analysis

The first-order kinematic model of the robot is described by the relationship between
the velocity of the platform Ẋ =

[
ẋp ẏp α̇

]T and the vector of the angular velocity
of the motors θ̇ =

[
θ̇1 . . . θ̇n

]T
.

The time derivative of equation (2.4) gives:

θ̇(X, Ẋ) = − l̇(X, Ẋ)

r
. (2.5)

Using the differentiation with respect to the time of the equation (2.2), the
equation (2.5) is expressed as:

θ̇(X, Ẋ) = −1

r
J Ẋ (2.6)

where the matrix J is the inverse Jacobian of dimension n× d, given by:

J(X) =


∂l1
∂xp

∂l1
∂yp

∂l1
∂α

...
...

...
∂ln
∂xp

∂ln
∂yp

∂ln
∂α

 (2.7)

in which d is the number of DOFs.

2.3.4 Force analysis

The external forces applied on the platform Fp =
[
fT
p cα

]T are due to the cables’
tension effect on the platform side. The force fp is exerted at the center of mass Op

of the platform, and the torque cα is exerted around this center of mass and they
are calculated in equilibrium as:

fp = −
n∑

i=1

l̂i Ti (2.8)

cα = −
n∑

i=1

(ei × l̂i)Ti (2.9)

where l̂i =
li
∥li∥2

is the unit vector in the direction of li.

Knowing that Ji =
[
l̂Ti (ei × l̂i)

T
]

is a row of the inverse Jacobian matrix as
reported by Merlet (2012), and using the equations (2.8) and (2.9) we can express
the forces Fp applied at the platform as a function of the vector of the tensions of
the cables T =

[
T1 , . . . , Tn

]T in the following matrix form as:

Fp = −J(X)T T (2.10)
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2.3.5 Dynamic modeling

We consider that the robot is composed of two subsystems represented by the plat-
form and the transmission unit that are connected by the cables. The dynamics of
each subsystem will first be established separately and then assembled to obtain the
dynamics of the global system.

Transmission unit dynamic modeling

In this section, we isolate the transmission unit, then the kinetic energy of the winch
drum and of the coaxial tension winch drum is calculated as follows:

Kwi
=

1

2
ji θ̇

2
i (2.11)

where ji is the drum inertia calculated using the wounded portion of the cable as:

ji = j0 + ρ (lt − li) r
2 + ρ (l̃t − l̃i) r

2
t (2.12)

where l̃i is the length of cable #i of the transmission unit, j0 is the inertia of the
drum and ρ is the cable mass per unit length.

Since θi =
l̃i
rt

and (li − lt) = −r θi and using equations (2.12) and (2.1), we can

express the equation (2.11) as follows:

Kwi
=

1

2

[
j0 + ρltr

2 +
ρ

r
(r3t − r3)li

]
θ̇2i (2.13)

The potential energy V associated with the conservative forces exerted by the
spring of each transmission unit can be expressed as:

Vi =
1

2
kt(l̃t − rt θi)

2 (i = 1, . . . , n). (2.14)

Knowing that (li − lt) = −r θi and using equations (2.1) and (2.14), then we obtain
the total potential energy associated with the conservative forces exerted by the
spring of the whole system as:

V (X) =
n∑

i=1

1

2
kt

(rt
r

)2

l2i . (2.15)

The applied external mechanical power to the transmission unit is represented
by the actuation torque τi, the elastic action exerted by the tension spring and the
positive tension force Ti exerted by the cable (see Figure 2.11). We assume that
the transmission of cable tension from the actuator side to the platform side can be
considered perfect (the tension on the platform side is identical to the tension on
the actuator side) without delays and losses.

The work-energy theorem is applied to the transmission unit i to determine the
tension force Ti of the cable #i as follows:

K̇wi
= −V̇ + τiθ̇i + Til̇i. (2.16)

Using the time derivative of the equations (2.13) and (2.15), we obtain:
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Figure 2.11: A global dynamic diagram of a 3 DOFs CDPR.

τi θ̇i+Ti l̇i−kt
rt
r
li l̇i−

1

2
ρ (r3−r3t ) θ̇

2
i θ̇i− (j0+ρltr

2+ρ (r3t −r3) θi) θ̇i θ̈i = 0. (2.17)

Since l̇i = −rθ̇i, l̈i = −rθ̈i, the expression of Ti can be calculated as:

Ti =
τi
r
+ kt

(rt
r

)2

li +

[
j0 + ρ

r3t
r
lt + ρ

r3 − r3t
r

(lt − li)

]
l̈i
r2

− ρ
r3 − r3t
3r3

l̇2i . (2.18)

Platform dynamic modeling

The cables are attached to the platform at the attachment points Bi, and each cable
#i acts on the platform with the tension force −T⃗i as presented in Figure (2.11).

Considering the three variables (xp, yp, α), we can express the generalized coor-
dinate vector as the pose of the platform q = X =

[
xp yp α

]T .
The kinetic energy of the platform is given by the following equation:

Kp =
1

2
m(ẋ2

P + ẏ2P ) +
1

2
jP α̇

2 (2.19)

in which m is the mass of the platform and jp is the inertia about its center of mass.

Global dynamic model

To obtain the global dynamic model we can use mechanic’s analytical methods such
as the Hamiltonian principle or the Lagrangian formalism (Goldstein et al. (2002)),
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which allows modeling the CDPR using a finite set q of generalized coordinates. Our
study uses Lagrangian formalism to determine the dynamic model. The development
of the dynamic model is based on the following considerations:

• The kinetic energy of the whole system platform and transmission unit can be
expressed as

K = Kp +
n∑

i=1

Kwi
(2.20)

Kinetic energy can be expressed in its quadratic form as follows:

K(q, q̇) =
1

2
q̇TMq̇ (2.21)

where M(q) = diag(M1,M2,M3) being the kinetic inertia matrix of the system.

• The generalized forces acting on the system are the wrench (force and torque)
corresponding to the cable tension acting on the platform that can be expressed
as:

Q = Qext = Fp. (2.22)

• The dynamic model is given by the Lagrangian formalism as follows:

d

dt

(
∂K

∂q̇j

)
− ∂K

∂qj
= Qj (j = 1, . . . , 3). (2.23)

The kinetic energy in equation (2.21) is quadratic in the velocity, then its time

partial derivative is calculated as:
∂K

∂q̇
= M(q)q̇, which gives us d

dt

∂K

∂q̇
=

M(q)q̈ + Ṁ(q)q̇. Afterward, for the whole set of equations, we find the model
matrix form as follows:

M(q)q̈ = Q+
∂K

∂q
− Ṁ q̇. (2.24)

in which Q =
[
Q1 . . . Qj

]T is the column matrix of generalized forces.

The dynamic model presented in (2.24), is an ordinary differential equation
model (ODE model) with a minimal parametrization q =

[
xp yp α

]T . A dif-
ferent approach of modeling is possible by considering a redundant parametrization
q =

[
li xp yp α

]T leads to a differential-algebraic equation model (DAE model)
with Lagrange multipliers. There is no preference between the ODE model or the
DAE model for modeling, due to the simplicity of the model with straight-line seg-
ments cable which makes obtaining algebraic expressions easy and possible for both
approaches.
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2.3.6 Cable tension distribution

In the case of a non-redundant actuated cable robot (n ≤ d), the mechanism admits
one feasible solution for the cable tension. This solution can be expressed according
to the equation in (2.10) as:

T = W−1(X)Fp (2.25)

where W (X) = −JT is the forces matrix assumed with full rank.
In the redundant actuated cable robot (n > d) case (which is the case of the

robot studied in this thesis), the cables are susceptible to control all the DOFs with
positive tensions. In this case, the mechanism admits an infinity of solutions that
can be written:

T = W+ Fp + η µ (2.26)

where W+ = W T (W W T )−1 is the Moore–Penrose pseudoinverse of the matrix W ,
η = null(W ) is a (n × d) matrix, and µ = [µ1, . . . , µd]

T is an arbitrary vector
(Gouttefarde et al. (2015)).

2.3.7 Reachability of the workspace and tuning of the attach-
ment points

The workspace analysis is a study that enables to determine of the reachability of
the workspace. Since we want to control both the orientation and the translation
of the platform, a study of the workspace reachability is necessary. The analysis
presented here seeks to choose the platform design (attachment points) that increases
the maneuverability in orientation after observing its weakness in the case of a
configuration (1) (see Figure 2.12), and also to ensure the platform’s stability during
movement because our platform floats in space which makes it subject to flip-out
off the x− y plane.

The study was carried out in three stages:

• Selection of different platform geometries (the cables are attached to different
attachment points).

• Evaluation of the possible external torque applied on the platform considering
only the position at the center of the workspace.

• Choice of the platform geometry with better manoeuvrability in orientation.

First, we consider four different geometries for a rectangular platform (changing
the cables attachment points location) to select the best geometry that offers us more
freedom in orientation (see Figure 2.12). These geometries are the most reported in
the planar parallel cable robot literature. Geometry (1) was considered to study a
horizontal planar robot by Bayani et al. (2016), Fattah and Sunil (2005) considered
geometry (2) to study a planar vertical cable robot, geometry (3) was used for the
case of KNTU planar robot by Babaghasabha et al. (2015), and the geometry (4)
was presented in the work of Williams II et al. (2003).

Then, we aim to determine the angle interval of α ensuring manoeuvrability,
(i.e. on what interval of α the robot will be able to deliver positive or negative
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(1) (2)

(3) (4)

Figure 2.12: Different scenarios for different cable attachment points locations.

external torque applied to the platform (the accessible torque range)). To achieve
this interval of α, we follow the Algorithm 1 for each geometry.

First, we limit ourselves to working in the center of the workspace (xp = 0, yp =
0), we vary α between −90o to +90o and for only two possible values of the torque
motors of either min or max (0.1 N.m or 1 N.m) we consider the equation (2.10) to
examine the obtained external torque cα calculated by the following equation:

cα = −
[
0 0 1

]
J(X)T T. (2.27)

input : Given a fixed position xp = 0, yp = 0, a two values (0.1 Nm or 1
Nm) of torques (τ1, τ2, τ2, τ4) and varied the orientation angle
α ∈ [−90o, 90o].

output: External torque applied on the platform Cα.

for α← −90 to +90 do
for τ1 ← 0.1 to 1 do

for τ2 ← 0.1 to 1 do
for τ3 ← 0.1 to 1 do

for τ4 ← 0.1 to 1 do
Using equation (2.27) to calculate cα;

end
end

end
end

end
Return the possible external torque applied on the platform cα.

Algorithm 1: Calculation of reachable workspace in orienta-
tion.
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The different geometries with different orientations that can perform each one of
them are illustrated in Table (2.1).

Maximum orientation
Geometry (1) Can perform orientation that do not exceed ±2.29o
Geometry (2) Can perform orientation up to ±30o
Geometry (3) Can perform orientation up to ±42.39o but the platform is unstable
Geometry (4) Can perform orientation up to ±85.94o but the platform is unstable

Table 2.1: The maximum orientation that the configurations in Figure (2.12) can
perform

From the results presented in the Table (2.1), we draw the following conclusions:

• The geometry (1) was not considered in our study, because of its limitation in
orientation.

• The geometry (2) is considered for our study because offers better manoeu-
vrability in orientation.

• The geometries (3) and (4) offer better maneuverability in orientation. How-
ever, they are not considered for our study because the platforms are not
stable during the movement and can flip out off the x− y plane. In addition,
for geometry (4), the cables are crossed leading to the cable/cable contact
problem. This problem can be avoided by placing cables in different plans or
by considering a low-friction cable material as reported by Williams II et al.
(2003) which is not possible in the case of our work given the existing robot
prototype.
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Figure 2.13: The external torque cα for different values of α for geometry (2).

Figure 2.13, presents the obtained applied torque cα for different values of α in
the case of the geometry (2). Each curve represents the obtained possible external
torque cα applied on the platform by varying the orientation α (for 100 possible
values between −90o and 90o) and by fixing each of the four motor torques at values
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of either 0.1 N.m or 1 N.m (for two possible values for each motor torque we get 16
curves = 42). By considering the geometry in (2) and for a specific square trajectory,
we defined the workspace reachability by calculating the possible orientation in a
different location in the workspace as illustrated by Figure 2.14. From these results,
we identify the approximate orientation interval that can be applied on a platform
as α = ±26.35o.

Figure 2.14: The platform’s possible orientation in different locations in the
workspace.

2.3.8 PD and PID controllers implementation

The aim of designing the PD or the PID controllers is to have standard controllers
used to highlight the advantages of the H∞ (studied in chapter 4) synthesized for
the cable robot model with flexibilities.

PD controller design

We considered the straight-line segments cable model presented in section (2.3.5) to
design the PD controller. Considering the equation (2.10), then the forces applied
on the platform can be written as:

Mmq̈ = −
1

r
JT (q) τ (2.28)

where Mm = diag(m,m, Jp).
The objective is to control the platform of the CDPR in position and orienta-

tion with the PD controller while ensuring positive cable tensions. The control is
performed by driving the winch motor’s torques (control signals) u in order that the
platform can track the imposed trajectories q∗ = (x∗

p, y
∗
p, α

∗). The control makes it
possible to converge q towards the reference q∗ using the closed-loop reference model
that is presented as:
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q̈ + Aa q̇ +Bb q = Bb q
∗. (2.29)

The matrices are given as: Aa = diag(2 ξ w0, 2 ξ w0, 2 ξ w00), Bb = diag(w2
0, w

2
0, w

2
00),

with ξ is the damping ratio and w0 and w00 are the natural frequencies that define
the position and orientation dynamics respectively.

Left multiplying the equation (2.29) by Mm, and using the equation (2.28), the
control u must satisfy the following equation:

Mm (Bb (q
∗ − q)− Aa q̇) = −

1

r
JT (q) τ. (2.30)

From equations (2.30) and (2.26), the control signal τ that ensures the platform
to follow the trajectories references q∗ is calculated as:

τ = −1

r
J+T (q)

uPD︷ ︸︸ ︷
(Mm Bb︸ ︷︷ ︸

Cp

(q∗ − q)−Mm Aa︸ ︷︷ ︸
Cd

q̇)+u1 (2.31)

where u1 ∈ ker(JT ) is a vector that ensures the cable’s tensions remain positive. The
PD control signal uPD is computed by choosing the proportional gain Cp = Mm Bb,
and the derivative gain Cd = Mm Aa.

PID controller design

The PID controller has been designed for the same objectives as the PD controller.
By considering the platform position and orientation reference signal q∗ and the

control signal u = τ , then the model is written as follows:

Mmq̈ = −
1

r
JT (q) τ. (2.32)

The objective is to design a PID controller with two degrees of freedom. The
used control law is written as:

u(t) = τ = Ci

∫ t

0

(q∗(τ)− q(τ)) dτ + Cp (b q
∗(t)− q(t))− Cd q̇(t). (2.33)

We choose b = 0 to ensure a continuous control in the presence of a step on the
reference. By replacing the control law expression u in the equation (2.32) and by
time deriving it, we obtain:

Mm
...
q (t) = −1

r
JT (q) (Ci (q

∗(t)− q(t))− Cp q̇(t)− Cd q̈(t)) (2.34)

then,

...
q (t)− 1

r
JT (q)M−1

m (Ci q(t) + Cp q̇(t) + Cd q̈(t)) = −
1

r
JT (q)M−1

m Ci q
∗(t). (2.35)

The closed-loop model in the equation (2.35) is of order three and possesses three
poles. By applying a Laplace transform, the characteristic equation of a model with
order three can be written, considering the poles, as:
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s3 + (p1 + p2 + p3)︸ ︷︷ ︸
z1

s2 + (p1 p2 + p2 p3 + p1 p3)︸ ︷︷ ︸
z2

s+ p1 p2 p3︸ ︷︷ ︸
z3

= 0. (2.36)

Then, the PID gains in the equation (2.35) can be obtained as: Cd = −1
r
JT (q)M−1

m Aa,
Cp = −1

r
JT (q)M−1

m Bb, and Ci = −1
r
JT (q)M−1

m Dd, where the matrices are given
as using the equation (2.36) as: Aa = diag(z1, z1, z1), Ba = diag(z2, z2, z2), and
Dd = diag(z3, z3, z3).

The value of the three poles (−p1,−p2,−p3) are to be chosen such that to ensure
the stability of the closed-loop system.

2.4 Conclusion
This chapter sets out the structure and the model of the system considered for the
study. First, a detailed description of the hardware and the software of the INCA
planar cable robot prototype was presented. Then, the model for planar CDPR with
three degrees of freedom was developed by considering n cables and integrating the
pre-tensioning system for more realistic modeling of the existing prototype INCA.
The dynamic modeling was performed based on the Euler-Lagrange formalism.

A simple hypothesis of modeling was taken into account in this chapter which
assumes that the cables are modeled as a straight-line segment. This model version
was used to study the workspace reachability in order to choose the geometry of the
platform’s attachment points, which offers us good maneuverability on orientation.
Therefore, this rigid cable model served as a basis to manage the cables’ tension
during the design of the PD and PID controllers.

The following chapter uses the same Euler-Lagrange formalism for the modeling
to obtain a more complex version of the dynamic model, which assumes that the
cables are flexible.
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Chapter 3

Dynamic modeling of a flexible
cable-driven parallel robots

3.1 Introduction
This chapter presents a more complete and complex version of the dynamic model
than the one presented in the chapter (2). This version takes into account the flexibil-
ity and the mass of cables where the flexibility has been modeled using the assumed
modes approach. Using the Euler-Lagrange formalism, a differential-algebraic equa-
tion model was obtained.

The H∞ synthesis requires first the linearization of the dynamic model, thus
two different linearization approaches of the DAE model have been applied. Nev-
ertheless, these approaches failed because they produced non-controllable and non-
observable linear models. Thus, a transformation of the DAE model into an ordinary
differential algebraic model has been performed, and the obtained model has been
linearized. This yields a linear model suitable for H∞ controller design.

The chapter also presents the steps we have followed to validate the geometric
flexible cable robot model proposed theoretically. The geometric validation of the
theoretical model was performed based on the data collected from a video of the
motion of cables of the INCA prototype.

3.2 Model with flexible cables
In a real-world application, the cables are not straight-line segments and are subject
to the forces exerted by their own weight and those applied to their extremities,
resulting in a phenomenon of flexibility also called deformation (see Figure 3.1).
Considering this flexibility and the mass of the cables in their modeling makes the
models more precise.

To begin with, we attempted to implement Du and Agrawal (2015) approach.
This approach was based on obtaining the 3D dynamic model using the Hamiltonian
principle and by modeling the flexibility of cables considering the assumed modes
approach with six flexibility modes. For this model, constraint violation stabilization
techniques have been employed to express the acceleration constraint as presented
by Baumgarte (1972). Following this model, we could not obtain an algebraic model
suitable for synthesis and simulation due to its complexity.

Afterward, we opted for the model where the dynamic model is obtained by con-
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sidering the same steps as the straight-line segments modeling (in section 3.2) using
the Lagrangian formalism. The exception is that to avoid the complexity of equa-
tions with the consideration of flexibility, we choose a redundant parametrization
resulting in algebraic constraints between the variables, which yields a differential
algebraic equation model (DAE model) with Lagrange multipliers. This approach
of modeling was developed first by Ayala Cuevas et al. (2017) for 2 DOFs flexible 3
cables robot. In this thesis, we extended the modeling to a 3 DOFs flexible 4-cable
robot.

Finally, to obtain a suitable linear model for control purposes, we managed to
perform a transformation of the DAE model into an ordinary differential equation
model (ODE model) despite the complexity of the equations.

Figure 3.1: The observation of cable flexibility during the movement of INCA pro-
totype.

3.2.1 Position analysis of a flexible cable

The description of the parallel-driven flexible cable robot (see Figure 3.2) is similar
to that of the robot with straight-line segments cables presented in section 2.3.2.
However, the mass and the flexibility of cables considered.

We assume that:

• Each cable is perfectly flexible and inextensible.

• There is no twist in cables.

• All off-plane flexibilities are ignored.

• The cable is flexible and the flexibility is modeled following the assumed modes
approach.

Transverse displacement of the cables

We aim to describe its transverse displacement in a plane. A point Mi is located on
the unwound portion of the ith cable between Ai and Bi and the local reference frame
Ri = (Ai,xli ,yli) is attached to the flexible cable #i (see Figure 3.3a), starting from
a rectilinear position of the cable along the xi direction. The position of the point
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Figure 3.2: Schematic representation of a planar four flexible cable robot.

Mi on the deformable 1-D continuum is parameterized by the arclength x ∈ [0, li]
(x = 0 corresponds to the winch drum’s location while x = li corresponds to the
position of the end of cables). Based on Euler–Bernoulli beam theory (Timoshenko
(1953)), we assume that by displacing laterally the cables, the point Mi would be
displaced with a small displacement δMi = δ xMi

xli + δ yMi
yli along the xli and

yli directions to its next position of the coordinates (xMi
, yMi

) = (x+ δxMi
, δyMi

).
An approach based on discretization is chosen to interpret the transverse dis-

placement; this approach uses the assumed modes (Meirovitch (1967)). DeLuca
and Siciliano (1993) used it for modeling the deformation of segments of a robot
arm. Then this approach has been adapted to model the flexibilities of the cables
as presented by (Du and Agrawal (2015), Godbole et al. (2019)).

The approach is used to approximate the form that the transverse vibration can
take. The vibration is represented as a linear combination of a finite number of
time-dependent modes aij and functions Φj dependent on space as:

δymi
(x, t) =

N∑
j=1

Φj(x) aij(t) (3.1)

where the function Φj(x) represents the shape of flexibility and N is the number
of flexibility modes. The literature reports a number of approaches to expressing
the shape of flexibility, either using eigenvalue problem as by Meirovitch (1967) or
polynomial shape as by Du and Agrawal (2015).

To represent the shape of the flexibility, we choose a polynomial basis of the from
a0 + a1 x+ a2 x

2 + . . .+ aN xN . The constant term was not considered because the
displacement is null at the point of contact with the drum. The linear term is also
not considered as a mode of flexibility but as an orientation. Then, the polynomial
function that we have chosen for this work starts from the term of order 2. By
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(a) Cable lateral displacement.

(b) Cable representation in new reference frame.

Figure 3.3: Displacement of the flexible cable.

considering only one mode of flexibility aij(t) ≜ ai(t) and by taking ai(t) = wi(t)
li

,
then the considered polynomial shape of flexibility is given as: Φj(x) = xj+1 so that
the displacement along the direction yi is represented as:

δymi
(x, t) =

x2

li
wi(t). (3.2)

where wi is a new representation of the flexibility modes.
Other shapes of flexibility have been chosen in the literature. For instance,

Godbole et al. (2019) used the trigonometric shape of flexibility for the case of
a model with 2 cables and 1DOFs. We have chosen not to consider this form of
flexibility since it is more challenging to master it in the case of a model with a
higher number of cables and DOFs.

Considering the principle of length conservation presented by Shi et al. (2000),
the displacement along the direction xi can be expressed as:

δxmi
= −1

2

∫ x

0

(
∂ δymi

(ζ, t)

∂x
)2 dζ = −2x3

3l2i
w2

i (t). (3.3)

A detailed presentation of the derivation of the equation (3.3) has been relegated
to the appendix A.1.
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The configuration of cable #i is defined using the local reference frame Ri =
(Ai,xli ,yli) whose xi axis is the tangent to the output pulley of the transmission
unit and the cable at point Ai. The fixed global reference frame is denoted Rg =
(Og, xg, yg), where the orientation angle of cables φi is the angle between the two
references (Ri,Rg) (see Figure 3.3b).

Considering the translation shift (the position of the winch drum) between the
two reference frames, then we realize the transformation between the two reference
frames with the homogeneous matrix to express the coordinates of point Mi in the
new global frame as:xi

yi
1

 =

cos(φi) −sin(φi) xAi

sin(φi) cos(φi) yAi

0 0 1

xmi

ymi

1

 . (3.4)

The position of the moving point Mi in Rg can therefore be expressed as:{
xi(q̃i) = cos(φi)xmi

− sin(φi) ymi
+ xAi

yi(q̃i) = sin(φi)xmi
+ cos(φi) ymi

+ yAi

for i = 1, . . . , n (3.5)

where q̃i =
[
x wi φi

]T corresponds to N + 2 = 3 independent variables. During
the movement we consider x equals li, then we obtain the vector qi =

[
li wi φi

]T
that gathers the variables of cable #i.

Note that li, wi, and φi are functions of time.
By gathering the platform coordinates and orientation and the 3 variables of each

n cable, then the generalized coordinate vector of the flexible CDPR is expressed as
q =

[
qT1 . . . qTn xp yp α

]T with 3n+ 3 entries 1.

3.2.2 Velocity analysis of a flexible cable

The position vector of point Mi in the fixed reference Rg depends on the three
variables li, wi and φi, then its velocity vector has its components along the direction
xg and along yg as:

vxi
=

∂xli

∂li
l̇i +

∂xli

∂wi

ẇi +
∂xli

∂φi

φ̇i. (3.6)

vyi =
∂yli
∂x

l̇i +
∂yli
∂wi

ẇi +
∂yli
∂φi

φ̇i. (3.7)

3.2.3 Geometric constraints

To mitigate equation complexity, we choose a redundant parametrization which re-
sults in algebraic constraints rather than minimal parametrization. These geometric
constraints appear since CDPRs are closed kinematic chain systems. These algebraic
(holonomic) constraints impose that the position of the end of each cable coincides
with the platform’s attachment points. Considering the position of the attachment
point PBi

and the position of the end-cable from equation (3.5), then we can form
the two constraints provided by each cable as follows:

1The generalized coordinate vector presented in this section q ∈ R3n+3 is different than the one
q ∈ R3 presented in the previous section (2.3.5).
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h :

{
xi(qi)− xBi

yi(qi)− yBi

. (i = 1, . . . , n) (3.8)

These equations can be gathered into a single vector equation h(q) = 0. Upon
time differentiation of h, the Jacobian matrix A of the constraints can be calculated
as:

∂h(q)

∂q
q̇ = A(q)q̇ = 0. (3.9)

The Jacobian matrix of the constraints equation concerning the generalized co-
ordinates is given as follows:

A =


∂h1(q)
∂q1

. . . ∂h1(q)
∂q3n+3

... . . .
...

∂h2n(q)
∂q1

. . . ∂h2n(q)
∂q3n+3

 (3.10)

3.2.4 Dynamic model

The aim is to find the dynamic model of a flexible cable parallel robot. Cable parallel
robots are systems submitted to kinematic constraints. For the modeling of systems
under constraints, the geometric or kinematic relations of its constraints are not
always obvious, and obtaining their expressions is very complicated and sometimes
impossible. Then in this case of complex systems, an alternative method of modeling
based on the multipliers of Lagrange can be used as reported by Goldstein et al.
(2002).

In the case of planar parallel cable robot that moves on the vertical plane, the
gravity is not neglected, and the gravitational potential energy is considered in the
Lagrange function L = K−V calculation. In the case of planar parallel cable robot
that moves on the horizontal plane, the gravity is neglected (as we assumed that all
off-plane movements are neglected), and the Lagrange function is calculated only
with the kinetic energy L = K in the section 2.3.2. In the following, we will present
the model for the vertical case where the effect of gravity is not neglected and the
gravitational potential energy is considered.

Gravitational potential energy

The gravitational potential energy of each cable is given by the equation:

Vpi =

∫ li

0

ρ g yi(si) dx (i = 1, . . . , n) (3.11)

The gravitational potential energy of the whole system is the sum of the gravi-
tational potential energies of the platform and of each cable, and also the potential
energy associated with the conservative forces exerted by the springs of the trans-
mission units. It is given as follows:

V (q) = −mg yp +
n∑

i=1

Vpi +
n∑

i=1

1

2
kt

(rt
r

)2

l2i (i = 1, . . . , n). (3.12)

53



Kinetic energy

• The kinetic energy of each cable can be expressed as:

Kci =
1

2

∫ li

0

ρ v2i dx. (3.13)

• The kinetic energy of the whole system (cables, winch drums (equation 2.13)
and platform (equation 2.19)) is given as follows:

K =
n∑

i=1

(Kci +Kwi
) +Kp =

1

2
q̇TMq̇ (3.14)

where M(q) = diag(M0,M1, . . . ,Mn) represents the total inertia matrix of the
system, with M0 is the inertia matrix of the platform and Mi is the inertia
matrix relative to each cable #i.

Generalized forces

The generalized forces acting on the system are only the external actions exerted by
the actuators and the springs in the transmission units. The single non zero general-
ized forces corresponding to the generalized coordinates (l1 . . . ln) can be calculated
as:

Qi = −
∂V

∂qi
− τi

r
= −1

2
kt

(rt
r

)2

li −
τi
r

(i = 1 . . . n) (3.15)

Lagrange’s equations

To introduce the constraints of the Euler-Lagrange equation, we use the Lagrange
multipliers λi for each constraint (Bertsekas (1982)). Therefore, the Euler-Lagrange
equations is given as follows:

d

dt
(
∂K

∂q̇k
)− ∂K

∂qk
= Qk +

2n∑
r=1

λr Ark. (k = 1 . . . 3n+ 3, r = 1 . . . 2n) (3.16)

DAE model

Considering the quadratic form of the kinetic energy
∂K

∂q̇
= Mq̇, the matrix form of

the 3n+ 3 Lagrange equations is expressed as :

Ṁ(q, q̇)q̇ +M(q)q̈ =
∂K(q, q̇)

∂q︸ ︷︷ ︸
C

+Q(q, τ) + A(q)Tλ (3.17)

where λ =
[
λ1, . . . , λ2n

]T is the vector of the Lagrange multipliers, Q =
[
Q1, . . . , Q3n+3

]T
is the column matrix of generalized forces, and C =

[
1
2
qT ∂M

∂q1
qT . . . 1

2
qT ∂M

∂q3n+3
qT

]T
.

By gathering the time derivative of the equation (3.9) with the dynamic equa-
tion (3.17), the dynamic model expressed as a differential-algebraic equation (DAE),
is given as:
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[
M(q) −A(q)T
A(q) O2n×2n

]
︸ ︷︷ ︸

H

[
q̈
λ

]
=

[
C(q, q̇) +Q(q, τ)− Ṁ(q, q̇) q̇

−Ȧ(q, q̇) q̇

]
︸ ︷︷ ︸

F

. (3.18)

Remark 1. For the implementation of this model, the algebraic expressions have
been calculated with Maple. The simulation of this non-linear DAE model with
Matlab has been done by inverting the matrix H numerically.

3.2.5 Linearization of the DAE model

The research aim of this thesis is to find an H∞ controller for the flexible CDPR
model. The H∞ synthesis requires a model linearization. We considered the DAE
model and used two approaches to get a linear model suitable for control. The
scheme in Figure (3.4) presents the methodology followed for the two approaches.
The first method was based on the direct linearization of the DAE model as a
descriptor linear model and then testing the controllability and observability of the
obtained model to synthesize the H∞ controller. The second method was based on
the inversion of the matrix H of the DAE model and after the linearization of the
model, we tried also to reduce the order of the model in the idea that it can resolve
the problem of the non-controllability and non-observability of the linear model.

Figure 3.4: Control and linearization methodology for the DAE model.

First method: direct linearization of DAE model

The left-hand side matrix H in the model (3.18) is an invertible matrix:
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[
q̈
λ

]
=

[
M−1 (I + AT P−1AM−1) M−1AT P−1

−P−1AM−1 P−1

]
︸ ︷︷ ︸

H−1

[
F1
F2

]
︸ ︷︷ ︸

F

= Γ(q, q̇, τ) (3.19)

in which P = −AM−1AT and τ = [τi, . . . , τn]
T .

This possibility of matrix inversion reveal a second-order ODE model q̈ = f(q, q̇, u)
depending on 3n+ 3 state variables as follows:

q̈ = (M−1 (I + AT P−1AM−1))F1 + (M−1AT P−1)F2. (3.20)

In our study, the calculation of the inverse matrices M−1 and H−1 was not pos-
sible algebraically due to the complexity of the expressions of the elements of the
matrix P . To avoid the calculation of the inverse of matrix H algebraically we eval-
uate the matrix at the operation point qe, and afterward, we calculate numerically
the inverse of the matrix as (H(qe))

−1. The linearization of the model (3.19) can be
performed directly as follows:

[
δq̈
δλ

]
=

∂Γ

∂q
|
xe︸ ︷︷ ︸

A1

δq +
∂Γ

∂q̇
|
xe︸ ︷︷ ︸

A2

δq̇ +
∂Γ

∂τ
|
xe︸ ︷︷ ︸

B1

δτ (xe = qe, q̇e, τe) (3.21)

The terms of the equation (3.21) can be calculated as:

• ∂Γ
∂q

= (H(qe))
−1 ∂F

∂q
− (H(qe))

−1 ∂(H(qe))
∂q

(H(qe))
−1 F that provides a matrix A1

of dimension ((g̃ + 2n)× g̃).

• ∂Γ
∂q̇

= (H(qe))
−1 ∂F

∂q̇
that provides a matrix A2 of dimension ((g̃ + 2n)× g̃).

• ∂Γ
∂τ

= (H(qe))
−1 ∂F

∂τ
that provides a matrix B1 of dimension ((g̃ + 2n)× n).

where g̃ = (3n + 3) is the number of the system variables. Then, the linear direct
kinematic model can be written as:

q̈ = A11 q + A12 q̇ +B11 τ (3.22)

in which A11 = A1(g̃×g̃)
, A12 = A2(g̃×g̃)

, and B11 = B1(g̃×n)
.

Considering x =
[
qT q̇T

]T , the linear model can be expressed by the following
state-space representation:[

q̇
q̈

]
=

[
Og̃×g̃ Ig̃×g̃

A11 A12

]
︸ ︷︷ ︸

A

[
q
q̇

]
+

[
Og̃×n

B11

]
︸ ︷︷ ︸

B

τ. (3.23)

After the linearization, the controllability and observability of the state space
representation were tested using the Popov-Belevitch-Hautus (PBH) test (condition
(iii) in Theorem (1) and Theorem (2) in Appendix (B.1)). The linear state-space
representation was found non-controllable and non-observable due to the variables’
dependency. Even the reduced order linear model was also found non-controllable
and non-observable, implying that the linear model is no longer valid for the synthe-
sis. We tested also the conditioning of the matrices and we found that there exists
an ill-conditioning of matrices that can be caused by numerical issues.
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Second method: linearization as a descriptor model

The model in (3.18) was rewritten in the following form:

[
M −AT

A O

]
︸ ︷︷ ︸

H

[
q̈
λ

]
=

[
F1

F2

]
⇒


M q̈ = F1 + AT λ︸ ︷︷ ︸

F̃1

A q̈ = F2

(3.24)

and then the model in (3.24) was linearized directly without inverting the matrix H
as follows:

M |xe︸ ︷︷ ︸
N0

δq̈ =
∂F1

∂q


xe︸ ︷︷ ︸

A1

δq +
∂F1

∂q̇


xe︸ ︷︷ ︸

A2

δq̇ +
∂F1

∂λ


xe︸ ︷︷ ︸

A3

δλ+
∂F1

∂τ


xe︸ ︷︷ ︸

B1

δτ (3.25)

A |xe︸︷︷︸
A0

δq̈ =
∂F2

∂q


xe︸ ︷︷ ︸

A4

δq +
∂F2

∂q̇


xe︸ ︷︷ ︸

A5

δq̇ (xe = qe, q̇e, λe, τe) (3.26)

The obtained linearized model is a descriptor model with state-space vector
ẋ =

[
q q̇ λ

]T expressed in the following equation: I O O
O N0 O
O A0 O


︸ ︷︷ ︸

E

q̇q̈
λ̇

 =

O I O
A1 A2 A3

A4 A5 O


︸ ︷︷ ︸

A

qq̇
λ

+

O
B1

O


︸ ︷︷ ︸

B

τ. (3.27)

Analysis and control synthesis methods for descriptor models are available and
presented by Duan (2010). Nonetheless, the PHB test of controllability and observ-
ability failed also for the same reason as in the first approach.

To solve the problem of variables’ dependency, we then had no other choice
than to reduce the redundant states (variables) to obtain an ordinary differential
equation model (ODE model) with a minimal state-space representation. Matrix
expressions of the reduced model are derived from the DAE model to simplify both
symbolic and numerical calculations. Before performing this transformation on the
complex flexible cable robot model, we tested this approach of transformation on
a simple model (Slider-crank mechanism) to verify if it solve the problem of the
non-controllability and non-observability of the linear DAE model. We found that
in the case of this simple model the linearization of the DAE model provided a
non-controllable and non observable model whereas the linear ODE model obtained
after transformation was found controllable and observable (see Appendix (A.2).

3.2.6 Transformation into an ODE model

Due to the geometric constraints, some variables can be expressed according to
others using their dependency relationship. Considering the 3n+3 variables of the
system and assuming that the translation and orientation variables of the platform
must remain in the new generalized coordinates vector, there are three possible
solutions to perform this reduction of constraints:
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• Express the lengths li and the flexibility modes wi of cables as functions of
the orientations φi and the platform pose (xp, yp, α). Solving the problem
appeared intractable with standard mathematical tools.

• Express the orientations φi and the flexibility modes wi of cables as functions
of the lengths li and the platform pose (xp, yp, α). This solution has been
discarded even if tractable, as the flexibility modes can take two possible values
(positive or negative) for a given cable length.

• Express the lengths li and the orientations φi of cables as a function of the
flexibility modes wi and the platform pose (xp, yp, α). This solution is unique
and tractable which makes it suitable to perform the reduction of constraints.

Considering the last suitable solution for the reduction, we obtain the new gen-
eralized coordinates vector of the ODE model that includes only the platform pose
and cables’ flexibility modes as: qr =

[
w1 . . . wn xp yp α

]T with n + 3 entries as
presented in the following section.

3.2.7 Reduction constraints

Geometric model

Figure 3.5: Geometry of the cable #i.

As represented in Figure (3.5), we can express the distance d between the winch
drum’s positions Ai and the platform attachment points Bi as follows:

(xBi
− xAi

)2 + (yBi
− yAi

)2 = (li + δxi)
2 + (δyi)

2. (3.28)

Using the equations (3.3) and (3.2), and considering that x = li we obtain:

(xBi
− xAi

)2 + (yBi
− yAi

)2 = l2i (1−
1

3
w2

i +
4

9
w4

i ) (3.29)
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The length of the cable can be expressed as a function of the variables (wi, xp, yp, α)
as:

li(wi, xp, yp, α) = 3

√
(xBi

(xp, α)− xAi
)2 + (yBi

(yp, α)− xAi
)2

9− 3w2
i + 4w4

i

(i = 1 . . . n).

(3.30)
From Figure (3.5), we can also express the orientations of the cables as a function

of the new generalized coordinates vector (wi, xp, yp, α) as follows:

φi(wi, xp, yp, α) = atan2(yBi
− yAi

, xBi
− xAi

)− βi (3.31)

with:
βi = atan2(δyi, li − δxi) (3.32)

Kinematic model

The time derivatives of the two last expressions can be calculated as follows:

l̇i(qr, q̇r) =
∂li
∂wi

ẇi +
∂li
∂xp

ẋp +
∂li
∂yp

ẏp +
∂li
∂α

α̇ (3.33)

φ̇i(qr, q̇r) =
∂φi

∂wi

ẇi +
∂φi

∂xp

ẋp +
∂φi

∂yp
ẏp +

∂φi

∂α
α̇. (3.34)

The generalized coordinates vector q can be computed as function of the new
generalized coordinates vectors qr using the following relation:

q̇ = B̃(qr) q̇r (3.35)

where the matrix B̃ is calculated as follows:

l̇1
ẇ1

φ̇1
...
l̇n
ẇn

φ̇n

ẋp

ẏp
α̇


︸ ︷︷ ︸

q̇

=



∂l1
∂w1

. . . . . . ∂l1
∂xp

∂l1
∂yp

∂l1
∂α

1 . . . . . . 0 0 0
∂φ1

∂w1
. . . . . . ∂φ1

∂xp

∂φ1

∂yp

∂φ1

∂α
... . . . . . . . . . . . .

...
0 . . . ∂ln

∂wn

∂ln
∂xp

∂ln
∂yp

∂ln
∂α

0 . . . 1 0 0 0

0 . . . ∂φn

∂wn

∂φn

∂xp

∂φn

∂yp

∂φn

∂α

0 . . . . . . 1 0 0
0 . . . . . . 0 1 0
0 . . . . . . 0 0 1


︸ ︷︷ ︸

B̃(qr)



ẇ1
...
ẇn

ẋp

ẏp
α̇


︸ ︷︷ ︸

q̇r

. (3.36)

Dynamic model (ODE model)

Using the equation (3.36), then the kinetic energy in equation (3.14) can be expressed
with the minimal parametrization as follows:

Kr(qr, q̇r) =
1

2
q̇Tr B̃T M B̃︸ ︷︷ ︸

Mr

q̇r. (3.37)
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The generalized forces relative to the new generalized coordinates qr are expressed
as:

Qrj = −
∂V (qr)

∂qrj
− τi

r

n∑
i=0

∂l̇i(qr)

∂q̇rj
(j = 1, . . . , n+ 3). (3.38)

Then, the dynamic model in (3.17) is expressed in the ODE form as follows:

Mr(qr) q̈r =
∂Kr(qr, q̇r)

∂qr︸ ︷︷ ︸
Cr

+ Qr − Ṁr(qr, q̇r) q̇r (3.39)

where Qr(qr, τ) is the column matrix of generalized forces, and

Cr =
[
1
2
qTr

∂Mr

∂qr1
qTr | . . . | 1

2
qTr

∂Mr

∂qrn+3
qTr

]T
.

In terms of input-output behavior, the DEA model (3.39) and the ODE model
(3.18) are equivalent.

3.2.8 Linearization of the ODE model

According to the following control and linearization scheme presented in Figure
(3.6), we linearized the ODE model for synthesizing the H∞ controller.

Figure 3.6: Control and linearization methodology for the ODE model.

The matrix Mr is invertible as long as we remain in the workspace, then the
accelerations q̈r in equation (3.39) can be expressed as follows:

q̈r = M−1
r (Cr +Qr − Ṁr q̇r)︸ ︷︷ ︸

Fr

= Γr. (3.40)

We can obtain the linear ODE model with the following equation:
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δq̈r =
∂Γr

∂qr
|

xre︸ ︷︷ ︸
Ar1

δqr +
∂Γr

∂q̇r
|

xre︸ ︷︷ ︸
Ar2

δq̇r +
∂Γr

∂τ
|

xre︸ ︷︷ ︸
Br1

δτ (xre = qre , q̇re , τre). (3.41)

We confront the same difficulties of calculating the inverse of the matrix Mr

algebraically as for the case of the DEA model in section (3.2.5). The matrix Mr is
evaluated for the operating point qre , and then the inverse of the matrix is computed
numerically. The terms in the equation (3.41) can be calculated as:

• ∂Γr

∂qr
= (Mr(qre))

−1 ∂Fr

∂qr
− (Mr(qre))

−1 ∂(Mr(qre ))
∂qr

(Mr(qre))
−1 Fr that provides a

matrix Ar1 .

• ∂Γr

∂q̇r
= (Mr(qre)

−1 ∂Fr

∂q̇r
that provides a matrix Ar2 .

• ∂Γr

∂τ
= (Mr(qre))

−1 ∂Fr

∂τ
that provides a matrix Br1 .

Considering the state-space vector ẋ =
[
qr q̇r

]T , the ODE linear model can be
expressed by the following state-space representation as follows:[

q̇r
q̈r

]
=

[
O I
Ar1 Ar2

]
︸ ︷︷ ︸

Ar

[
qr
q̇r

]
+

[
O
Br1

]
︸ ︷︷ ︸

Br

τ. (3.42)

The linear ODE state-space representation was found controllable and observable
using the PBH test (see appendix B.1), implying that the linear model is valid for
the synthesis of the H∞ controller.

3.3 Geometric validation of the flexible cable model
It should be noted that the work in this section was developed as part of the su-
pervision of a project presented by Alexis Boulay and Vincent Daniele, students in
their 3rd year of engineering, and an internship by Frédéric Le Quillio, a student in
2nd year of engineering in Telecom Physique Strasbourg.

When observing a cable during movements with fast dynamics, the flexibilities
of cables can be perceived by the human eye. The objective of the validation is
to calculate the positions of the cable points in the INCA plan from a video and
compare these cable points to the model of the cable with flexibility presented in
section (3.2). This validation verifies that this model matches well the real behavior
of the cable during movement. This video must be recovered from an experimental
test during the operation of the INCA cable robot prototype.

The validation was performed by estimating the evolution of the model’s vari-
ables: deformation, orientation, and length of the cables. This identification of the
model was accomplished in three steps:

• Taking pictures and video by a fixed position of a smartphone.

• Extraction of the cable’s points from images.
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• Calibration of the cameras to obtain the intrinsic and extrinsic parameters to
calculate the projection matrix which performs the reconstruction of the cable
variables in the INCA plan.

• Estimation of the cable variables by minimizing cost functions which are least
squares between the cable model and the reconstructed cable point obtained
from the experimental tests (the video).

The sequence of this algorithm is illustrated in the scheme in Figure (3.7).

Video and picture 
        taking 

Extraction of
cable points in 
the image plan

Cable model 
(equation 3.5)

Reconstruction of
cable variables in 
the image plan

Reconstruction of
cable variables in 
the INCA plan

Camera calibration

 Obtaining the intrinsic 
and extrinsic parameters

  Calculation of 
projection matrix 

Minimization of the cost functions 
(distance between the measured 
       point  and model point) 

Image processing 

Figure 3.7: Steps of the algorithm of model geometric validation.

3.3.1 Video and pictures acquisition

Several considerations were taken into account to record during the experimental
tests. These considerations using simple equipment to obtain a good quality of video
and pictures that must be with the same resolutions:
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• To enhance contrast and facilitate cable detection in the video, we placed a
black tablecloth on the floor (see Figure (3.10)).

• To avoid the appearance of light flickering in the video, we used LED light
projectors with high-frequency (≈ 100 Hz) (see Figure (3.8b)) for the room
lighting. Notice that the light flickering happened due to the frequency of the
acquisition in slow motion, which is higher than the frequency of neon light
that was in the room.

• To acquire images with a clearer deformation of the cables, we used an iPhone
to take the video in slow motion with a frequency of 240 FPS (Frames Per
Second) (this mode is now generally available with standard smartphones).

• To maintain the camera in a fixed position during the whole experiment, we
fixed the iPhone to a stand (see Figure (3.8a)).

• To obtain pictures (to calibrate the camera) and video (to perform model
validation) with the same resolution, we recorded the video and used the VLC
video player to take screenshots (pictures).

• To perform the calibration step, we take the pictures of the cable that consider
checkerboard pattern (see Figure 3.10). Note that we assume that the cable
is located in the plane where the checkerboard is placed (the real distance of
1.2 cm along the Z axis is therefore assumed to be null).

(a) The camera stand. (b) The continuous light projector.

Figure 3.8: The camera stand and continuous light projector.

3.3.2 Extraction of cable points using image processing

To extract points of the cable from a an image, a preprocessing was performed
first on the original image (see Figure 3.9) to transform it into a binary image.
Then, to extract the cables from the binarized image, we go through three steps:
adaptive thresholding, dilation, and erosion of the image. To accomplish that, we
start by isolating each group of pixels with an 8-neighborhood using the bwlabel
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Matlab function2 to obtain a list of the different grouped pixels. Then, we used
the regionsprop Matlab function 3 with the options Perimeter and Area, which
allows associating with each of these groups of pixels the perimeter and the area of
the groups. After that, the group of pixels with the largest perimeter is selected to
represent the shape of the cable (see Figure (3.9)).

For the extraction of the intersection point of cables, we use the same principle as
previously, with the difference here, we will not seek to detect a single cable but two.
Once our two cables are extracted, we aim to slenderize the cable into a single-pixel
thick line, extract the coordinates of these cables, and then select the intersection
between the cables by defining the lines resulting from these two sets of points using
the polyfit and polyval Matlab functions4.

Figure 3.9: Extraction of cable from stream video (a. original image b. binary image
c. extraction of one cable d. extraction of cables with intersection).

3.3.3 Camera calibration

To validate experimentally our results, it is necessary to transform the cable data
obtained previously in section (3.3.2) in the image plane into a real space frame (in
INCA plane).

To establish that, we modeled the camera considering the perspective projection5

based on the pinhole camera model (Forsyth and Ponce (2011)). To perform this
projection, we calibrate the camera to calculate the projection matrix MP , which
requires prior knowledge of the camera’s intrinsic and extrinsic parameters (for more
details about pinhole camera model see Appendix (A.4)).

To estimate the intrinsic and extrinsic parameters of the camera we used
cameraCalibrator Matlab app 6 from the Vision toolbox. The calibration was
performed considering a set of pictures of the environment taken from different
angles and containing the calibration checkerboard pattern (see Figure 3.10 and

2To label the image with the 8 connectivity, each group of pixels is identified by a specific
number.

3To calculate the perimeter and the area of each group.
4To retrieve the polynomial coefficients which represent the intersection and then draw this line.
5A geometric transformation performed by an optical system forms the picture of objects located

in space and is used to represent objects in a picture.
6The app can be used to estimate camera intrinsic and extrinsic parameters by simply calling

the app in the Matlab Command window and adding the set of pictures.
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Figure 3.11). We can see in Figure 3.10 the detected points in 2D (in green) and
the respectively reconstructed points in 3D (in red).

a. Picture 1. b. Picture 2. c. Picture 3.

Figure 3.10: Set of pictures used for the calibration.

a. 3D view. b. 2D x-z view. c. 2D y-x view.

Figure 3.11: 3D representation of the position of our mobile camera in relation to
the different views of the fixed calibration pattern.

The obtained intrinsic parameters matrix is given as follows:

Mint =

828.5979 0 0
0 831.3362 0

649.0655 358.5102 1


Once the projection matrix is obtained (for more details about the approach used

of the projection matrix see appendix (A.4)), then the heterogeneous 3D coordinates
(X, Y, Z, 1) can be calculated using the matrix and homogeneous 2D coordinates
(u, v, 1) as:
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uv
1

 = MT
P


X
Y
Z
1

 (3.43)

As we assumed that the cable is on the plane we can simplify the dimension of
the projection matrix of dimension MP (4×3) and into dimension MPR(3×3) matrix
by deleting the 3rd column (Z = 0).XY

1

 = MT
PR

−1

uv
1

 (3.44)

3.3.4 Reconstruction of the cable variables

The extraction of the cable points allows us to obtain two sets of experimental
coordinates (xdata, ydata) of the extracted cable. The cable starting point is con-
sidered to be known, either provided by the user or obtained via a pattern. The
variable estimation is an optimization problem that aims to minimize a difference
criterion between the measured cable points (xdata, ydata) and the model cable points
(xmodel, ymodel) (calculated from the model in the equation (3.5)).

For the estimation of the cable’s variables, two cost functions to be minimized
have been implemented, these functions use the least squares criterion. In an internal
step, we aim to find the optimal longitudinal position sk that minimizes the first
Least Squares cost function (the distance between N of the cable model and the
N of the measured point) in equation (3.45), while estimating flexibility w and
orientation data φ by minimizing a second Least Squares cost function in external
step in equation (3.46).

minimaze
sk

1

N

N∑
k=1

dk. (3.45)

minimaze
w,φ

1

N

N∑
k=1

dk (3.46)

where dk = (xdatak − xmodel(sk, w, φ))
2 + (ydatak − ymodel(sk, w, φ))

2.
For this step of optimization, we used two Matlab functions, such as pdist

with the option euclidean to calculate the euclidean distance between pairs of
observations points and the Matlab function fminseach for minimizing the cost
function.

3.3.5 Verification of the obtained results

The optimization results are represented in Figure (3.12), where the experimental
points are in black, The model is in red and the cable’s ends are in blue.

We estimate a cable length of 1.83 m, and we measure, using a meter, a length
of 1.77 m, so we find a relative difference of about 3% and an RMS of 0.04 m.
This discrepancy is due to uncertainty in selecting the points of the image whose
distance is known. However, the cable optimization results show that the proposed
theoretical model approximates well the actual behavior of the prototype robot.
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Figure 3.12: The validation of the geometric model of flexible cable from the video
stream.

To verify the estimation of the cable’s orientation and assess the accuracy, we
filmed different videos of the cable with different orientations but in a static state
without movement. We repeat the experience three times for the following manually
measured orientations 3.5o, 8.5o, and 9.5o. Using the validation algorithm and for the
three different considered scenarios, we obtained the following estimated orientation
values 4.4o, 8.4o and 10.5o, respectively with RMS of 0.7789o.

The time evolution of the estimated cable’s variables is presented in Figure (3.13).
The continuity of the evolution of the variable in the results proves the hypothesis
that assumes the continuity of the evolution of the cable’s variables due to the fact
that the video is analyzed frame by frame when the cable is in motion.

3.4 Conclusion
The modeling process presented in the chapter (2) was extended in this chapter
to take into account the flexibility of the cables and modeled it using the assumed
modes approach to obtain a DAE model. Geometric validation using a video taken
during the operation of the INCA robot was performed to verify and confirm that
the considered flexible cable robot geometric model represents the real behavior of
the INCA cable robot.

A transformation of the DAE model into an ODE model considering a minimal
parametrization has been taking place to avoid the dependency between variables
that causes the non-controllability and non-observability of the linear model. After
linearization of the dynamic model about the center of the workspace, the obtained
nominal open-loop system was found controllable and observable, which makes it
suitable for the H∞ synthesis of the controller, the object of the next chapter (4).
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Figure 3.13: The time evolution of the estimated cable’s variables (l, φ, w)
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Chapter 4

H∞ synthesis

4.1 Introduction
Since cable parallel robots are subject to variations in their own inertia as well as
external disturbances, it is necessary to choose a control design method that can
ensure good robustness. The H∞ control is a synthesis method that was introduced
by Zames and Helton in early 80s by (Helton (1978), Zames (1981)). This method
deals with linear multi-variable systems for the purpose of ensuring the desired per-
formance of the closed-loop system while ensuring good properties of disturbance
rejection, trajectory tracking and robustness with respect to neglected dynamics.

In this chapter, the mathematical tools necessary for the definition of H∞ syn-
thesis will be briefly exposed. Then, we mainly expose the theoretical approach to
follow for the calculation of the H∞ controller based on the solution of the Ric-
cati equations. Finally, we illustrate the results of the frequency response and the
simulation of the closed-loop systems with the obtained H∞ controller in order to
control the pose of the platform and the mean tensions of cables for the case of 3
flexible cables robot with mass-point and a for the case of 4 flexible cable robot with
a platform.

4.2 Performance and stability of feedback systems
The H∞

1 synthesis submits a general framework for the control of linear time-
invariant (LTI) systems by manipulating some frequency concepts. Its interest is to
design a dynamic controllers by considering the objectives of the closed-loop perfor-
mance, such as stability, rapidity, precision in tracking trajectories and robustness,
all by tuning the different transfert dynamics between signals as reported by Duc
(2022).

The standard control feedback scheme is illustrated in Figure (4.1). The system
G(s) that includes nu controlled inputs and ny measured outputs is controlled by
means of the controller K(s) with output feedback. The other signals are expressed
as: the reference r(t), the error e(t), the control signal u(t), the disturbance on the
input of the system d(t), the controlled signal y(t), the measurement noise bm(t) and
the measurement signal ym(t).

1The H∞ norm is the maximum singular value of G(jω) ∀ω ∈ R+ see Appendix (B.2.1) and
(B.2.3).
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Figure 4.1: Standard control feedback scheme

The objective of the control is to make y(t) tend asymptotically to r(t) in the
presence of disturbances d(t) and measurement noise bm(t). The performances of
the closed-loop system can be characterized by some transfer matrices. Generally,
we notice the closed-loop transfer Tzw(s) between the exogenous inputs w and the
performance outputs z, the sensibility on the input which is the closed-loop transfer
Su(s) = Tvd(s) = (Iny + K(s)G(s))−1 and the sensibility on the output which is
the closed-loop transfer Sy(s) = Ter(s). We can calculate the different closed-loop
transfers as:


e
u
v
y
ym

 =


Sy(s) −Sy(s)G(s) −Sy(s)

Su(s)K(s) −Su(s)K(s)G(s) −Su(s)K(s)
Su(s)K(s) Su(s) −Su(s)K(s)

Sy(s)G(s)K(s) Sy(s)G(s) −Sy(s)G(s)K(s)
Sy(s)G(s)K(s) Sy(s)G(s) −Sy(s)


 r
d
bm

 (4.1)

The different performance criteria can be described as follows:

• Stability margin

The gain, phase and, delay margins are not sufficient to ensure good robust-
ness. Then, to ensure stability it is therefore essential that the minimal dis-
tance from the Nyquist locus to critical point −1 be sufficient. This distance
is the modulus margin and is calculated for multivariable case as:

∆M =
1

∥Sy(s)∥∞
(4.2)

• Precision

The static error against the unit step on the reference r(t) (error of position)
is given by σ̄(Sy(0)). The computation of this static error is performed using
the theorem of the final value as:

εp = lim
s→0

sE(s) = lim
s→0

s Ter(s)R(s) = Sy(0). (4.3)

• Bandwidth

To obtain a good trajectory tracking behavior, the transfer Ter(s) must behave
like a low-pass filter with a cut-off frequency sufficiently high at the axis −3
dB. We note that from the bandwidth of this transfer between the reference
r(t) and the error e(t), we can conclude on the closed-loop system rapidity.
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• Disturbance rejection

In order to have a good disturbance rejection behavior, it is necessary that the
transfer Ted(s) = −Sy(s)G(s) between the disturbance d(t) and the error e(t)
be the weakest possible in low frequency. For this transfer, a band-pass filter
shape provides a good performance in presence of input disturbances.

• Measurement noise attenuation

The measurement noise bm(t) adversely impacts the control signal. Then to
limit this amplification of the effect of measurement noise on the control sig-
nal, the closed-loop transfer Tur(s) = −K(s)Sy(s)G(s) must have a decreasing
gain of the controller in high frequencies that is what we call the "roll-off ef-
fect". The attenuation of the gain at high frequencies leads to good robustness
concerning unmodeled high-frequency dynamics that can cause stability issues.

4.3 Standard H∞ synthesis

4.3.1 Standard scheme of the H∞ synthesis

The standard scheme of the H∞ synthesis is illustrated in Figure (4.2), where the
plant P (s) system and the controller K(s) are connected through feedback called
the linear fractional transformation (LFT).

Figure 4.2: Standard scheme of the H∞ synthesis

The state-space representation of the plant system is described as:

P :


ẋ(t) = Ax(t) +B1w(t) +B2 u(t)

z(t) = C1 x(t) +D11w(t) +D12 u(t)
e(t) = C2 x(t) +D21w(t) +D22 u(t)

(4.4)

where x(t) ∈ Rnx is the state space vector while nx is the order of the system,
w(t) ∈ Rnw is the exogenous input vector, z(t) ∈ Rnz is the vector of the perfor-
mance outputs, e(t) ∈ Rny is the vector of error and the u(t) ∈ Rnu is the control
input vector. Notice that signals w(t) and z(t) define the performance channels
guaranteeing the desired performance and the signals e(t) and u(t) describe the
control channel that connects the plant P (s) to the controller K(s).

The transfer matrix P (s)2 which models the dynamic interconnections between
the two inputs and the two outputs (w, u, z, e) is represented as follows:

2s denotes the variable of Laplace.
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[
z(s)
e(s)

]
=

[
Pzw(s) Pzu(s)
Pez(s) Peu(s)

]
︸ ︷︷ ︸

P (s)

[
w(s)
u(s)

]
. (4.5)

The state-space representation of the controller K(s) is described as follows:

K :

{
ẋK(t) = AKxK(t) +BK e(t)
u(t) = CKxK +DK e(t)

(4.6)

and the transfer matrix of the controller K(s) is described as following:

K(s) :

[
AK BK

CK DK

]
= CK(sI − AK)

−1BK +DK (4.7)

with xK ∈ Rnk is the state vector of the controller K, nk the order of the controller
and AK , BK , CK and DK are a real constant matrices.

The aim to design the controller is to find the matrices (AK , BK , CK , DK) that
satisfy the design requirements of the closed-loop.

The closed-loop transfer function from w to z is given by the following LFT
(Zhou et al. (1996)):

Tz→w(K) = Pzw + Pzu K(I − PeuK)−1 Pez (4.8)

4.3.2 Problem of the H∞ synthesis

The aim of the H∞ synthesis is in addition to stabilizing the system, to minimize the
impact of the exogenous inputs w on the performance outputs z. This minimization
is performed by a control law u = K(s) e. This impact on the system is measured
by the H∞ norm, i.e. the norm on the system induced by the l2 norm of signals z
and w (see Appendix (B.2.2)):

∥Tzw(K)∥∞ = sup
w ̸=0

∥z∥2
∥w∥2

(4.9)

The optimal standard H∞ control problem consists of finding the stabilizing
controller K(s) that makes the closed-loop system internally stable and minimizes
the H∞ norm of the transfer function Tz→w(K) as follows:

min
K(s) stabilizes (4.5)

∥Tz→w(K)∥∞ (4.10)

and the sub-optimal standard H∞ control problem is represented as follows:

∥Tz→w(K)∥∞ < γ (4.11)

for a fixed performance γ > 0.

There exist essentially two approaches to solve the standard H∞ problem. These
two approaches are the approach based on Riccati’s algebraic equations proposed
by Doyle et al. (1989), also called DGKF, from the abbreviation of the authors’
names (Doyle, Glover, Khargonekar, and Francis) and the second approach uses
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linear matrix inequality (LMI) presented by Gahinet and Apkarian (1994). The two
approaches provide a controller of full order.

To perform the H∞ synthesis, Matlab’s Robust Control Toolbox has an available
function which is the hinfsyn with as on option the different optimization algorithms
for the resolutions of equations (Riccati or LMI), the two optimization algorithms
are explained in details in Appendix (B.3) and Appendix (B.4) respectively.

Other functions are also available in this Toolbox as hinfstruct proposed by
Apkarian and Noll (2006) and the Hifoo package proposed by Burke et al. (2006)
used for the H∞ tuning of fixed-structure controllers.

4.3.3 H∞ synthesis objectives and methodology

To achieve the synthesis objectives, theH∞ synthesis method consists in introducing
weightings functions on the input and output signals as a form of linear filters and
tuning them to achieve the synthesis objectives (see Figure (4.3)). This design
problem of the H∞ synthesis is usually called the H∞ mixed sensitivity problem
as presented by Duc (2022). Another design problem of the H∞ synthesis is the
loop-shaping problem that is based on using a pre-compensator and/or a post-
compensator and the singular values of the nominal plant are shaped to give a
desired open-loop shape as reported by Zhou et al. (1996). This design is well
known for SISO systems and extended to MIMO systems by Doyle and Stein (1981)
using LQG design technique.

Figure 4.3: Standard H∞ synthesis scheme with introduction of weighting functions

In the Figure (4.3), the extended plant is P (s) with performance channel w̃ → z̃
and control channel u → e, (Wi(s), Wo(s)) are the diagonal inputs and outputs
weighting functions, i.e. Wi(s) = Wip.Inw , p = 1, ..., nw and, Wo(s) = Wol.Inz ,
l = 1, ..., nz, where nw and nz are the dimensions of the exogenous inputs w and the
performance outputs z respectively.

The H∞ synthesis aims to design a controller K(s) that stabilizes the closed-loop
function while minimizing the impact of w on z. This impact is represented by the
H∞ norm of the closed-loop transfer function ∥Tzw(s)∥∞ = ∥Wo(s).Tz̃w̃(s).Wi(s)∥∞3

that must be less then a performance criteria γ. The previous condition can be
satisfied by tuning the weighting functions until meeting the required specifications.
Thus the H∞ synthesis enables the closed-loop transfer function to satisfy the fol-
lowing templates:

|Tz̃w̃(jw))| ≤
γ

|Wip(jw)| . |Wol(jw)|
∀ w ∈ R+ (4.12)

3Let Tz̃w̃(s) denote the transfer of the system with w̃ and z̃ and is calculated by the linear
fractional transformation as Tz̃w̃(s) = lft(P (s),K(s)).
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where the frequency template is represented in the right-hand side of the
inequality (4.12).

The obtained value of the performance criteria γ decides if the fixed performances
through the frequency templates will be more or less achieved, then for a value
less than 1 (γ < 1) the transfers carried out respect their templates and the fixed
performances are improved and if the value is greater than 1 (γ > 1) then the
templates are exceeded and the fixed performances will be degraded. So it is more
convenient to choose the weighting functions by considering a performance criterion
value lower than 1 or slightly higher than 1.

4.3.4 Different H∞ synthesis schemes and choice of weighting
functions

Several H∞ synthesis schemes are possible, depending on the desired objectives and
the difficulties encountered in practice. The idea is to choose the simplest scheme
that can meet the specifications and analyze the obtained results. If the performance
criteria are not achieved, we choose to move to a more complex scheme by adding
performance signals and introducing them into the synthesis. The Figure (4.4)
presents the four-block H∞ synthesis scheme where G(s) is a multi-variable system
controlled by the controller K(s) with output feedback, the input signals are w(t) =
[r(t)T , d(t)T ]T , the output signals are z(t) = [e(t)T , u(t)T ]T , the input weighting
functions are Wi(s) = diag(Iny×ny,Wd(s)) and the output weighting functions are
Wo(s) = diag(We(s),Wu(s)).

Figure 4.4: Four-block standard H∞ synthesis scheme with weighting functions

The standard H∞ problem can be written considering the closed-loop transfer
as:

∥∥∥∥∥∥∥∥∥
(

We(s)Sy(s) −We(s)Sy(s)G(s)Wd(s)
Wu(s)K(s)Sy(s) −Wu(s)K(s)Sy(s)G(s)Wd(s)

)
︸ ︷︷ ︸

Tzw(s)

∥∥∥∥∥∥∥∥∥
∞

≤ γ (4.13)

The H∞ optimal corrector K(s) allows the minimization of the different weight-
ing transfers as follows:
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∀ω ∈ R :



|We(s)Sy(s)| ≤ γ ⇔ |Sy(s)| ≤
γ

|We(s)|
|Wu(s)K(s)Sy(s)| ≤ γ ⇔ |K(s)Sy(s)| ≤

γ

|Wu(s)|
|We(s)Sy(s)G(s)Wd(s)| ≤ γ ⇔ |Sy(s)G(s)| ≤ γ

|We(s)Wd(s)|
|Wu(s)K(s)G(s)Wd(s)| ≤ γ ⇔ |K(s)G(s)| ≤ γ

|Wu(s)Wd(s)|

(4.14)

The various synthesis schemes considered to describe the performances are presen
ted in the following.

One-block synthesis scheme

The crucial transfer is the sensitivity Sy(s) transfer which makes it possible to man-
age the rapidity (bandwidth), the stability margin, and the precision to achieve the
performance of trajectory tracking. Thus, the simplest synthesis scheme consists in
involving only the weighting function We(s) during the synthesis. The weighting
function We(s) is chosen so that the frequency template 1

We(s)
on the transfer Ter(s)

has low-pass characteristics.
To obtain a null position error, then the form of the considered weighting function

is represented as:

W1(s) =
s+ a

k1 (s+ b)
for (b < a and k ≥ 1) (4.15)

where the modulus margin, the precision, and the bandwidth are determined ac-
cording to the parameters K1, a, and b as:

• The bandwidth wc >
√

a2−2 k21 b2

2k21−1
.

• The gain margin (∆M > 1
k1
).

• The steady-state error as εp < K1
b
a

Let We(s) be a diagonal multi-variable weighting function:

We(s) = W1(s) Iny . (4.16)

Two-block synthesis scheme

In order to force the gain of the controller to decrease beyond the bandwidth of
the system (roll-off effect), then, reduce the amplification of the control and the
influence of the measurement noise, it may be useful to add a weighting function
Wu(s) on the control signal u(t). The weighting filter Wu(s) is chosen so that the
frequency template 1

Wu(s)
on the transfer Tur has a low-pass shape.

This weighting function Wu(s) is generally a truncated derivative filter that am-
plifies the high frequencies. Then the considered weighting function is represented
as:

W2(s) =
s

k2 (cs+ 1)
(4.17)
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with cwc << 1 and a lower k2 value corresponds to roll-off effect in lower frequencies.
Let Wu(s) be a diagonal multi-variable weighting function: Wu(s) = W2(s) Inu .
The two weighting transfer functions on the control signal Wu(s) and on the

output Wy(s) are used to specify the performance requirements and are chosen so
that the H∞ norm of the closed-loop system condition

∥Tzw(K)∥∞ =

∥∥∥∥ WeSy

WuKSy

∥∥∥∥
∞
≤ 1 (4.18)

is fulfilled.

Four-block synthesis scheme

The four-block scheme include all the transfers Ter(s), Tur(s) and Ted(s).
To enhance disturbance rejection the weighting function Wd is considered. A

constant weighting function Wd leads to a frequency template with a high-pass shape
that is sufficient to adjust the attenuation at low frequencies. A variable weighting
function Wd leads to a frequency template with a pass-band shape to guarantee a
good transient behavior in the face of an input disturbance.

The shape of the weighting function Wd can be modified to impose an attenuation
of the frequency templates 1

Wu(s)Wd
at high frequencies on the transfer Tud(s), to

guarantee the robustness of the stability with respect to unmodeled high-frequency
dynamics as in the works of Chellal (2016).

Let Wd be a diagonal multi-variable weighting function: Wd = W3(s) Inu .

4.4 Synthesis of the H∞ controller
We aim to synthesize an H∞ controller that controls the pose of the platform and
the mean tension of the cables Tm. To perform this H∞ synthesis we used the
hinfsyn Matlab function with the Riccati optimization algorithm. A linearization
of the ODE model must be performed first in order to synthesize the H∞ controller.

The Figure (4.5) presents the LFT interconnection between the system G(s) and
the interconnection transfer matrix M . With this interconnection, we obtained the
extended plant P (s) by considering the performance and the control channels.

Figure 4.5: The interconnection for the H∞ synthesis
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The interconnection transfer matrix M can be expressed as:
ū
e
u
e

 =


Onu×ny Onu×ny +Inu×nu +Inu×nu

−Iny×ny +Iny×ny Ony×nu Ony×nu

Onu×ny Onu×ny Onu×nu +Inu×nu

−Iny×ny +Iny×ny Ony×nu Ony×nu


︸ ︷︷ ︸

M


y
r
d
u

 . (4.19)

4.5 Synthesis of an H∞ controller for a three-flexible
cable

We consider that we have a robot with only 3 flexible cables and with a mass-point
(see Figure (4.6)). In this section we consider the ODE model presented in equation
(3.39), where we consider that we have three cables and a mass-point instead of a
platform, so the mass-point has only two degrees of freedom, the translation (x−y).
We aim to synthesize an H∞ controller that control the position of the mass-point
(xp, yp) and the mean tension of the three cables Tm = 1

3
(T1 + T2 + T3). The

linearization of the ODE model has been performed using Maple along the center
of the workspace q0 =

[
0 0 0 0 0

]T for a null acceleration and velocity. The
nominal model has been found controllable and observable.

Figure 4.6: Schematic representation of a planar three flexible cable robot.

Three controlled outputs are considered: the two position coordinates and the
mean value of the three tensions. Therefore, the obtained system can be separated

into a position part and a tension part, G(s) =

[
Gp(s)
GTm(s)

]
with respectively 2 and 1
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outputs. From the frequency responses in Figure (4.7), it appears that the position
part behaves like a weakly-damped second-order system with resonance pulsations
close to 3.5 rad/s whereas the tension part behaves like a gain. The next section
presents the H∞ controller design based on the obtained linear ODE model.
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Figure 4.7: Frequency behavior of the open-loop nominal system

4.5.1 Two-block synthesis scheme

We choose a two-block synthesis scheme that considers only two weighting functions
on the error and control signals. This scheme has been selected to meet the require-
ments of trajectory tracking and by relaxing the disturbance rejection constraints.
The weighting function on the disturbance d has not been considered in the synthesis
and is only used in the analysis step.

The considered weighting function We(s) that manages the output sensitivity
function Sy(s) is shaped to satisfy the following specifications:

• a bandwidth of 3 rad/s.

• a modulus margin of 0.2 (maximal modulus of sensitivity function ∥Sy(s)∥∞ ≤
2.50 dB).

• a negligible steady-state error.

Then, this weighting function has been chosen as:

We(s) = diag
{
Wp(s),Wp(s),WTm(s)

}
with Wp(s) = WTm(s) =

0.2 s+ 4.2

s+ 21 · 10−5
. The

weighting functions Wp(s) and WTm(s) can be taken as different from each other by
choosing faster dynamics for the mean tensions or vice versa.

The weighting function Wu(s) on the control signals is selected so as to ensure
a slope of −80 dB/dec on the transfer from the reference to the control signal in
order to decrease the gain of the controller for the frequencies higher than 10 rad/s.
This roll-off effect decreases the measurement noise impact on the control signal
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and improves the robustness with respect to unmodeled high-frequency dynamics.
Then, this weighting function is given as:

Wu(s) = diag
{
Wu1(s),Wu1(s),Wu1(s)

}
with Wu1 = (

s+ 10

2 s+ 2000
)4.

The H∞ obtained controller K(s) can be separated into a position and a tension
part as K(s) =

[
Kp(s) KTm(s)

]
. The synthesized H∞ controller is of order 25 and

its frequency response is depicted in Figure (4.8). This shows that the position part
of the controller Kp(s) provides a high gain in low frequency with some derivative
effects from 3.25 rad/s to 182 rad/s and compensates the flexible modes at 25 rad/s.
In addition, the controller gain nicely decreases in high frequency. The tension
control part of the controller KTm(s) behaves like a proportional-integral controller.
The obtained H∞ controller provides a closed-loop performance index γ = 0.2668
< 1.
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Figure 4.8: Frequency behavior of the controller

The Figure (4.9) presents the closed-loop transfers and their corresponding tem-
plates. The left-hand side of this figure shows that the templates on the sensi-
tivity function Sy(s) (upper-left) and on the transfer, Tur(s) are fully respected
which means that the specifications are satisfied. On the right-upper plot Ted(s), we
can check that the disturbance is well-rejected in low-frequency, with a slope of 20
dB/dec even if the disturbance input has not been included during the synthesis.

Using the balanced truncation method Laub et al. (1987) we can reduce the order
of the controller to 17 (instead of 25 for the full order controller case) and with the
expense of a performance index increasing from 0.2667 to 0.5678.

4.5.2 Simulation results

The obtained reduced-order H∞ controller has been used to simulate the non-linear
model in closed-loop for the set of parameters in Table (4.1). These parameters are
considered first in the work by Ayala Cuevas et al. (2017). All the results of the
simulation have been published by Saadaoui et al. (2021).

During the simulation, the mass-point is requested to follow a square of 1.5 m
side with a speed of 0.5 m/s as a reference for the translation. The reference of
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Figure 4.9: Closed-loop transfers (plain) and the corresponding templates (dashed)

R 0.1 m ρ 0.04 kg/m
J0 2.5 · 10−3 kg·m2 mp 1 kg
lt 5 m D1 (−2.5

√
2, 2.5) m

D2 (2.5
√
2, 2.5) m D3 (0, −5) m

Table 4.1: Numerical values of the three-flexible robot

mean tensions T r
m is a step variation from 60 N to 70 N at t = 10 s to keep the

cables always under tension. Starting from the center of the workspace, the mass-
point runs through the square trajectory and then back to the workspace origin.
White noise has been added to the measurement as well as a step disturbance of
an amplitude 0.3 N·m has been also added to the three control signals at t = 5 s,
t = 10 s, and t = 15 s respectively.

The obtained position trajectory tracking of the closed-loop system in the x− y
plane is illustrated in the Figure (4.10). Three points in time are captured in this
figure, each displaying the geometry of the three cables. The displacement modes
of the three cables are presented in Figure 4.11. The modes illustrate the flexibility
to which the cables are subjected during the movement.

From the results in Figures (4.21) and (4.26), we notice that the trajectories of
the mass-point (xp, yp) and the mean tension of the cables are well controlled with
the obtained reduced-order H∞ controller even in the presence of the disturbances
and measurement noise. A high-precision of the (xp, yp) trajectory tracking is shown
by the small error. Moreover, the tensions of the three cables remain positive.

Notice that the control signals (the winder torques) are proportional to the ten-
sions with the relation ui = Ti · R. Even if the flexibilities of the cables are hardly
visible on the cable shapes (Figure 4.10), the corresponding modes must be properly
controlled in order to avoid instability in the mass-point positioning.
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For comparison, we considered a PD control that has been taken from the lit-
erature (Ayala Cuevas et al. (2017)). The PD controller manages the position of
the mass point, with the proportional gain Cp = 400 N, a derivative gain Cd = 10
N.s, and a filtering frequency ωf = 100 rad/s. In Figure (4.14), a comparison of the
trajectory tracking has been shown for the non-linear model controller with the two
controllers. The non-linear model controlled with the reduced-order H∞ controller
shows better trajectory tracking than the non-linear model controlled with the PD
controller where some oscillations and an offset are noticed.

4.6 Synthesis of an H∞ controller for a four-flexible
cable

We consider that we have a robot with four-flexible cables and with a platform
(the ODE model presented in the equation (3.39)). We aim to synthesize an H∞
controller that controls the position and orientation of the platform (xp, yp, α) and
the mean tension of the four cables Tm = 1

4
(T1 + T2 + T3 + T4). The linearization

of the ODE model has been performed using also Maple along the center of the
workspace q0 =

[
0 0 0 0 0 0 0 0

]T . The nominal model has been found
controllable and observable.

Four outputs will be controlled: the position (xp, yp) and orientation α of the
platform and also the mean tension of the four cables Tm = 1

4
(T1 + T2 + T3 +

T4). According to this partitioning of the output vector, the open-loop system
G(s) is decomposed into three parts and each part is evaluated separately G(s) =[
Gx−y(s) Gα(s) GTm(s)

]T . The frequency response of the open-loop nominal sys-
tem is presented in Figure (4.15). The position part behaves like a weakly-damped
second-order with a triple resonance around the frequencies 5.23 rad/s, 6.1 rad/s,
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and 77.2 rad/s. The orientation part behaves as a weakly-damped second-order with
multiple resonances around the frequencies 6.1 rad/s and 77.2 rad/s. The tension
part behaves like a pure gain.

G_x-y
G_
G_Tm

Figure 4.15: Open-loop frequency response of the linear system

4.6.1 Two-block synthesis scheme

We first start with a two-block synthesis scheme that favors the constraints of trajec-
tory tracking, and where the disturbance d is considered only for analysis, in order
to explain its limitations and justify why a four-bloc scheme is required.

The weighting function We(s) on the output sensitivity function Sy(s) = Ter(s)
has been tuned to satisfy the following specifications:

• a bandwidth of 7 rad/s for the translation and 2 rad/s for the orientation.

• a modulus margin of 0.5 for the translation and 0.9 for the orientation.

• a negligible steady-state error.

The weighting function on the error signals has been given as: Wx = Wy =

WTm =
0.5 s+ 9.26

s+ 4.63 · 10−5
, and Wα(s) =

0.9 s+ 2.182

s+ 1.091 · 10−5
,

where We(s) = diag
{
Wx(s),Wy(s),Wα(s),WTm(s)

}
. The tension part of the linear

system is a pure gain, which means that the adjustment of the transfer dynamics is
simple.

From now on, we consider the weighting function on the mean tension to be
identical to that on the position. The weighting function Wu(s) on the control
signals is selected to guarantee a slope of −60 dB/dec at high frequencies. This
would decrease the effect of measurement noise on the control signal for frequencies
higher than 10 rad/s. This roll-off effect improves the robustness with respect to
unmodelled dynamics. The weighting function has the following shape: Wu(s) =

Wu1(s) I4 with Wu1 = (
s+ 10

2 s+ 2 · 105
)3.
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Figure 4.16: Closed-loop transfers (plain) and the corresponding templates (dashed)
with two-block synthesis scheme

From the closed-loop frequency response in Figure (4.16) we can detect some
lowly-damped resonances at medium frequencies in transfer Ted(s). During the sim-
ulation, in the time trajectory tracking of the orientation (see Figure (4.17)), an
oscillation of a period 0.13 s was noticed, which corresponds exactly to the reso-
nance at the frequency 48.33 rad/s in the transfer Ted(s).

4.6.2 Four-block synthesis scheme – setting #1

For damping the resonances in the transfer Ted(s), we opt for the four-block synthesis
scheme that promotes not only the trajectory tracking but also the disturbance
rejection. Notice that the tuning methodology is similar to the one considered
by Chellal (2016). For this synthesis, a high-pass filter template γ

We1(s)×Wd1(s)
is

chosen on the transfer Ted(s) in order to satisfy a good disturbance rejection at
low frequencies and well damping of resonances at medium frequencies. Notice
that, thanks to the disturbance rejection properties (see Ted(s)), attenuation in
low frequency on Ter(s) is ensured, even if the corresponding weighting function is
chosen as constant. This constant weighting function leads to the obtaining of a
reduce-order of the weighted system and thus the order of the obtained controller.

The weighting functions Wr(s) = Wr1(s) I4 and We(s) = We1(s) I4 were selected
as: Wr1(s) = 1 and We1(s) = 0.5. The weighting function on disturbances Wd(s) =

Wd1(s) I4 was selected with the following shape: Wd1 = 5
s+ 10

2 s+ 10−5
.

The performances of the trajectory tracking that are evaluated from the closed-
loop frequency response (see Figure 4.18) are expressed as follows:
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Figure 4.17: Orientation trajectories with two-block synthesis scheme
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Figure 4.18: Closed-loop transfers (plain) and the corresponding templates (dashed)
with four-block synthesis with setting #1

• a bandwidth of 41 rad/s for the position and 42 rad/s for the orientation.

• a modulus margin of 0.69 for the translation and 0.91 for the orientation.

• a negligible steady-state error.
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4.6.3 Four-block synthesis scheme with modulation of
dynamics – setting #2

We now propose another setting for a four-block synthesis scheme that ensures
different bandwidths on the different channels, while suiting the physical nature of
the system. In the previous study by Chellal (2016), where the cable-driven robot
was controlled in the operational space, modulation of the performance was possible
by using any weighting. In the current case, the control signal is in the joint space
and there would be no sense in modifying the specifications on Wd(s) or Wu(s) since
all the actuators are the same. Therefore, the performance modulation must be
ensured by tuning Wr(s) and We(s) at the measurement side of the process.

Therefore, the weighting functions are chosen as
We2(s) = diag

{
We2p(s),We2p(s),We2α(s),We2T (s)

}
and

Wr2(s) = diag
{
Wr2p(s),Wr2p(s),Wr2α(s),Wr2T (s)

}
. Different rejection properties

are first ensured on the channels Tejd(s) of Ted(s), where j stands for p, α or Tm,
by adjusting the weighting We2j(s). Then, a uniform modulus margin on the four
channels is ensured by choosing Wr2j(s) = ∆M

We2j(s)
, resulting in a template of the

form γ
Wr2j(s)×We2j(s)

= γ
∆M

on Ter(s).
In this presented synthesis, the weighting function Wd1(s) and the modulus mar-

gin ∆M = 0.5 are identical to those in setting #1. The weighting functions on the
error signals are adjusted as: We2p(s) = We2T (s) = 0.6 and We2α(s) = 4.5 while those
on the references are adjusted as: Wr2p(s) = Wr2T (s) = ∆M and Wr2α(s) =

∆M
4.5

.
Note that the weighting function of the control signals Wu(s) for the synthesis

#1 and #2 are the same considered for the case of a two-block synthesis scheme.
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Figure 4.19: Closed-loop transfers (plain) and the corresponding templates (dashed)
with four-block synthesis with setting #2

The performances of the trajectory tracking are evaluated from the closed-loop
frequency response (see Figure 4.19) are expressed as follows:
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• a bandwidth of 42 rad/s for the translation and 865.46 rad/s for the orienta-
tion.

• a modulus margin of 0.68 for the translation and 0.86 for the orientation.

• a negligible steady-state error.

4.6.4 Controller synthesized

K_x-y
K_
K_Tm

Figure 4.20: Frequency response of the controller

The frequency response of the controller K(s) =
[
Kx−y(s) Kα(s) KTm(s)

]
that is obtained by the chosen second tuning #2 is illustrated in the Figure (4.20).
From this response, we can notice that the position Kx−y(s) and the orientation
Kα(s) parts of the controller provide a high gain at low frequencies with a derivative
behavior ranging from 9.85 rad/s to 1.07·104 rad/s along with a compensation of the
flexible modes close to 43.3 rad/s. The controller gain decreases perfectly at high
frequencies. The tension part KTm(s) of the controller behaves like a proportional-
integral controller. The obtained controller is of order 30 and with satisfying closed-
loop performance criteria γ = 0.7729 < 1.

4.6.5 Simulation results

The ODE non-linear model with four-flexible cables attached to a rotational platform
has been simulated in closed-loop with the obtained H∞ controller synthesized with
the four-block synthesis scheme. Based on the identification performed by Chellal
(2016), the numerical parameters have been updated to match the real parameters
of the INCA 6D prototype in order to perform in a second time the experimental
tests with the obtained H∞ controller. The parameters are provided in Table (4.3).
All the results of the simulation have been published by (Saadaoui et al. (2022b);
Saadaoui et al. (2022a)).

The simulations have been performed by considering a reference signal such that
the platform translates according to a square trajectory of 0.4 m per side with a
constant speed of 0.2 m/s, while performing an orientation of −10o at t = 10 s and
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R 0.017 m ρ 0.02 kg/m
J0 2.911 · 10−5 kg·m2 mp 0.036 kg
lt 3.85 m Je 23.52 · 10−5 kg·m2

D1 (−1.255, −1.395) m D2 (1.255, −1.395) m
D3 (1.255, 1.395) m D4 (−1.255, 1.395) m
B1 (−0.07, 0) m B2 (−0.07, 0) m
B3 (0.07, 0.07) m B4 (−0.07, 0.07) m

Table 4.2: Numerical values of the four-flexible robot

of +10o at t = 14 s, then returning to 0o at the end of the simulation. The mean
tensions trajectory was imposed to follow a variation from 11 N to 12 N at t = 14 s.
The platform starts from the center of the workspace and returns to the center at
the end of the simulation. During the simulation, step disturbances are added to
the control signals, with an amplitude of 0.2 N·m at t = 5 s, t = 10 s, t = 15 s, and
t = 20 s.
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Figure 4.21: Translation trajectories of the platform for H∞ control with our two
four-bloc synthesis

Figures (4.21), (4.22), and (4.23) represent the trajectories of the position and
orientation of the platform for the two four-block synthesis controllers. The trajec-
tories are well tracked and the disturbance rejection is improved with the second
synthesis (setting #2) specially for the case of the orientation trajectory. The root
means square (RMS) of the trajectories tracking errors are given in Table (4.3).
The RMS values of the position (xp, yp) and orientation (α) obtained in the second
synthesis are smaller than those obtained with the first synthesis, which signifies a
higher precision and a better disturbance rejection.

The position and orientation trajectories of the closed-loop system and the geom-
etry of the four cables captured at three different times are shown in Figure (4.24).
The three instants are chosen to show the platform in different orientations (0o, −10o,
10o). The flexibility coordinates of the four cables are depicted in Figure (4.25). The
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Figure 4.22: Orientation trajectory of the platform for H∞ control with our two
four-bloc synthesis
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Figure 4.23: xp and yp trajectories tracking and error with H∞ control with with
our two four-bloc synthesis

flexibility modes are of an amplitude between 0.01 and 0.02 and they fade out at
the end of the simulation.

The trajectories of the mean tensions and the four cable tensions are shown in
Figure 4.26. In the results, we can observe that the mean tension is well controlled
and all cable tensions remain positive.
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RMS with disturbance RMS without disturbance
xp with setting #1 1.8 mm 0.896 mm
xp with setting #2 0.39 mm (-78 %) 0.18 mm (-79 %)
yp with setting #1 1.6 mm 0.39 mm
yp with setting #2 0.36 mm (-77 %) 0.1 mm (-74 %)
α with setting #1 2.8 mrad 1.8 mrad
α with setting #2 0.16 mrad (-94 %) 0.1 mrad (-94 %)

Table 4.3: RMS of the trajectories tracking error (xp, yp, α) with and without dis-
turbance and the reduction from setting #1 to #2
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Figure 4.24: Trajectories of the platform and cables in the x−y plan with the second
synthesis

4.7 Conclusion
The purpose of this chapter is to present theH∞ dynamic control of the position and
orientation of the planar parallel flexible cable robots with two and three degrees
of freedom. The theoretical aspects and a detailed discussion for the standard H∞
synthesis problem was presented to properly introduced the method.

To perform the H∞ synthesis, two different synthesis block schemes were pro-
posed, promoting the properties of trajectory tracking and the rejection of distur-
bances. Based on the closed-loop frequency response and the simulation results, the
simplest synthesis approach with a two-block scheme was found to be limited com-
pared with the four-block synthesis scheme that better privileged the disturbance
rejection.
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Figure 4.25: Modal coordinates for the flexibility of the cables with the second
synthesis
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Figure 4.26: Cables tensions and mean tension reference with the second synthesis

The investigations on the simulation results of the non-linear model controlled
with the synthesized controller were presented in detail. The results obtained by
considering the H∞ controller reveals an outstanding performance in terms of rapid-
ity, precision, and stability on the trajectory tracking and also a good disturbances
rejection. The condition of the positivity of the cable tension was also satisfied.
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Conclusion et perspectives

Conclusion
With a wide range of potential applications in various fields, cable robots can be a
promising and rapidly developing technology. Among its applications fields, let us
mention construction, medical rehabilitation, entertainment, space exploration, etc.
As well as their low cost of construction and maintenance, high payload capability,
and the ability to move rapidly in a large work-space, they can accomplish tasks that
conventional robots cannot. However, cable robots also present challenging issues
such as the unilateral actuation and the flexibility of the cables. These challenges
are likely addressed in ongoing research, making the CDPRs more capable and
applicable.

Dynamic modeling of CDPRs leads to models with geometric constraints. The
drawback of this class of models is the variable’s dependency which makes it not
suitable for the control synthesis. In addition, the phenomenon of the flexibility of
cables disrupts the positioning of the robot’s platform by causing delay and inaccu-
racy. The scientific contribution of the thesis is therefore to solve these problems by
applying an H∞ control synthesis to maintain the robot cables under tension and
to track the platform trajectory with accuracy while damping the cables vibrations.
The control synthesis has been applied for an ODE model with four flexible cable
and 3-DOF to avoid the variable’s dependency in the case of the DAE model. Notice
that, in our approach, we do not use additional sensors to estimate the displacements
of the cables and improve the observability of the model, contrarily to Dallej et al.
(2019). The approach that we presents can be implemented on a standard process
without additional cost.

In order to achieve this contribution, the dynamic model of planar cable-driven
parallel robots, with four cables and 3-DOF, has been developed considering its
geometry, its kinematics, and its dynamics. This model also incorporates the pre-
tensioning system specific to the INCA 6D prototype available in our laboratory,
that modifies the stiffness of the mechanism. This model was obtained using the
Lagrange formalism. At first, the cables were considered as rigid-links and were
modeled based on this principle. The simplified obtained model was used to design
the classic PID controller and also to study the reachability of the workspace.

Then, a model based on the assumption of cable flexibility was subsequently
developed and the cables were considered to be inextensible, without torsion, and
deformed by generating transverse vibrations. These vibrations or flexibilities have
been modeled using the assumed modes approach by considering a polynomial shape
of deformation with one single mode. This dynamic model obtained also by using
the Lagrange formalism exhibits geometric constraints (differential-algebraic equa-
tion model). The resulting dynamics of this multi-variable system are non-linear.
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This differential-algebraic equation model has been linearized by following two ap-
proaches: a direct one and an indirect one (descriptor system form), to be used
afterwards for the H∞ synthesis that is well suited to multivariate systems with
flexibility. Obtained a controllable and observable linear DAE model was not pos-
sible, then a transformation to an ordinary differential equation model was carried
out to avoid this problem.

The geometric model has been validated experimentally, considering the INCA
6D prototype. During the experimental test, the measurement of the platform pose
was accomplished by a motion capture system. A video of cable movement was
taken during robot operation and the 3D positions of the cable points have been
calculated from the video and compared to the geometric model using the least
squares approach. The results show that the proposed flexible cable geometric model
represents well the real behavior of cable.

After obtaining the nominal linear controllable and observable ODE dynamic
model, we proceeded to theH∞ synthesis. This synthesis has been established in the
operational space for controlling the positioning of the robot platform while taking
into account the cables’ flexibility. The H∞ controller is synthesized to manage the
cable tensions and to ensure the control performance of the platform pose. This
controller provides the necessary forces to be exerted on the platform, maintaining
a good tracking trajectory and rejecting disturbances.

The approach was first developed in the context of a three-cable with 2DOFs
robot based on the model proposed by Ayala Cuevas et al. (2017) and then in the
case of the four-cable with 3DOFs presented in this thesis. In the case of the first
model, the synthesis was obtained considering a two-block synthesis scheme. The
weighting functions have been adjusted to meet the requirements and the results
show a good trajectory tracking of the mass-point. Then, an H∞ controller has
been proposed in the case of a flexible four-cable model with a platform of 3-DOF
(translation and orientation). A two-block scheme was unable to achieve satisfactory
performance and meet disturbance rejection requirements, so a four-block scheme
was proposed. To distinguish between translation and orientation dynamics of the
platform pose, this scheme was proposed in two versions. Using the obtained H∞
controller, the nonlinear model was able to track the trajectory and reject distur-
bances very effectively.
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Perspectives
The results of this thesis contribute to the control of flexible cable-parallel robots and
suggest several future studies. Some of these perspectives extend the accomplished
work that we did not have enough time to achieve as follows:

• Control strategy experimental test on planar CDPR

The validation of the synthesized obtained controller has been accomplished
only on simulation and only the geometric model that has been validated
considering a video taken during the cable movement. An experimental test
of this controller on the INCA prototype should be performed. Prior to these
tests on the planar INCA robot, future studies should identify and validate
the dynamic model with flexible cables considering the video.

• Robustness analysis

The H∞ synthesis is performed from the linearized nominal model that has
been obtained by linearization of the system dynamics around the nominal
pose (center of the workspace). Only the simulation for a specified trajectory
has been considered to validate the non-linear closed-loop performance of the
control system. In order to verify its performance and stability across the
entire workspace, a robustness analysis based on the existing theorems should
be performed.

• Control of CDPRs

Certainly, the H∞ control is very suitable for multi-variable systems with
flexibility but this control synthesis is limited to the surroundings of the chosen
operating point (center of the workspace in the case of this thesis). Comparing
this synthesis with a non-linear control strategy that take the non-linearity of
the model during the synthesis would be beneficial.

Other perspectives reformulate a new research problem can be expressed as fol-
lows:

• Modeling and synthesis of 3D CDPRs model

Due to the mathematical complexity of the model which takes into account the
flexibility and the numerical problems of calculation that we encountered dur-
ing its modeling, we have not been able to generate a dynamic 3D model with
6DOFs of CDPR by modeling the flexibility using assumed modes. Therefore,
we have only proposed a 2D model with 3DOFs. By considering only four ca-
bles, we made the INCA prototype into a planar structure in order to perform
the experimental tests. While testing the INCA prototype during the exper-
iments, we encountered many problems due to the fact that it is essentially
designed as a robot with eight cables and 6DOFs, not a planar robot. Future
work can propose a 3D model of a cable-driven parallel robot with flexibility
modeled using the assumed modes approach to better perform experimental
tests on the INCA prototype. More investigations can also be carried out on
the study to perform the DAE synthesis.
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Appendix A

Modeling

A.1 Determination of the small displacement δx

In this appendix section, we demonstrate the formula for the displacement along x
(this formula is used in the section 3.2.1). We want to introduce the deformation
(x + δx, δy) of the point (x, 0), with the assumption that the cable is inextensible,
which means that a segment between x and x+dx remains of length dx even during
the deformations (see Figure A.1). First, we consider a point in its coordinates are
(x, 0), and at an infinitesimally small distance dl = dx we consider a second one in
its coordinates are (x+ dx, 0).

By applying a displacement δy(x) along y direction, the point moves also along
the direction x with δx. Then, the new coordinates of the points taken previously
are (x+ δx(x), δy(x)) and (x+ dx+ δ(x+ dx), δ(x+ dx)) (see Figure A.1).

Figure A.1: Cable displacement

Since dl is a very small distance, we can consider that the curve that connects
the two points is a straight line of modulus dl = dx. Then the displacement seen in
detail will be as in the Figure A.2

Yet, we obtain the following expression:
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Figure A.2: Small displacement

dl2 = dx2 = [(x+ dx+ δx(x+ dx)− x− δx(x))2] + [(δy(x+ dx)− δy(x))2]. (A.1)

Knowing that (δy(x+ dx)− δy(x)) ≃ dδy
dx

dx, we obtain:

dx2 = (
dδy

dx
dx)2 + (

dδx

dx
dx+ dx)2. (A.2)

By developing the squared terms and with simplification, we obtain:

(
dδy

dx
)2 + (

dδx

dx
+ 1)2 = 1. (A.3)

dδx

dx
=

√
1− (

dδy

dx
)2 − 1. (A.4)

For small displacements, we consider the Taylor expansion in the neighborhood
of zero, then the first order of the right side of the equality in A.4) is expressed as:

dδx

dx
= 1− 1

2
(
dδy

dx
)2 − 1. (A.5)

We perform a change of variable ζ = dδy
dx

and we obtain the expression for
displacements along the direction x:

δx = −1

2

∫ x

0

(
dδy

dx
)2 d(

dδy

dx
) (A.6)

A.2 The slider-crank mechanism model
Before performing the ODE transformation on the complex flexible cable robot
model in section (3.2.6) , we tested this transformation on a simple model Slider-
crank mechanism to verify if it solve the problem of the non-controllability and
non-observability of the linear DAE model.

The slider-crank mechanism is a nonlinear mechanical system that is often used
in the literature (Ha et al. (2006),Beckers et al. (2021)) (see Figure A.3). For the
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modeling strategy, this mechanism can be considered as a double pendulum with a
constraint (y2 = 0) as represented in Figure A.4. This mechanism commonly used
to transform the straight line motion into a rotational motion.

A.2.1 Geometric equations

Figure A.3: Slider-Crank Mechanism

Figure A.4: Double pendulum system
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Considering the minimal configuration, the slider-crank system is composed of
two segments with lengths L1 and L2 and two punctual masses m1 and m2 attached
to the ends of these segments. The fixed reference is R0 and the two references
attached to the segments are Ri = (Ai,Xi,Yi) with i = 1, 2. The coordinates of
Ai in the fixed reference R0 are xi and yi, and the angles θi = (xi−1,xi). The
slider-crank system is a 1DOF system that can parameterized with θ1, θ2, x2, and
y2.

The position expressions are given as:

x1 = L1 cos θ1. (A.7)

y1 = L1 sin θ1. (A.8)

x2 = L1 cos θ1 + L2 cos(θ1 + θ2). (A.9)

y2 = L1 sin θ1 + L2 sin(θ1 + θ2). (A.10)

and the constrained condition is given as:

y2 = 0 (A.11)

A.2.2 Kinematics analysis

Taking the time derivative of the positions, we obtain the velocities expressions as
follows:

ẋ1 = −L1 sin(θ1) θ̇1. (A.12)

ẏ1 = L1 cos(θ1) θ̇1. (A.13)

ẋ2 = −L1 sin(θ1) θ̇1 − L2 sin(θ1 + θ2) (θ̇1 + θ̇2). (A.14)

ẏ2 = L1 cos(θ1) θ̇1 + L2 cos(θ1 + θ2) (θ̇1 + θ̇2). (A.15)

A.2.3 Differential-algebraic equations model (DAE)

The Lagrangian formalism is considered to obtain the dynamic model:

• The potential energy of the system is given as:

V (θ1, θ2) = m1 g y1 +m2 g y2. (A.16)

• The kinetic energy of the system is calculated as follows:

T (θ2, θ̇1, θ̇2) =
1

2
(m1 (ẋ

2
1 + ẏ21) +m2 (ẋ

2
2 + ẏ22)) =

1

2
q̇T M(q) q̇ (A.17)
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where q =
[
θ1 θ2

]T is the coordinate vector and the kinetic inertia matrix
M(q) is presented as:

M(q) =

[
M11 M12

M12 M22

]
=

[
(m1 +m2)L

2
1 + m2 L

2
2 + 2m2 L1 L2 cos θ2 m2 (L

2
2 + L1 L2 cos θ2)

∗ m2 L
2
2

]
.

(A.18)

The Lagrangian formalism is used to obtain the equation of motion as follows:

d

dt

∂L

∂q̇
− ∂L

∂q
= Γ︸︷︷︸

JT Fx+C

+AT λ (A.19)

where:

• The Lagrange equation is given as L = T − V , then the left side terms of
the equation (A.19) is calculated as: ∂L

∂q
=

[
∂T
∂θ1
− ∂V

∂θ1
∂T
∂θ2
− ∂V

∂θ2

]T
with ∂V

∂θ1
=

m1 g L1 cos θ1 + m2 g (L1 cos θ1 + L2 cos(θ1 + θ2), ∂V
∂θ2

= m2 g L2 cos(θ1 + θ2),
∂T
∂θ1

= 0, ∂T
∂θ2

= −m2 L2 L1 sin θ2 (θ̇1 + θ̇2) θ̇1), then

∂L
∂q

=

[
−g L1 (m1 +m2) cos θ1 −m2 g L2 cos(θ1 + θ2)

−m2 L2 L1 sin θ2 (θ̇1 + θ̇2) θ̇1 −m2 g L2 cos(θ1 + θ2)

]
.

• The matrix of the external forces Γ is given as follows: Γ = JT Fx + C, with
C =

[
c1 0

]T is the torque vector, Fx is the force applied to the system in the
point A2 in the direction x0 and the matrix J is calculated as:
J =

[
−L1 sin θ1 − L2 sin(θ1 + θ2) −L2 sin(θ1 + θ2).

]
.

• λ is the Lagrange multiplier vector.

• The matrix A =
[
L1 cos θ1 + L2 cos(θ1 + θ2) L2 cos(θ1 + θ2)

]
is the Jacobian

matrix of the constraint which fulfill that A(q) q̇ = 0.

The potential energy depends only on the generalized coordinate vector q, then

the term d
dt

∂L
∂q̇

is calculated as: d
dt

∂L
∂q̇

=
[

d
dt

∂T
∂θ̇1

d
dt

∂T
∂θ̇2

]T
and given that ∂T

∂θ̇
= M q̇,

then d
dt

∂T
∂θ̇

= M q̈ + Ṁ q̇ with the matrix Ṁ can be calculated as:

Ṁ = ∂M
∂θ1

θ̇1 +
∂M
∂θ2

θ̇2 =

[
−2m2 L1 L2 sin θ2 θ̇2 −m2 L1 L2 sin θ2 θ̇2
−m2 L1 L2 sin θ2 θ̇2 0

]
.

The dynamic equation of motion of the constrained system in (A.19) can be
rewritten as follows:

M q̈ =
∂L

∂q
+ Γ + AT λ− Ṁ q̇ (A.20)

with q̈ =
[
θ̈1 θ̈2

]T
.

By combining the dynamic equation of motion (A.20) and the time derivative of
the constraint (A(q) q̇ = 0), then the differential algebraic equation model can be
obtained as follows:
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[
M −AT

A 0

]
︸ ︷︷ ︸

G

[
q̈
λ

]
=

[
∂L
∂q

+ Γ− Ṁ q̇

−Ȧ q̇

]
︸ ︷︷ ︸

F

(A.21)

where matrix Ȧ is given by:

Ȧ =
∂A

∂θ1
θ̇1 +

∂A

∂θ2
θ̇2

=
[
−sin(θ1)L1 θ̇1 − L2 sin(θ1 + θ2) θ̇1 − L2 sin(θ1 + θ2) θ̇2 −sin(θ1 + θ2)L2 (θ̇1 + θ̇2).

]
(A.22)

.
The DAE model has been linearized and the linear model has been found non-

observable and non-controllable due to the geometric dependency between the vari-
ables, then to solve this problem we thought about reducing these geometric con-
straints by transforming the DAE model into and ordinary differential equation
model (ODE).

A.3 The ordinary differential equation model (ODE)
The differential-algebraic equations (DAE) model presented with the two variables
q =

[
θ1 θ2

]T can be reduced into an ordinary differential equations model (ODE)
presented only with one variable by expressing θ2 in the function of θ1 due to the
dependency between the two variables (θ1, θ2) caused by the geometric constraint.

From the geometric constraint in the equation A.11, then the variable θ2 can be
expressed in function of the variable θ1 as follows:

θ2 = arcsin(
−L1 sin θ1

L2

)− θ1 (A.23)

and then:
θ̇2 =

∂θ2
∂θ1

θ̇1 = (− L1 cos θ1

L2

√
1− L2

1 sin
2θ1

L2
2

− 1) θ̇1. (A.24)

The potential energy of the ODE model is given by the equation:

Vc = V (θ1) = g m1 L1 sin θ1. (A.25)

The kinetic energy of the ODE model is then expressed as follows:

Tc = T (θ1, θ̇1) =
1

2
q̇Tc Mc q̇c =

1

2
Mc θ̇

2
1. (A.26)

Considering the first order kinetic model q̇ = B q̇c given as:[
θ̇1
θ̇2

]
︸︷︷︸

q̇

=

[
0
∂θ2
∂θ1

]
︸ ︷︷ ︸

B

θ̇1︸︷︷︸
q̇c

(A.27)

then equation (A.26) can be written as:

Tc =
1

2
q̇Tc BT M B︸ ︷︷ ︸

Mc

q̇c (A.28)
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where matrix Mc is calculated as follows:

Mc(θ1) = BT M B = J1 + L2
1 (m1 +m2) +m2 L

2
2 + 2m2 L1 L2 cos(θ2)+

(
−L1 cos(θ1)

L2

√
1− L2

1 sin(θ1)
2

L22

− 1)m2 (L
2
2 + L1 L2 cos(θ2))+

(m2 (L
2
2+L1 L2 cos(θ2))+(

−L1 cos(θ1)

L2

√
1− L2

1 sin(θ1)
2

L22

−1)m2 L
2
2) (

−L1 cos(θ1)

L2

√
1− L2

1 sin(θ1)
2

L22

−1).

(A.29)

The DAE model in the equation (A.21) can be transformed into an ODE model
as follows:

Mc q̈c =
∂Lc

∂qc
+ Γc − Ṁc q̇c. (A.30)

where:

• ∂Lc

∂q
= ∂Ecc

∂θ1
− ∂Epc

∂θ1
with ∂Epc

∂θ1
= m1 g L1 cos(θ1) and, ∂Ecc

∂θ1
= 1

2
∂Mc

∂θ1
θ̇1

2
.

• Ṁc(θ1, θ̇1) =
∂Mc

∂θ1
θ̇1.

• Γc = Jc Fx+ c1 with Jc =
∂x2(θ1)
∂θ1

= −L1 sin(θ1)−L2 (1+
∂θ2
∂θ1

) sin(θ1+ θ2(θ1)).

We linearized the obtained ODE model, then the linear model was found con-
trollable and observable.

A.4 The pinhole model
The pinhole model (Hartley and Zisserman (2004)) is considered to model a camera
by perspective projection (see Figure (A.5). This model has been used to calibrate
and model the camera considering the perspective projection in section 3.3.3.

This model transforms a 3D point P (Xs, Ys, Zs) of space into a 2D image point
p(u, v), this transformation is performed according to three transformations: The
transformation between the world reference (Os, Xs, Ys, Zs) and that of the camera
(O,X, Y, Z), the transformation between the camera reference and the retinal plane
reference (c(u0, v0), x, y) and the transformation between retinal plane reference and
the image reference (u, v).

A.4.1 First transformation

The Euclidean coordinates are expressed into a homogeneous coordinate in order
to express the model of the pinhole by a linear relation, in 2D

(
x y

)T becomes(
x y 1

)T and in 3D
(
X Y Z

)T becomes
(
X Y Z 1

)T .
As shown in Figure A.5, the first transformation [Rt] is a rigid transformation

that decomposes into a rotation R and a translation t. The parameters of this
transformation are called the extrinsic parameters of the camera. This relations is
presented as follows:
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Figure A.5: Pinhole model Habed (2022)


X
Y
Z
1

 = R ·

Xs
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+ t =
(

R t
0T 1

)
·


Xs

Ys
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1

 (A.31)

where t =

tx
ty
tz

 and R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

.

A.4.2 Second transformation

This transformation is a perspective projection P(3 × 4) matrix which transforms
a 3D point (X, Y, Z) into an image point (x, y) (in metric unit). This relations is
presented as follows:

s ·

x
y
1

 =

f 0 0 0
0 f 0 0
0 0 1 0

 ·

X
Y
Z
1

 = P ·


X
Y
Z
1

 (A.32)

where s is a factor and f is the focal length of the lens.

A.4.3 Third transformation

This transformation corresponds to the operation of converting the metric image
coordinates (x, y) into discrete image coordinates (u, v) (pixels). This relations is
presented as follows:
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u
v
1

 =

kx kx cot θ u0 + v0 cot θ
0 ky/ sinθ v0/ sinθ
0 0 1

 ·
x
y
1

 = A ·

x
y
1

 (A.33)

where:

• u0 and v0 (in pixels) designate the coordinates of the intersection between the
optical axis and the image plane.

• kx and ky designate the number of pixels per unit length along x and y of the
sensor.

• θ translates the non-orthogonality of the rows and columns of the image.

As θ ≃ π
2
, then the relation simplifies as following:u

v
1

 =

kx 0 u0

0 ky v0
0 0 1

 ·
x
y
1

 (A.34)

The multiplication of the matrix A by the matrix P gives the matrix containing
the intrinsic parameters of the camera: Mint=AP.

Finally, the complete model of the pinhole shown in Figure A.5 results in the
following relation:(

Xs Ys Zs

) T→
(
X Y Z

) P→
(
x y

) A→
(
u v

)
(A.35)

The projection matrix will therefore be MP = APT of size 3× 4.
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Appendix B

Control

B.1 The Popov-Belevitch-Hautus theorems of con-
trollability and observability

The Popov-Belevitch-Hautus theorems have been used to test the controllability and
observability of the obtained linear models in the sections 3.2.5.

Theorem 1 (Popov-Belevitch-Hautus controllability test (Zhou et al. (1996))). The
following conditions are equivalent:

i (A,B) is controllable.

ii The matrix
[
A− λI B

]
has full column rank for all λ ∈ C.

iii The controllability matrix C =
[
B AB A2B . . . An−1B

]
has full row rank.

iv Let λ and x be any eigenvalue and any corresponding left eigenvector of A, i.e.,
x∗A = x∗λ, then x∗B ̸= 0.

Theorem 2 (Popov-Belevitch-Hautus observability test (Zhou et al. (1996))). The
following conditions are equivalent:

i (C,A) is detectable.

ii The matrix
[
A− λI

C

]
has full column rank for all Reλ ≥ 0.

iii O =


C
AC
A2C

...
An−1C

 has full row rank.

iv For all λ and x such that Ax = λx and Reλ ≥ 0, C x ̸= 0.

v (A∗, C∗) is stabilizable.
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B.2 Mathematical tools for the H∞ synthesis

B.2.1 Singular values of a transfer matrix

Definition B.2.1 (Singular value of a matrix (Toscano (2013))). By considering
the singular values of the transfer matrix G(s), we can extend the frequency gain of a
SISO system to a MIMO system. Considering the system response y(t) with a number
ny and the input system u(t) with the number nu, the response in the frequency domain
of a SISO system G(s) is given as:

y(jω) = G(jω)u(jω) (B.1)

where G(jω) = G(s)s=jω and the gain of the SISO system at frequency ω is presented as
|G(jω)|.
The frequency gain in the case of SISO systems are represented as a singular values is
the case of MIMO systems. The singular values σi of the matrix G(jω) are defined as the
square roots of eigenvalues of G(jω)G(jω)∗ as follows:

σi(G(jω)) =
√

λi(G(jω)G(jω)∗) =
√

λi(G(jω)∗G(jω)) (B.2)

where λi(G(jω)G(jω)∗) is an eigenvalue of the matrix (G(jω)G(jω)∗),
i = 1, . . . ,min(nu, ny), G(jω)∗ = G(−jω)T is the conjugate transpose of G(jω), and
the two matrices G(jω)∗G(jω) and G(jω)G(jω)∗ are Hermitiana positive semi-definite
matrices, and their eigenvalues are non-negative. The largest σ̄(G(jω)) and the smallest
σ(G(jω)) singular values of G(s) are denoted as:

σ̄(G(jω)) = σ1(G(jω)) ≥ σ2(G(jω)) ≥ . . . ≥ σ(G(jω)) ≥ 0 ∀ ω (B.3)

Figure (B.1) shows the frequency domain representation of singular values as a positive
functions of ω.

aA matrix is Hermitian if it is equal to its conjugate transpose

Figure B.1: Singular values and H∞-norm of a transfer matrix (Toscano (2013))
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B.2.2 H2 norm of system

Definition B.2.2 (H2 norm of a system). Let G be a stable strictly proper transfer
matrix defined as G(s) = C(sI − A)−1B, the H2 norm of the system is represented as
following:

∥G∥2 =
√

1
2π

∫ +∞
−∞ Tr(G(jω)∗G(jω))dω.

B.2.3 H∞ norm of system

Definition B.2.3 (H∞ norm of a system). Let the LTI system be represented by the
transfer function defined as G(s) = C(sI − A)−1B. Then, the H∞ norm of the stable
system G is given by:

∥G∥∞ = sup
w

σ(G(jω))

B.3 Riccati’s algebraic equations approach
This approach of resolution of the H∞ problem is based on the use of the state-space
formulation and it has been presented by Doyle et al. (1989).

Let us introduce a minimal realization of the system P (s):

P (s) =

[
P11(s) P12(s)
P21(s) P22(s)

]
=

[
C1

C2

] [
sI − A

]−1 [
B1 B2

]
+

[
D11 D12

D21 D22

]
(B.4)

where D12 ∈ Rp1×m2 , D21 ∈ Rp2×m1 , m1 ≥ p2, p1 ≥ m2 and A ∈ Rn×n and n the
order of the system P (s).

The H∞ sub-optimal solution is obtained considering the following assumptions:

i (A,B2) stabilizable and (A,C2) detectable.

ii D12 has full column rank and D21 has full row rank.

iii rank
[
A− jwI B2

C1 D12

]
= n+m2 has full column rank for all w ∈ R.

the matrix D12 has full row rank for all w ∈ R.

iv rank
[
A− jwI B1

C2 D21

]
= n+ p2 has full row rank for all w ∈ R.

the matrix D21 is of full row rank ∀w ∈ R.

Solving the following two Riccati equations to find the stabilizing solutions:

ATX +XA+X(γ−2B1B
T
1 −B2B

T
2 )X + C1C

T
1 = 0 (B.5)

AY + Y AT + Y (γ−2C1C
T
1 − C2C

T
2 )Y +B1B

T
1 = 0 (B.6)

requires the calculation of the spectra of the following two Hamiltonian matrices:

H∞ =

[
A γ−2B1B

T
1 −B2B

T
2

−CT
1 C1 −AT

]
J∞ =

[
AT γ−2CT

1 C1 − CT
2 C2

−B1B
T
1 −A

]
(B.7)
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Notice that the H∞ controller does not cancel pole and zero on the imaginary
axis that would results in closed-loop instability.

Theorem 3 (Doyle et al. (1989)). There exist an admissible controller K :

K =

[
A∞ −Z∞L∞

−BT
2 X∞ 0

]
(B.8)

where:

• A∞ = A+ γ−2B1B
T
1 X∞ +B2F∞ + Z∞L∞C2.

• L∞ = −Y∞CT
2 .

• Z∞ = (I − γ2Y∞X∞)−1.

In order to ensure the closed-loop system internally stable such that ∥Tw→z∥∞ < γ, if
and only if:

• H∞ ∈ dom(Ric) and X∞ = Ric(H∞) ≥ 0.

• J∞ ∈ dom(Ric) and Y∞ = Ric(J∞) ≥ 0.

• ρ(X∞Y∞) < γ2.

where Ric(H) is the stabilizing solution of the algebraic Riccati equation and the do-
main of Ric is denotes dom(Ric).

B.4 Linear matrix inequalities
Unlike the iterative Riccati approach, the performance criteria γ of the H∞-optimal
problem can be found directly with the LMI approach without iteration. In this
approach, the sufficient and necessary conditions for the existence of an admissible
controller are represented as linear matrix inequalities.

Lemma 4 (Gahinet and Apkarian (1994)). Consider a continuous-time transfer func-
tion G(s) of (not necessarily minimal) realization G(s) = D + C(sI − A)−1B. The
following statements are equivalent:

i ∥C(sI − A)−1B +D∥∞ < γ and A is stable in the continuous-time sense
Re(λi(A) < 0).

ii there exists a symmetric positive definite solution X to the LMI:ATX +XA XB CT

BTX −γI DT

C D −γI

 < 0. (B.9)
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Theorem 5 (Gahinet and Apkarian (1993)). Given γ > 0, the system (B.4) admits
an H∞ sub-optimal controller if and only there exist matrices X, Y ∈ Sn+nk

satisfying
the following LMI:

[
W[BT

2 DT
21]

0

0 I

]T AX +XAT XCT
1 B1

C1X −γI D11

BT
1 DT

11 −γI

[
W[BT

2 DT
21]

0

0 I

]
< 0. (B.10)

[
W[CT

2 D21] 0

0 I

]T ATY + Y A Y BT
1 CT

1

BT
1 Y −γI DT

11

C1 D11 −γI

[
W[CT

2 D21] 0

0 I

]
< 0. (B.11)

[
X I
I Y

]
≥ 0. (B.12)

where W[BT
2 DT

21]
,W[CT

2 D21] are the matrices whose columns form bases of the null spaces
of [BT

2 D
T
21] and [CT

2 D21], respectively.
The set of the γ sub-optimal controllers contains controllers of order nK < nx if and
only if the matrices X and Y moreover satisfy the rank constraint :

rank(I −XY ) ≤ nK . (B.13)
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Rima Saadaoui 

Commande robuste de robots plans 
à câbles en tenant en compte des 

déformations des câbles  

 

Résumé en français : 

Au cours des dernières décennies, les robots parallèles à câbles ont suscité un vif intérêt pour 
l’industrie et la recherche scientifique. Ces robots combinent les propriétés mécaniques des 
mécanismes parallèles et aussi des câbles, ce qui les rend parfaitement adaptés à plusieurs 
applications. Les câbles présentent généralement un phénomène de déformation lors de mouvement 
générant des vibrations qui perturbent le positionnement d’effecteur.  

Tout d'abord, nous avons revisité la modalisation dynamique des robots à câbles flexibles qui mène à 
un modèle algebro-différentielle où la flexibilité des câbles a été modélisée par la méthode des modes 
supposes. Ce modèle non-linéaire a été transformé en un modèle différentiel ordinaire dans le but 
d'obtenir après sa linéarisation un modèle commandable et observable adapté à la synthèse H∞. 

Ensuite, un correcteur H∞ robuste a été synthétisé pour commander les tensions des câbles et la 

suivie de trajectoire de la plate-forme. Une validation en simulation de la loi de commande sur un robot 
parallèle à quatre câbles a été effectuée. Cette étape a été précédée par une évaluation du modèle 
géométrique à partir d'images vidéos acquises sur le prototype de robot plan INCA. 

 

Mots-clés : Robot parallèle à câbles, Câble flexible, Approche par modes supposés, Commande H∞, 

Commande robuste, Modèle algébro-différentiel, Modèle différentiel ordinaire. 

 

 

Résumé en anglais :  

Over the past decades, cable-driven parallel robots have evoked great interest in industry and scientific 
research. These robots combine the mechanical properties of parallel mechanisms and cables, which 
makes them perfectly suitable for several applications. During the movement, the cables show 
transverse vibration, which causes inaccuracy in the positioning of the platform.  

First, we revisited the dynamic modeling of the flexible cable robot, which leads to a differential 
algebraic equation model where the flexibility of the cables was modeled using the assumed-modes 
approach. This model has been transformed into a non-linear ordinary differential equation model to 
obtain a controllable and observable model after its linearization. Then, an H∞ controller was 

synthesized to control the cable tensions and the trajectory tracking of the platform. Simulation 
validation of the control law on a parallel robot with four cables was performed, and an evaluation of 
the geometric model from video images acquired on the INCA prototype. 

 

Keywords: Parallel cable robots, Flexible cable, Assumed-mode approach, H∞ synthesis, Robust 

control, Algebraic-differential model, Ordinary differential model. 
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