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General Introduction

Launched on March 14, 2023, the new version of ChatGPT, GPT-4, marks a turning

point in Artificial Intelligence (AI). Due to its ability to combine text and vision, it

can now successfully pass exams – with high grades – in nearly any domain. When

I started this thesis in 2019, only seven years had passed since we could recognize

a cat with 75% accuracy [Le, 2013], and only four years since Microsoft’s AI had

“surpassed” humans in their ability to recognize entities in images [He et al., 2015].

Four years later, we have seen an explosion in the development of AI, especially in

natural language processing, and still, little is known about its potential implications

and dangers (e.g. misinformation and fake news, cybersecurity risks, ethical concerns

or psychological impact on individuals). In response to this growing development of

AI, for which we do not fully comprehend and handle the consequences, an open letter

calling on AI research to immediately pause for at least six months the training of

other AI systems more powerful than GPT-4 was published the 22 March 2023. This

petition was signed by more than 25,000 individuals including 1,000 AI researchers

and experts1. The proliferation of AI and its abilities for ten years involves societal

changes and might alter how science works. This thesis specifically addresses the

relationship between science and artificial intelligence technology. Specifically, it

aims to understand how various AI applications can affect the nature of research

conducted in application domains. In doing so, we consider social factors to better

understand how researchers adopt technology and produce new knowledge. In the

following, we provide an overview of the role of AI in the new scientific paradigm.

Scientists depend on evolving technology to conduct experiments and validate

theories. New technologies often enable scientists to explore the knowledge space dif-

ferently and make new discoveries. As Derek de Solla Price states, “The changes of

paradigm that accompany great and revolutionary changes may sometimes be caused

1Including Joshua Bengio, one of the three founding fathers of deep learning and winner of the
Turing Prize. The petition can be found here: https://futureoflife.org/open-letter/pause-giant-ai-
experiments/
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GENERAL INTRODUCTION

by inspired thought, but much more commonly they seem due to the application of

technology to science” [de Solla Price, 1963]. Science and technology have a bidi-

rectional relationship: science provides fundamental principles for the development

of new technologies, and technology, in turn, generates the instrumentation and

technics needed to address novel and more challenging scientific questions more ef-

ficiently [Brooks, 1994]. Several technological advances have reshaped the scientific

landscape throughout history. Think of the invention of the microscope which led

to the discovery of cells or X-ray crystallography that facilitated the elucidation

of three-dimensional molecular structures. These developments have deepened our

understanding of biological mechanisms and provided a foundation for countless dis-

coveries and innovations in various scientific disciplines. More recently, advances in

informatics have enabled scientists to create complex mathematical models and solve

problems previously considered intractable. For example, computers have been used

to solve problems in number theory, cryptography, combinatorial optimization, sim-

ulate natural phenomena (climate systems, molecular dynamics, galaxy structures),

and finally, enable the emergence of artificial intelligence.

AI lies at the core of the current technological paradigm, sharing several simi-

larities in scale and scope with previous technological revolutions that have shaped

and fueled long-term cycles of economic growth and structural change. The term

“Artificial Intelligence” was coined by the computer scientist John McCarthy for

the 1956 Dartmouth Summer Research Project on Artificial Intelligence, a seminal

event for the field [McCarthy et al., 1955]. The goal of AI was to make machines

use language, form abstractions, solve human problems, and improve themselves.

Definitions of AI have varied but generally involve machines simulating intelligent

behavior, performing complex tasks, and learning from experience. For instance,

the European Commission refers to AI as “machines or agents capable of observing

their environment, learning, and taking intelligent action or proposing decisions”

[Annoni et al., 2018, p.19]. According to the OECD, AI systems are machine-based

systems that can make predictions, recommendations, or decisions for a given set of

human-defined objectives ”[OECD, 2019, p.23]. WIPO defines AI systems as learn-

ing systems that can improve at tasks typically performed by humans with limited

or no human intervention ”[WIPO, 2019, p.19]. Terms like machine learning, deep

learning, and artificial intelligence are often used interchangeably.

12



GENERAL INTRODUCTION

In the early days, AI focused on solving problems that formal mathematical

rules could describe. These problems are intellectually challenging for humans but

simpler for computers, as real-world knowledge can be hard-coded into formal lan-

guages, allowing logical inference rules to find solutions. This method, known as the

’knowledge-based’ approach, involves a typical architecture with a knowledge base

and an inference engine. The knowledge base stores real-world information, while the

inference engine enables the machine to deduce insights from the stored information.

This approach was dominant during the first few decades, with applications like “ex-

pert systems” introduced in the 1970s to simulate human judgment and behavior in

specific fields. These systems were effective for certain problem types but not those

requiring substantial subjective and intuitive knowledge or perceptual capabilities.

Such problems are easy for humans to perform but difficult to articulate formally

and mathematically [Nilsson, 2009].

In the same period, an alternative approach to machine intelligence began to take

hold in the scientific community. This approach soon became known as “machine

learning”, which focused on designing intelligent systems that can acquire knowledge

by extracting patterns from raw data. Unlike knowledge-based systems, machine

learning methods construct hypotheses directly from the data through inductive in-

ference, allowing machines to tackle problems involving real-world knowledge and

achieve some human-like abilities, such as recognizing objects. Although machine

learning proved to be a successful alternative to knowledge-based systems and be-

came one of the most prominent branches of AI starting in the 1980s, particular

challenges remained. Mainly, traditional machine learning methods encountered sig-

nificant difficulties in extracting high-level abstract features from raw data due to

factors of variation, such as different shapes, shadows, and viewing angles [Nilsson,

2009, Goodfellow et al., 2016]. All these attributes are known as factors of varia-

tions, essentially constructs in the human mind that can be thought of as high-level

abstractions that help us make sense of the rich variability of the observed data.

The “deep learning” approach to machine intelligence emerged as an effective so-

lution to the challenges faced by traditional machine learning methods. Deep learning

(DL) systems learn from experience and comprehend the world through a hierarchy of

abstract concepts, each defined in relation to simpler concepts [Schmidhuber, 2015,

LeCun et al., 2015, Goodfellow et al., 2016]. This approach offers two significant

advantages. First, like simpler machine learning algorithms, the machine acquires

knowledge from past experiences, eliminating the need for humans to provide all the

13
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formal knowledge required to achieve a specific goal. Second, the complexity and

abstraction of concepts are no longer barriers, as the machine can reconstruct and

combine them on top of each other. This hierarchy of concepts makes the learning

process that can be seen as structured into multiple layers, hence the term “deep”. AI

technics have been successfully used in diverse areas as predicting the 3D structure

of proteins [Jumper et al., 2021], regulating nuclear fusion plasma in the tokamak

configuration [Degrave et al., 2022], predicting the formation of the structure of the

Universe [He et al., 2019], and creating a map of the brains of small insects [Winding

et al., 2023] to name few. In 2017, AI witnessed another remarkable breakthrough

with the emergence of Transformer models with self-attention mechanisms [Vaswani

et al., 2017].

The impressive results of Generative Pre-trained Transformers (GPT), such as

ChatGPT or GPT-4, now clearly illustrate artificial intelligence’s general-purpose

technology (GPT) nature, showcasing their adaptability and broad applicability

across numerous domains. These models not only interact with users on various

subjects but also support human thought processes by providing additional perspec-

tives backed by near-expert knowledge on diverse topics. Thus, GPTs are GPTs.

In March 2023, Eloundou et al. [2023] immortalized the wordplay and published the

paper “GPTs are GPTs: An early look at the labor market impact potential of large

language models”, highlighting GPT-4’s capabilities and its potential impact on the

job market, suggesting that 15% of all worker tasks in the US could be completed

significantly faster while maintaining the same quality level. Note that some of these

tasks are also part of the scientific system, like programming and writing [Eloundou

et al., 2023]. AI possesses the attributes of a general-purpose technology, with wide-

ranging applications across numerous disciplines. GPTs, such as AI, stand out from

other innovations due to their extensive application across various sectors, ability to

catalyze further innovation in application sectors, and continuous rapid improvement

[David, 1990, Bresnahan and Trajtenberg, 1995]. Classic examples of GPTs include

the electric motor and the microprocessor, which have driven significant technologi-

cal and organizational change across diverse sectors like manufacturing, agriculture,

retail, and residential construction.

AI’s role as a GPT in science is further exemplified by its function as an “Inven-

tion in the Method of Invention” (IMI). IMIs create or improve specific products and

provide a new way of generating new products with broader applications. For exam-
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ple, double-cross hybrid in agriculture was an IMI that led to the development of nu-

merous new crop varieties, profoundly impacting agricultural productivity [Griliches,

1957]. The economic impact of AI as a research tool extends beyond merely reducing

the costs of specific innovation activities as it enables an entirely new approach to

innovation itself. The pervasive nature of AI as a GPT and IMI positions it as a

unique technology capable of driving organizational change across a wide range of

scientific fields. Yet, it should be used responsibly. This is why institutions such

as the European Commission are supporting a regulatory and investment-oriented

approach to promoting AI uptake while addressing risks associated with the technol-

ogy [European-Commission, 2020]. Similar initiatives have been implemented by the

OECD, which launched a specific technology observatory to closely monitor technol-

ogy evolution and provide evidence-based policy analysis on AI2. These initiatives

are not limited to Europe, since 2019 institutions such as Stanford University have

regularly reported yearly metrics on AI’s evolution, labor market, skills, and automa-

tion to guide responsible and ethical decision-making 3.

Ongoing advancements in AI within scientific disciplines, particularly the remark-

able accomplishments achieved through neural network technics, extend beyond pro-

viding impressive anecdotal discoveries. Instead, these advancements have resulted

in increasing pressure to transition from hypothesis-driven to data-driven scientific

exploration. The emerging scientific paradigm is founded upon data-intensive com-

puting, facilitated by the widespread implementation of intelligent machines capable

of discerning representations, rules, and patterns in an ever-growing volume of struc-

tured and unstructured data [King et al., 2009, Hey et al., 2009]. Scientific discovery

can be viewed as the process or product of successful scientific inquiry. In its narrow-

est sense, the term discovery might refer to the so-called ’eureka moment’ of gaining

new insights. However, in this context, we adopt its broadest meaning—using the

term discovery as synonymous with ’successful scientific endeavour’ as a whole. His-

torically, the process of scientific inquiry has evolved through paradigms, i.e. sym-

bolic generalizations, metaphysical commitments, values, and exemplars shared by

a community of scientists that guide their research [Kuhn, 1962]. For most of hu-

man history, scientists have observed phenomena and postulated laws or principles

to simplify the complexity of observations into more manageable concepts. Initially,

there were only experimental and theoretical sciences. Hey et al. [2009] refer to

2https://oecd.ai/en/
3https://aiindex.stanford.edu/report/
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empirical observation and logical (theory) formulation as the first and second scien-

tific paradigms, respectively. However, by the mid-20th century, numerous problems

became too complex for analytical solutions, leading researchers to adopt simula-

tion methods. Science entered a third paradigm characterized by the development

of computational models and simulations to understand complex phenomena. We

are transitioning towards a fourth scientific paradigm where scientific investigation

is rooted in data-intensive computing, enabled by the extensive deployment of intel-

ligent machines capable of extracting representations, rules, and patterns from data

[King et al., 2009, Hey et al., 2009].

The shift towards this fourth scientific paradigm implies that there may be a

change in the way science progresses. Scientific advancements stem from individu-

als’ abilities to balance exploration and exploitation of the knowledge space efficiently

[Uzzi et al., 2013]. With the integration of data-intensive computing and intelligent

machines, the process of knowledge creation could potentially be transformed or

even accelerated as these new technologies help uncover representations, rules, and

patterns from vast amounts of data. The theory of re-combinatorial knowledge cre-

ation posits that new knowledge primarily results from the recombination of existing

pieces of knowledge [Weitzman, 1998, Uzzi et al., 2013, Wang et al., 2017]. Scien-

tific progress is thus the outcome of individual and collective creativeness, where

creativity is defined as the “production of high-quality, original, and elegant solu-

tions to complex, novel, ill-defined, or poorly structured problems” [Hemlin et al.,

2013]. Innovation relies on the exploration of the knowledge space. The way orga-

nizations manage the balance between exploring new ideas and exploiting existing

ones can be easily transferred to the scientific community. This balance determines

the trade-off that organizations face when attempting to innovate while preserving

established routines and practices [March, 1991]. March argues that organizations

must find a suitable compromise between these two aspects to survive and succeed

in the long run. The same stand for science since scientists try to innovate within

established paradigms, and survival in science can be considered through peer recog-

nition. This perspective emphasizes two facets of creativity in science: the novelty

and relevance of the research conducted. Measures of novelty or atypicality are based

on the concept of knowledge recombination [Uzzi et al., 2013, Lee et al., 2015, Fos-

ter et al., 2015, Wang et al., 2017, Shibayama et al., 2021]. One can approximate

the difficulties of combining pieces of knowledge within a scientific document (i.e.
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an article). Although these measures may contain biases due to their reliance on

citation networks, they remain crucially helpful. They provide evidence of possible

biases in journals’ peer-review processes [Wang et al., 2017] as well as in funding

allocations towards too-novel research [Boudreau et al., 2016, Carayol et al., 2017,

Franzoni et al., 2022]. Furthermore, these metrics also provide a basis for analyzing

the influence of technology on research. They help to identify whether the technology

offers a more cross-disciplinary viewpoint by helping navigation through the knowl-

edge space or allows for exploiting this space by providing a sharper perspective on

a well-defined problem. These questions of how AI would lead to further exploration

or exploitation of the knowledge space and how it affects the associated recognition

will be addressed in Chapter 1 of this thesis.

Since science is a social phenomenon [Fleck, 2012], factors related to individuals’

social capital will determine how AI disseminates within the scientific community.

This paradigm shift suggests that technology can impact the nature of the research

conducted but also implies that a growing number of researchers in various applica-

tion domains will focus on these technics. Not all individuals have equal access to

AI-based technologies. A researcher’s ability to adopt AI largely depends on their

scientific and technical human capital, including cognitive skills, scientific and tech-

nical knowledge, and contextual skills. Resources can be divided into two broad

categories: those that reside within the individual and those that are anchored in

the relationships between the individual and their working environment [Bozeman

et al., 2001, Bozeman and Corley, 2004]. Consequently, the adoption of AI in sci-

ence is closely linked to how researchers mobilize and are limited by their resources.

Although the objective is not for all researchers to necessarily use AI, it still seems

important to understand the factors that promote its adoption to uncover mech-

anisms that enable a broader range of researchers to benefit from the advantages

linked to AI. Chapter 2 will discuss the relationship between individuals’ scientific

and technical human capital and the adoption of artificial intelligence in application

domains.

The third contribution of this thesis, presented in Chapters 3 and 4, focuses on

the relation between the cognitive dimension within a research team and knowledge

creation. Nahapiet and Ghoshal [1998] conceptualizes three dimensions of social

capital that impact intellectual capital development: structural, relational, and cog-

nitive. Structural capital examines the connections between individuals and their

respective networks; relational capital represents the nature and intensity of the
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relationships between team members; and cognitive capital symbolises the shared

background between individuals and their common language. In science, cognitive

diversity is often promoted through interdisciplinary projects, as the intersection of

different perspectives is commonly needed to solve complex scientific problems [Page,

2008]. Indeed, people from outside a domain may have an advantage in offering fresh

ideas through their distinct knowledge [Jeppesen and Lakhani, 2010, Kuhn, 1962].

Chapters 3 and 4 enhance our understanding of novelty, scientific impact indicators,

and their association with social dimensions. Chapter 3 introduces an open-source

Python-based tool, “Novelpy”, which allows the computing of various metrics of

novelty and disruption. This chapter also formalises existing indicators mathemati-

cally in a common framework. It seems essential to consider the social dimension of

the innovation process to better understand how to identify potentially innovative

research without solely relying on measures based on citation networks. The final

chapter of this thesis, chapter 4, takes a step back and analyzes the origin of these

novelty indicators, considering the cognitive dimension of the team as a determining

factor of its creativity.

Outline of the thesis

In the current context of artificial intelligence becoming a transformative force in

research, there is a growing need to address questions surrounding its adoption and

impact on the scientific process. The primary objective of this thesis is to shed light

on three main questions:

• How does AI affect the knowledge production process in terms of novelty and

scientific recognition?

• What are the factors that promote the adoption of this technology in scientific

application domains?

• How individuals’ ability to explore the knowledge space, and cognitive distances

between team members influence their capacity to combine distant knowledge

and the resulting recognition?

To answer these questions, Chapters 1 and 2 will offer insights into the two first

queries, while Chapters 3 and 4 will concentrate on the third one. The subsequent

sections will present a comprehensive overview of each chapter and the methodologies

employed throughout this thesis.

18



GENERAL INTRODUCTION

Chapter 1

This initial chapter provides insights into the dissemination and impact of artificial

intelligence, specifically neural networks, in science. Some recent studies have doc-

umented the diffusion of AI and deep learning in science [Cockburn et al., 2018,

Klinger et al., 2021], but none have explored how its use influences scientific discov-

ery. Our article addresses this gap by examining how the use of neural networks

(NNs) affects combinatorial novelty and the scientific impact of articles in the health

sciences.

To identify articles using AI, we employed a new and original method based on

word embedding which allowed us to identify some 250,000 documents published

between 1990 and 2018 from Web of Science. By analyzing these documents, we

considered five key attributes that define a technology as ’emerging’ – namely: (i)

radical novelty, (ii) fast growth, (iii) coherence, (iv) prominent impact, and (v) uncer-

tainty and ambiguity [Rotolo et al., 2015] – and demonstrated that NNs conform to

these properties. We found that NN research activity has grown exponentially across

nearly all sciences and globally, with the diffusion process following a double-boom

cycle and a strong reconfiguration of global actors. The diffusion of NN methods

into application domains began cross-disciplinary involving the computer sciences,

breaking their way into ‘pure’ field-specific research within the various application

domains.

We subsequently investigated the impact of technology adoption on scientific dis-

covery, particularly focusing on health sciences. We found a negative correlation

between adopting NN methods and combinatorial novelty by employing novelty in-

dicators from Uzzi et al. [2013] and Wang et al. [2017]. At the same time, we observed

a positive correlation with the expectation and dispersion of citations received, thus

increasing a contribution’s likelihood of becoming a ’big hit.’

Our findings prompt us to adopt a more moderate stance in the recent debate

regarding AI’s influence on knowledge development. We conclude that while NN

methods do not yet function as an autopilot for navigating the sea of knowledge and

connecting ideas, they represent a potent and versatile research tool that impacts

knowledge creation in tangible ways. As such, we propose that AI be considered as

an emerging general method of invention.
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Chapter 2

This chapter aims to understand the factors that promote AI adoption by domain

scientists. While most literature focuses on an article-level analysis, we propose

studying the dynamics of AI adoption at the individual level.

We relied on the Scientific & Technical Human Capital (STHC) framework pro-

posed in the seminal paper by Bozeman and Corley [2004] and, hence, divided the

authors’ STHC into three main dimensions: individual characteristics, social en-

vironment, and institutional context. We operationalized the three dimensions by

blending OpenAlex data with information on the computational capabilities of in-

stitutions, social networks and exploratory profiles of individuals.

In this study, we show that the proportion of researchers adopting AI who will

eventually use the technology again remains relatively stable at around 35%. Despite

technological advancements and the increasing availability of resources to facilitate

AI utilization, incorporating AI into a researcher’s future work seems not determined

by its progress and accessibility. Researchers adopting AI often apply this technology

in a familiar field, with 62% publishing their first AI article in a journal sharing

the same primary concept as their initial publication. On average, the number of

researchers with computer science or AI skills is higher in AI-based papers involving

domain scientists, suggesting that published AI articles demand specialized skills

compared to researchers’ prior publications.

Our results indicate that the STHC offers a valuable framework for understand-

ing drivers of AI adoption in application domains. Some institutional dimensions,

such as the degree of specialization, significantly affect individuals’ ability to tran-

sition to AI usage and to appropriate it in the long term. Physical infrastructures

(High-performance computing) appear beneficial only in some domains, emphasiz-

ing that the lack of local physical infrastructure may not be the most significant

barrier to undertaking AI research contrary to the popular belief and evidence from

macro-level studies [Ahmed and Wahed, 2020]. Also, the composition of the social

environment (i.e. past collaboration network) is strongly related to AI integration in

researchers’ practices and its long-term adoption; both adopters and reusers belong

to networks populated by computer scientists or individuals with AI backgrounds at

the expense of domain scientists. Scholars with more diverse backgrounds are more

likely to embrace and reuse AI in their research, indicating that individuals with

a more exploratory profile are more prone to transitioning toward new technology.

Lastly, we found that young researchers enhance AI adoption and reuse; many past
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collaborations with young researchers make AI adoption more straightforward, and

their presence on the team during initial trials strongly influences the reuse of the

technology.

Institutions must foster a culture that encourages knowledge sharing, promotes

interaction among scientists, and identifies and supports ’boundary-spanning’ indi-

viduals who can bridge the gap between AI expertise and other scientific domains.

Additionally, reconsidering the allocation of resources towards more modest but

widespread investments in data science or ML infrastructure could democratize AI,

promoting its adoption across a broader range of scientific disciplines.

Chapter 3

Chapter 3 is a methodological chapter. It proposes Novelpy, an open-source Python

package designed to compute novelty and disruption indicators for scientific arti-

cles and patents. This chapter also provides a comprehensive review of the various

indicators available in Novelpy by formally describing these measures (both mathe-

matically and graphically).

Novelty measures are based on the concept of knowledge combination, the indi-

cators calculate the difficulty associated with the combinations realized in an article

to determine whether it is based on distant or proximate knowledge within a certain

knowledge space. As it is common in the literature, pieces of knowledge are repre-

sented by the journals or abstracts of an article’s references or its keywords.

Disruption measures, on the other hand, analyze how a focal article acts as a

bottleneck between future papers and the references of the focal papers. They capture

whether a document consolidates a domain (i.e., future papers rely on the references

used in the focal paper) or disrupts it (i.e., future papers only reference the focal

paper).

Although there are several packages available in R and Python designed to study

citation, co-authorship, or any coupling (e.g. ScientoPy, Ruiz-Rosero et al. [2019] ;

scientoText, Uddin et al. [2016]; Metaknowledge, McLevey and McIlroy-Young [2017]

or bibliometrix, Aria and Cuccurullo [2017]), yet libraries to compute novelty and

disruptiveness indicators remain unavailable. Our effort aims to provide the scien-

tometrics community with a tool that centralizes different measures of novelty and

disruptiveness, facilitates their comparison, and promotes reproducibility.

Novelpy package incorporates novelty measures from Uzzi et al. [2013], Foster

et al. [2015], Lee et al. [2015], Wang et al. [2017], and Shibayama et al. [2021], as
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well as disruptiveness measures from Wu et al. [2019], Bornmann et al. [2019a], and

Bu et al. [2019]. To demonstrate the module’s capabilities, we close the chapter by

comparing the different measures on a random sample of 1.5M articles drawn from

the PubMed Knowledge Graph.

Chapter 4

This final chapter focuses more closely on novelty in science. Only a few studies seek

to explain the mechanisms that give rise to novelty. In this work, we develop a new

indicator that allows us to measure the team’s cognitive diversity and the propensity

of its members to explore the knowledge space. The indicator is built using word

embedding techniques on the publication history of team members. We test its

relationship with novelty indicators and validate it using peer recommendations from

Faculty Opinions, following Bornmann et al. [2019b].

We can think of our indicator as a measure of potential novelty, i.e., opportunities

for new knowledge recombination available through the diversity of backgrounds in

the team and the capacity of individuals to bridge the gap between other team

members. In comparison, combinatorial novelty indicators would capture the realized

novelty, i.e., the output of the research conducted by this team in terms of pieces

of knowledge used. Finally, Faculty Opinion labelling and other external validation

methods can describe the perceived novelty, i.e., the peers’ perception of this study.

Seen from this perspective, we investigate whether potential novelty contributes to

realized and perceived novelty and its scientific recognition, measured with metrics

of disruptiveness [Wu et al., 2019, Bornmann et al., 2019a, Bu et al., 2019]. To this

end, we use the PubMed Knowledge Graph and examine approximately 1.8M articles

from the 2000-2005 period, focusing on less recent publications to manage the fact

that novel articles are more often “sleeping beauties” and accumulate citations in

the long run [Lin et al., 2021].

Our findings emphasize the critical role of the cognitive dimensions in creativity,

as it significantly influences originality and success. We show that cognitive diver-

sity always seems beneficial to combine more distant knowledge. In contrast, the

within-team average exploratory profile follows an inverse U-shaped relation with

combinatorial novelty (i.e. there is a turning point where it is no longer beneficial).

The same relation can be found when examining the impact in terms of citations.

However, our study highlights the strong connection between the cognitive dimen-

sion and the nature of these citations. More specifically, teams with more exploitative
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profiles tend to consolidate science, while those with more exploratory individuals

disrupt it when associated with exploitative ones.

In short, our research underscores the importance of team composition in terms of

profiles for scientific creativity. We show that the joint presence of highly exploratory

and exploitative individuals constitutes the most effective team compositions for

disrupting science, yet a limited number of highly exploratory individuals is essential

to maximize the relevance of knowledge combinations achieved.

Methodology

This thesis is largely based on quantitative analyses of science, employing methods

from bibliometrics and scientometrics. Thus, we make use of massive databases

represented as graphs, connecting scientific entities with one another, such as authors,

articles, institutions, etc. A brief history of these domains is in order.

The term bibliometrics was first defined by Belgian author Paul Otlet in 1934

[Otlet, 1934] and reintroduced in its English version by Pritchard et al. [1969] in

the paper “Statistical Bibliography or Bibliometrics?”. The discipline’s early fo-

cus was improving the classification and organization of books to avoid the flood of

knowledge. More precisely, librarians used it to select relevant items for their col-

lections [Sugimoto and Larivière, 2018]. In 1955, chemist and documentalist Eugene

K. Garfield proposed the creation of a citation index to offer an analysis tool by

studying the links between different scientific documents. The Institute for Scien-

tific Information, founded by Garfield in 1960, developed the Science Citation Index

(SCI), first launched in 1963 for researchers and librarians. However, the beginning

of bibliometrics studies was in the 1960s, with one of the central figures being Derek

J. de Solla Price [de Solla Price, 1965, Boyack et al., 2005]. Back then, the initial

focus was to understand research as a system by examining the growth in publica-

tions and the outline of citation activity. Early on, the number of references, the

density of citation count for papers, and the inequality in the citation process was of

particular interest. The fundamental problems of keeping track of relevant pieces of

knowledge and the progression of the science system remain at the core of the science

of science research [Fortunato et al., 2018]. The number of databases used by scholars

has increased in the last decades. New database structures like Knowledge Graphs

(KG) emerged (e.g. Microsoft Academic Graph (MAG, replaced by OpenAlex in

2022), PubMed Knowledge Graph (PKG)). Although the name KG was first used

in Schneider [1973], it was only popularized in 2012 when Google presented their
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own KG. MAG and PKG help match different knowledge units for a paper, a crucial

task in scientometrics. These units can be an author profile, a journal, a reference,

or even topics. KGs help us understand more deeply how science is structured and

performed.

The increasing availability of data has led in turn to a diversification in the field

of scientometrics. Scholars often use terms like Bibliometrics, Scientometrics, Infor-

metrics, Webometrics, and Altmetrics interchangeably. Extensive literature traces

the history of these fields and seeks to understand their inter-differences, as well as

creating intra-field taxonomies. They all share a common goal: studying science as

a system, using scientific methods. Yet some differences remains, Informetrics is a

sub-discipline of information sciences and is defined as the application of mathemat-

ical methods to the content of information science [Chellappandi and Vijayakumar,

2018]. In other words, Informetrics is the highest level of abstraction, and every

other field is a subset of Informetrics. Bibliometrics, as we have seen above, fo-

cuses on citations for collection management and document retrieval using specific

aspects of the document without placing it in the overall context in which it was

created. In contrast, Scientometrics is a “meta-science” that quantitatively analyzes

the production, dissemination, and underlying system’s mechanisms [Sugimoto and

Larivière, 2018, Chellappandi and Vijayakumar, 2018]. Finally, Webometrics and

Altmetrics are both concerned with information available on the web, but Webo-

metrics is document-focused, with the document being a web page, while Altmetrics

is focused on the networking aspect and complements citations with the number of

likes and retweets [Mingers and Leydesdorff, 2015].

This thesis is essentially built on methods from Scientometrics. But Scientomet-

rics itself can be further divided into two macro types of analysis: performance and

Science Mapping Analysis (SMA) [Moral Muñoz et al., 2020]. The goal of the former

is to assess scientific actors’ activities and their impact. Its purpose is, therefore, to

assign a value to the productivity and pervasiveness of the research conducted by a

unit (article, author, institution). SMA “is mostly directed at monitoring a scientific

field to determine its (cognitive) structure, its evolution, and main actors within”

[Noyons et al., 1999]; it takes a snapshot of a part of the scientific system at a given

moment to analyze its structure.

Inputs, outputs, and impacts of these scientific activities are the three perspec-

tives used in performance analysis and SMA [Sugimoto and Larivière, 2018]. Input

refers to human and financial resources and captures the different interactions of
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agents in the system at various levels (Authors/Institutional/Country levels); output

is the end result of the research process, which is the composition of this document

and the different entities that characterize it; and finally, impact measures study the

repercussions of the outputs, the dissemination of knowledge that an article generates

through citations, attention by the general public, or reutilization of the document’s

component.

This thesis addresses these three dimensions in the study of artificial intelligence

in science. Indeed, in Chapter 1, as outlined earlier, we investigate the outputs

and scientific impact of AI publications. In Chapter 2, we study the inputs of this

research. Chapters 3 and 4 aim finally to understand the relationships between the

inputs at the author level, the outputs of the conducted research and their scientific

impact.
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Lancée le 14 mars 2023, la nouvelle version de ChatGPT, GPT-4, marque un tour-

nant dans le domaine de l’intelligence artificielle (IA). Grâce à sa capacité à combiner

le texte et la vision, cette entité peut désormais passer avec succès des examens –

avec des notes élevées – dans presque tous les domaines. Lorsque j’ai commencé cette

thèse en 2019, il ne s’était écoulé que sept ans depuis que nous pouvions reconnâıtre

un chat avec une précision de 75% [Le, 2013], et seulement quatre ans depuis que

l’IA de Microsoft avait “surpassé” les humains dans leur capacité à reconnâıtre des

entités dans des images [He et al., 2015]. Quatre ans plus tard, nous avons assisté

à une explosion du développement de l’IA, en particulier dans le domaine du trai-

tement du langage naturel, et nous en savons encore peu sur ses implications et ses

dangers potentiels (par exemple, la désinformation et les “fake news”, les risques de

cybersécurité, les préoccupations éthiques ou l’impact psychologique sur les indivi-

dus). En réponse à ce développement croissant de l’IA, dont nous ne comprenons ni

ne gérons pleinement les conséquences, une lettre ouverte appelant la recherche sur

l’IA à faire une pause immédiate d’au moins six mois dans l’entrainement d’autres

systèmes, plus puissants que GPT-4, a été publiée le 22 mars 2023. Cette pétition

a été signée par plus de 25 000 personnes, dont 1 000 chercheurs et experts en IA4.

La prolifération de l’IA et l’amélioration de ses capacités depuis dix ans impliquent

des changements sociétaux et pourrait modifier la façon dont la science fonctionne.

Cette thèse aborde spécifiquement la relation entre la science et la technologie de

l’intelligence artificielle. Plus précisément, elle vise à comprendre comment les di-

verses applications de l’IA peuvent affecter la nature de la recherche menée dans les

domaines d’application. Pour ce faire, nous prenons en compte les facteurs sociaux

afin de mieux comprendre comment les chercheurs adoptent la technologie et pro-

duisent de nouvelles connaissances. Nous présentons ci-dessous une vue d’ensemble

4Parmi lesquels Joshua Bengio, l’un des trois pères fondateurs de l’apprentissage profond et
lauréat du prix Turing. La pétition est disponible à l’adresse suivante : https://futureoflife.org/open-
letter/pause-giant-ai-experiments/
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du rôle de l’IA dans ce nouveau paradigme scientifique.

Les scientifiques dépendent de l’évolution de la technologie pour mener des ex-

perience et valider des théories. Grâce aux nouvelles technologies, les scientifiques

peuvent explorer différemment l’espace de connaissances et faire de nouvelles décou-

vertes. Comme le souligne Derek de Solla Price, “The changes of paradigm that

accompany great and revolutionary changes may sometimes be caused by inspired

thought, but much more commonly they seem due to the application of technology

to science” [de Solla Price, 1963]. La science et la technologie entretiennent une

relation bidirectionnelle : la science fournit des principes fondamentaux pour le

développement de nouvelles technologies, et la technologie, à son tour, génère les ins-

truments et les techniques nécessaires pour répondre plus efficacement à des questions

scientifiques nouvelles et plus difficiles [Brooks, 1994]. Plusieurs avancées technolo-

giques ont remodelé le paysage scientifique au cours de l’histoire. Il suffit de penser à

l’invention du microscope, qui a conduit à la découverte des cellules, ou à la cristal-

lographie aux rayons X, qui a facilité la compréhension des structures moléculaires

et de l’ADN. Ces développements ont permis d’approfondir notre compréhension des

mécanismes biologiques et ont servi de base à de nombreuses découvertes et innova-

tions dans diverses disciplines scientifiques. Plus récemment, les progrès de l’informa-

tique ont permis aux scientifiques de créer des modèles mathématiques complexes et

de résoudre des problèmes auparavant considérés comme insolubles. Par exemple, les

ordinateurs ont été utilisés pour résoudre des problèmes de théorie des nombres, de

cryptographie, d’optimisation combinatoire, pour simuler des phénomènes naturels

(systèmes climatiques, dynamique moléculaire, structures des galaxies) et enfin, ont

permis l’émergence de l’intelligence artificielle.

L’IA est au cœur du paradigme technologique actuel, partageant plusieurs simili-

tudes en termes d’échelle et de portée avec les révolutions technologiques précédentes.

Le terme “intelligence artificielle” a été lancé par l’informaticien John McCarthy à

l’occasion du projet de recherche estival de Dartmouth sur l’intelligence artificielle

en 1956, un événement fondateur pour le domaine [McCarthy et al., 1955]. L’objec-

tif de l’IA était de faire en sorte que les machines utilisent le langage, construisent

des abstractions, résolvent des problèmes humains et s’améliorent d’elles-mêmes. Les

définitions de l’IA varient, mais elles impliquent généralement que les machines si-

mulent un comportement intelligent, exécutent des tâches complexes et tirent des

enseignements de leurs expériences. Par exemple, la Commission européenne définit

l’IA comme suit : “machines or agents capable of observing their environment, lear-
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ning, and taking intelligent action or proposing decisions” [Annoni et al., 2018, p.19].

Selon l’OCDE, les systèmes d’IA sont des “machine-based systems that can make pre-

dictions, recommendations, or decisions for a given set of human-defined objectives

”[OECD, 2019, p.23]. L’OMPI définit les systèmes d’IA comme des “learning sys-

tems that can improve at tasks typically performed by humans with limited or no

human intervention ”[WIPO, 2019, p.19]. Les termes “apprentissage automatique”,

“apprentissage profond” et “intelligence artificielle” sont souvent utilisés de manière

interchangeable.

Au début, l’IA s’est concentrée sur la résolution de problèmes que des règles

mathématiques formelles pouvaient décrire. Ces problèmes sont intellectuellement

difficiles pour les humains, mais sont plus simples pour les ordinateurs car ils peuvent

être codés formellement, ce qui permet de trouver des solutions à l’aide de règles

d’inférence logiques. Cette méthode, connue sous le nom d’approche “basée sur

la connaissance”, implique une architecture avec une base de connaissances et un

mécanisme d’inférence. La base de connaissances stocke les informations du monde

réel, tandis que le mécanisme d’inférence permet à la machine de déduire des sche-

mas à partir des informations stockées. Cette approche a été dominante au cours des

premières décennies, avec des applications telles que les “systèmes experts” introduits

dans les années 1970 pour simuler le jugement et le comportement humains dans des

domaines spécifiques. Ces systèmes étaient efficaces pour certains types de problèmes,

mais pas pour ceux qui nécessitaient des connaissances substantielles subjectives et

intuitives ou des capacités de perception. Ces problèmes sont faciles à résoudre pour

les humains, mais difficiles à formuler de manière formelle et mathématique [Nilsson,

2009]. Au cours de la même période, une autre approche à l’intelligence machine

a commencé à s’imposer dans la communauté scientifique. Cette approche est ra-

pidement devenue connue sous le nom d’“apprentissage machine”. L’“apprentissage

machine” se concentre sur la conception de systèmes intelligents capables d’acquérir

des connaissances en extrayant des régularités à partir de données brutes. Contrai-

rement aux systèmes basés sur la connaissance, les méthodes d’apprentissage auto-

matique construisent des hypothèses directement à partir des données par inférence

inductive, ce qui permet aux machines de s’attaquer à des problèmes impliquant des

connaissances du monde réel et d’atteindre certaines capacités semblables à celles de

l’homme, telles que la reconnaissance d’objets. Bien que l’apprentissage automatique

se soit avéré être une alternative efficace aux systèmes basés sur la connaissance et
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qu’il soit devenu l’une des branches les plus importantes de l’IA à partir des années

1980, des défis particuliers subsistaient. Principalement, les méthodes traditionnelles

d’apprentissage automatique ont rencontré d’importantes difficultés pour extraire des

caractéristiques abstraites de haut niveau à partir de données brutes en raison de

facteurs de variation, tels que les différentes formes, les ombres et les angles de vue.

Ces facteurs de variation sont essentiellement des constructions de l’esprit humain

qui peuvent être considérés comme des abstractions de haut niveau qui nous aident

à donner un sens à la riche variabilité des données observées [Nilsson, 2009, Goodfel-

low et al., 2016]. L’approche ’apprentissage profond’ de l’intelligence artificielle est

apparue comme une solution efficace aux défis posés par les méthodes traditionnelles

d’apprentissage automatique. Les systèmes d’apprentissage profond (DL) apprennent

par l’expérience et appréhendent le monde à travers une hiérarchie de concepts abs-

traits, chacun défini en relation avec des concepts plus simples [Schmidhuber, 2015,

LeCun et al., 2015, Goodfellow et al., 2016]. Cette approche présente deux avantages

significatifs. Premièrement, à l’instar des algorithmes d’apprentissage automatique

plus simples, la machine acquiert des connaissances à partir d’expériences passées, ce

qui évite aux humains de devoir fournir toutes les connaissances formelles nécessaires

pour atteindre un objectif spécifique. Deuxièmement, la complexité et l’abstraction

des concepts ne sont plus des obstacles, car la machine peut les reconstruire et les

combiner les uns avec les autres. Cette hiérarchie de concepts fait que le processus

d’apprentissage peut être considéré comme structuré en plusieurs couches, d’où le

terme “profond”. Les techniques d’IA ont été utilisées avec succès dans des domaines

aussi variés que la prédiction de la structure 3D des protéines [Jumper et al., 2021],

la régulation du plasma de fusion nucléaire dans la configuration du tokamak [De-

grave et al., 2022], la prédiction de la formation de la structure de l’Univers [He

et al., 2019], ou la création d’une carte du cerveau des petits insectes [Winding et al.,

2023], pour n’en citer que quelques-uns. En 2017, l’intelligence artificielle a connu

une autre avancée remarquable avec l’émergence de modèles de Transformers dotés

de mécanismes d’auto-attention [Vaswani et al., 2017].

Les résultats impressionnants des “Generative Pre-trained Transformers” (GPT),

tels que ChatGPT ou GPT-4, illustrent désormais clairement la nature de technolo-

gie polyvalente de l’intelligence artificielle (General-Purpose Technology - GPT), en

montrant leur adaptabilité et leur large applicabilité dans de nombreux domaines.

Ces modèles ne se contentent pas d’interagir avec les utilisateurs sur divers sujets,
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aussi ils peuvent accompagner les humains dans un processus de pensée, en appor-

tant des perspectives supplémentaires étayées par des connaissances quasi-expertes

sur divers sujets. Les GPTs (Generative Pre-trained Transformers) sont donc des

GPTs (General-Purpose Technologies). En mars 2023, Eloundou et al. [2023], ont

immortalisé le jeu de mots en publiant l’article “GPTs are GPTs : An early look at

the labor market impact potential of large language models”, qui met en lumière les

capacités du GPT-4 et son impact potentiel sur le marché du travail, suggérant que

15 % de toutes les tâches des travailleurs aux États-Unis pourraient être accomplies

beaucoup plus rapidement tout en conservant le même niveau de qualité. À noter

que certaines de ces tâches font également partie du monde scientifique, comme la

programmation et l’écriture [Eloundou et al., 2023]. L’intelligence artificielle possède

les attributs d’une technologie à usage universel, avec des applications très variées

dans de nombreuses disciplines. Les GPT, comme l’IA, se distinguent des autres in-

novations par leur application étendue dans divers secteurs, leur capacité à catalyser

d’autres innovations dans les secteurs d’application et leur amélioration rapide et

continue [David, 1990, Bresnahan and Trajtenberg, 1995]. Parmi les exemples clas-

siques de GPT, on peut citer le moteur électrique et le microprocesseur, qui ont

entrâıné d’importants changements technologiques et organisationnels dans divers

secteurs tels que l’industrie manufacturière, l’agriculture, le commerce de détail et la

construction de logements.

Le rôle de l’IA en tant que GPT dans la science est également illustré par sa posi-

tion d’“invention dans les méthodes d’invention” (IMI). Les IMI créent ou améliorent

des produits spécifiques et fournissent une nouvelle façon de générer de nouveaux

produits avec des applications plus larges. Par exemple, le croisement en agricul-

ture est une IMI qui a conduit au développement de nombreuses nouvelles variétés

de plantes cultivées, ce qui a eu un impact profond sur la productivité agricole.

L’impact économique de l’IA en tant qu’outil de recherche va au-delà de la simple

réduction des coûts d’activités liés a des innovations spécifiques, car elle permet une

approche entièrement nouvelle de l’innovation elle-même. L’omniprésence de l’IA en

tant que GPT et IMI la positionne comme une technologie unique capable de conduire

des changements organisationnels dans un large éventail de domaines scientifiques.

Cependant, elle doit être utilisée de manière responsable. C’est pourquoi des institu-

tions telles que la Commission européenne soutiennent une approche réglementaire

et axée sur l’investissement pour promouvoir l’adoption de l’IA tout en abordant

les risques associés à la technologie [European-Commission, 2020]. Des initiatives
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similaires ont été mises en œuvre par l’OCDE, qui a lancé un observatoire de la

technologie spécifique pour suivre de près l’évolution de la technologie et fournir une

analyse politique de l’IA fondée sur des données empiriques5. Ces initiatives ne se

limitent pas à l’Europe ; depuis 2019, des institutions comme l’Université de Stan-

ford publient régulièrement des données annuelles sur l’évolution de l’IA, le marché

du travail, les compétences et l’automatisation, afin de guider la prise de décisions

responsables et éthiques6.

Les progrès continus de l’IA dans les disciplines scientifiques, en particulier les

réalisations remarquables obtenues grâce aux techniques des réseaux neuronaux, ne

se limitent pas à des découvertes anecdotiques impressionnantes. Au contraire, ces

progrès ont entrâıné une tendance croissante à passer d’une exploration scientifique

fondée sur des hypothèse à une exploration scientifique fondée sur des données. Le pa-

radigme scientifique émergent est fondé sur le recours intensif aux données, facilité par

la généralisation de machines intelligentes capables de discerner des représentations,

des règles et des schémas dans un volume sans cesse croissant de données structurées

et non-structurées. La découverte scientifique peut être considérée à la fois comme le

processus et le produit d’une étude scientifique aboutie. Dans son sens le plus étroit,

le terme de découverte peut se référer à ce que l’on appelle le “moment d’eurêka”,

qui consiste à acquérir de nouveaux points de vue. Toutefois, dans ce contexte, nous

adoptons le sens le plus large de découverte, comme synonyme d’“ effort scientifique

fructueux”.

Historiquement, le processus de recherche scientifique a évolué à travers des pa-

radigmes, c’est à dire, des généralisations symboliques, des principes philosophiques,

des valeurs et des références partagés par une communauté de scientifiques qui

guident leurs recherches [Kuhn, 1962]. Durant la majeure partie de l’histoire de

la science, les scientifiques ont observé des phénomènes et postulé des lois ou des

principes pour simplifier la complexité des observations en concepts plus faciles à

manipuler. Au départ, il n’existait que des sciences expérimentales et théoriques.

Hey et al. [2009] considèrent l’observation empirique ainsi que la formulation logique

(théorie) comme étant respectivement le premier et le deuxième paradigme scienti-

fique. Toutefois, vers le milieu du 20e siècle, de nombreux problèmes sont devenus

trop complexes pour être résolus de manière analytique, ce qui a conduit les cher-

cheurs à adopter des méthodes de simulation. La science est entrée dans un troisième

5https://oecd.ai/en/
6https://aiindex.stanford.edu/report/
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paradigme caractérisé par le développement de modèles informatiques et de simula-

tions pour comprendre des phénomènes complexes. Nous sommes en train de passer à

un quatrième paradigme scientifique dans lequel l’investigation scientifique est ancrée

dans le traitement intensif des données, rendu possible par le déploiement à grande

échelle de machines intelligentes capables d’extraire des représentations, des règles

et des régularités à partir des données [King et al., 2009, Hey et al., 2009].

Le passage à ce quatrième paradigme scientifique implique qu’il pourrait y avoir

un changement dans la façon dont la science progresse. Les progrès scientifiques

découlent de la capacité des individus à équilibrer efficacement l’exploration et l’ex-

ploitation de l’espace de la connaissance [Uzzi et al., 2013]. Avec l’intégration de

données et de machines intelligentes, le processus de création de connaissances pour-

rait potentiellement être transformé, voire accéléré. Ces nouvelles technologies per-

mettent, de manière autonome, de découvrir des représentations, des règles et des

modèles à partir de vastes quantités de données. La théorie de la création de connais-

sances par recombinaison postule que les nouvelles connaissances résultent principa-

lement de la re-combinaison de connaissances existantes [Weitzman, 1998, Uzzi et al.,

2013, Wang et al., 2017]. Le progrès scientifique est donc le résultat de la créativité in-

dividuelle et collective, créativité étant définie comme la “production of high-quality,

original, and elegant solutions to complex, novel, ill-defined, or poorly structured pro-

blems”. [Hemlin et al., 2013]. L’innovation repose sur l’exploration de l’espace des

connaissances, en effet la manière dont les organisations gèrent cet équilibre entre l’ex-

ploration de nouvelles idées et l’exploitation des idées existantes peut être facilement

transposée au monde scientifique. Cet équilibre détermine les compromis auxquels

les organisations sont confrontées lorsqu’elles tentent d’innover tout en préservant les

routines et les pratiques établies [March, 1991]. March soutient que les organisations

doivent trouver un équilibre adéquat entre ces deux aspects pour survivre et réussir

à long terme. Il en va de même pour la science, puisque les scientifiques tentent

d’innover dans le cadre des paradigmes établis, et que la survie en science peut être

envisagée par le biais de la reconnaissance par les pairs. Cette perspective met l’ac-

cent sur deux aspects de la créativité en science : la nouveauté et la pertinence de la

recherche menée. Les mesures de nouveauté ou d’atypicité sont basées sur le concept

de recombinaison des connaissances [Uzzi et al., 2013, Lee et al., 2015, Foster et al.,

2015, Wang et al., 2017, Shibayama et al., 2021]. On peut estimer les difficultés à

combiner des éléments de connaissance au sein d’un article scientifique. Bien que

32



INTRODUCTION GÉNÉRALE

ces mesures puissent présenter des biais en raison de leur dépendance aux réseaux

de citations, elles n’en demeurent pas moins d’une utilité capitale. Elles fournissent

des preuves d’éventuels biais dans les processus d’évaluation par les pairs dans les

revues [Wang et al., 2017] ainsi que dans les allocations de fonds en défaveur des re-

cherches trop novatrices [Boudreau et al., 2016, Carayol et al., 2017, Franzoni et al.,

2022]. Ces indicateurs fournissent également une base pour analyser l’influence de la

technologie sur la recherche. Ils permettent de comprendre si la technologie offre un

point de vue plus transversal, en aidant à naviguer dans l’espace des connaissances

ou permet d’exploiter cet espace en offrant une perspective plus fine sur un problème

bien défini. Ces questionnements sur la manière dont l’IA peut conduire à une ex-

ploration ou une exploitation de l’espace de connaissance et comment cela affecte la

reconnaissance seront traités dans le chapitre 1 de cette thèse.

La science étant un phénomène social [Fleck, 2012], les facteurs liés au capital

social des individus déterminent la manière dont l’IA se diffuse au sein de la com-

munauté scientifique. Ce changement de paradigme suggère que la technologie peut

avoir un impact sur la nature de la recherche menée, mais implique également qu’un

nombre croissant de chercheurs dans divers domaines d’application se concentreront

sur ces techniques. Toutefois, tous les individus n’ont pas le même accès aux techno-

logies basées sur l’IA. La capacité d’un chercheur à adopter l’IA dépend largement

de son capital humain scientifique et technique, notamment de ses compétences cog-

nitives, de ses connaissances scientifiques et techniques et de ses compétences contex-

tuelles. Les ressources d’un individu peuvent être divisées en deux grandes catégories :

celles propres à l’individu et celles qui sont ancrées dans les relations entre l’individu

et son environnement de travail [Bozeman et al., 2001, Bozeman and Corley, 2004].

L’adoption de l’IA dans le domaine scientifique est étroitement liée à la manière

dont les chercheurs mobilisent leurs ressources et sont limités par celles-ci. Bien que

l’objectif ne soit pas que tous les chercheurs utilisent nécessairement l’IA, il semble

néanmoins important de comprendre les facteurs qui favorisent son adoption et son

application afin de comprendre les mécanismes permettant à un plus grand nombre

de chercheurs de bénéficier des avantages liés à l’IA. Le chapitre 2 examine la rela-

tion entre le capital humain scientifique et technique des individus et l’adoption de

l’intelligence artificielle dans les domaines d’application.

La troisième contribution de cette thèse, présentée dans les chapitres 3 et 4, se

concentre sur la relation entre la dimension cognitive dans une équipe de recherche et

la création de connaissances. Nahapiet and Ghoshal [1998] conceptualise trois dimen-
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sions du capital social qui influencent le développement du capital intellectuel : le

capital structurel, relationnel et cognitif. Le capital structurel examine les liens entre

les individus et leurs réseaux respectifs ; le capital relationnel représente la nature et

l’intensité des relations entre les membres de l’équipe ; et le capital cognitif symbolise

les compétences partagées entre les individus et leur langage commun. En science,

la diversité cognitive est souvent encouragée par des projets interdisciplinaires, car

l’intersection de différents points de vue est généralement nécessaire pour résoudre

des problèmes scientifiques complexes [Page, 2008]. En effet, les personnes extérieures

à un domaine peuvent avoir l’avantage d’apporter des idées nouvelles grâce à leurs

connaissances distinctes [Jeppesen and Lakhani, 2010, Kuhn, 1962]. Les chapitres

3 et 4 améliorent notre compréhension de la nouveauté, des indicateurs d’impact

scientifique et de leur association avec les dimensions sociales. Le chapitre 3 présente

“Novelpy”, un outil open-source basé sur Python visant à calculer divers indicateurs

de nouveauté et de disruption. Ce chapitre formalise également mathématiquement

ces indicateurs. Pour mieux comprendre comment identifier des recherches potentiel-

lement innovantes sans s’appuyer uniquement sur des mesures basées sur le réseau

de citations, il semble important de considérer la dimension sociale de ce processus

d’innovation. Le dernier chapitre de cette thèse, le chapitre 4, fait un pas en arrière

et analyse la source de ces indicateurs de nouveauté, en considérant la dimension

cognitive de l’équipe comme un facteur déterminant de sa créativité.

Description de la thèse

Dans un contexte où l’intelligence artificielle constitue une source de mutation de

la science, il est de plus en plus nécessaire d’aborder les aspects liés à son adoption

et son impact sur le processus scientifique. L’objectif principal de cette thèse est de

faire la lumière sur trois questions principales :

• Comment l’IA affecte-t-elle le processus de production de connaissances en

termes de nouveauté et de reconnaissance scientifique ?

• Quels sont les facteurs qui favorisent l’adoption de cette technologie dans les

domaines d’application scientifiques ?

• Comment l’aptitude des individus à explorer l’espace de connaissances, ainsi

que les distances cognitives entre les membres de l’équipe, influencent leurs

capacités à combiner des connaissances éloignées et la reconnaissance scienti-

fique ?
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Pour répondre à ces questions, les chapitres 1 et 2 apporteront des éclaircissements

sur les deux première questions, tandis que les chapitres 3 et 4 se concentreront sur

la troisième. Les sections suivantes présenteront un aperçu de chaque chapitre et des

méthodologies employées tout au long de cette thèse.

Chapitre 1

Ce premier chapitre donne un aperçu de la diffusion et de l’impact de l’intelligence

artificielle, en particulier des réseaux neuronaux, dans la science. Certaines études

récentes ont documenté la diffusion de l’IA et de l’apprentissage profond dans la

science [Cockburn et al., 2018, Klinger et al., 2021], mais aucune n’a exploré la façon

dont leur utilisation influence la découverte scientifique. Notre article répond à cette

question en examinant comment l’utilisation des réseaux neuronaux (NN) affecte la

nouveauté combinatoire et l’impact scientifique des articles dans les sciences de la

santé.

Pour identifier les articles utilisant l’IA, nous avons employé une méthode nouvelle

et originale basée sur la vectorisation de mots qui a permis d’identifier environ 250

000 documents publiés entre 1990 et 2018 provenant de la base de données Web of

Science. En analysant ces documents, nous avons pris en compte cinq attributs clés

qui définissent une technologie comme “émergente” - à savoir : (i) nouveauté radicale,

(ii) croissance rapide, (iii) cohérence, (iv) impact important, et (v) incertitude et

ambigüıté [Rotolo et al., 2015] - et avons démontré que les NNs se conforment à ces

propriétés. Nous avons constaté que l’activité de recherche sur les NNs a connu une

croissance exponentielle dans presque toutes les sciences et à l’échelle mondiale, le

processus de diffusion suivant un cycle à deux phases et une forte recomposition des

acteurs mondiaux. La diffusion des méthodes de NN dans les domaines d’application

a démarré de manière transdisciplinaire en impliquant les sciences informatiques,

puis s’est frayée un chemin dans la “pure” recherche propre a différents domaines

d’application.

Nous avons ensuite étudié l’impact de l’adoption de la technologie sur la découverte

scientifique, en nous concentrant particulièrement sur les sciences de la santé. Nous

avons constaté une corrélation négative entre l’adoption des méthodes NN et la nou-

veauté combinatoire en utilisant les indicateurs de nouveauté de Uzzi et al. [2013] et

Wang et al. [2017]. Dans le même temps, nous avons observé une corrélation positive

avec la probabilité et la dispersion des citations reçues, augmentant ainsi la probabi-

lité qu’une contribution devienne un “grand succès”, mais aussi un article peu cité.
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Nos résultats nous incitent à adopter une position plus modérée dans le récent

débat concernant l’influence de l’IA sur le développement des connaissances. Nous

concluons que si les méthodes de NN ne fonctionnent pas encore comme un pilote

automatique pour naviguer dans l’espace des connaissances et relier les idées, elles

représentent un outil de recherche puissant et polyvalent qui a un impact tangible

sur la création de connaissances. À ce titre, nous proposons que l’IA soit considérée

comme un méthode générale émergente d’invention.

Chapitre 2

Ce chapitre vise à comprendre les facteurs qui favorisent l’adoption de l’IA par les

scientifiques de domaine d’application. La plupart des études se concentrent sur une

analyse au niveau article, mais nous proposons d’étudier la dynamique de l’adoption

de l’IA au niveau individuel.

Nous avons utilisé le concept du capital humain scientifique et technique (STHC)

proposé dans l’article fondateur de Bozeman and Corley [2004] et, par conséquent,

nous avons divisé le STHC des auteurs en trois dimensions principales : les ca-

ractéristiques individuelles, l’environnement social et le contexte institutionnel. Nous

avons opérationnalisé ces trois dimensions en associant les données d’OpenAlex à des

informations sur les capacités informatiques des institutions.

Dans cette étude, nous montrons que la proportion de chercheurs qui adoptent

l’IA et qui finiront par utiliser à nouveau cette technologie reste relativement stable,

autour de 35 %. Malgré les avancées technologiques et la disponibilité croissante de

ressources pour faciliter l’utilisation de l’IA, l’intégration de l’IA dans le travail futur

d’un chercheur ne semble pas déterminée par ses progrès et son accessibilité. Les

chercheurs qui adoptent l’IA appliquent souvent cette technologie dans un domaine

familier, 62 % d’entre eux publiant leur premier article sur l’IA dans une revue

partageant le même concept principal que leur publication initiale. En moyenne, le

nombre de chercheurs ayant des compétences en informatique ou en IA est plus élevé

dans les articles basés sur l’IA impliquant des scientifiques du domaine, ce qui suggère

que les articles publiés basés sur l’IA requièrent des compétences plus spécialisées que

les publications antérieures du chercheur.

Nos résultats indiquent que le STHC offre un cadre pertinent pour comprendre

les catalyseurs de l’adoption de l’IA dans les domaines d’application. Certaines di-

mensions institutionnelles, telles que le degré de spécialisation, affectent de manière

significative la capacité des individus à faire la transition vers l’utilisation de l’IA et de
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se l’approprier à plus long terme. Les infrastructures physiques (”High performance

computing”) ne semblent bénéfiques que dans certains domaines, ce qui souligne que

le manque d’infrastructures physiques locales n’est peut-être pas l’obstacle le plus

important à l’adoption de l’IA, contrairement à ce que l’on croit généralement et à

ce que montrent les études au niveau macroéconomique [Ahmed and Wahed, 2020].

En outre, la composition de l’environnement social (c’est-à-dire le réseau de collabo-

rations antérieures) est étroitement liée à l’intégration de l’IA dans les pratiques des

chercheurs et à son adoption à long terme ; les chercheurs qui essaient l’IA et ceux

qui réutiliseront cette technologie par la suite appartiennent à des réseaux peuplés

d’informaticiens ou d’individus ayant une expérience de l’IA, au détriment des scien-

tifiques du domaine. Les chercheurs ayant des profils plus variés sont plus susceptibles

d’adopter et de réutiliser l’IA dans leurs recherches, ce qui indique que les personnes

ayant un profil plus exploratoire sont plus susceptibles de s’orienter vers de nouvelles

technologies. Enfin, nous avons constaté que les jeunes chercheurs favorisent l’adop-

tion et la réutilisation de l’IA ; de nombreuses collaborations passées avec de jeunes

chercheurs rendent l’adoption de l’IA plus simple, et leur présence dans l’équipe lors

des premiers essai influe fortement sur la réutilisation de la technologie.

Les institutions doivent encourager une culture favorisant le partage des connais-

sances, la promotion des interactions entre chercheurs et l’identification et le soutien

des individus ”interdisciplinaires” capables de combler le fossé entre l’expertise en

IA et les autres domaines scientifiques. De plus, une réévaluation de l’allocation des

ressources vers des investissements plus modestes mais généralisés dans les infra-

structures de science des données ou d’apprentissage automatique pourrait faciliter

la démocratisation de l’IA.

Chapitre 3

Le chapitre 3 est un chapitre méthodologique. Il propose Novelpy, un module Python

open-source conçu pour calculer des indicateurs de nouveauté et de disruption d’ar-

ticles scientifiques et de brevets. Ce chapitre fournit également un aperçu détaillé

des différents indicateurs disponibles dans Novelpy en décrivant formellement ces

mesures (à la fois mathématiquement et graphiquement).

Les mesures de nouveauté sont basées sur le concept de combinaison de connais-

sances, et les indicateurs calculent la difficulté associée aux combinaisons réalisées

dans un article pour déterminer s’il est basé sur des connaissances éloignées ou

proches dans un certain espace de connaissances. Comme couramment dans la littérature,
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les éléments de connaissance sont représentés par les revues ou les abstracts des

références d’un article ou par ses mots-clés.

Les mesures de disruption, quant à elles, analysent la manière dont un article

cible agit comme un goulot d’étranglement entre les futurs articles et les références

de l’article cible. Elles déterminent si un document consolide un domaine (c’est-à-dire

que les futurs articles s’appuient sur les références utilisées dans l’article cible) ou le

bouleverse (c’est-à-dire que les futurs articles ne font référence qu’à l’article cible).

Bien qu’il existe plusieurs packages disponibles dans R et Python conçus pour

étudier la citation, la coécriture ou tout autre couplage (par exemple ScientoPy de

Ruiz-Rosero et al. [2019] ; scientoText de Uddin et al. [2016] ; Metaknowledge de

McLevey and McIlroy-Young [2017] ou bibliometrix de Aria and Cuccurullo [2017]),

les bibliothèques permettant de calculer les indicateurs de nouveauté et de pertur-

bation restent inexistantes. Notre effort vise à fournir à la communauté de la scien-

tométrie un outil qui centralise les différentes mesures de nouveauté et de disruption,

facilitant leur comparaison et promouvant leur reproductibilité.

Le module Novelpy intègre les mesures de nouveauté de Uzzi et al. [2013], Foster

et al. [2015], Lee et al. [2015], Wang et al. [2017], et Shibayama et al. [2021], ainsi

que les mesures de disruption de Wu et al. [2019], Bornmann et al. [2019a], et Bu

et al. [2019]. Pour démontrer les capacités du module, nous terminons le chapitre en

comparant les différentes mesures sur un échantillon aléatoire de 1,5 million d’articles

tirés du PubMed Knowledge Graph.

Chapitre 4

Ce dernier chapitre s’intéresse de plus près à la nouveauté en science. Seules quelques

études ont cherché à expliquer les mécanismes à l’origine de la nouveauté. Dans

ce travail, nous développons un nouvel indicateur qui nous permet de mesurer la

diversité cognitive d’une équipe et la propension de ses membres à explorer l’espace

des connaissances. L’indicateur est construit à l’aide de techniques de plongement de

mots (word2vec, Mikolov et al. [2013b]) sur l’historique des publications des membres

de l’équipe. Nous testons sa relation avec les indicateurs de nouveauté et nous le

validons en utilisant les recommandations des pairs de la Faculty Opinions, en suivant

Bornmann et al. [2019b].

Nous pouvons considérer notre indicateur comme une mesure de la nouveauté

potentielle, c’est-à-dire des possibilités de nouvelles combinaisons de connaissances

offertes par la diversité des profils d’une équipe et la capacité des individus à établir
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des passerelles entre les autres membres de l’équipe. En comparaison, les indica-

teurs de nouveauté combinatoire captureraient la nouveauté réalisée, c’est-à-dire le

résultat de la recherche menée par cette équipe en termes d’éléments de connais-

sance utilisés. Enfin, la labellisation des membres de Faculty Opinions et d’autres

méthodes de validation externe peuvent décrire la nouveauté perçue, c’est-à-dire la

perception de cette recherche par les pairs. Dans cette perspective, nous cherchons à

savoir si la nouveauté potentielle contribue à la nouveauté réalisée et perçue et à sa

reconnaissance scientifique, mesurée à l’aide de métriques de disruption [Wu et al.,

2019, Bornmann et al., 2019a, Bu et al., 2019]. Pour ce faire, nous utilisons PubMed

Knowledge Graph et examinons environ 1,8 million d’articles de la période 2000-

2005, en nous concentrant sur les publications moins récentes pour gérer le fait que

les nouveaux articles sont plus souvent des “beautés endormies” (sleeping beauties)

et accumulent davantage de citations sur le long terme [Lin et al., 2021].

Nos résultats soulignent le rôle critique de la dimension cognitive dans la créativité,

car elle influence de manière significative l’originalité et le succès. Nous montrons que

la diversité cognitive semble toujours bénéfique pour combiner des connaissances plus

éloignées. En revanche, le profil exploratoire moyen au sein de l’équipe suit une rela-

tion en forme de U inversé avec la nouveauté combinatoire (c’est-à-dire qu’il existe un

point d’inflexion où cela n’est plus bénéfique). La même relation peut être trouvée en

examinant l’impact en termes de citations. Cependant, notre étude met en évidence le

lien étroit entre la dimension cognitive et la nature de ces citations. Plus précisément,

les équipes composées d’individus exploitatifs ont tendance à consolider la science,

tandis que celles composées de profils plus exploratifs, lorsqu’ils sont associés à des

profils exploitatifs, la “disruptent”. En résumé, notre recherche souligne l’importance

de la composition des équipes en termes de profil cognitif pour la créativité scienti-

fique.

Nous montrons que la présence conjointe d’individus hautement exploratifs et ex-

ploitatifs constitue la composition d’équipe la plus efficace pour perturber la science ;

cependant, un nombre limité d’individus hautement exploratifs est essentiel pour

maximiser la pertinence des combinaisons de connaissances créées.

Méthodologie

Cette thèse repose en grande partie sur des analyses quantitatives de la science,

employant des méthodes issues de la bibliométrie et de la scientométrie. Ainsi, nous

utilisons des bases de données massives représentées sous forme de graphes, reliant
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les entités scientifiques entre elles, telles que les auteurs, les articles, les institutions,

etc. Un bref historique de ces domaines s’impose.

Le terme bibliométrie a été défini pour la première fois par le Belge Paul Otlet

en 1934 [Otlet, 1934] et réintroduit dans sa version anglaise par Pritchard et al.

[1969] dans l’article “Statistical Bibliography or Bibliometrics ?” L’objectif initial

de la discipline était d’améliorer la classification et l’organisation des livres pour

contenir l’afflux de connaissances. Plus précisément, les bibliothécaires l’utilisaient

pour sélectionner les articles pertinents pour leurs collections [Sugimoto and La-

rivière, 2018]. En 1955, le chimiste et documentaliste Eugene K. Garfield proposa

la création d’un index des citations pour offrir un outil d’analyse en étudiant les

liens entre différents documents scientifiques. L’Institute for Scientific Information,

fondé par Garfield en 1960, a développé le Science Citation Index (SCI), lancé pour

la première fois en 1963 à l’intention des chercheurs et des bibliothécaires. Toutefois,

les études bibliométriques ont débuté dans les années 1960, l’une des figures centrales

étant Derek J. de Solla Price [de Solla Price, 1965, Boyack et al., 2005]. À l’époque,

l’objectif initial était de comprendre la recherche en tant que système en examinant

la croissance des publications et les grandes lignes de l’activité de citation. Très tôt, le

nombre de références, la densité du nombre de citations pour les articles et l’inégalité

dans le processus de citation ont fait l’objet d’un intérêt particulier. Les problèmes

fondamentaux liés à la détection des connaissances importantes et à la progression

du système scientifique restent au cœur de la recherche en science des sciences [For-

tunato et al., 2018]. Le nombre de bases de données utilisées par les chercheurs a

augmenté au cours des dernières décennies. De nouvelles structures telles que les

graphes de connaissances (KG) sont apparues7. Bien que le nom KG ait été utilisé

pour la première fois dans Schneider [1973], il n’a été popularisé qu’en 2012 lorsque

Google a présenté son propre KG. Ils permettent de faire des correspondances entre

différentes entités liées un article, une tâche cruciale en scientométrie. Ces unités

peuvent être un profil d’auteur, une revue, une référence ou même des sujets. Ces

entités nous aident à mieux comprendre la manière dont la science est structurée et

réalisée.

La disponibilité croissante des données a entrâıné une diversification du domaine

de la scientométrie. Les chercheurs utilisent souvent de manière interchangeable des

termes tels que bibliométrie, scientométrie, informétrie, webométrie et altmétrie. Une

7Par exemple, Microsoft Academic Graph (MAG, qui a été remplacé par OpenAlex en 2022)
ou bien PubMed Knowledge Graph (PKG)
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littérature abondante retrace l’histoire de ces domaines et cherche à comprendre leurs

différences, ainsi qu’à créer des taxonomies intra-champ. Ils partagent tous un ob-

jectif commun : étudier la science en tant que système, en utilisant des méthodes

scientifiques. L’informétrie est une sous-discipline des sciences de l’information et

se définit comme l’application de méthodes mathématiques au contenu des sciences

de l’information [Chellappandi and Vijayakumar, 2018]. En d’autres termes, l’in-

formétrie est le plus haut niveau d’abstraction, et tous les autres domaines sont un

sous-ensemble de l’informétrie. La bibliométrie, comme nous l’avons vu plus haut, se

concentre sur les citations pour la gestion des collections et la recherche de documents

en utilisant des aspects spécifiques du document sans le placer dans le contexte global

dans lequel il a été créé. En revanche, la scientométrie est une ”méta-science” qui

analyse quantitativement la production, la diffusion et les mécanismes du système

sous-jacent [Sugimoto and Larivière, 2018, Chellappandi and Vijayakumar, 2018].

Enfin, Webometrics et Altmetrics s’intéressent tous deux aux informations dispo-

nibles sur le web, mais Webometrics est centré sur le document, le document étant

une page web, tandis qu’Altmetrics est centré sur l’aspect réseau et complète les

citations par le nombre de likes et de retweets [Mingers and Leydesdorff, 2015].

Cette thèse est essentiellement basée sur des méthodes issues de la scientométrie.

Mais la scientométrie elle-même peut être divisée en deux macro-types d’analyse : la

performance et l’analyse de la cartographie des sciences (SMA) [Moral Muñoz et al.,

2020]. L’objectif de cette première est d’évaluer les activités des acteurs scientifiques

et leur impact. Son but est donc d’attribuer une valeur à la productivité et à l’étendue

de la recherche menée par une unité (article, auteur, institution). SMA “is mostly

directed at monitoring a scientific field to determine its (cognitive) structure, its

evolution, and main actors within”[Noyons et al., 1999] ; elle prend un cliché d’une

partie du système scientifique à un moment donné pour analyser sa structure.

Les intrants, les extrants et les impacts de ces activités scientifiques sont les

trois perspectives utilisées dans l’analyse de performance et la SMA [Sugimoto and

Larivière, 2018]. L’input fait référence aux ressources humaines et financières et

capture les différentes interactions des agents du système à différents niveaux (ni-

veaux Auteur/Institutionnel/Pays) ; l’output est le résultat final du processus de

recherche, c’est-à-dire la composition de ce document et les différentes entités qui le

caractérisent ; et enfin, les mesures d’impact étudient les répercussions des outputs,

la diffusion des connaissances qu’un article génère à travers les citations, l’attention

du grand public, ou la réutilisation des composantes du document.
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Cette thèse aborde ces trois dimensions dans le cadre de l’étude de l’intelligence

artificielle en science. En effet, dans le chapitre 1, comme indiqué dans l’introduction,

nous étudions les extrants et l’impact scientifique des publications utilisant l’IA. Dans

le chapitre 2, nous étudions les intrants de la recherche en IA. Les chapitres 3 et 4

visent enfin à comprendre les relations entre les intrants au niveau de l’auteur et les

extrants de la recherche menée et leur impact scientifique.
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Chapitre 1

Artificial Intelligence in Science :

An Emerging General Method of

Invention

This chapter was co-authored with

Stefano Bianchini and Moritz Müller

Summary of the chapter

This paper offers insights into the diffusion and impact of artificial intelligence in

science. More specifically, we show that neural network-based technology meets the

essential properties of emerging technologies in the scientific realm. It is novel, be-

cause it shows discontinuous innovations in the originating domain and is put to new

uses in many application domains; it is quick growing, its dimensions being subject

to rapid change; it is coherent, because it detaches from its technological parents,

and integrates and is accepted in different scientific communities; and it has a promi-

nent impact on scientific discovery, but a high degree of uncertainty and ambiguity

associated with this impact. Our findings suggest that intelligent machines diffuse

in the sciences, reshape the nature of the discovery process and potentially affect

the organization of science. We propose a new conceptual framework that considers

artificial intelligence as an emerging general method of invention and, on this basis,

derive its policy implications.
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1.1 Introduction

Measurable research outputs such as papers, patents, and innovations have been

subject to high enduring growth rates over the last century. Yet, recent empirical

evidence suggests that research productivity is ever falling and new ideas are be-

coming increasingly harder to find [Gordon, 2016, Bloom et al., 2020]. A common

narrative for this decline in productivity rests on the so-called ‘knowledge burden’.

Over the past few decades, data and information have begun to grow and accumulate

on an unprecedented scale, and searching through an increasingly vast and complex

knowledge space has become prohibitively expensive [Weitzman, 1998, Fleming, 2001,

Jones, 2009].

Recent advances in artificial intelligence (AI) – in particular the rapid improve-

ments in prediction achieved by (multi-layer) neural networks (NN) – have brought

a wave of optimism that these technologies will speed up scientific discovery [Hey

et al., 2009, Agrawal et al., 2018, Cockburn et al., 2018]. NN-based models have been

found to be particularly good for discovering representations, invariances, and laws,

that is, unusual and interesting patterns that are hidden in high-dimensional data

[LeCun et al., 2015, Schmidhuber, 2015, Goodfellow et al., 2016]. In other words,

NNs have shown themselves to be particularly suited to addressing scientific prob-

lems.

The first question we raise in this article is whether NNs are, in fact, diffusing

into the sciences and, if so, what the mechanics of this diffusion process might be.

In so doing, we consider five key attributes that allow a technology to be defined

as ‘emerging’ – namely: (i) radical novelty, (ii) fast growth, (iii) coherence, (iv)

prominent impact, and (v) uncertainty and ambiguity [Rotolo et al., 2015] – and

show that NNs conform to these properties.1

The second question we address is how NNs influence scientific discovery. Ma-

chines are becoming much more than mere scientific instruments, and might even be

described as teammates. Today, intelligent machines can engage in various stages of

a (complex) problem-solving process. They can, for example, define the problem(s),

identify root causes, propose and evaluate solutions, choose between different op-

1Rotolo et al. [2015] conceive of an emerging technology as “[a] radically novel and relatively
fast growing technology characterized by a certain degree of coherence persisting over time and with
the potential to exert a considerable impact on the socio-economic domain(s) which is observed in
terms of the composition of actors, institutions and patterns of interactions among those, along
with the associated knowledge production processes. Its most prominent impact, however, lies in the
future and so in the emergence phase is still somewhat uncertain and ambiguous” (p.1828).
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tions, make plans, take actions, and learn from interactions [Seeber et al., 2020]. AI

and, in particular, multi-layer NNs have been qualified as a general-purpose inven-

tion in the method of invention [Cockburn et al., 2018], a conceptual framework that

blends the concepts of the method of invention (MI) [Griliches, 1957] and general-

purpose technology (GPT)[Bresnahan and Trajtenberg, 1995]. Building on this idea,

Agrawal et al. [2018] suggest that NN-based prediction machines can alter the knowl-

edge production function in combinatorial-type research problems by affecting two

dimensions: those of ‘search’ and ‘discovery’. NN ‘search’ methods would support

knowledge access by making existing relevant knowledge available to the researcher,

whereas NN ‘discovery’ methods would help identify valuable combinations among

elements of that available knowledge. Thus, in a needle-in-a-haystack problem, the

‘search’ dimension would arrange the haystack and the ‘discovery’ dimension would

find the needle.

This distinction between ‘search’ and ‘discovery’ is conceptually interesting. Yet,

it tells us little about how AI influences the direction of knowledge development,

because it only deals with one body (or one haystack to stick with the analogy)

of pre-existing elements of knowledge. However, there are two sides to the knowl-

edge explosion: increasing knowledge within each domain (i.e., larger haystacks) and

an increasing number of domains (i.e., more haystacks). A priori, AI can either

help scientists explore familiar conceptual spaces – structured styles of thought – in

depth or transform the space by making unfamiliar combinations of distant knowl-

edge elements [Boden, 2004, 2009]. The fundamental question, then, is whether AI

is currently being used to cope with the knowledge explosion within a domain or

to facilitate knowledge creation across domains – that is, in-depth exploration of a

known domain vis-à-vis the transformation of the domain through knowledge recom-

bination across other domains.

Hence, we are interested in investigating empirically how NN methods contribute

to science in terms of recombinatorial novelty and impact, an analysis confined here

to the health sciences. In this study, the concept of recombinatorial novelty refers

to novel recombinations across domains, as proxied by scientific journals, whereas

the concept of impact refers to the relative importance of a study in the scientific

community, as proxied by citation indices. We find that NN adoption is negatively

associated with recombinatorial novelty, suggesting that researchers are using NNs as

a research tool primarily to cope with the knowledge explosion within domains rather

than across domains. Interestingly, our results also reveal a considerable degree of
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uncertainty as regards impact, reflected by a high variation in citation performance.

We suggest that this outcome is consistent with the intrinsic nature of emerging

technologies, but also with a sort of ‘mode effect’ whereby ‘everyone wants to be AI

and data savvy, but few are ready ’.

The rest of this paper is structured as follows. Section 2 discusses the emer-

gence of the new data-intensive scientific paradigm; Section 3 presents the method

for identifying NN-related research and our sample construction; Section 4 docu-

ments aspects of the NN diffusion process in the sciences; Section 5 presents our

analysis of the contribution of NN methods to the health sciences; and, the final

section concludes by identifying a number of areas that might benefit from policy

considerations.

1.2 Data-intensive scientific discovery

“Few fields are untouched by the machine-learning revolution, from materials science

to drug exploration; quantum physics to medicine.” [Nature-Editorial, 2019]

Historically, the process of scientific inquiry has evolved through paradigms, seen

as symbolic generalizations, metaphysical commitments, values and exemplars that

are shared by a community of scientists and that guide the research of that commu-

nity [Kuhn, 1962].

For most of human history, scientists have been observing phenomena, postulat-

ing laws or principles to generalize the complexity of their observations into simpler

concepts – i.e., compressed, elegant mathematical representations that offer insights

into the functioning of the universe. Originally there were just two sciences, the

experimental and the theoretical. Indeed, Hey et al. [2009] identify empirical obser-

vation and logical (theory) formulation as the first and second scientific paradigms,

respectively. Towards the middle of the last century, however, many problems proved

too complicated to be solved analytically and researchers had to start simulating.

Science entered a third paradigm, one characterized by the development of computa-

tional models and simulations to understand complex phenomena. As the knowledge

frontier expands and the landscape gets more complex, it is becoming harder and

harder for researchers to know enough to find (useful) combinations of knowledge

that produce new (valuable) ideas.

Ongoing developments in AI, especially the impressive achievements made using
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NN techniques, have led to mounting pressure to shift from hypothesis-driven to

data-driven scientific discovery. The emerging scientific paradigm is being built

on data-intensive computing with the massive deployment of intelligent machines

capable of finding representations, rules, and patterns in an ever-increasing volume

of structured and unstructured data [King et al., 2009, Hey et al., 2009, Nature-

Editorial, 2019]. Even today, Francis Bacon’s basic insight continues to hold: the

scientists’ job is to search for regularities in the empirical data. Bacon probably

could not have foreseen that this search is best achieved today with the support of

AI.

What makes NNs particularly powerful is the learning process, that is, they learn

from past experience and understand the world in terms of a hierarchy of concepts,

where each concept is defined by the way it relates to simpler concepts [Schmidhuber,

2015, Goodfellow et al., 2016]. It is clear that the term ‘artificial neural networks’ has

been coined by analogy with biological neural networks, complete with their neurons,

connections and firings. In a general NN model, the variables observed in the data

are presented to an input or visible layer composed of several nodes; then a series

of hidden layers (also composed of nodes) extracts increasingly abstract features

from the data. The term ‘hidden’ stresses the idea that there is no predetermined

structure; rather, it is the model itself that learns which concepts are useful to

explain the relationships observed in the data. The nodes in the input, the hidden

and output layers are all vaguely similar to biological neurons, and the connections

between these nodes can be thought of as reflecting the connections between neurons

[Hassabis et al., 2017].

NN-based methods can be applied in scientific settings in a variety of ways (see,

e.g., Raghu and Schmidt [2020]). The most common application is to use NNs to

tackle complex prediction problems – i.e., mapping inputs to predicted outputs. By

way of example, the input might be an MRI image and the machine has to output a

prediction of whether there are any signs of cancer. A second common application is

to obtain interpretable insights into which property of the data led to the observed

prediction – that is, from prediction to understanding. For example, some tools can

be used to analyse the hidden representations of a neural network and detect which

features of the input are most critical. A third application is to perform complex

transformations of input data, such as image super-resolution and data compression,

which in turn make data analysis easier and save space. Other recent tools, although

in their infancy, would help scientists write better papers and co-write codes.
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It is clear that intelligent machines can help shoulder the ‘knowledge burden’

within a scientific domain, act as a fertilizer of knowledge recombination across do-

mains, and thus enrich and transform the knowledge space. In short, intelligent

machines can influence both ‘search’ and ‘discovery’ processes.

In the case of the ‘search’ process, NNs can support access to knowledge by

predicting which elements of knowledge and information are most relevant to the

researcher. Three examples will serve to illustrate this function. First, NN-based

recommender systems can offer high quality cross-domain recommendations by ex-

ploiting numeric measurements, images, text and interactions in a unified joint frame-

work [Zhang et al., 2019]. Second, transformational learning can improve learning

tasks in one domain by using knowledge transferred from other (related) domains,

and in turn capture generalizations and differences across domains [Olier et al., 2021].

And, third, AI can be used for fact-checking, that is, assessing the veracity of scien-

tific claims in sensitive areas such as climate change or Covid-19 pandemic [Wadden

et al., 2020].

In the case of the ‘discovery’ process, NNs provide a better prediction of which

elements of knowledge can be combined to produce new knowledge and of the value

of that knowledge. Literature-based discovery, for example, is a way to understand

implicit (hidden) associations from existing studies, which can result in interesting,

surprising, non-trivial hypotheses that are worth studying. Other NN-based tools,

such as machine reading comprehension systems, can propose variations on an exper-

iment after having identified gaps in the literature [Baradaran et al., 2022]. Highly

efficient forms of deep active learning have also been developed that can reduce the

uncertainty associated with those regions of the experiment space that are sparsely

populated with results [Daugherty and Wilson, 2018].

A major consequence of considering AI as a research tool – indeed, as a teammate

– is that its impact is not limited to its ability to reduce the costs of specific scientific

activities, but that it can facilitate a new approach to science itself, by modifying

the scientific paradigm in the domains where the new research tool is deployed. Ex-

ploring the emergence of NN-based technology in science and its impact on scientific

discovery is at the core of our study.
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1.3 Identifying neural network research

Our empirical analysis of scientific publications exploits two databases: arXiv.org and

Web of Science (WoS). First, we use arXiv.org to draw up an appropriate list of search

terms referring to NNs based on the natural language processing of scientific abstracts

from publications in the subject areas of ‘Computer Science’, ‘Mathematics’, and

‘Statistics’. Second, these search terms are used to query the WoS database and to

extract a sample of NN papers across all scientific fields.

Reliance on a list of search terms for document retrieval is a common practice

in research on emerging technologies and science in general. Unfortunately, extant

studies do not provide us with an authoritative ‘ready-to-use’ list of search terms.

Here, we train the word embedding model Word2Vec [Mikolov et al., 2013] with

scientific abstracts from arXiv.org’s documents in order to learn NN-related terms.

Our training sample consists of scientific abstracts from arXiv.org. AI research

tends to be a blend of statistics and informatics, but is developed in the main within

the computer sciences. Informatics is a fast-developing field in which conference

proceedings traditionally play an important role. More recently, however, the rapid

dissemination of research is (best) achieved via open access journals and platforms.

Of these, arXiv.org is the most prominent and provides us with a rich corpus for the

identification of NN-related terms. We downloaded a total of 197,439 abstracts of

papers from the subject areas of ‘Computer Science’, ‘Mathematics’ and ‘Statistics’,

for the period 1990–2018. The three areas represented roughly 50% of all arXiv.org

documents in 2018, and just 10% in the early 2000s.

Once pre-processed (details in Supplementary Material), the corpus was used to

train the Word2Vec model in its skip-gram with negative sampling version. The main

outcome of this model is one vector representation for each term in the vocabulary.

Hence, we were able to identify the terms that appear in the same cluster as the term

‘neural network’. The resulting list of potential search terms included individual

words (uni-grams) as well as technical terms consisting of multiple words (n-grams).

We opted to retain only those terms consisting of multiple words – i.e., we removed

all uni-grams – in order to err on the side of conservativism and to ensure only the

inclusion of terms that relate unambiguously to NNs. Moreover, we retained only

the 30 most frequent n-grams after eliminating terms considered as being too generic

(e.g., ‘short term’ or ‘supervised learning’). The final list of search terms used in our

study is shown in Table 1.

A more complete list of terms for all clusters identified by word embedding can
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Table 1.1: NN-related search terms from word embedding

n-gram Count n-gram Count
neural network 402,996 long short term memory 3,122
neural networks 173,470 hidden layers 2,080
artificial neural 100,749 restricted boltzmann 1,635
artificial neural network 99,794 auto encoder 1,444
deep learning 24,104 generative adversarial 1,242
convolutional neural 20,742 encoder decoder 1,198
convolutional neural network 20,595 adversarial network 1,192
recurrent neural 14,355 generative adversarial network 1,085
recurrent neural network 13,965 fully convolutional network 688
deep neural 9,418 convolutional layers 568
multilayer perceptron 9,352 variational autoencoder 216
deep neural network 9,181 adversarial attacks 197
hidden layer 7,810 adversarial examples 92
deep convolutional 4,263 variational autoencoders 75
deep convolutional neural network 3,384 adversarial perturbations 24

Notes: The count refers to how many times a given term occurs in the Web of Science corpus. A
document may (and very often does) include several terms. Adding more terms would only slightly
change the number of documents retrieved from WoS, as can be seen from the counts of the last few
terms.

be found in Appendix.

Our sample for subsequent analysis included all publications in the WoS Core

Collection published between 1990 and 2018, and having at least one of the search

terms (Table 1) in their title, keywords, or abstract. In total, we identified 260,459

documents (144,095 articles; 39,925 conference proceedings; 76,439 others).

1.4 Technology diffusion in the sciences

This Section documents the diffusion of NN-based methods in the sciences. We show

that the diffusion dynamics and the characteristics of the technology largely conform

to properties of emerging technologies.

(Relative) fast growth. One of the defining attributes of an emerging technology is

the speed of its growth, which is evident in such dimensions as the number of actors

involved, the funding made available, and the knowledge output produced.

Our data confirm a ‘burst of research activity’ in all scientific areas (Figure 1),

although the volume (blue line) varied markedly. ‘Technology’ (Panel A) is the

dominant field, which can be explained in part by the fact that it includes ‘Computer

Science’, the main field of origin. It is followed, with about five times fewer papers,

by ‘Physical Sciences’ (Panel B), which in turn is closely followed by ‘Life Sciences
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Publication activity on arXiv.org (Panel H) follows essentially the same dynamics.

Growth rates mimic the shape described above but are about five times higher than

those in the WoS panels. The comparatively higher rates are attributable it would

seem to the fact that open platforms are increasingly popular, given their efficiency

and speed, as a channel of communication between researchers, particularly within

the machine learning and computer science communities [Sutton and Gong, 2017].

Research output increased not only in absolute numbers but also relative to the

overall number of papers in a given scientific area, albeit at a lower level. In 2018,

NN documents represented 2.6% of all papers in ‘Technology’, 1.02% in ‘Physical

Sciences’, and 0.3% in ‘Life Sciences & Biomedicine’. This means NN publications

still account for only a tiny fraction of the whole research volume, in particular

in application domains. However, recent growth rates in these shares are remark-

able. NN-related research presents the highest growth rates in the ‘Life Sciences &

Biomedicine’ (47.3% in the period 2017–2018), ranks second in ‘Physical Sciences’

(42%), and in ‘Technology’ presents a growth rate of roughly 18%.

Spatial diffusion and actor re-configuration. Another of the defining attributes of an

emerging technology is the speed of change in the configuration of actors – e.g.,

countries, users, and scientists.

Figure 1.2 shows the dynamics of science at the country level. Each document

is attributed to a given country when the affiliation of at least one of its authors is

in that country. During the first period, 1990–1999, most of the documents (about

5,000) were published by scientists in the United States. Publishing activity was

relatively low in absolute numbers in the European countries, Australia and China,

and negligible or non-existent in most other countries. In the following decade,

2000–2009, China became the most prolific country with about 20,000 documents.

The US ranked second with around 14,000 articles, whereas European countries,

Australia, Canada, and India grew sufficiently to maintain their relative strength in

the field. Interestingly, in this decade, NN research activity took off in an increas-

ing number of countries. These trends were further reinforced in the last period,

2010–2018. Compared to the previous decade, China doubled its research output,

Science’ (103,729 documents), ‘Engineering’ (95,638) and ‘Automation & Control Systems’ (24,721).
In the case of ‘Physical Sciences’, it is driven by ‘Physics’ (7,239), ‘Mathematics’ (5,123) and
‘Chemistry’ (3,702), while in ‘Life Sciences & Biomedicine’, it is driven by ‘Environmental Sciences
& Ecology’ (2,632), ‘Neurosciences & Neurology’ (2,032), and ‘Biochemistry & Molecular Biology’
(1,728).
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Figure 1.2: Global diffusion of NN in science across countries

Notes: The intensity of colour reflects a country’s relative number of NN publications in a given
period, with no observed NN publication activity in hatched countries [WoS sample].

widening the gap with the US and, to a lesser extent, with the EU.

In summary, our data seem to suggest that NN research has diffused rapidly

at the global scale, and that since the early stages of development there has been

a re-configuration of global actors. We consistently observed high volatility in the

rankings, with some countries climbing the ladder and others lagging behind.

Radical novelty and ‘double-boom’ cycle. NNs have experienced a discontinuous wave

of major innovations, which points to the radical nature of this technology. (Artificial

intelligence has a long, rich history dating back to the 1950s, when researchers from

different domains began to explore various paths toward mechanizing intelligence –

interested readers may consult Nilsson [2009] and Russell [2010]).

Novelty can also arise from putting the technology to a new use – that is, applying

it from one domain to another [Adner and Levinthal, 2002]. The originating domain

of NN research is predominately computer science; thus, it seems appropriate to
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follow Cockburn et al. [2018] and assume that NN publications in all areas other

than computer science represent applications of NN methods to address field-specific

research problems.

The diffusion of emerging technologies from the originating domain to the appli-

cation domains typically follows a ‘double-boom’ cycle [Schmoch, 2007]. Initially, the

new technology seems to be of high potential, and high expectations trigger consid-

erable development efforts, especially theoretical – the first boom. However, during

these early development activities, several actors discover the difficulties of trans-

lating theory into practice. Most fail and cease their innovation activities, putting

an end to the first boom. But some continue and, as time passes, they overcome

some of the more important practical hurdles and are able to demonstrate genuine

advances – starting the second boom. Interestingly, this pattern is largely consistent

with the growth patterns recorded in Figure 1 (orange lines), where the first boom,

subsequent decline, and second boom are clearly evident.

Table 1.2: Influential NN publications

Title | Journal Cluster # Citations Share [%]

Multilayer feedforward networks are universal approximators | NN 1 5,904 0.14
Neural networks and physical systems with emergent ... | PNAS 1 4,658 0.11
Learning representations by back-propagating errors | Nature 1 4,645 0.11
Learning internal representations by error propagation | MIT Press 1 3,921 0.09
Approximation by superpositions of a sigmoidal function | MCSS 1 3,657 0.09
Training feedforward networks with the Marquardt algorithm | IEEE TNNLS 1 3,128 0.07
ANFIS: adaptive-network-based fuzzy inference system | IEEE SMC 1 2,909 0.07
Identification and control of dynamical systems using ... | IEEE TNNLS 1 2,551 0.06
Cellular neural networks: theory | IEEE CAS 1 2,267 0.05

ImageNet classification with deep convolutional neural networks | NeurIPS 2 7,177 0.17
Gradient-based learning applied to document recognition | IEEE Proceedings 2 3,590 0.09
Deep learning | Nature 2 3,542 0.08
Long short-term memory | NC 2 3,074 0.07
A fast learning algorithm for deep belief nets | NC 2 2,710 0.06
Reducing the dimensionality of data with neural networks | Science 2 2,621 0.06
Very deep convolutional networks for large-scale image recognition | arXiv 2 2,582 0.06
Particle swarm optimization | IEEE Proceedings ICNN 2 2,568 0.06
Deep residual learning for image recognition | IEEE Proceedings CVPR 2 2,160 0.05

Notes: This table reports the references (title and journal) of the most cited articles from the WoS publica-
tion sample over the period 2000–2018. From a total of 4,190,306 references (1,618,836 unique) cited by the
documents in our sample, we selected the five most used references for each year. This gives us 18 time series
that were clustered. Clustering is obtained via k-medoid and dynamic time warping. References within clusters
ranked by total number of citations.

We also find that the second boom is marked by a shift in emphasis from theoret-

ical principles to practical applications. In support of this evidence, we considered

the top five cited references in each year of the observation period (i.e., those doc-

uments with the highest annual shares of all cited references in our publications),

which gave us a list of 18 unique articles and their corresponding citation counts,
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as shown in Table 1.2. Using dynamic time warping (DTW) to measure dissimi-

larity between time series, we then clustered these temporal sequences by means of

k-medoids [Berndt and Clifford, 1994]. As shown in Figure 1.3, we obtained two

clusters. In the first period, the most cited articles in our sample were theoretical

contributions, including a discussion of the possibility of using multilayer feedforward

networks as universal function approximators, training algorithms (backprop), and

parallel computing theories (cellular NN). In the second period, the most influential

articles were no longer theoretical contributions, but rather articles that show how

to put theoretical principles into practice. These contributions included inventions

that have brought enormous performance gains to real-world tasks, especially for im-

age and text analyses (e.g., deep convolutional neural networks and long short-term

memory (LSTM) architectures).

Figure 1.3: Trends in annual citations of influential NN publications

Notes: This figure shows the annual share of all citations in the Web of Science sample for the two
clusters of most cited NN articles. The shaded areas are time series intervals defined by minimum
and maximum citation shares. In the main, the orange profile represents ‘theoretical’ contributions
and the blue profile represents ‘applications’. Due to the limited number of articles that could be
cited in the initial period, we clustered the time series from 2000 onwards.

Coherence. Another defining attribute of an emerging technology is its coherence,

understood as the shared interpretation and acceptance of the technology within a
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community. Signals of coherence can include the creation of dedicated conference ses-

sions, new specialist journals and new categories in established classification systems.

Here, we consider the transition from cross-disciplinary to disciplinary research effort

as a sign of coherence, as this would mean that the technology has moved beyond its

conceptual stage requiring close interaction between users and developers, and has

become ‘common practice’ in application domains.

Each document is labelled by WoS as belonging to at least one subject category on

the basis of the journal in which it was published. In most instances, a document falls

into more than one category. The extent to which publications in a given scientific

area are cross-classified as computer science contributions can therefore proxy cross-

disciplinarity with respect to computer science. Thus, for each broad scientific area

and year, we calculated the fraction of NN documents that are (also) labelled as

‘Computer Science’.

Figure 1.4 shows the corresponding time trends. Each point of the plot for ‘Tech-

nology’ (Panel A) represents the average number of ‘Technology’ NN documents

cross-classified as ‘Computer Science’ in a given year. For example, in 1990 about

60% of ‘Technology’ publications also fell into the ‘Computer Science’ category (first

dot). The overall trend (blue line) follows a flat U-shape that reaches around 70% in

2005, before falling to less than 50% by the end of the observation period. Indeed, in

2018, a large proportion of papers in ‘Technology’ are no longer labelled as computer

science contributions. ‘Physical Sciences’ (Panel B) also presents an inverse U-shape,

with an increase in cross-classified computer science documents that reached 20% in

2000, before falling to 10% by the end of the period. No increase in computer sci-

ence cross-classification was observed in ‘Life Sciences & Biomedicine’ (Panel C).

From the very high share of 70% at the beginning of the period, a continuous de-

cline was subsequently recorded (with significant drops around 2000 and again in

2010), finishing the period at around 20%. ‘Health Sciences’ (Panel D) presents the

same evolution. ‘Social Sciences’ (Panel E) increased their share of computer science

documents to 40% around 2010, but this was followed by a sharp downturn, while

in ‘Arts & Humanities’ (Panel F), the share of computer science documents is very

noisy, and no particular trend can be deciphered.

Taken together, these dynamics suggest that NNs diffuse from computer science,

the originating discipline, into other application-oriented scientific disciplines. Thus,

over time, we see a greater propensity of different communities to integrate the tech-

nology into their discipline, which is a good signal of coherence.
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1.5 Neural networks in the health sciences

Here, we specifically address the impact of NN-based methods in the ‘Health Sci-

ences’, one of the application domains with the highest short-term societal impacts

[Raghupathi and Raghupathi, 2014, Miotto et al., 2018]. AI, in general, and deep

learning, in particular, have already contributed to a variety of data-driven innova-

tions in the health domain – improving healthcare systems, supporting clinicians,

and monitoring patient diseases, among others. A review of the literature enabled

us to identify applications in virtually all sub-disciplines: health informatics and

biomedical research [Marx, 2013, Rav̀ı et al., 2016], computational biology [Anger-

mueller et al., 2016], genomic medicine [Leung et al., 2015], medical imaging [Litjens

et al., 2017, Shen et al., 2017, Savadjiev et al., 2019], drug discovery and pharmacoge-

nomics [Ma et al., 2015], real-time patient monitoring [Rajkomar et al., 2018], public

health[Miotto et al., 2018, Zhang et al., 2018], and neuroscience and the cognitive

sciences [Marblestone et al., 2016, Hassabis et al., 2017, Lake et al., 2017].3

Novelty and impact in science. A ‘scientific contribution’ is typically considered

as comprising two elements: novelty and impact. Different terms for essentially this

same idea were used in earlier studies of science, so that debates centred on discus-

sions of the notions of originality, discovery and breakthrough and contributions to

scientific progress [de Solla Price, 1963, Merton, 1957, Bourdieu, 1975]. It was Kuhn

[1962] who coined the term ‘novelty’ to describe a more radical contribution that does

not simply make an incremental advance in the ‘normal science’ in place, but rather

breaks the current paradigm. More recently, the term novelty has partly lost this

radical connotation, but it still carries the idea of a high degree of originality, while

the concept of ‘recombinatorial novelty’ has emerged to highlight the idea that new

knowledge arises out of the recombination of previously generated bits of knowledge

[Fleming, 2001, Arthur, 2009, Uzzi et al., 2013, Wang et al., 2017].

Only a very small percentage of the potential for useful recombinations in the

knowledge space is currently exploited. NNs can change the way science develops by

helping to overcome our human limitations [Agrawal et al., 2018, Cockburn et al.,

2018, Furman and Teodoridis, 2020]. Yet, how exactly does NN adoption correlate

with novelty? The answer to this question depends very much on how the technology

3We define the ‘Health Sciences’ as comprising 83 Web of Science subject categories within
the ‘Life Sciences & Biomedicine’ research area. The complete list of categories included can be
consulted in the Supplementary Material.
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is used in the scientific complex. Indeed, scientists can adopt new methods either to

advance well-established research trajectories within a conceptual space or to explore

new avenues by altering the conceptual space with knowledge from other domains,

leading to low and high recombinatorial novelty, respectively.

The second element of a ‘scientific contribution’ concerns its impact, a key at-

tribute of emerging technologies. Impact is related to, but different from, novelty;

if research provides novelty, that novelty must be adopted by the scientific commu-

nity in order for its impact to be felt. And, moreover, research can have an impact

on subsequent research for reasons other than (recombinatorial) novelty, especially

when providing new insights within established knowledge structures.

Yet, nor should impact be considered fully independent of novelty. Evidence sug-

gests that a high degree of novelty is likely to increase the risk of delays and failures

[Azoulay et al., 2011]. Moreover, novel research often requires more complex and

risky collaborative social structures [Fleming et al., 2007, Foster et al., 2015]. Thus,

highly novel research can be subject to considerable variations in ‘quality’ Fleming

[2001], Wang et al. [2017] and, hence, to greater variations in impact. Uncertainty

and ambiguity are common features of the research process, especially because the

potential applications of the technology have yet to be explored and understood.

Social inertia can further reinforce the uncertainty associated with impact. Emerg-

ing technologies typically encounter resistance in society precisely because they cause

structural changes in roles and norms [Merton, 1957, Bourdieu, 1975]. This is partic-

ularly true of AI which operates at the intersection of ethical and legal considerations

and, as such, is shaping the future of both individuals and society as a whole [Lanier,

2011, O’neil, 2017, Zuboff, 2019].

1.5.1 Empirical analysis

We measure scientific knowledge creation in scientific papers published in peer-

reviewed journals and conference proceedings in the ‘Health Sciences’. Henceforth,

the term ‘journal’ is used to refer interchangeably to both peer-reviewed scientific

journals and conference proceedings. We restrict our focus to journals that are not

cross-classified as ‘Computer Science’ journals, ensuring that publications include

NN methods as a research tool.

Our approach is to compare publications that involve NNs with those that do

not involve NNs, while controlling for a set of confounding factors. Comparisons

are made in terms of their recombinatorial novelty and scientific impact. For the
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main analysis, we operationalize the concept of ‘recombinatorial novelty’ as the first

appearance of a knowledge combination, very much in line with Wang et al. [2017],

the details of which we describe below. Novelty à la Wang et al. complies with

the idea of NNs as a method of invention – i.e., a method for creating something

new and valuable. In the case of ‘scientific impact’, we operationalize this concept

as the subsequent use made of a paper, measured by the number of citations received.

Sample. We include all the articles for the whole observation period (2000–2018)

published in those health journals where research involving NNs has been most promi-

nent. This provides us with a relatively coherent knowledge base against which we

can examine the concepts of novelty and impact. In total, we identified 26,461 NN

health papers in about 5,000 health journals and proceedings. Roughly 45% (11,520)

of these documents are published in the top 100 health journals in the sample. Hence,

we downloaded the entirety of these journals for the period 1990–2018. Our final sam-

ple, combining NN and non-NN publications, contains 1,081,223 articles.

Variables. Our main explanatory variable is a binary indicator of a paper’s NN

content: 1 if the paper involves the use of NN methods, 0 otherwise. Our main

dependent variables are (various measures of) recombinatorial novelty and scientific

impact based on citation counts.

Recombinatorial novelty is measured in relation to the journals referenced by a

paper. Thus, each paper is examined to determine whether it makes ‘first-time-ever’

combinations of referenced journals – i.e., its list of references contains journal pairs

that have never previously appeared jointly in any list of references. In order to

exclude journal pairs that simply formed once by happenstance, we further impose

the condition that journal pairs be observed again within the next three years. A

paper with at least one journal pair in the reference list that is both novel and

that has been re-used, is considered as providing some novelty. Thus, we construct

a binary indicator of novelty, henceforth referred to as Novelty Dummy. A further

consideration is that a novel journal pair may span domains that vary in their distance

one from another (i.e., more or less distant). This subtlety is captured through the

co-citation profiles of the two journals forming a novel pair. The idea is that if both

journals are often (rarely) cited with the same third journal(s), they are likely to

span less (more) distant domains. In this way, we are able to construct a distance-

weighted (continuous) measure of novelty, henceforth referred to as Novelty.
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Calculations of the binary and weighted novelty measures follow Wang et al.

[2017]. However, our procedure differs in two major respects. First, we judge novelty

and co-citation distance only on journal pairs that are observed in the reference lists

of our sampled papers. Thus, we do not measure novelty per se but rather with

respect to a knowledge base covered by the sampled health journals.

Second, we calculate different measures of novelty by considering different sets

of journals in the references. In this way, we are able to capture the source of

novelty – i.e., where does this novelty come from? ICT, health, or other domains?

While it is true that all the articles in our sample are published in outlets of the

‘Health Sciences’, they can reference journals in various domains. For instance, a

health science paper involving NNs is likely to cite computer science journals where

the NN methods were first published. This translates into a recombinatorial novelty

‘simply’ because of the adoption of the method, but it does not necessarily reflect the

recombinatorial potential of NNs to connect and recombine knowledge in complex

knowledge landscapes. In other words, we seek to measure whether NN adoption

fosters novel recombinations within the health sciences and/or between the health

sciences and disciplines other than the computer sciences. Thus, we calculate novelty

not only in journal pairs, as indicated by ‘All Sciences’, but also limited to journal

pairs where (i) no referenced journal is classified as a computer science journal,

indicated by ‘No CS’; and (ii) both referenced journals are uniquely classified as

health sciences, indicated by ‘Only HS’. By way of example, the combination of

‘Biology & Biochemistry’ and ‘Computer Science’ journals can be regarded as an

‘All Sciences’ combination; ‘Engineering’ and ‘Molecular Biology & Genetics’ as a

‘No CS’ combination; and ‘Neuroscience & Behaviour’ and ‘Psychiatry/Psychology’

as an intra-domain ‘Only HS’ combination.

Combining these three recombinatorial options with the possibility of calculating

novelty as either a binary indicator or a continuous score, we obtain six different

novelty measures, namely: Novelty Dummy (All Sciences), Novelty Dummy (No CS),

Novelty Dummy (Only HS), Novelty (All Sciences), Novelty (No CS), and Novelty

(Only HS).

Impact is measured by the number of citations (# Citations) received by a paper

from its year of publication up to 2019, the time of data extraction. Furthermore, we

code dummy indicators for so-called ‘big hit’ contributions – i.e., highly cited papers.

Whether a paper is among the top 5 or 10% cited papers (Top 5% Cited and Top

10% Cited) is calculated with reference to other papers published in the same year
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and falling in the same WoS subject category.

We consider a set of control variables to capture various characteristics of a focal

paper. We control for the number of references made by a paper (# References)

as this might automatically increase the likelihood of its having new combinations.

In prior research, the number of authors has been shown to be positively associated

with both novelty and impact, hence we control for that (# Authors). The adop-

tion of AI in scientific settings can indeed have an ambiguous effect on team size.

Size may increase as new members are needed to manage the technology (at least

in the early stages), but the technology may also automatize some tasks, thereby

generating a replacement effect in the scientific workforce. International collabora-

tions may also be a source of novelty and impact, and may be instrumental in the

adoption of the technology. We proxy international collaboration by a dummy (In-

ternational Collab.) taking a value of 1 if there are at least two different countries in

the authors’ affiliations, 0 otherwise. For the same reason, we construct a dummy for

private sector participation (Private Partic.) taking a value of 1 if the paper has at

least one non-university affiliation in the list. We consider the journal impact factor

(JIF ), since, on the one hand, high impact journals may be biased against novelty,

but, on the other, increase visibility and hence citations. We additionally control for

the journal age (Journal Age). Finally, we include a dummy indicating whether the

paper provides a review or survey of extant literature (Survey). A survey may in

fact cover separate streams of research without really connecting them.4 Descriptive

statistics of the variables are reported in Appendix.

Estimation methods. We model three different types of outcome: (i) binary

indicators of novelty and impact, (ii) positive continuous measures of novelty, and

(iii) positive discrete measures of impact (number of received citations). Each type

of outcome requires a specific econometric setting.

All binary indicators are modelled with a Probit. Our continuous novelty measure

is censored at zero, hence we use a Tobit model. Citations are count data for which

the Poisson and negative binomial models are natural candidates. Over-dispersion

and the conditional mean of the outcome variable being much lower than its vari-

4Private Partic. takes a value of 1 if we detect in the authors’ affiliation at least one of
the acronyms present in the Wikipedia page: ‘List of legal entity types by country’. We use the
SCImago Journal Rank to obtain the impact factor (JIF ) for each journal in each year. Journal Age
is calculated as the time elapsed from the date of the journal’s creation to the year of publication.
Survey takes a value of 1 if we detect in the title of the paper the terms ‘Survey’, ‘Overview’ or
‘Review’.
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ance are the most common arguments for favouring the negative binomial over the

Poisson model. In our case, both empirical arguments hold; therefore, we opted for

the negative binomial to model mean and dispersion separately, each with a linear

predictor incorporating our main left-hand side variables and controls.

In all estimations, we include the control variables discussed above and a set of

dummies to control for scientific field and cohort effects. We proxy scientific field us-

ing WoS categories (field WC). As a paper may fall into several categories, we code

dummy variables taking a value of 1 for each category. Throughout the analysis,

robust standard errors clustered at the journal-level are obtained via bootstrapping

all journals.

Results. Table 1.3, Columns 1–3, shows the Tobit regressions of the continuous

measures of novelty, Novelty. Columns 4–6 report the Probit estimates of the binary

novelty indicators, Novelty Dummy.

When considering recombinatorial novelty across all sciences (Column 1), the

estimated coefficient is positive but non-significant, but when we exclude computer

science references (Column 2) the coefficient becomes negative yet remains non-

significant. Restricting references to health sciences only (Column 3) increases the

negative coefficient, which is now significant below the 1% significance level. The

same pattern is observed when we consider the results of the Probit regression of the

novelty dummy.

To what extent does the adoption of NN methods change our expectations of

recombinatorial novelty in the health sciences? To a considerable degree, given that

adopting NN decreases the degree of novelty by 18.6%. In addition, the marginal

effects of Probit (Column 6) tell us that, for the median observation, NN decreases

by 0.031 the probability of an article being novel (0.037 for the average observation).

In sum, NN adoption is not significantly correlated with novel recombinations

across the entire knowledge landscape, nor with novel recombinations involving any-

thing other than computer sciences. Yet, it is significantly and negatively correlated

with novel recombinations within the health sciences. These findings suggest that

NN methods tend to be adopted as part of a ‘balancing strategy’ in which the risk

associated with the (emerging) technology is counterbalanced by keeping the knowl-

edge landscape stable. Another way of interpreting this outcome is that NNs are

employed mainly as a research tool to support already formalized and well-defined

research trajectories in the health sciences community. This evidence is consistent
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Table 1.3: Novelty profile of NN publications

Tobit: Novelty Probit: Novelty Dummy
All Sciences No CS Only HS All Sciences No CS Only HS

(1) (2) (3) (4) (5) (6)

NN 0.044 -0.031 -0.186∗∗∗ 0.053 -0.008 -0.150∗∗∗

(0.038) (0.034) (0.040) (0.037) (0.033) (0.037)

# References (log) 1.046∗∗∗ 1.050∗∗∗ 1.029∗∗∗ 0.878∗∗∗ 0.879∗∗∗ 0.843∗∗∗

(0.033) (0.033) (0.033) (0.026) (0.026) (0.023)

# Authors (log) 0.177∗∗∗ 0.184∗∗∗ 0.227∗∗∗ 0.184∗∗∗ 0.189∗∗∗ 0.223∗∗∗

(0.021) (0.022) (0.024) (0.020) (0.020) (0.022)

International Collab. -0.053∗∗∗ -0.058∗∗∗ -0.084∗∗∗ -0.050∗∗∗ -0.054∗∗∗ -0.076∗∗∗

(0.010) (0.010) (0.010) (0.009) (0.010) (0.009)

Private Partic. -0.004 -0.004 -0.027∗ -0.007 -0.008 -0.026∗∗

(0.012) (0.012) (0.014) (0.012) (0.013) (0.013)

JIF -0.026 -0.024 -0.017 -0.025 -0.024 -0.017
(0.019) (0.019) (0.021) (0.017) (0.017) (0.018)

Journal Age (log) -0.098 -0.082 -0.044 -0.074 -0.061 -0.030
(0.099) (0.100) (0.108) (0.090) (0.090) (0.095)

Survey 0.225∗∗∗ 0.216∗∗∗ 0.181∗∗∗ 0.206∗∗∗ 0.199∗∗∗ 0.163∗∗∗

(0.049) (0.047) (0.050) (0.049) (0.047) (0.046)

Log Likelihood -263,098 -258,255 -221,241 -180,701 -178,639 -161,710
χ2 [Null Model] 96,074∗∗∗ 94,950∗∗∗ 77,374.6∗∗∗ 75,936∗∗∗ 75,187∗∗∗ 64,730∗∗∗

χ2 [w/o NN Model] 4.90∗ 2.20 60.90∗∗∗ 6.70∗∗ 0.10 44.60∗∗∗

# Obs 356,037 356,037 356,037 356,037 356,037 356,037

Notes: This table reports coefficients of the effect of NN methods (NN , dummy) on recombinatorial
novelty built by considering different knowledge landscapes. Bootstrapped (500 replications) standard
errors clustered at the journal-level in parentheses: ***, ** and * indicate significance at the 1%, 5%
and 10% levels, respectively. The effect of NN on the positive continuous novelty measure is estimated
using a Tobit regression (Columns 1–3). The effect on the novelty dummy is estimated using a Probit
(Columns 4–6). Each novelty measure is calculated on three different sets of journal references: ‘All
Sciences’ – All cited journals, ‘No CS’ – All cited journals except for computer science journals, and
‘Only HS’ – Only citations to health science journals. Constant term, scientific field (WoS subject
category) and time fixed effects are incorporated in all model specifications. Likelihood-ratio tests are
used to compare the goodness-of-fit of two statistical models: (i) null model against complete model;
(ii) model without the NN variable against the complete model.

with the idea of extending science while maintaining the advantages of conventional

domain-level thinking [Boden, 2004, Uzzi et al., 2013].

Our estimates of the control variables echo previous research. Larger teams are

associated with more novelty [Fleming et al., 2007, Lee et al., 2015]; international col-
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Table 1.4: Impact profile of NN publications

NegBin: # Cit. Probit: Top 5% Cit. Probit: Top 10% Cit.
(1) (2) (3)

Panel A: Mean NN 0.101∗∗ 0.147∗∗∗ 0.155∗∗∗

(0.040) (0.041) (0.043)

Novelty (All Sciences) 0.153∗∗∗ 0.200∗∗∗ 0.191∗∗∗

(0.023) (0.016) (0.015)

# References (log) 0.491∗∗∗ 0.429∗∗∗ 0.477∗∗∗

(0.064) (0.075) (0.062)

# Authors (log) 0.237∗∗∗ 0.166∗∗∗ 0.194∗∗∗

(0.026) (0.039) (0.036)

International Collab. 0.064∗∗∗ 0.083∗∗∗ 0.085∗∗∗

(0.013) (0.014) (0.013)

Private Partic. -0.029∗ -0.027 -0.034∗∗

(0.015) (0.018) (0.015)

JIF 0.205∗∗∗ 0.167∗∗∗ 0.179∗∗∗

(0.022) (0.017) (0.018)

Journal Age (log) 0.050 -0.066 -0.048
(0.036) (0.086) (0.079)

Survey 0.541∗∗∗ 0.667∗∗∗ 0.627∗∗∗

(0.060) (0.054) (0.049)

Panel B: Dispersion NN 0.136∗∗∗

(0.051)

Novelty (All Sciences) 0.093∗∗∗

(0.017)

# References (log) -0.496∗∗∗

(0.038)

# Authors (log) -0.213∗∗∗

(0.044)

JIF 0.040
(0.031)

Journal Age (log) -0.118∗∗∗

(0.029)

Log Likelihood -1,519,720 -69,222 -110,788
χ2 [Null Model] 318,463∗∗∗ 19,317∗∗∗ 31,564∗∗∗

χ2 [w/o NN Model] 8.70∗∗∗ 24.80∗∗∗ 40.00∗∗∗

# Obs 356,037 356,037 356,037

Notes: This table reports coefficients of the effect of NN methods (NN , dummy) on scientific impact
proxied by the number of citations received (Column 1) and ‘big hits’ (Columns 2 and 3). Bootstrapped
(500 replications) standard errors clustered at the journal-level in parentheses: ***, ** and * indicate
significance at the 1%, 5% and 10% level, respectively. The effect of NN on the citation count is estimated
using a negative binomial regression. Estimates for the expectation and variance are reported in Panels
A and B, respectively. Effects on the binary indicators are estimated using a Probit. Constant term,
scientific field (WoS subject category) and time fixed effects are incorporated in all model specifications.
Likelihood-ratio tests are used to compare the goodness-of-fit of two statistical models: (i) null model
against complete model; (ii) model without the NN variable against the complete model.
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laborations are negatively associated with novelty [Wagner et al., 2019]; the chances

of providing a new combination of journal references increase with the number of

references [Wang et al., 2017]; and, literature reviews also tend to draw from a wider

range of sources leading to novel combinations of references. We find a negative

effect of private involvement and, finally, a journal’s age and impact factor seem to

play no role.

How does NN adoption correlate with impact? Table 1.4, Column 1, shows the

results of the negative binomial regression of citation counts. Here, the mean and

dispersion parameters may vary with various right-hand side factors.5 We find that

NN adoption positively and significantly affects the number of citations received,

both in terms of expectation and variance. Compared to non-NN papers, ceteris

paribus, NN papers receive on average 10.32% more citations. The expectation of

citation count increases by a median of 6.01 for NN research. The dispersion of the

citation distribution is 19.57% higher for NN papers than for non-NN papers.

The Probit regressions used to model the probability of a paper falling in the right

tail (top 5% or 10%) of the year–field citation distribution corroborate the results.

The marginal effects suggest that research involving NN has a 0.019 (median value)

higher probability of being in the top 10% of the most influential contributions (0.027

mean value), and a 0.009 higher probability of being in the top 5% (0.014 mean value).

As for the controls, the number of authors is positively related to impact [Lee

et al., 2015] and reduces impact variation; international collaborations increase cita-

tion expectations [Glänzel and Schubert, 2001]; publishing in a high impact factor

journal further increases the average number of citations; surveys and other papers

with many references tend to attract more citations; and, finally, a negative effect

is found between private participation and scientific impact, albeit not particularly

significant.

In sum, the econometric analysis shows that research using NN has a high poten-

tial for greater impact, on the one hand, but that it is also associated with greater

uncertainty of having an impact, on the other. There are several (complementary)

explanations for this uncertainty: the ‘high-risk/high-gain’ that characterizes the

adoption of emerging technologies and breakthrough research [Rotolo et al., 2015,

Wang et al., 2017]; the challenge of integrating the scientific instrument into existing

5We excluded dummy variables other than NN to model the dispersion of citations because
these variables caused problems with the convergence of the maximum likelihood estimator. In
modelling the dispersion, we also tried simpler specifications by progressively incorporating a few
variables at a time.

67



CHAPTER 1. AN EMERGING GENERAL METHOD OF INVENTION

scientific practices [Rosenberg, 1992]; the ability to extract the true potential from

the instrument and not to adopt it simply because ‘everybody does’; and the possible

social resistance, especially in sensitive domains, as some areas of the health sciences

are known to be.

Based on these results, we propose that AI – here, specifically, NN methods

– be regarded as an emerging general method of invention: ‘emerging’ because it

shares the key attributes of emerging technologies; ‘general’ because it is increasingly

integrated as a research tool in many scientific domains; and, a ‘method of invention’

because it has great potential for impact in application domains. We consider it more

appropriate to consider AI an emerging general method of invention as opposed

to a general-purpose method of invention (as in Cockburn et al. [2018]) for two

reasons. First, as we have seen in Section 4, although growing, the proportion of

scientific contributions related to NNs remains marginal compared to the whole body

of scientific activity. Second, whether or not AI can be classified as a general-purpose

technology remains open to debate and we find more arguments to support the

contention that AI is better considered, for example, as a large technical system

with infrastructural properties [Vannuccini and Prytkova, 2021].

1.5.2 Robustness analysis

Our results are robust across a wide range of additional tests. Tables and further

material can be found in Appendix and Supplementary Material.

First, we excluded all articles that fall into the WoS ‘Neurosciences’ category.

This domain can be potentially problematic in that some terms (neural network,

first and foremost) may not necessarily refer to artificial intelligence but rather to

human intelligence and the biological brain. The sample falls by about 30% and

the number of NN articles almost halves. However, our results are consistent when

replicating the analysis on the sub-sample.

Second, we excluded all articles that contain the terms ‘neural network’ and

‘neural networks’ exclusively in their title, keywords, or abstract. Bear in mind that

an article may still contain a term such as ‘artificial neural network’ or ‘convolutional

neural network’ which should now refer to artificial intelligence stricto sensu. In this

case, neuroscience papers may form part of the sample. This restriction is severe

insofar as the number of NN articles falls by more than 70%. Yet our results are

robust to this constraint.
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The third exercise consists of a different econometric approach. Instead of re-

gression analysis, we compared each NN paper with a ‘twin’ non-NN paper. More

precisely, the empirical strategy considers the adoption of NN as a ‘treatment’; hence,

we employ exact matching and 1:1 nearest neighbour matching on propensity scores

(PSM) to select an appropriate control group of untreated papers. Exact matching

is performed considering Web of Science categories, publication year, and journal

– that is, we compare a NN article in terms of novelty and impact with an article

belonging to the same domain(s), published in the same year and in the same jour-

nal. We obtain the propensity scores associated with the binary treatment via the

estimation of the Probit model containing the original set of variables. The average

treatment effects (ATT) for the selected variables lend further support to our results.

A final test concerns the way novelty is measured. Indeed, some research shows

that different novelty indicators are often inconsistent with each other and may

return different sets of novel contributions [Fontana et al., 2020]. Thus, we imple-

mented the indicator developed in Uzzi et al. [2013] to define an ‘atypical’ (nov-

elty/conventionality) quadrant: high-conventionality/high-novelty (HC–HN); high-

conventionality/low-novelty (HC–LN); low-conventionality/high-novelty (LC–HN);

and low-conventionality/low-novelty (LC–LN). The four categories are employed in

a multinomial logistic regression. We find that, within the knowledge landscape of

the health sciences, NN articles are more likely to draw on highly conventional combi-

nations of knowledge. Ceteris paribus, our estimates suggest that when NN methods

inject some highly (field-specific) unusual combinations, they do so primarily in an

exceptionally conventional knowledge space.

1.6 Concluding remarks

Most socio-economic analyses of AI have looked at the effects of technology on eco-

nomic growth [Brynjolfsson and McAfee, 2014, Aghion et al., 2018], labour market

and productivity dynamics [Furman and Seamans, 2019, Acemoglu and Restrepo,

2020, Van Roy et al., 2020], changes in skills [Graetz and Michaels, 2018, Brynjolf-

sson and Mitchell, 2017], and inequality and discrimination [O’neil, 2017, Zuboff,

2019]. Our contribution, here, provides insights into the diffusion and impact of AI

methods in the scientific system.

In this paper, we first examined the diffusion of NN research in the sciences

in an effort to verify whether NNs conform to certain characteristics of emerging
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technologies. We found that NN research activity has grown exponentially in almost

all sciences and all over the world, and the diffusion process has followed a double-

boom cycle with a strong re-configuration of global actors. The diffusion of NN

methods into application domains began in a cross-disciplinary fashion involving the

computer sciences, breaking their way into ‘pure’ field-specific research within the

various application domains. We then examined the impact of technology adoption

on scientific discovery, with a particular focus on the health sciences. We found the

adoption of NN methods to be negatively correlated with recombinatorial novelty;

however, a positive correlation was found with the expectation and dispersion of

citations received, increasing a contribution’s likelihood of becoming a ‘big hit’.

Conceptually, we considered scientific discovery to be a recombinatorial process

in which existing knowledge is recombined to create new knowledge, a process that

continues perpetually in a dynamic knowledge landscape. A traditional image of

science is one in which the knowledge landscape is made up of islands – i.e., (sub)-

disciplines or scientific fields – where most of this recombination takes place. The

islands reflect the structure of nature but also the need for a scientific mind to

organize the complexity of the world. Seen this way, scientists are sailors whose goal

it is to navigate from island to island, figure out their structure, and explore the

surrounding landscape. Sailors can opt to stay in the ‘comfort zone’ and further

their knowledge of one (or neighbouring) island(s), or they can sail to more distant

islands and connect new areas of the landscape. Both actions enrich the knowledge

space, one exploring well-formalized knowledge structures, the other reshaping and

rearranging the landscape. Our findings suggest that, at least as it is used today,

AI – the boat or the compass, to stick with the analogy – seems to be more in

line with the first action. However, the possibilities of discovering new and valuable

things about the known islands are far from obvious, as confirmed by our results on

scientific impact.

A general-purpose invention in the method of invention? Or a passing fad in

science? We think not. Our findings lead us to take up a more moderate stance in the

recent debate on how AI affects the development of knowledge. NN methods do not

(yet) serve as an autopilot for navigating the sea of knowledge and connecting ideas,

but they are, nevertheless, an extremely powerful and versatile research tool that

impacts knowledge creation in measurable ways. Thus, we propose that AI should

be considered an emerging general method of invention. But do not be fooled, we are

not simply seeking to win the race to coin the most attractive designation; rather, as
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we discuss below, thinking of this technology as ‘general’ and ‘emerging’ has policy

implications that differ substantially from those that might result from thinking of it

as a general-purpose technology (for more on the latter, see, e.g., Trajtenberg [2018],

Klinger et al. [2021].

First, the diffusion of intelligent machines as input in the research production

process calls into question the organization and management of science. AI may

trigger a short-term substitution towards capital and away from highly skilled labour

in the knowledge production process. Whether such a substitution effect is occurring

is doubtful and clearly requires further empirical investigation. In parallel, the arrival

of automation technologies in science puts a wide range of research tasks under threat,

either by reducing the cost of performing those tasks or by outperforming human

scientists in the performance of them. Some tasks within the occupation may be

suitable for automation while others may not, and the overall effects on employment

in science are very complex. Therefore, research-oriented organizations need a better

understanding of the set of tasks performed by their scientists, the coordination of

these tasks, and the respective strengths and weaknesses of humans (H) and machines

(M), before they can hope to unleash the benefits of H + M cooperation.

Machines are set to become more than tools; they have the potential to become

another teammate. As such, H–M interactions will require the coordination of com-

plex activities, including communication, joint actions and human-aware execution.

As these machine teammates will operate in different collaborative environments,

they need to be designed with different collaborative capabilities. This design area

will require considering such aspects as appearance (what machines should look like);

learning and knowledge processing (how they should learn); conversation (how they

should interact and socialize with their peers); architecture (what their main com-

ponents should be); reliability, responsibility and liability. (For a more in-depth dis-

cussion on design areas for human-machine collaboration, see Seeber et al. [2020]).

It seems that NN methods are being adopted in different scientific fields but

that existing knowledge structures are remaining relatively stable. This suggests

the full potential of the technology (and its future development) might be better

achieved by further spanning the boundaries between scientific areas. The bringing

together of expertise and knowledge from various domains could help in the identifi-

cation of blind spots and opportunities in the knowledge landscape. The concepts of

‘knowledge communities’ and ‘communities of practice’ seem particularly apt in this

context. Although communities often self-organize and self-sustain themselves, they
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can also benefit from policy endorsement. It seems crucial to us that institutions

and a policy environment be developed that are conducive to enhancing dialogue

and cross-fertilization between communities. This could be achieved, for instance,

by reinforcing both horizontal (intra-field) and vertical (inter-field) knowledge man-

agement. Digital platforms and knowledge hubs could be complemented by physical

‘collaborative spaces’ where the tacit knowledge of different communities might be

transferred face-to-face, documented and made accessible for later use. Another stan-

dard instrument is obviously research funding, which should not target individual

areas but rather research ‘priorities’ (e.g., fighting a given disease) involving different

communities that can frame their research questions together.

However, promoting collaboration between communities can pose certain chal-

lenges in terms of governance and data ownership. Data is a polymorphous category,

which means standards, principles and rules governing the various types of data are

not homogeneous across communities, let alone across countries. This opens up the

question of how data should be generated/used in compliance with different regula-

tions, and also how the value of data should be distributed [Savona, 2019].

The diffusion of AI, as a research instrument, can be self-sustaining only if there

is social acceptance – i.e., if the crew trusts the captain and the equipment. Several

AI applications represent innovations that can bring about far-reaching changes in

all aspects of our daily lives. These social innovations can have unintended yet neg-

ative consequences in terms of security, privacy and social equity [O’neil, 2017]. The

public will no longer tolerate being excluded from the debate and it is here that the

scientific and policy community have a key role to play. Both parties can improve the

channelling of scientific evidence into the public arena and fight the risks posed by

fake news. Policy can promote communication by setting the right, often intrinsic,

incentives to encourage as many scientists as possible to engage with different seg-

ments of the public. However, communicating science to non-scientific audiences can

be difficult since it requires a different approach from that of communicating science

to scientific audiences. This means scientists need to be able to detach the layers of

scientific complexity that characterize their research so as to deliver a clear message

to the public, a message, moreover, that should include both potential impacts and

ethical issues. ‘Listening mechanisms’ can also be used to inform citizens’ knowl-

edge, expectations, and imaginaries about intelligent machines and, why not, about

their role in science. There are a variety of means available for achieving these goals,

ranging from in-depth interviews and material deliberations to citizen science. We
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believe that citizen science has the potential to bring the greatest benefits to both

the public and the scientific system. The nonprofessional involvement of volunteers

in the scientific process, whether in more mundane tasks such as data collection or

in other phases of the research, offers great opportunities for the public to become

familiar with the technology but also provides researchers with great opportunities

to improve their results [Bonney et al., 2014, Sullivan et al., 2018]. However, fully

accountable institutional mechanisms are a precondition for guaranteeing trust be-

tween scientists and the public and for ensuring continuity in their relationship. For

instance, all results and the process used in reaching these results should be open

to scrutiny. Policy should promote feedback activities so as to maintain citizen in-

volvement and explain how their inputs were used in meeting research aims; reconcile

conflicting values and objectives; and, put in place collective intelligence mechanisms

that can help them develop a systemic understanding of the future implications of

technological progress and make better consensus decision-making – all very much in

line with the notion of ‘Decisions 2.0’ [Bonabeau, 2009]. Finally, we fully embrace the

concept of ‘boundary organisations’ specifically designed to deal with socio-economic

transformations in the digital age. These organisations would sit at the intersection

of scientific and political spheres and allow scientists and policy-makers to maintain

a constant dialogue with each other.

Although the AI revolution has been the subject under scrutiny here, ironically

this revolution offers the tools with the greatest potential for bringing about a radical

transformation in the interactions between the public, the scientific community and

the policy environment. These interactions, if exploited carefully, should serve to

give a boost to human efforts to better understand the greatest mystery of all: the

origin and function of the world and our place in it, that is, the tasks of science itself.
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1.7 Appendix

Descriptive statistics and results

Table 1.5: Descriptive statistics of the variables

NN Papers Non-NN Papers Total

Re-combinatorial Novelty
Novelty Dummy (All Sciences) 36.43 30.32 30.40
Novelty Dummy (No CS) 32.39 29.55 29.59
Novelty Dummy (Only HS) 20.96 23.52 23.49

Novelty (All Sciences) 0/0.81 (2.39) 0/0.74 (3.10) 0/0.74 (3.09)
Novelty (No CS) 0/0.65 (2.12) 0/0.71 (3.07) 0/0.71 (3.06)
Novelty (Only HS) 0/0.37 (1.62) 0/0.50 (2.40) 0/0.5 (2.39)

Scientific Impact
Top 5% Cited 8.33 5.77 5.80
Top 10% Cited 15.68 11.38 11.43
# Citations (Raw Count) 17/38.34 (114.43) 18/35.48 (82.67) 18/35.51 (83.15)
Citations (Yearly Normalized) 2.06/4.06 (8.16) 2.08/3.75 (8.02) 2.08/3.75 (8.02)

Controls
# References 40/45.92 (29.59) 33/37.12 (25.66) 33/37.23 (25.73)
# Authors 4/4.07 (2.37) 4/4.90 (3.50) 4/4.89 (3.49)
International Collab. 26.21 23.02 23.06
Private Partic. 6.80 7.09 7.09
JIF 1.39/2.12 (2.06) 1.73/2.42 (2.13) 1.73/2.41 (2.13)
Journal Age 22/28.57 (26.07) 33/38.47 (29.08) 32/38.35 (29.06)
Survey 0.72 0.78 0.77

Time Period [2001 – 2015] [2001 – 2015] [2001 – 2015]
# Scientific Fields 46 48 48
# Journals 92 92 92
# Papers 4,560(1.28%) 351,477(98.72%) 356,037(100%)

Notes: Binary indicators in [%], for continuous measures [median/mean (s.d.)]. The statistics
refer to the period used for the econometric analysis.

From word embeddings to search terms

This Appendix complements Section 1.3 by adding technical details on the learning

of search terms for data retrieval. Source data and codes are fully accessible upon

request.
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Table 1.6: Atypical profile of NN publications

Category All Sciences No CS Only HS
(1) (2) (3)

HC–HN 0.008 0.208 0.308∗∗

(0.130) (0.133) (0.136)

HC–LN -0.041 0.090 -0.049
(0.157) (0.152) (0.154)

LC–LN -0.043 -0.086 0.021
(0.162) (0.163) (0.155)

Other variables Yes Yes Yes

Log Likelihood -374,002 -374,000 -363,855
χ2 [Null Model] 95,913∗∗∗ 95,488∗∗∗ 115,891∗∗∗

χ2 [w/o NN Model] 259∗∗∗ 158.20∗∗∗ 144∗∗∗

# Obs 320,587 320,587 320,587

Notes: This table reports coefficients of the effect of NN methods (NN , dummy) on atypical
profiles. Category LC-HN is the reference category for all models. Bootstrapped (500 replications)
standard errors clustered at the journal-level in parentheses: ***, ** and * indicate significance at
the 1%, 5% and 10% levels, respectively. All variables are incorporated in all model specifications,
details in Supplementary Material. Likelihood-ratio tests are used to compare the goodness-of-fit
of two statistical models: (i) null model against complete model; (ii) model without the NN

variable against the complete model.

Preparation of the training data

The training data is a bulk download of article abstracts from arXiv.org via its

API provided by the R package ‘aRxiv’ [Ram and Broman, 2019]. We obtained in

total 197,439 documents submitted between 1990 (2 documents) and 2019 (16,533

documents at the time of downloading – July; 35,807 in 2018) in the ‘Computer

Science’, ‘Mathematics’ and ‘Statistics’ sections of arXiv.org. Preprocessing entails

removing all abstracts with less than 15 words; a pre-defined set of stop words; all

words occurring less than 5 times in the corpus. In addition, we paste unigrams

into bi-grams depending on the frequency of co-occurence. Following Mikolov et al.

[2013b] and Mikolov et al. [2013] a bi-gram is created when the score of the two words,

wi and wj, pass a given threshold. The score is calculated as follows: score(wi, wj) =
count(wi,wj)−δ

count(wi)·count(wj)
, where δ is used as a discounting coefficient and prevents too many

bi-grams consisting of very infrequent words to be formed. We choose a threshold of

50 to increase the number of bi-grams generated (default is 100).

After preprocessing, the training data includes 14,458,777 words from a vocabu-

lary of size 87,990. This leads to a weight matrix of dimension 45,050,880 (87,990 ×
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512 dimensions).

Estimation of word representations

We estimate word representations with the continuous Skip-Gram model introduced

in Mikolov et al. [2013b] and Mikolov et al. [2013]. The Skip-Gram model is one

specific variant of a set of word embedding algorithms that have become popular

under the label of Word2Vec.

We use negative sampling. In ‘old school’ parlance, this is essentially a Logit

model. The binary dependent variable indicates whether or not two terms are close

in the text corpus, at distance c. For each observed neighboring term pair (success),

one adds k ‘negative samples’ (failures). The scalar product of word representations

enters the model as the linear predictor. Sequential processing is achieved through

stochastic gradient descent.

The results presented along the main text have been obtained with the follow-

ing parameter settings. The main free parameter is the dimensionality of the dense

word representation, which we set to 512 dimensions.6 We define a context window

(distance c) of 7 words from both sides around the target. For each observed neigh-

boring term pair, we draw k = 15 negative examples. A negative example is obtained

by replacing one word of the observed neighboring terms by another word from the

vocabulary that is drawn randomly with probability proportional to its frequency –

i.e., P (wi) = f(wi)
3/4

Σn
j=0

(f(wj)3/4)
, which is close to draws uniformly at random. Further,

we make use of sub-sampling by specifying 30 epochs, so that the whole dataset is

passed 30 times through the network.

Word clustering

Estimation results – i.e., estimated word embeddings – serve as input to a cluster

analysis. Term clusters are identified with the k-means clustering procedure. We used

the gap statistics to determine the optimal number of clusters. The most frequent

n-grams for the 22 identified clusters are reported in Tables 1.7a and 1.7b.

6We tried several dimensions to represent dense representation: 256, 300, 512 and 1,024. Our
choice was guided by the results of the k-mean clustering; we opted for the dimension for which the
DL cluster was best defined.
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Acronyms and full names

Table 1.8: List of acronyms replaced by full name

Acronym Full name

ann artificial neural network

anns artificial neural networks

blstm bidirectional long short term memory

bns bayesian networks

bpn bidirectional pyramid networks

cav computer aided verification

cnn convolutional neural network

cnns convolutional neural networks

crf conditional random fields

ctc connectionist temporal classification

dan deep alignment network

dbm deep boltzmann machine

dbms database management systems

dbn deep belief network

dcn dynamic coattention network

dcnn deep convolutional neural network

dcnns deep convolutional neural networks

dl deep learning

dek deep embedding kernel

dnn deep neural network

dnns deep neural networks

dqn deep q network

Continued on next page
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Table 1.8: List of acronyms replaced by full name – continued

dqns deep q networks

drcn deeply recursive convolutional network

drl deep reinforcement learning

elm extreme learning machine

fcn fully convolutional network

fhmms factorial hidden markov model

ga genetic algorithm

gan generative adversarial network

gans generative adversarial networks

gcns graph convolutional networks

grnn general regression neural network

grus gated recurrent units

gsn generative stochastic network

gssl graph based semi supervised learning

knn k nearest neighbors

lmnn large margin nearest neighbor

lstm long short term memory

lstms long short term memory

mdp markov decision process

ml machine learning

mlp multilayer perceptron

mtl multi task learning

nn neural network

nns neural networks

Continued on next page
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Table 1.8: List of acronyms replaced by full name – continued

pmvge probabilistic multi view graph embedding

pnn probabilistic neural network

pso particle swarm optimization

psrnns predictive state recurrent neural networks

rbf radial basis function

rbfn radial basis function network

rbms restricted boltzmann machines

rgp recurrent gaussian process

rl reinforcement learning

rlns regularization learning networks

rmbs restricted boltzmann networks

rnn recurrent neural network

rnns recurrent neural networks

smffnn supervised multilayers feed forward neural network

snn spiking neural network

snns spiking neural networks

ssrbm spike slab restricted boltzmann machine

svm support vector machine

vae variational autoencoder

vaes variational autoencoders

wae wasserstein autoencoder

zsl zero shot learning

End of table.
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Diffusion of deep learning in science: the sample

This Appendix complements Section 1.4 with details on the sample used for the

analysis on the diffusion of deep learning in science.

Table 1.9: Deep learning documents broken down by period and WoS research ar-
eas

Year All documents Technology Physical Sciences Life Sciences & Biomedicine Health Sciences Social Sciences Art & Humanities
(1) (2) (3) (4) (5) (6) (7)

1990 381 [0.15] 193.33 [50.74] 117.17 [30.75] 61.83 [16.23] 106 [27.82] 8.67 [2.27] 0 [0]
1991 836 [0.32] 507.52 [60.71] 193.73 [23.17] 123.58 [14.78] 188 [22.49] 11.17 [1.34] 0 [0]
1992 1,256 [0.48] 759.17 [60.44] 306.92 [24.44] 159.25 [12.68] 234 [18.63] 29.67 [2.36] 1 [0.08]
1993 1,477 [0.57] 841.05 [56.94] 365.37 [24.74] 221.42 [14.99] 315 [21.33] 49.17 [3.33] 0 [0]
1994 1,798 [0.69] 1,074.10 [59.74] 373.60 [20.78] 293.53 [16.33] 385 [21.41] 55.77 [3.10] 1 [0.06]
1995 2,220 [0.85] 1,415.85 [63.78] 436.92 [19.68] 306.23 [13.79] 412 [18.56] 60.50 [2.73] 0.50 [0.02]

1996 2,791 [1.07] 1,843.03 [66.03] 478.30 [17.14] 393.23 [14.09] 475 [17.02] 75.43 [2.70] 1 [0.04]
1997 3,090 [1.19] 2,002.12 [64.79] 530.50 [17.17] 481.38 [15.58] 613 [19.84] 74 [2.39] 2 [0.06]
1998 4,330 [1.66] 2,865.13 [66.17] 566.70 [13.09] 779.25 [18.00] 1,083 [25.01] 113.92 [2.63] 5 [0.12]
1999 4,725 [1.81] 3,302.34 [69.89] 725.92 [15.36] 598.61 [12.67] 627 [13.27] 93.58 [1.98] 4.55 [0.10]
2000 6,259 [2.40] 4,661.05 [74.47] 835.07 [13.34] 621.55 [9.93] 691 [11.04] 138.33 [2.21] 3 [0.05]

2001 6,062 [2.33] 4,376.40 [72.19] 859.52 [14.18] 726.90 [11.99] 806 [13.3] 94.68 [1.56] 4.50 [0.07]
2002 6,676 [2.56] 5,191.35 [77.76] 762.67 [11.42] 614.42 [9.20] 700 [10.49] 104.37 [1.56] 3.20 [0.05]
2003 7,230 [2.78] 5,430.80 [75.11] 923.27 [12.77] 768.00 [10.62] 897 [12.41] 100.43 [1.39] 7.50 [0.10]
2004 7,765 [2.98] 5,907.90 [76.08] 921.27 [11.86] 811.58 [10.45] 879 [11.32] 119.75 [1.54] 4.50 [0.06]
2005 9,023 [3.46] 7,026.45 [77.87] 1,072.60 [11.89] 790.40 [8.76] 896 [9.93] 129.80 [1.44] 3.75 [0.04]

2006 10,654 [4.09] 8,206.27 [77.03] 1,424.57 [13.37] 885.2 [8.31] 859 [8.06] 136.60 [1.28] 1.36 [0.01]
2007 11,086 [4.26] 8,234.85 [74.28] 1,551.97 [14.00] 1,072.22 [9.67] 1,246 [11.24] 217.38 [1.96] 9.58 [0.09]
2008 11,891 [4.57] 9,053.63 [76.14] 1,562.03 [13.14] 1,015.39 [8.54] 1,067 [8.97] 256 [2.15] 3.95 [0.03]
2009 13,049 [5.01] 10,066.02 [77.14] 1,601.43 [12.27] 1,113.80 [8.54] 1,102 [8.45] 258.05 [1.98] 9.70 [0.07]
2010 10,467 [4.02] 7,702.98 [73.59] 1,399.65 [13.37] 1,117.50 [10.68] 992 [9.48] 242.87 [2.32] 4 [0.04]

2011 10,872 [4.17] 8,033.20 [73.89] 1,462.38 [13.45] 1,110.13 [10.21] 943 [8.67] 261.78 [2.41] 4.50 [0.04]
2012 12,227 [4.69] 9,238.63 [75.56] 1,571.02 [12.85] 1,189.90 [9.73] 1,047 [8.56] 220.95 [1.81] 6.50 [0.05]
2013 12,691 [4.87] 9,439.40 [74.38] 1,779.75 [14.02] 1,248.40 [9.84] 1,106 [8.71] 217.78 [1.72] 5.67 [0.04]
2014 14,355 [5.51] 11,044.90 [76.94] 1,747.07 [12.17] 1,263.52 [8.80] 1,067 [7.43] 293.02 [2.04] 6.50 [0.05]
2015 16,764 [6.44] 12,934.47 [77.16] 1,978.12 [11.80] 1,476.93 [8.81] 1,267 [7.56] 367.65 [2.19] 6.83 [0.04]

2016 18,425 [7.07] 13,927.08 [75.59] 2,265.67 [12.30] 1,700.87 [9.23] 1,449 [7.86] 515.55 [2.80] 15.83 [0.09]
2017 24,046 [9.23] 18,488.38 [76.89] 2,993.48 [12.45] 2,099.37 [8.73] 2,008 [8.35] 449.93 [1.87] 14.83 [0.06]
2018 28,013 [10.76] 20,223.48 [72.19] 4,192.73 [14.97] 3,078.15 [10.99] 3,001 [10.71] 491.90 [1.76] 26.73 [0.10]

Notes: Number of deep learning documents (Column 1). Weighted count for all other columns. For ‘All Documents’ the shares [%] are
calculated on the basis of the entire DL sample. For all other columns the share refers to the period. For example, the number of documents
published in 2018 represents 10.76% of all DL documents; of the 28,013 documents, 72.19% belong to ‘Technology’, 14.97% to ‘Physical
Sciences’, and so on.

Deep learning in health sciences: data construction

and sample details

This Appendix provides additional statistics on the empirical analysis of Section 1.5.

The perimeter of the domain ‘health sciences’ has been delineated using the WoS

subject categories reported in Table 1.11. Health sciences can be viewed as a subset

of the broader WoS research area ‘Life Science & Biomedicine’.
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Table 1.10: Deep learning publication activity broken down by country and period

1990-1999 2000-2009 2010-2019

Country # Documents Country # Documents Country # Documents

[UE] 6,205 [UE] 24,047 China 39,852
USA 5,123 China 20,560 [UE] 28,358
United Kingdom 1,695 USA 13,665 USA 17,320
Japan 1,368 United Kingdom 5,151 India 10,349
Germany 991 Japan 5,076 Iran (Islamic Republic of) 7,008
Italy 851 Taiwan 3,611 United Kingdom 4,917
China 764 Italy 3,269 Japan 4,471
Canada 721 India 3,225 Taiwan 4,027
France 704 Canada 3,204 Korea (Republic of) 3,902
Spain 474 Spain 2,898 Turkey 3,895
Taiwan 456 Korea (Republic of) 2,872 Spain 3,438
Australia 436 Germany 2,802 Canada 3,377
Korea (Republic of) 427 Turkey 2,228 Germany 3,271
India 354 France 2,183 Italy 3,063
Netherlands 286 Iran (Islamic Republic of) 1,964 Australia 2,925
Brazil 224 Brazil 1,874 Malaysia 2,631

Notes: Top 15 countries for each period. [EU] represents EU28 as in 2018.

Meta data on the estimation sample

This Appendix provides details on the sample constructed to carry out the empirical

analysis on health sciences (Section 1.5.1). To benchmark deep learning publications,

we download all the articles for the whole observation period published in the top

100 journals where research involving deep learning has been the most prominent.

Table 1.12: Sampled papers by journal and period

Journal | Foundation date 1990–1999 2000–2009 2010–2019

ACADEMIC RADIOLOGY | 1994 1,250 2,179 2,265

ANALYTICAL AND BIOANALYTICAL CHEMISTRY

| 1862

0 5,235 8,300

ANNALS OF BIOMEDICAL ENGINEERING | 1972 684 1,624 2,389

BASIC & CLINICAL PHARMACOLOGY & TOXI-

COLOGY | 1945

0 1,944 8,411

BEHAVIORAL AND BRAIN SCIENCES | 1978 4,162 3,573 2,273

BEHAVIOURAL BRAIN RESEARCH | 1980 1,719 2,861 5,861

BIOLOGICAL PSYCHIATRY | 1959 6,477 10,589 13,323

Continued on next page
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Table 1.12: Sampled papers per journal and period – continued

Journal | Foundation date 1990–1999 2000–2009 2010-2019

BIOMED RESEARCH INTERNATIONAL | 2001 0 0 16,302

BIOMEDICAL ENGINEERING ONLINE | 2002 0 160 1,309

BIOMEDICAL SIGNAL PROCESSING AND CON-

TROL | 2006

0 150 1,398

BIORESOURCE TECHNOLOGY | 1991 1,434 4,464 15,677

BIOSYSTEMS | 1967 651 1,062 927

BMC BIOINFORMATICS | 2000 0 3,455 6,060

BMC MEDICAL INFORMATICS AND DECISION

MAKING | 2001

0 171 1,350

BRAIN | 1878 1,457 2,820 3,395

BRAIN AND LANGUAGE | 1974 1,317 1,899 914

BRAIN RESEARCH | 1966 15,725 11,563 6,503

CEREBRAL CORTEX | 1991 517 1,877 3,006

CLINICAL NEUROPHYSIOLOGY | 1949 286 3,047 3,493

COGNITIVE NEURODYNAMICS | 2007 0 94 418

COGNITIVE SCIENCE | 1977 178 411 851

COMBINATORIAL CHEMISTRY & HIGH

THROUGHPUT SCREENING | 1998

47 766 849

COMPUTATIONAL AND MATHEMATICAL METH-

ODS IN MEDICINE | 1997

0 44 1,632

COMPUTATIONAL INTELLIGENCE AND NEURO-

SCIENCE | 2007

0 0 855

COMPUTERIZED MEDICAL IMAGING AND

GRAPHICS | 1988

565 615 664

CORTEX | 1964 562 1,021 2,213

CURRENT BIOLOGY | 1991 2,744 7,273 7,714

CURRENT OPINION IN NEUROBIOLOGY | 1991 527 1,035 1,400

Continued on next page
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Table 1.12: Sampled papers per journal and period – continued

Journal | Foundation date 1990–1999 2000–2009 2010-2019

EPILEPSIA | 1909 6,736 17,762 10,780

EUROPEAN JOURNAL OF MEDICINAL CHEM-

ISTRY | 1966

1,164 1,990 7,632

EUROPEAN JOURNAL OF NEUROSCIENCE | 1989 6,282 8,968 3,260

EXPERIMENTAL BRAIN RESEARCH | 1966 3,062 4,110 3,517

FOOD CHEMISTRY | 1976 2,077 6,114 16,416

FRONTIERS IN COMPUTATIONAL NEURO-

SCIENCE | 2007

0 38 1,136

FRONTIERS IN HUMAN NEUROSCIENCE | 2008 0 91 5,451

FRONTIERS IN NEUROINFORMATICS | 2007 0 1 482

FRONTIERS IN NEUROSCIENCE | 2009 0 114 4,778

FRONTIERS IN PSYCHOLOGY | 2010 0 0 14,466

HIPPOCAMPUS | 1991 490 1,007 1,231

HUMAN BRAIN MAPPING | 1993 182 1,110 3,052

IEEE TRANSACTIONS ON BIOMEDICAL ENGI-

NEERING | 1964

1,594 2,528 3,218

IEEE TRANSACTIONS ON NEURAL SYSTEMS

AND REHABILITATION ENGINEERING | 2001

0 553 1,366

INTERNATIONAL JOURNAL OF COMPUTER AS-

SISTED RADIOLOGY AND SURGERY | 2006

0 664 1,337

INTERNATIONAL JOURNAL OF ENVIRONMEN-

TAL RESEARCH AND PUBLIC HEALTH | 2004

0 214 11,117

INTERNATIONAL JOURNAL OF MOLECULAR

SCIENCES | 2000

0 804 18,697

INVESTIGATIVE OPHTHALMOLOGY & VISUAL

SCIENCE | 1962

17,439 2,973 2,640

JOURNAL OF CHROMATOGRAPHY A | 1958 7,664 11,861 9,715

JOURNAL OF COGNITIVE NEUROSCIENCE | 1989 1,302 3,950 2,978

Continued on next page
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Table 1.12: Sampled papers per journal and period – continued

Journal | Foundation date 1990–1999 2000–2009 2010-2019

JOURNAL OF COMPUTATIONAL NEUROSCIENCE

| 1994

113 415 545

JOURNAL OF DIGITAL IMAGING | 1988 401 625 974

JOURNAL OF MECHANICS IN MEDICINE AND

BIOLOGY | 2001

0 308 1,080

JOURNAL OF MEDICAL IMAGING AND HEALTH

INFORMATICS | 2011

0 0 1,706

JOURNAL OF MEDICAL SYSTEMS | 1977 56 243 2,125

JOURNAL OF MEDICINAL CHEMISTRY | 1959 5,619 6,783 7,387

JOURNAL OF MOLECULAR BIOLOGY | 1959 7097 9691 4,251

JOURNAL OF NEURAL ENGINEERING | 2004 0 331 1456

JOURNAL OF NEUROPHYSIOLOGY | 1938 4,750 6,040 5,195

JOURNAL OF NEUROSCIENCE | 1981 6,705 13,443 13,766

JOURNAL OF NEUROSCIENCE METHODS | 1979 1,638 2,690 2,874

JOURNAL OF NUCLEAR MEDICINE | 1964 12,218 11,603 20,672

JOURNAL OF PHARMACEUTICAL AND BIOMEDI-

CAL ANALYSIS | 1983

2,362 4,376 5,347

JOURNAL OF PHYSIOLOGY-PARIS | 1992 383 476 227

JOURNAL OF THE ACOUSTICAL SOCIETY OF

AMERICA | 1929

7,323 6,801 7,806

JOURNAL OF THEORETICAL BIOLOGY | 1961 2,371 3,270 4,203

JOURNAL OF UROLOGY | 1917 12,499 29,396 39,207

JOURNAL OF VIBROENGINEERING | 2007 0 268 2,562

MEDICAL ENGINEERING & PHYSICS | 1994 537 1,153 1,699

MEDICAL IMAGING 2018: COMPUTER-AIDED

DIAGNOSIS | 2018

0 0 136

MEDICAL PHYSICS | 1997 2,268 14,402 28,629

Continued on next page
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Table 1.12: Sampled papers per journal and period – continued

Journal | Foundation date 1990–1999 2000–2009 2010-2019

MOLECULES | 1996 210 1,875 15,389

NATURE NEUROSCIENCE | 1998 414 2,899 2,727

NEUROIMAGE | 1993 373 7,286 9,626

NEURON | 1988 2,393 3,977 4,693

NEUROPSYCHOLOGIA | 1963 1,338 2,465 3,584

NEUROREPORT | 1990 5,112 5,152 2,125

NEUROSCIENCE | 1976 5,846 7,472 7,491

NEUROSCIENCE AND BIOBEHAVIORAL RE-

VIEWS | 1977

617 772 2,190

NEUROSCIENCE LETTERS | 1975 10,062 9,976 7,188

NEUROSCIENCE RESEARCH | 1984 1,081 7,801 4,976

NUCLEIC ACIDS RESEARCH | 1974 11,010 10,326 12,648

PERCEPTION | 1972 4,762 7,581 7,639

PHYSICS IN MEDICINE AND BIOLOGY | 1956 1,853 4,283 5,381

PHYSIOLOGICAL MEASUREMENT | 1980 367 1,167 1,620

PLOS COMPUTATIONAL BIOLOGY | 2005 0 1,149 5,187

PROTEINS-STRUCTURE FUNCTION AND BIOIN-

FORMATICS | 1986

437 2,991 2,190

PSYCHOLOGICAL REVIEW | 1894 379 493 390

RADIOLOGY | 1923 19,517 12,402 5,188

RADIOTHERAPY AND ONCOLOGY | 1983 1,623 10,706 16,163

SCHIZOPHRENIA RESEARCH | 1988 5,257 8,757 7,323

TRENDS IN COGNITIVE SCIENCES | 1997 332 1,263 1,092

VISION RESEARCH | 1961 4,295 3,164 1,890

2007 ANNUAL INTERNATIONAL CONFERENCE

OF THE IEEE ENGINEERING IN MEDICINE AND

BIOLOGY SOCIETY, VOLS 1-16 | 2007

0 1,703 0

Continued on next page
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Table 1.12: Sampled papers per journal and period – continued

Journal | Foundation date 1990–1999 2000–2009 2010-2019

2011 ANNUAL INTERNATIONAL CONFERENCE

OF THE IEEE ENGINEERING IN MEDICINE AND

BIOLOGY SOCIETY (EMBC) | 2011

0 0 2,083

2015 37TH ANNUAL INTERNATIONAL CONFER-

ENCE OF THE IEEE ENGINEERING IN MEDICINE

AND BIOLOGY SOCIETY (EMBC) | 2015

0 0 2,008

2017 39TH ANNUAL INTERNATIONAL CONFER-

ENCE OF THE IEEE ENGINEERING IN MEDICINE

AND BIOLOGY SOCIETY (EMBC) | 2017

0 0 1,123

2017 IEEE 14TH INTERNATIONAL SYMPOSIUM

ON BIOMEDICAL IMAGING (ISBI 2017) | 2017

0 0 285

2018 11TH INTERNATIONAL CONGRESS ON IM-

AGE AND SIGNAL PROCESSING, BIOMEDICAL

ENGINEERING AND INFORMATICS (CISP-BMEI

2018) | 2018

0 0 249

2018 IEEE 15TH INTERNATIONAL SYMPOSIUM

ON BIOMEDICAL IMAGING (ISBI 2018) | 2018

0 0 364

End of table.
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Table 1.11: WoS subject categories defining ‘health sciences’

Category Count [Share] Category Count [Share]

Neurosciences 6,683 [2.56] Geriatrics & Gerontology 75 [0.03]
Biology 6,084 [2.33] Anatomy & Morphology 73 [0.03]
Mathematical & Computational Biology 3,386 [1.30] Orthopedics 73 [0.03]
Radiology, Nuclear Medicine & Medical Imaging 2,678 [1.03] Transplantation 63 [0.02]
Medical Informatics 2,218 [0.85] Dentistry, Oral Surgery & Medicine 62 [0.02]
Psychology 1,932 [0.74] Virology 61 [0.02]
Microbiology 1,908 [0.73] Hematology 59 [0.02]
Biochemistry & Molecular Biology 1,852 [0.71] Nursing 50 [0.02]
Biotechnology & Applied Microbiology 1,727 [0.66] Reproductive Biology 41 [0.02]
Pharmacology & Pharmacy 1,221 [0.47] Integrative & Complementary Medicine 36 [0.01]
Biophysics 863 [0.33] Emergency Medicine 35 [0.01]
Psychiatry 733 [0.28] Rheumatology 24 [0.01]
Cell Biology 582 [0.22] Tropical Medicine 21 [0.01]
Health Care Sciences & Services 549 [0.21] Mycology 18 [0.01]
Oncology 548 [0.21] Allergy 7 [0]
Surgery 465 [0.18] Medical Ethics 4 [0]
Genetics & Heredity 443 [0.17] Psychology, Experimental 0 [0]
Physiology 431 [0.17] Psychology, Applied 0 [0]
Behavioral Sciences 419 [0.16] Psychology, Multidisciplinary 0 [0]
Toxicology 396 [0.15] Psychology, Biological 0 [0]
Public, Environmental & Occupational Health 384 [0.15] Neuroimaging 0 [0]
Endocrinology & Metabolism 283 [0.11] Engineering, Biomedical 0 [0]
Pathology 249 [0.10] Biochemical Research Methods 0 [0]
Medical Laboratory Technology 241 [0.09] Clinical Neurology 0 [0]
Ophthalmology 237 [0.09] Psychology, Developmental 0 [0]
Urology & Nephrology 235 [0.09] Cardiac & Cardiovascular Systems 0 [0]
Rehabilitation 230 [0.09] Psychology, Social 0 [0]
Gastroenterology & Hepatology 184 [0.07] Critical Care Medicine 0 [0]
Immunology 174 [0.07] Medicine, Research & Experimental 0 [0]
Obstetrics & Gynecology 161 [0.06] Psychology, Mathematical 0 [0]
Respiratory System 129 [0.05] Chemistry, Medicinal 0 [0]
Evolutionary Biology 116 [0.04] Medicine, Legal 0 [0]
Developmental Biology 112 [0.04] Medicine, General & Internal 0 [0]
Anesthesiology 111 [0.04] Peripheral Vascular Disease 0 [0]
Pediatrics 108 [0.04] Psychology, Clinical 0 [0]
Nutrition & Dietetics 99 [0.04] Health Policy & Services 0 [0]
Otorhinolaryngology 96 [0.04] Psychology, Educational 0 [0]
Infectious Diseases 82 [0.03] Social Sciences, Biomedical 0 [0]
Audiology & Speech-Language Pathology 81 [0.03] Primary Health Care 0 [0]
Gerontology 81 [0.03] Andrology 0 [0]
Dermatology 78 [0.03] Psychology, Psychoanalysis 0 [0]
Substance Abuse 76 [0.03]

Notes: Number of deep learning papers by WoS subject category. A document can belong to several categories. Shares
in [%].
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Table 1.13: Health sciences sample and deep learning articles

Full sample health sciences Sample for econometrics
Year # Journals # Articles # DL Articles # Articles # DL Articles

1990 44 14,317 25
1991 48 17,809 37
1992 52 21,029 87
1993 55 21,295 97
1994 57 24,458 119
1995 60 24,632 171

1996 60 25,072 155
1997 62 24,155 186
1998 65 29,891 203
1999 65 29,254 226
2000 66 30,239 222

2001 68 27,272 217 14,427 139
2002 70 31,120 235 14,580 132
2003 70 31,225 256 15,463 162
2004 72 34,686 300 16,924 182
2005 72 35,177 327 17,586 198

2006 77 41,966 412 20,762 250
2007 83 42,947 520 23,510 366
2008 84 41,931 431 23,044 292
2009 86 46,195 420 23,480 293
2010 85 47,384 485 25,103 328

2011 89 52,550 554 30,082 417
2012 89 48,763 559 29,497 426
2013 89 49,814 500 32,112 381
2014 89 57,045 586 34,341 462
2015 90 55,277 701 35,126 532

2016 89 56,232 729
2017 90 57,146 1,114
2018 91 62,342 1,646

Total 1,081,223 11,520 356,037 4,560

Notes: The articles published in the period 1990–2000 are used to build
the novelty measures for the first focal year 2001. The articles published
in the period 2016–2018 are used to check whether the new combinations
of referenced journals are reused in the following three years after the last
focal year 2015. The discrepancy between the number of articles in the
whole sample and the number in the sample used for econometric analysis
is due to the presence of missing information in the variables considered.
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Re-combinatorial novelty: indicators

This Appendix complements Section 1.5 with details on the procedure for the con-

struction of novelty measures (Section 1.5.1). It also reports some statistics on the

most frequent combinations of Web of Science subject categories, Tables 1.14–1.16.

Codes for the variable construction and analysis are fully accessible upon request.

Algorithm for the construction of novelty indicators

The novelty indicators are calculated at the year-level. Let y be the focal year, we

compute combinations of referenced journals in scientific documents belonging to

three groups:

• All papers published in the focal year y.

• All papers published before the focal year y, By

• All papers published 3 years after the focal year y, Ay

In our study the focal year, y, is moving from 2001 to 2015, while the first year

for which By is calculated remains fixed. We choose the year 2001 as the first focal

year to guarantee a sufficiently long time window (1990–2000) over which all previous

combinations of referenced journals are assessed.

Suppose a paper P published in year y cites three different journals J1,J2 and J3.

This gives rise to three unique combinations: (J1, J2), (J1, J3), and (J2, J3).

• For each of these combinations, we check whether (Ji, Jj) ∈ By, and if not, the

pair is removed from the analysis – i.e., the combination is simply not new.

• If (Ji, Jj) /∈ By, we examine whether Σ
PAy∈Ay

{(Ji, Jj) ∈ Ay} ≥ 5. If the

last statement is false, we remove this pair from the analysis – i.e., the new

combination is not reused in the future.7

• If (Ji, Jj) /∈ By & Σ
PAy∈Ay

{(Ji, Jj) ∈ Ay} ≥ 5, then the journal pair combination

is considered new and non trivial, hence we add that pair to the set of novel

combinations Ny.

7As robustness checks, we also considered different thresholds for the re-use, i.e. 3 and 10.
By construction, the number of combinations considered as novel increases (decreases) significantly
when the threshold is lower (higher). However, as shown in Wang et al. [2017], the dynamics of
novelty are not much affected by these alternative specifications.
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The difficulty of making new journal combinations are not equally distributed.

Journals can share ‘common friends’ making it possible to create more or less difficult

new combinations. For example, Piy is making for the first time the combination

(J1, J2), but J1 is usually cited with J3 and J2 is also sometimes cited with J3.

Creating this new combination is therefore less difficult compared to two journals

that do not share any ‘common friends’. To investigate the difficulty of citing J1 and

J2 for the first time, we construct a co-occurrence matrix of pairs of cited journals

on the 3 years preceding the focal year y, and compute a cosine similarity:

COS(J1,J2) =
J1.J2

∥J1∥ ∥J2∥

The difficulty of making the (J1, J2) combination is then 1 − COS(J1,J2). To

construct the novelty indicator for the article Piy, we sum up all the difficulties for

pairs ∈ Ny and apply the log(x + 1) transformation:

Novelty(Piy) = log
[

Σ
(Ji,Jj)∈Ny

(1 − COS(Ji,Jj)) + 1
]
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WoS subject categories combinations

Table 1.14: Subject categories combinations (All Sciences)

Combinations [Category A | Category B] # Combinations Share [%]

DL articles / 2001–2005 450

NEUROSCIENCE & BEHAVIOR | NEUROSCIENCE & BEHAVIOR 51 11
NEUROSCIENCE & BEHAVIOR | PSYCHIATRY/PSYCHOLOGY 49 11
CLINICAL MEDICINE | NEUROSCIENCE & BEHAVIOR 22 5
BIOLOGY & BIOCHEMISTRY | COMPUTER SCIENCE 17 4
COMPUTER SCIENCE | NEUROSCIENCE & BEHAVIOR 14 3

Non-DL articles / 2001–2005 39,018

NEUROSCIENCE & BEHAVIOR | NEUROSCIENCE & BEHAVIOR 2,618 7
CLINICAL MEDICINE | NEUROSCIENCE & BEHAVIOR 2,378 6
BIOLOGY & BIOCHEMISTRY | MOLECULAR BIOLOGY & GENETICS 2,369 6
CLINICAL MEDICINE | CLINICAL MEDICINE 2,036 5
MOLECULAR BIOLOGY & GENETICS | MOLECULAR BIOLOGY & GENETICS 1,927 5

DL articles / 2006–2010 2,266

NEUROSCIENCE & BEHAVIOR | NEUROSCIENCE & BEHAVIOR 167 7
NEUROSCIENCE & BEHAVIOR | PSYCHIATRY/PSYCHOLOGY 150 7
BIOLOGY & BIOCHEMISTRY | NEUROSCIENCE & BEHAVIOR 108 5
NEUROSCIENCE & BEHAVIOR | PHYSICS 86 4
BIOLOGY & BIOCHEMISTRY | CHEMISTRY 81 4

Non-DL articles / 2006–2010 118,363

CLINICAL MEDICINE | CLINICAL MEDICINE 6,164 5
NEUROSCIENCE & BEHAVIOR | NEUROSCIENCE & BEHAVIOR 5,444 5
BIOLOGY & BIOCHEMISTRY | MOLECULAR BIOLOGY & GENETICS 4,644 4
NEUROSCIENCE & BEHAVIOR | PSYCHIATRY/PSYCHOLOGY 4,547 4
CLINICAL MEDICINE | NEUROSCIENCE & BEHAVIOR 4,389 4

DL articles / 2011–2015 3,986

NEUROSCIENCE & BEHAVIOR | PSYCHIATRY/PSYCHOLOGY 302 8
COMPUTER SCIENCE | ENGINEERING 249 6
CLINICAL MEDICINE | NEUROSCIENCE & BEHAVIOR 200 5
PSYCHIATRY/PSYCHOLOGY | PSYCHIATRY/PSYCHOLOGY 188 5
ENGINEERING | ENGINEERING 181 5

Non-DL articles / 2011–2015 328,197

CLINICAL MEDICINE | CLINICAL MEDICINE 29,295 9
BIOLOGY & BIOCHEMISTRY | CLINICAL MEDICINE 17,817 5
CLINICAL MEDICINE | MOLECULAR BIOLOGY & GENETICS 15,581 5
PSYCHIATRY/PSYCHOLOGY | PSYCHIATRY/PSYCHOLOGY 13,583 4
CLINICAL MEDICINE | NEUROSCIENCE & BEHAVIOR 13,027 4

Notes: This table reports the number and share of the most frequent combinations of WoS subject categories broken
down by period and DL status.
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Table 1.15: Subject categories combinations (No CS)

Combinations [Category A | Category B] # Combinations Share [%]

DL articles / 2001–2005 375

NEUROSCIENCE & BEHAVIOR | NEUROSCIENCE & BEHAVIOR 51 14
NEUROSCIENCE & BEHAVIOR | PSYCHIATRY/PSYCHOLOGY 49 13
CLINICAL MEDICINE | NEUROSCIENCE & BEHAVIOR 22 6
BIOLOGY & BIOCHEMISTRY | NEUROSCIENCE & BEHAVIOR 13 3
BIOLOGY & BIOCHEMISTRY | BIOLOGY & BIOCHEMISTRY 12 3

Non-DL articles / 2001–2005 37,666

NEUROSCIENCE & BEHAVIOR | NEUROSCIENCE & BEHAVIOR 2,618 7
CLINICAL MEDICINE | NEUROSCIENCE & BEHAVIOR 2,378 6
BIOLOGY & BIOCHEMISTRY | MOLECULAR BIOLOGY & GENETICS 2,369 6
CLINICAL MEDICINE | CLINICAL MEDICINE 2,036 5
MOLECULAR BIOLOGY & GENETICS | MOLECULAR BIOLOGY & GENETICS 1,927 5

DL articles / 2006–2010 1,989

NEUROSCIENCE & BEHAVIOR | NEUROSCIENCE & BEHAVIOR 167 8
NEUROSCIENCE & BEHAVIOR | PSYCHIATRY/PSYCHOLOGY 150 8
BIOLOGY & BIOCHEMISTRY | NEUROSCIENCE & BEHAVIOR 108 5
NEUROSCIENCE & BEHAVIOR | PHYSICS 86 4
BIOLOGY & BIOCHEMISTRY | CHEMISTRY 81 4

Non-DL articles / 2006–2010 114,806

CLINICAL MEDICINE | CLINICAL MEDICINE 6,164 5
NEUROSCIENCE & BEHAVIOR | NEUROSCIENCE & BEHAVIOR 5,444 5
BIOLOGY & BIOCHEMISTRY | MOLECULAR BIOLOGY & GENETICS 4,644 4
NEUROSCIENCE & BEHAVIOR | PSYCHIATRY/PSYCHOLOGY 4,547 4
CLINICAL MEDICINE | NEUROSCIENCE & BEHAVIOR 4,389 4

DL articles / 2011–2015 3,188

NEUROSCIENCE & BEHAVIOR | PSYCHIATRY/PSYCHOLOGY 302 9
CLINICAL MEDICINE | NEUROSCIENCE & BEHAVIOR 200 6
PSYCHIATRY/PSYCHOLOGY | PSYCHIATRY/PSYCHOLOGY 188 6
ENGINEERING | ENGINEERING 181 6
NEUROSCIENCE & BEHAVIOR | NEUROSCIENCE & BEHAVIOR 154 5

Non-DL articles / 2011–2015 319,990

CLINICAL MEDICINE | CLINICAL MEDICINE 29,295 9
BIOLOGY & BIOCHEMISTRY | CLINICAL MEDICINE 17,817 6
CLINICAL MEDICINE | MOLECULAR BIOLOGY & GENETICS 15,581 5
PSYCHIATRY/PSYCHOLOGY | PSYCHIATRY/PSYCHOLOGY 13,583 4
CLINICAL MEDICINE | NEUROSCIENCE & BEHAVIOR 13,027 4

Notes: This table reports the number and share of the most frequent combinations of WoS subject categories broken
down by period and DL status.
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Table 1.16: Subject categories combinations (Only HS)

Combinations [Category A | Category B] # Combinations Share [%]

DL articles / 2001–2005 251

NEUROSCIENCE & BEHAVIOR / NEUROSCIENCE & BEHAVIOR 51 20
NEUROSCIENCE & BEHAVIOR / PSYCHIATRY/PSYCHOLOGY 49 20
CLINICAL MEDICINE / NEUROSCIENCE & BEHAVIOR 22 9
BIOLOGY & BIOCHEMISTRY / NEUROSCIENCE & BEHAVIOR 13 5
BIOLOGY & BIOCHEMISTRY / BIOLOGY & BIOCHEMISTRY 12 5

Non-DL articles / 2001–2005 31,917

NEUROSCIENCE & BEHAVIOR / NEUROSCIENCE & BEHAVIOR 2,618 8
CLINICAL MEDICINE / NEUROSCIENCE & BEHAVIOR 2,378 7
BIOLOGY & BIOCHEMISTRY / MOLECULAR BIOLOGY & GENETICS 2,369 7
CLINICAL MEDICINE / CLINICAL MEDICINE 2,036 6
MOLECULAR BIOLOGY & GENETICS / MOLECULAR BIOLOGY & GENETICS 1,927 6

DL articles / 2006–2010 1,293

NEUROSCIENCE & BEHAVIOR / NEUROSCIENCE & BEHAVIOR 167 13
NEUROSCIENCE & BEHAVIOR / PSYCHIATRY/PSYCHOLOGY 150 12
BIOLOGY & BIOCHEMISTRY / NEUROSCIENCE & BEHAVIOR 108 8
BIOLOGY & BIOCHEMISTRY / CHEMISTRY 81 6
CLINICAL MEDICINE / NEUROSCIENCE & BEHAVIOR 68 5

Non-DL articles / 2006–2010 85,342

CLINICAL MEDICINE / CLINICAL MEDICINE 6,164 7
NEUROSCIENCE & BEHAVIOR / NEUROSCIENCE & BEHAVIOR 5,444 6
BIOLOGY & BIOCHEMISTRY / MOLECULAR BIOLOGY & GENETICS 4,644 5
NEUROSCIENCE & BEHAVIOR / PSYCHIATRY/PSYCHOLOGY 4,547 5
CLINICAL MEDICINE / NEUROSCIENCE & BEHAVIOR 4,389 5

DL articles / 2011–2015 1,921

NEUROSCIENCE & BEHAVIOR / PSYCHIATRY/PSYCHOLOGY 302 16
CLINICAL MEDICINE / NEUROSCIENCE & BEHAVIOR 200 10
PSYCHIATRY/PSYCHOLOGY / PSYCHIATRY/PSYCHOLOGY 188 10
NEUROSCIENCE & BEHAVIOR / NEUROSCIENCE & BEHAVIOR 154 8
BIOLOGY & BIOCHEMISTRY / NEUROSCIENCE & BEHAVIOR 109 6

Non-DL articles / 2011–2015 238,226

CLINICAL MEDICINE / CLINICAL MEDICINE 29,293 12
BIOLOGY & BIOCHEMISTRY / CLINICAL MEDICINE 17,817 7
CLINICAL MEDICINE / MOLECULAR BIOLOGY & GENETICS 15,581 7
PSYCHIATRY/PSYCHOLOGY / PSYCHIATRY/PSYCHOLOGY 13,583 6
CLINICAL MEDICINE / NEUROSCIENCE & BEHAVIOR 13,026 5

Notes: This table reports the number and share of the most frequent combinations of WoS subject categories broken
down by period and DL status.
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Robustness analysis: descriptive statistics and re-

sults

This Appendix complements our analysis with descriptive statistics and estimation

results for regressions and matching. Tables 1.17–1.19 refer to the sample of articles

that are not classified as ‘Neurosciences’. Tables 1.20–1.22 refer to the sample of

articles that do not contain the terms ‘neural network’ and ‘neural networks’ in their

title, keywords or abstract. Table 1.23 reports the results of the matching exercises.

Table 1.24 reports the estimates for the Multinomial Logistic regression to model the

novelty/conventionality quadrant [Uzzi et al., 2013, Wagner et al., 2019]. Codes for

the variable construction and analysis are fully accessible upon request.

Neuroscience articles excluded

Table 1.17: Descriptive statistics of the variables – Neuroscience articles excluded

DL Papers Non-DL Papers Total

Re-combinatorial Novelty
Novelty Dummy (All Sciences) 38.17 32.48 32.54
Novelty Dummy (No CS) 32.65 31.56 31.57
Novelty Dummy (Only HS) 18.77 23.69 23.64

Novelty (All Sciences) 0/0.82 (2.16) 0/0.84 (3.41) 0/0.84 (3.4)
Novelty (No CS) 0/0.62 (1.82) 0/0.82 (3.38) 0/0.81 (3.37)
Novelty (Only HS) 0/0.29 (1.17) 0/0.53 (2.58) 0/0.53 (2.57)

Scientific Impact
Top 5% Cited 7.73 5.59 5.62
Top 10% Cited 14.61 11.02 11.06
# Citations (Raw Count) 14/31.27 (140.01) 17/31.73 (83.93) 17/31.72 (84.69)
Citations (Yearly Normalized) 1.75/3.23 (8.52) 2/3.48 (8.46) 2/3.48 (8.46)

Controls
# References 32/37.84 (25.46) 30/33.24 (23.26) 30/33.28 (23.29)
# Authors 4/4.03 (2.26) 4/5.03 (3.61) 4/5.01 (3.6)
International Collab. 23.65 21.95 21.97
Private Collab. 6.37 7.56 7.55
JIF 0.86/1.33 (1.26) 1.63/1.98 (1.51) 1.62/1.98 (1.51)
Journal Age 22/29.16 (28.88) 35/41.08 (32.33) 35/40.95 (32.32)
Survey 0.89 0.98 0.98

Time Period [2001 – 2015] [2001 – 2015] [2001 – 2015]
# Scientific Fields 41 43 43
# Journals 54 54 54
# Papers 2,355(1.03%) 225,748(98.97%) 228,103(100%)

Notes: Binary indicators in [%], for continuous measures [median/mean (s.d.)]. The statis-
tics refer to the period used for the econometric analysis.
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Table 1.18: Novelty profile of deep learning publications – Neuroscience articles
excluded

Tobit: Novelty Probit: Novelty Dummy
All Sciences No CS Only HS All Sciences No CS Only HS

(1) (2) (3) (4) (5) (6)

DL 0.030 -0.065 -0.225∗∗∗ 0.046 -0.035 -0.181∗∗∗

(0.052) (0.049) (0.066) (0.052) (0.049) (0.059)

# References (log) 1.100∗∗∗ 1.104∗∗∗ 1.076∗∗∗ 0.948∗∗∗ 0.949∗∗∗ 0.894∗∗∗

(0.037) (0.036) (0.034) (0.033) (0.032) (0.025)

# Authors (log) 0.124∗∗∗ 0.129∗∗∗ 0.167∗∗∗ 0.131∗∗∗ 0.135∗∗∗ 0.166∗∗∗

(0.021) (0.021) (0.026) (0.020) (0.020) (0.022)

International Collab. -0.036∗∗∗ -0.041∗∗∗ -0.074∗∗∗ -0.035∗∗∗ -0.039∗∗∗ -0.068∗∗∗

(0.012) (0.013) (0.013) (0.013) (0.013) (0.013)

Private Collab. 0.017 0.017 -0.008 0.016 0.016 -0.006
(0.013) (0.014) (0.018) (0.014) (0.014) (0.017)

JIF 0.022 0.025 0.039 0.023 0.026 0.036
(0.07) (0.068) (0.073) (0.067) (0.065) (0.067)

Journal Age (log) 0.007 0.031 0.059 0.015 0.033 0.057
(0.145) (0.143) (0.160) (0.135) (0.134) (0.144)

Survey 0.126∗∗∗ 0.119∗∗∗ 0.077∗ 0.123∗∗∗ 0.115∗∗∗ 0.074∗

(0.041) (0.038) (0.042) (0.045) (0.041) (0.041)

Log Likelihood -172,590 -168,967 -139,119 -115,102 -113,562 -100,187
χ2 [Null Model] 74,312∗∗∗ 73,797∗∗∗ 59,245∗∗∗ 57,591∗∗∗ 57360∗∗∗ 49,127∗∗∗

χ2 [w/o DL Model] 1.30 5.30∗∗ 44.60∗∗∗ 2.60 1.40 31.1∗∗∗

# Obs 228,103 228,103 228,103 228,103 228,103 228,103

Notes: This table reports coefficients of the effect of deep learning (DL, dummy) on re-
combinatorial novelty built by considering different knowledge landscapes. Bootstrapped (500
replications) standard errors clustered at the journal-level in parentheses: ***, ** and * indicate
significance at the 1%, 5% and 10% level, respectively. The effect of DL on the positive contin-
uous novelty measure is estimated using a Tobit regression (Columns 1–3). The effect on the
novelty dummy is estimated using a Probit (Columns 4–6). Each novelty measure is calculated
on three different sets of journal references: ‘All Sciences’ – All cited journals, ‘No CS’ – All
cited journals except for computer science journals, and ‘Only HS’ – Only citations to health
science journals. Constant term, scientific field (WoS subject category) and time fixed effects are
incorporated in all model specifications. Likelihood-ratio test are used to compare the goodness
of fit of two statistical models: (i) null model against complete model; (ii) model without the DL

variable against the complete model.
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Table 1.19: Impact profile of deep learning publications – Neuroscience articles ex-
cluded

NegBin: # Citations Probit: Top 5% Cited Probit: Top 10% Cited

(1) (2) (3)

Panel A: Mean DL 0.090 0.107∗ 0.120∗∗

(0.060) (0.059) (0.059)

Novelty (All Sciences) 0.165∗∗∗ 0.210∗∗∗ 0.194∗∗∗

(0.028) (0.022) (0.022)

# References (log) 0.470∗∗∗ 0.367∗∗∗ 0.416∗∗∗

(0.062) (0.103) (0.086)

# Authors (log) 0.211 ∗∗∗ 0.154∗∗∗ 0.172∗∗∗

(0.032) (0.054) (0.050)

International Collab. 0.068∗∗∗ 0.093∗∗∗ 0.089∗∗∗

(0.014) (0.016) (0.017)

Private Collab. -0.011 -0.009 -0.007

(0.016) (0.021) (0.016)

JIF 0.222∗∗∗ 0.202∗∗∗ 0.192∗∗∗

(0.035) (0.062) (0.065)

Journal Age (log) 0.078∗ 0.025 0.045

(0.044) (0.103) (0.111)

Survey 0.551∗∗∗ 0.693∗∗∗ 0.630∗∗∗

(0.050) (0.070) (0.060)

Panel B: Dispersion DL 0.164∗∗

(0.075)

Novelty (All Sciences) 0.097∗∗∗

(0.017)

# References (log) -0.473∗∗∗

(0.040)

# Authors (log) -0.199∗∗∗

(0.036)

JIF 0.107∗∗

(0.054)

Journal Age (log) -0.123∗∗∗

(0.033)

Log Likelihood -955,206 -45,382 -72,968

χ2 [Null Model] 193,546∗∗∗ 7,890∗∗∗ 12,715∗∗∗

χ2 [w/o DL Model] 2.10 6.80∗∗ 12.60∗∗∗

# Obs 228,103 228,103 228,103

Notes: This table reports coefficients of the effect of deep learning (DL, dummy) on scientific impact proxied by
the number of received citations (Column 1) and ‘big hits’ (Columns 2 and 3). Bootstrapped (500 replications)
standard errors clustered at the journal-level in parentheses: ***, ** and * indicate significance at the 1%, 5% and
10% level, respectively. The effect of DL on the citation count is estimated using a Negative Binomial regression.
Estimates for the expectation and variance are reported in Panel A and B, respectively. The effects on the binary
indicators is estimated using a Probit. Constant term, scientific field (WoS subject category) and time fixed effects
are incorporated in all model specifications. Likelihood-ratio test are used to compare the goodness of fit of two
statistical models: (i) null model against complete model; (ii) model without the DL variable against the complete
model.
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Neural network(s) articles excluded

Table 1.20: Descriptive statistics of the variables – Neural network(s) articles ex-
cluded

DL Papers Non-DL Papers Total

Re-combinatorial Novelty
Novelty Dummy (All Sciences) 37.97 30.05 30.08
Novelty Dummy (No CS) 32.64 29.22 29.23
Novelty Dummy (Only HS) 18.57 22.72 22.71

Novelty (All Sciences) 0/0.78 (1.92) 0/0.74 (3.17) 0/0.74 (3.16)
Novelty (No CS) 0/0.61 (1.67) 0/0.72 (3.14) 0/0.72 (3.13)
Novelty (Only HS) 0/0.26 (0.87) 0/0.49 (2.43) 0/0.49 (2.42)

Scientific Impact
Top 5% Cited 7.33 6.00 6.00
Top 10% Cited 14.15 11.7 11.71
# Citations (Raw Count) 15/27.88 (41.87) 17/34.95 (84.48) 17/34.93 (84.36)
Citations (Yearly Normalized) 1.78/3.21 (4.95) 2/3.73 (8.23) 2/3.73 (8.22)

Controls
# References 32/36.56 (22.63) 31/36.13 (25.60) 31/36.14 (25.59)
# Authors 4/4.15 (2.16) 4/4.75 (3.28) 4/4.75 (3.27)
International Collab. 23.06 22.45 22.45
Private Collab. 7.58 6.91 6.92
JIF 0.96/1.3 (1.27) 1.57/2.37 (2.20) 1.57/2.37 (2.20)
Journal Age 23/29.58 (28.77) 31/37.38 (29.04) 31/37.35 (29.04)
Survey 1.17 0.83 0.83

Time Period [2001 – 2015] [2001 – 2015] [2001 – 2015]
# Scientific Fields 45 48 48
# Journals 84 84 84
# Papers 1,201(0.37%) 319,755(99.63%) 320,956(100%)

Notes: Binary indicators in [%], for continuous measures [median/mean (s.d.)]. The
statistics refer to the period used for the econometric analysis.
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Table 1.21: Novelty profile of deep learning publications – Neural network(s) arti-
cles excluded

Tobit: Novelty Probit: Novelty Dummy
All Sciences No CS Only HS All Sciences No CS Only HS

(1) (2) (3) (4) (5) (6)

DL 0.083 0.003 -0.171∗∗∗ 0.091∗ 0.014 -0.137∗∗

(0.051) (0.052) (0.061) (0.053) (0.057) (0.058)

# References (log) 1.046∗∗∗ 1.050∗∗∗ 1.025∗∗∗ 0.880∗∗∗ 0.880∗∗∗ 0.838∗∗∗

(0.032) (0.032) (0.033) (0.026) (0.026) (0.023)

# Authors (log) 0.186∗∗∗ 0.194∗∗∗ 0.241∗∗∗ 0.191∗∗∗ 0.197∗∗∗ 0.233∗∗∗

(0.023) (0.024) (0.027) (0.022) (0.022) (0.024)

International Collab. -0.058∗∗∗ -0.064∗∗∗ -0.095∗∗∗ -0.055∗∗∗ -0.061∗∗∗ -0.086∗∗∗

(0.010) (0.010) (0.010) (0.010) (0.010) (0.009)

Private Collab. 0.001 0.001 -0.023 0.001 -0.001 -0.021
(0.012) (0.013) (0.015) (0.012) (0.012) (0.014)

JIF -0.040∗∗ -0.037∗ -0.029 -0.037∗∗ -0.034∗ -0.026
(0.020) (0.021) (0.021) (0.018) (0.018) (0.018)

Journal Age (log) -0.092 -0.077 -0.040 -0.069 -0.056 -0.026
(0.103) (0.106) (0.115) (0.094) (0.096) (0.101)

Survey 0.204∗∗∗ 0.195∗∗∗ 0.160∗∗∗ 0.192∗∗∗ 0.184∗∗∗ 0.146∗∗∗

(0.042) (0.040) (0.043) (0.045) (0.042) (0.042)

Log Likelihood -234,600 -230,021 -194,470 -160,685 -158,739 -142,454
χ2 [Null Model] 90,036∗∗∗ 88,839∗∗∗ 70,498∗∗∗ 71,192∗∗∗ 70,357∗∗∗ 58,980∗∗∗

χ2 [w/o DL Model] 4.70∗ 0.02 12.80∗∗∗ 5.30∗∗ 0.10 9.4∗∗∗

# Obs 320,956 320,956 320,956 320,956 320,956 320,956

Notes: This table reports coefficients of the effect of deep learning (DL, dummy) on re-
combinatorial novelty built by considering different knowledge landscapes. Bootstrapped (500
replications) standard errors clustered at the journal-level in parentheses: ***, ** and * indicate
significance at the 1%, 5% and 10% level, respectively. The effect of DL on the positive
continuous novelty measure is estimated using a Tobit regression (Columns 1–3). The effect
on the novelty dummy is estimated using a Probit (Columns 4–6). Each novelty measure is
calculated on three different sets of journal references: ‘All Sciences’ – All cited journals, ‘No
CS’ – All cited journals except for computer science journals, and ‘Only HS’ – Only citations to
health science journals. Constant term, scientific field (WoS subject category) and time fixed
effects are incorporated in all model specifications. Likelihood-ratio test are used to compare
the goodness of fit of two statistical models: (i) null model against complete model; (ii) model
without the DL variable against the complete model.
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Table 1.22: Impact profile of deep learning publications – Neural network(s) arti-
cles excluded

NegBin: # Citations Probit: Top 5% Cited Probit: Top 10% Cited
(1) (2) (3)

Panel A: Mean DL 0.110∗ 0.136∗ 0.153∗∗

(0.067) (0.070) (0.064)

Novelty (All Sciences) 0.138∗∗∗ 0.190∗∗∗ 0.181∗∗∗

(0.022) (0.017) (0.016)

# References (log) 0.517∗∗∗ 0.436∗∗∗ 0.485∗∗∗

(0.061) (0.075) (0.063)

# Authors (log) 0.248∗∗∗ 0.179∗∗∗ 0.206∗∗∗

(0.031) (0.040) (0.038)

International Collab. 0.070∗∗∗ 0.088∗∗∗ 0.090∗∗∗

(0.014) (0.015) (0.014)

Private Collab. -0.034∗∗ -0.031 -0.04∗∗

(0.017) (0.019) (0.016)

JIF 0.202∗∗∗ 0.155∗∗∗ 0.168∗∗∗

(0.022) (0.018) (0.019)

Journal Age (log) 0.063∗ -0.043 -0.032
(0.038) (0.093) (0.089)

Survey 0.522∗∗∗ 0.646∗∗∗ 0.607∗∗∗

(0.055) (0.056) (0.051)

Panel B: Dispersion DL 0.075
(0.053)

Novelty (All Sciences) 0.086∗∗∗

(0.017)

# References (log) -0.488∗∗∗

(0.039)

# Authors (log) -0.202∗∗∗

(0.043)

JIF 0.037
(0.03)

Journal Age (log) -0.116∗∗∗

(0.032)

Log Likelihood -1,360,967 -63,884 -101,311
χ2 [Null Model] 282,883∗∗∗ 17,961∗∗∗ 29,217∗∗∗

χ2 [w/o DL Model] 1.60 5.50∗∗ 10.40∗∗∗

# Obs 320,956 320,956 320,956

Notes: This table reports coefficients of the effect of deep learning (DL, dummy) on scientific impact proxied by
the number of received citations (Column 1) and ‘big hits’ (Columns 2 and 3). Bootstrapped (500 replications)
standard errors clustered at the journal-level in parentheses: ***, ** and * indicate significance at the 1%, 5% and
10% level, respectively. The effect of DL on the citation count is estimated using a Negative Binomial regression.
Estimates for the expectation and variance are reported in Panel A and B, respectively. The effects on the binary
indicators is estimated using a Probit. Constant term, scientific field (WoS subject category) and time fixed effects
are incorporated in all model specifications. Likelihood-ratio test are used to compare the goodness of fit of two
statistical models: (i) null model against complete model; (ii) model without the DL variable against the complete
model.
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Table 1.23: Novelty and impact profile – Matching

Exact Matching Propensity Score Matching

(1) (2) (3) (4)

Novelty (All Sciences) 0.054∗∗∗ 0.053∗∗∗ 0.035∗∗∗ 0.023

Novelty (No CS) 0.026∗∗ 0.026∗∗ 0.008 -0.001

Novelty (Only HS) -0.005 -0.005 -0.025∗∗ -0.033∗∗∗

# Citations 0.192∗∗∗ 0.195∗∗∗ 0.102∗∗∗ 0.063∗∗

Notes: This table reports Average Treatment Effect on the Treated (ATT) for novelty
and impact variables. ***, ** and * indicate significance at the 1%, 5% and 10% level,
respectively. The set of variables used for each matching is composed as follows: (1) Journal
/ WoS Categories / Publication Year; (2) All dummy variables in our set of control variables
/ Journal / WoS Categories / Publication Year; (3) Number of authors (log) / Number of
References (log) / Journal / WoS Categories / Publication Year; (4) All Variables.
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Atypical combinations in deep learning publications

Table 1.24: Atypical profile of deep learning publications

Category All Sciences No CS Only HS

(1) (2) (3)

DL HC–HN 0.008 0.208 0.308∗∗

(0.130) (0.133) (0.136)

HC–LN -0.041 0.090 -0.049

(0.157) (0.152) (0.154)

LC–LN -0.043 -0.086 0.021

(0.162) (0.163) (0.155)

# References (log) HC–HN -0.198∗∗∗ -0.216∗∗∗ -0.168∗∗∗

(0.066) (0.065) (0.061)

HC–LN -0.687∗∗∗ -0.668∗∗∗ -0.711∗∗∗

(0.066) (0.064) (0.063)

LC–LN -0.460∗∗∗ -0.463∗∗∗ -0.550∗∗∗

(0.063) (0.060) (0.062)

# Authors (log) HC–HN -0.392∗∗∗ -0.393∗∗∗ -0.433∗∗∗

(0.060) (0.060) (0.066)

HC–LN -0.557∗∗∗ -0.597∗∗∗ -0.603∗∗∗

(0.078) (0.077) (0.086)

LC–LN -0.260∗∗∗ -0.254∗∗∗ -0.299∗∗∗

(0.048) (0.047) (0.050)

Continued on next page
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Table 1.24: Atypical profile of deep learning publications – continued.

Category All Sciences No CS Only HS

(1) (2) (3)

International Collab. HC–HN 0.103∗∗ 0.160∗∗∗ 0.128∗∗∗

(0.042) (0.043) (0.044)

HC–LN 0.096∗∗ 0.155∗∗∗ 0.141∗∗∗

(0.041) (0.040) (0.043)

LC–LN -0.013 0.052 0.119∗∗∗

(0.047) (0.044) (0.044)

Private Collab. HC–HN -0.050 -0.067 0.045

(0.069) (0.071) (0.072)

HC–LN 0.010 -0.108∗ -0.093

(0.063) (0.060) (0.062)

LC–LN 0.052 -0.016 0.025

(0.068) (0.069) (0.071)

JIF HC–HN 0.134∗∗∗ 0.145∗∗∗ 0.146∗∗∗

(0.035) (0.035) (0.038)

HC–LN 0.117∗∗∗ 0.105∗∗∗ 0.092∗∗∗

(0.032) (0.033) (0.035)

LC–LN -0.087 -0.114∗ -0.116

(0.062) (0.062) (0.075)

Journal Age (log) HC–HN -0.068 -0.064 -0.050

Continued on next page
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Table 1.24: Atypical profile of deep learning publications – continued.

Category All Sciences No CS Only HS

(1) (2) (3)

(0.196) (0.189) (0.194)

HC–LN -0.207 -0.158 -0.178

(0.173) (0.168) (0.176)

LC–LN -0.055 -0.089 -0.224

(0.241) (0.24) (0.258)

Survey HC–HN -0.399 -0.294 -0.492

(0.339) (0.348) (0.328)

HC–LN 0.458∗∗ 0.096 0.472∗∗

(0.225) (0.209) (0.204)

LC–LN 0.892∗∗∗ 0.592∗∗∗ 0.779∗∗∗

(0.224) (0.211) (0.211)

Log Likelihood -374,002 -374,000 -363,855

χ2 [Null Model] 95,913∗∗∗ 95,488∗∗∗ 115,891∗∗∗

χ2 [w/o DL Model] 259∗∗∗ 158.20∗∗∗ 144∗∗∗

# Obs 320,587 320,587 320,587

End of table.
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Chapter 2

Barriers and Drivers of AI

Adoption in Science

This chapter was co-authored with

Stefano Bianchini and Moritz Müller

Summary of the chapter

This article explores the factors influencing the adoption and reuse of AI in scien-

tific research. We focus on the role of scientific and technical human capital (STHC)

of domain scientists, assessed through the institutional and social environment in

which they are embedded along with their individual characteristics. Using data

from OpenAlex over the period 2012-2020, we show that collaborations with early-

career researchers and past interactions with scientists with backgrounds in computer

science and AI are strongly correlated with AI adoption. The institutional environ-

ment also plays a significant role in the first part of the process (trying out AI), but

is less influential in determining AI reuse. Also, access to computational resources

does not generally correlate with AI adoption. At the individual level, we show that

scholars with a taste for exploration are more likely to adopt new computational

technologies, but at the same time, the likelihood decreases when scientists have

acquired a dominant position in their research domain.
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2.1 Introduction

Artificial Intelligence (AI) is making its way into science. And let’s be honest, this

comes as no surprise. The number of publications on AI has witnessed an almost

five-fold increase compared to a decade ago, with more than 200,000 papers by 2022,

accounting for about 5 % of the total volume of scientific publications. Most of

this research has gradually shifted from core AI to its application, which currently

represents some 70 % of scientific activity1. This trend indicates a growing inclination

among scientists to integrate AI tools into their research methodologies. Taken

together, these figures raise two important questions: What motivates scientists to

adopt AI? And what underlying factors influence researchers to incorporate AI in

their work?

Answering the first question is relatively straightforward. Scientists adopt AI

because of its high perceived benefits. Although some may argue that the rapid

adoption of AI is merely a “fad effect”, it is undeniable that the technology has

shown tremendous potential for enhancing research in various fields, especially at a

time when new ideas are ostensibly getting harder to find [Bloom et al., 2020]. In

recent years, indeed, AI have been successfully used in such diverse areas as predicting

the 3D structure of proteins [Jumper et al., 2021], regulating nuclear fusion plasma

in the tokamak configuration [Degrave et al., 2022], predicting the formation of the

structure of the Universe [He et al., 2019], and creating a map of the brains of

small insects [Winding et al., 2023]. Take note that examples could be multiplied

ad nauseam, in virtually all scientific fields, largely exhausting the available space

for discussion. Motivated by this pervasiveness, in some recent research we have

shown that the impact of AI on research outcomes can be significant, though highly

uncertain, which has led us to conclude that AI – deep learning in particular –

qualifies as a “emerging general method of invention” [Bianchini et al., 2022].

However, the picture we have provided in our previous works, although we think

interesting, is incomplete in that we have focused exclusively on the impact of tech-

nology but not on what happens upstream, that is, what are the factors that motivate

researchers to integrate AI into their work. So, as the significance of AI in science

grows, it becomes critical to understand what factors support the adoption of AI and

can facilitate the democratization of the technology throughout the scientific system,

ensuring that no one is left behind. This study aims to provide novel insights into

1These numbers are part of a project named ’Trends on the diffusion of AI in science’ for the
European Commission (Arranz D., Bianchini S., Ravet J. and De Girolamo L.) – Forthcoming
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this issue2.

The theory of scientific and technical (S&T) human capital provides us with

a solid conceptual framework for studying the mechanisms of AI diffusion in the

sciences. The framework describes the various resources that individuals continuously

draw upon to create knowledge, which we believe are also viable explanations for why

some researchers may adopt AI for the first time, and possibly continue to use the

technology thereafter. Resources can be divided into two broad categories: those that

reside within the individual and those that are anchored in the relationships between

the individual and their working environment [Bozeman et al., 2001, Bozeman and

Corley, 2004].3

Among the resources that are “internal” to the researcher – human capital en-

dowments – we find any individual’s scientific capabilities, often classified into three

(presumably) overlapping categories, namely cognitive skills, scientific and techni-

cal knowledge, and contextual skills. Cognitive skills can be thought of as those

innate abilities, such as problem-solving and memory, that are largely independent

of context, although can interact and change with context. Scientific and technical

knowledge, on the other hand, is obtained through formal training and education

on specific theories and explanations. And, finally, contextual knowledge is the type

of craft knowledge acquired by doing research and provides heuristics for problem-

solving in particular circumstances, although these heuristics can also be transferred

to other contexts. Different individuals have different internal endowments, some of

which may be more conducive to pushing an individual to adopt an emerging tech-

nology for scientific aims – i.e., AI in the case at hand.

Yet scientists do not exist in a social vacuum. The production of scientific knowl-

edge is inherently a social enterprise, just like, as we argue in this paper, the integra-

tion of new tools into scientific practices. Scientists employ therefore a wide variety

of network-mediated resources – social capital endowments – to do their work. Two

types of “external” resources are of particular importance here. First, social network

2Two observations are worth noting. First, our study focuses exclusively on scientists who use
AI in their work, rather than those who develop it. Second, a researcher may not be directly using
AI technology, but still qualifies as an adopter because they are involved in a project that uses it in
some capacity. Therefore, we can reasonably assume that the researcher has some understanding of
the advantages and limitations of AI in their field of research, even if they are not the primary user.
Hereafter, we will use the terms adoption and integration of AI technology into scientific practice
interchangeably.

3Formally, S&T human capital is defined as the sum of scientific, technical and social knowledge,
skills and resources embodied in a particular individual – that is, “an expanded notion of human
capital when paired with a productive social capital network” [Bozeman et al., 2001, p. 6].
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ties with peers. Scientists do not have the same education and training, they belong

to disciplines with unique cultures and routines, and thus the tacit components of

their understanding of science are not the same. This is crucial because through for-

mal collaborations and informal communications, scientists can acquire and employ

complementary skills and technical resources to create and transform knowledge and

ideas in ways that would not be possible in an isolated context [Bozeman and Cor-

ley, 2004, Taylor and Greve, 2006, Lee et al., 2015]. There is broad agreement that

some degree of team diversity can actually facilitate knowledge creation [Phillips and

Malone, 2014, Leahey, 2016, Ayoubi et al., 2017]. Second, we must not forget the

institutional setting in which the research process takes place, the second type of ex-

ternal resource(s). The institutional setting encompasses several factors that shape

the practice of science within institutions and organizations, from physical infras-

tructure and funding to ethical norms of scientific conduct; and some environments

are more conducive to the production of impactful science than others [Fox, 1991,

Heinze et al., 2009, Fortunato et al., 2018].

A key implication of the S&T human capital framework is that the adoption and

benefits of AI in research are contingent upon a conjunction of multiple factors, in-

cluding equipment, material resources, organizational and institutional frameworks,

and the human capital embodied in individuals. A second implication is that while

personal knowledge and know-how are certainly important, they may not always be

necessary, as social capital can serve as a suitable substitute, and vice versa. And

a final implication is that the mere pooling of resource elements is not sufficient to

ensure success. It takes a final “ingredient”, namely, the quality of fit – or amalga-

mation – between all available resources.

In this paper, we consider three dimensions that can motivate domain scien-

tists – defined as those individuals who have never published in computer science

outlets in their lifetime – to adopt AI in their work: their pre-existing knowledge,

skills, and taste for experimentation; the knowledge and expertise of their peers;

and the institutional setting in which the researcher is embedded. To measure the

scientific knowledge and expertise of individuals, we rely on their past publication

activity in terms of thematic diversity, impact, and other dimensions. In assessing

the institutional setting, we consider the quality of the researcher’s home institution

and whether it has a computer science department. Our analysis also takes into

account the accessibility of computational resources such as high-performance com-

puting. While earlier AI research relied on a synergy of algorithms, hardware, and
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specialized software, modern AI heavily depends more and more on computational

power. Some studies have highlighted a disparity in computational resources across

AI research, with non-elite universities and small non-technological firms struggling

to produce impactful research due to limited access to these resources [Ahmed and

Wahed, 2020].

We rely on OpenAlex to follow domain scientists who started to use AI in their

research between 2012 and 2020. Focusing on three dimensions: institutional, social,

and individual factors, we found that AI specialization of institutions substantially

fosters AI adoption across various scientific fields, while the influence of access to

high-performance computing and institutional ranking may be less decisive. Social

connections, particularly with AI experts, computer scientists and early-career re-

searchers, significantly promote AI adoption. Furthermore, researchers with diverse

cognitive profiles are more likely to embrace AI. When considering the reuse of AI

in subsequent articles, our findings showed that it is considerably influenced by the

composition of the research team in the initial AI article. Working with individ-

uals with prior AI experience or early-career researchers seems crucial to facilitate

future usage of the technology. Importantly, these patterns of AI adoption exhibit

field-specific variations, reflecting the unique contexts and demands of each scientific

discipline.

2.2 Conceptual framework and hypotheses

In this section, we apply a revised version of the S&T framework to the context

of AI adoption in science and establish a set of testable hypotheses. We begin

by exploring the influence of social relations and network ties among scientists, as

well as the role of the institutional environment in which they operate, including

access to computational resources. We then discuss the role of internal resources,

such as formal education and past experience, along with other individual traits of

the researcher. In articulating our hypotheses, we provide some information on the

measurement of variables.
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2.2.1 External resources

2.2.1.1 Human capital and about-knowledge from social ties

Existing social connections may play a significant role in AI adoption through at

least two channels: becoming part of a productive team dealing with AI and the

ability to judge potential relevance of AI for one’s own research.

Social ties offer a form of social capital that can be advantageous for researchers

when adopting AI, as they might directly contribute to the initial AI project. As

Bozeman (2001) emphasized, At the project ST human capital level, the focus is on

the aggregate of all project participants’ endowments and social connections, as well

as the physical and economic resources available to a project [Bozeman et al., 2001, p.

20]. For instance, an applied chemist may collaborate with computer scientists to use

AI methodologies in a joint research endeavor. In this case, collaborating computer

scientists could be either previous collaborators or discovered through an existing

social network. Either way, having prior collaborations with computer scientists

may be helpful in establishing collaborations with them in the (future) AI project.

The second pathway entails how past interactions may influence a scientist’s

perceptions and interpretations of novel technological advancements such as AI. To

embark on a new field, what knowledge should a scientist possess? The prevailing

belief is that for a scientist who wants to venture into a new field or incorporate

methodological tools from that field into their own research, it is desirable to ‘know

more’ about what is going on in the field. While we do not dismiss that knowing

more is desirable (albeit one may wonder in what amount) we believe it is not the

only prescription for a scientist to build bridges between domains. Nor is it perhaps

the most efficient prescription. Science is simply too big and, as a result, there are

cognitive limits that prevent individuals from fully understanding disciplinary tools,

knowledge architectures, and associated ‘best practices’ across its various domains.

This is especially true for emerging technologies, whose potential and applications

in science are not yet entirely clear [Rotolo et al., 2015]. What specifically needs to

be known then? And for what purposes?

The theory of ‘about-knowledge’ offers a compelling answer. It suggests the exis-

tence of a specific type of knowledge, namely about-knowledge or connective knowl-

edge, which helps scientists recognize the potential that could be realized by merging

their own expertise with knowledge from other fields – in our case, realize the po-

tential of AI as a scientific tool in a given application domain.
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About-knowledge can be thoughts as the kind of ‘know-how’ that is necessary

to achieve an early point of connection with another field – “[A] range of fairly

simple facts and information about the sort of problem domains and approaches that

populate different fields and specialisms” [Priaulx and Weinel, 2018, p. 8]. It is not

an intimate understanding of how the scientist’s core domain expertise interacts with

another field, but rather a set of cognitive foundations into the kind of contributions

that the field can make to their own expertise, as well as a broad understanding of

the practical settings, languages, sub-cultures, expectations and reward models that

regulate that field.4

It is clear that the lack of insights into what AI scientists do and/or where AI

research is headed significantly decreases the likelihood that a scientist will recognize

the relevance of the field’s contribution to their own work. In this sense, about-

knowledge should fill the deficit by providing a wide-angled lens of the potential of

the technology, hence prompting the scientist to think “Maybe it’s worth giving it a

try!”.

One may argue that about-knowledge is not knowledge at all. Instead, it is simply

a series of decontextualized facts or accounts of popular understanding. But this is

precisely what makes the concept of about-knowledge so important to our research,

as our hypothesis is that the ‘big picture’ about AI acts as an initiating force that

motivates scientists to pursue the idea of incorporating it into their research. This

brings us to our first research hypothesis, that is:

H1: A broader about-knowledge of AI increases the likelihood that a domain scientist

incorporates AI into their research.

But H1 opens the way for a couple of other important questions. First, how do

researchers acquire about-knowledge related to AI? Second, how does this knowledge

cross disciplinary boundaries? And, third, how can we eventually operationalize the

concept of about-knowledge in practice?

In recent years numerous initiatives have encouraged the next generation of sci-

entists to pursue interdisciplinary programs with a focus on AI and data science

more generally. These efforts are rooted in the conviction that formal education

and training are necessary to close the knowledge gap in this field – which may be

4It is noteworthy that this type of knowledge and resulting connections, which we believe can
be immensely valuable, particularly in the initial stages of the collaborative life cycle, are often
overlooked in the literature on interdisciplinarity and transdisciplinarity.
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partially true, although discussing in depth the true benefits of interdisciplinarity

training is beyond the scope of our research. The mechanisms of knowledge trans-

mission, especially about-knowledge, however, may be much simpler. We will simply

contend that even a little insight into other fields can help the scientist understand

the role that these fields can play in their work and, as in the context of AI, help

see the potential of the technology and address misconceptions and non-conceptions

that would otherwise remain mistakenly overlooked.

And here is where the S&T framework finds a link with the theory of about-

knowledge: it is about people embedded within the collaboration networks and pop-

ulating the same institutional environment who can facilitate knowledge exchange

and mediate interactions. Social ties are simply the most critical vehicle for enhanc-

ing about-knowledge connectivity across diverse domains.

So let us start from collaboration networks. Here, we use the network of past

collaborations of domain scientists as a valuable historical record of their interactions

and collaborations with peers, particularly those with some experience in AI technol-

ogy within the same application domain or in computer science more in general. It is

reasonable to assume, in fact, that scientists who are embedded in a network where

their peers have already proven experience with AI (e.g., as evidenced by at least

one publication) have more incentives to adopt the technology in their own research,

especially if their colleagues have achieved successful outcomes. This is because, even

if a collaboration does not occur with a past collaborator, being part of a network

reinforces a scientist’s rudimentary knowledge about the potential of the technology.

More formally, we argue that:

H1a: Prior ties to scientists with AI relevant human capital increase the likelihood

that a domain scientist incorporates AI into her research.

The second channel through which knowledge and about-knowledge can reach

a domain scientist is through social interactions with their peers who work in the

same institution. Organization science has long established that the location of an

actor’s contacts in the social structure can offer advantages to the actor when it

comes to acquiring information and resources, as do attributes that are rooted in

their interactions, such as trust and trustworthiness [Tsai and Ghoshal, 1998]. This

is because communication is a complex and often an arduous process that requires

individuals to converge on a common sense and is thus facilitated by both spatial
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and cognitive proximity5.

It is plausible to assume that individuals who work in institutions that specialize

in AI research have easier access to knowledge and about-knowledge pertaining to

AI. On the one hand, members of the same institution have more opportunities to

spend time together on social occasions and hence more opportunities to exchange

ideas and resources freely.6 On the other hand, members of an institution working

in close (geographical and cognitive) proximity may exhibit mimetic isomorphic be-

haviors, whereby they tend to adopt similar structures, practices, and strategies to

their peers, a concept first described to explain what makes organizations so similar

[DiMaggio and Powell, 1983, Mizruchi and Fein, 1999]. We believe that this phe-

nomenon can also be observed in scientific research, where researchers may adopt

similar research designs, methods, and theoretical frameworks to those used by their

colleagues within the same institution, particularly when facing uncertainty or am-

biguity, as we can assume in the context of AI adoption. Taken together the above

arguments lead us to the following research hypothesis:

H1b: A prevalence of AI research within an institution increases the likelihood that

a domain scientist incorporates AI into their research.

2.2.1.2 Mentorship and newbies

What is more important than the mentor-newbie relationship when it comes to so-

cial ties and knowledge transfer? The term ‘mentor’ typically denotes an experi-

enced individual who imparts their skills and knowledge to a younger person, often

someone identified as promising and part of the next generation (e.g., post-doctoral

researchers, PhD students, or junior untenured researcher) [Archibugi, 2021]. Under

the right circumstances, a mentorship collaboration can facilitate the transfer of var-

ious S&T human capital assets, such as craft-skills, know-how, contacts with other

peers, industry and funding agents, and more. However, in the context of new meth-

ods for scientific discovery and fresh ways to approach scientific problems through

5It should be noted that in this context, ‘cognitive’ refers more to the understanding of col-
lective objectives that are shared by a group of individuals or an organization (see, e.g., Coleman
[1988]), rather than the similarities of knowledge bases between individuals. The literature suggests
that reciprocity (i.e., a favor for a favor; an action for an action) and a sense of contribution to
the organization are two key factors that encourage knowledge and information sharing between
individuals within an organization [Cummings, 2004, Wang and Noe, 2010]

6Admittedly, brilliant suggestions for our own research come more often from casual conversa-
tions and informal communications than from formalized meetings and events, don’t they?
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AI, it is reasonable to assume that the flow of assets could also occur in the reverse

direction, that is from the junior to the mentor. And we have strong evidence to

support this conjecture.

The academic job market is rich in human resources specializing in AI. According

to some recent statistics, the number of AI/ML-related curricula has increased more

than any other curriculum in recent years and is unlikely to slow down in the years

to come. For instance, in 2020 alone, over 30,000 undergraduate students in the US

completed a computer science degree, and one in every five students who earned a

PhD degree in computer science specialized in AI/ML 7. We can expect similar fig-

ures in many other countries. AI-related courses are no longer limited to computer

science departments at the undergraduate level; rather, a growing number of univer-

sities offer interdisciplinary programs that combine AI/ML with other fields. The

new generation of scientists also has at their disposal a plethora of online resources

offered by universities and private companies that focus specifically on AI/ML. One

example is Massive Open Online Courses (MOOCs), which are emerging as an af-

fordable and popular option for those who want to deepen their knowledge of AI/ML,

from introductory courses to others on cutting-edge algorithms and advanced appli-

cations.8

In summary, we are confident that young researchers who are well-versed with AI

techniques and tools can bring new perspectives and insights to more experienced

colleagues who are often stuck in doing science “as usual”. Empirically, we will iden-

tify newbies as authors who have published for the first time in a given year. We

posit that:

H2: Collaboration with early-career researchers increases the likelihood that a domain

scientist incorporates AI into their research.

2.2.1.3 Computational resources

While AI is commonly perceived as an intangible technical system, it is de facto

rooted in physical infrastructure and hardware. Yet, the role of physical assets and

7See Stanford AI Index Report from 2022 here: https://aiindex.stanford.edu/report/
8The importance of AI literacy from the early stage of education has also been recognized

globally. A recent report by UNESCO (2022) highlights the commitment of several countries to
developing AI literacy and competencies in K-12 schools. Generally, these initiatives aim to prepare
new generations for a world in which AI will be ubiquitous, and thus understand the power and
versatility of this technology along with its ethical dilemmas.
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their associated computing capabilities – also known as AI compute – have been

largely overlooked in policy circles and scholarly literature.9

AI compute can be understood as “one or more stacks of hardware and software

used to support AI workloads and applications in an efficient manner”[OECD, 2023,

p. 20]. For machine learning systems, it is clear that compute can facilitate three key

steps in scientific pipeline: (i) processing and cleaning large data, (ii) training models

and calibrating them (e.g., determining the value of weights of a neural network from

the data presented to the model), and (iii) inferencing, which is using the trained

model for a specific application to determine an output. Of course, the computing

requirements can vary considerably depending on the application, ranging from large

high-performance computing (HPC) clusters to smaller laptops and workstations.

Cutting-edge research in ML has become synonymous with access to large com-

puting infrastructures and expertise to exploit them. Sevilla et al. [2022] carried out

a detailed investigation of the computational requirement of 123 milestone ML mod-

els over time and showed that since the 2010s, the amount of computation required

to accommodate modern machine learning systems has soared, with an impressive

5.7-month doubling time (see also Amodei and Hernandez [2018] for estimates with

different assumptions) – just for comparison, Moore’s law has a 2-year doubling pe-

riod. While not all researchers use state-of-the-art and computationally intensive ML

systems, having access to computing resources can still make a significant difference

and, reasonably, be a major driver of AI adoption. How then can scientists access

computing resources?

Researchers have various options for accessing AI compute, including data centers

or supercomputers located in physical facilities, public or private cloud computing

services, and decentralized access at the edge of devices, such as mobile IoT devices.

It can be difficult to empirically determine which resource(s) a researcher relies on for

their work, yet we contend that the local availability of computing resources, whether

within their institution or through collaborators, may serve as a motivating factor

for researchers to adopt AI for the first time and potentially use it again.This is not

just because researchers can handle larger and more complex datasets and get results

faster than they could with limited computing resources, but also – and particularly

– because of the institutional culture that embraces AI, as we discussed in Section

2.2.1. Scientists are well-aware that computing resources are readily available and

9One reason for that is the lack of standardized and validated data on computing resources.
National and institutional and data on the supply and demand of AI compute is not easily accessible
and, in some cases, considered sensitive proprietary information.
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can potentially support their work; they also know that they can rely on support

services to help them use these resources more efficiently and effectively.

Here, we measure the availability of AI compute by the presence of an HPC clus-

ter within the focal researcher’s organization (although it should be noted that such

compute infrastructure can also be used for non-AI workloads such as mathematical

modeling and simulations). In very general terms, HPC is a technology that uses

clusters of powerful processors, working in parallel, to process data and solve complex

problems at high speeds [OECD, 2023]. Unlike standard computing systems, HPC

systems can handle multiple tasks simultaneously across multiple computer servers

or processors with a centralized scheduler that manages the computing workload.

The high cost of HPC can put this technology out of reach for most organizations,

resulting in a significant “compute divide” within and between countries and in-

stitutions, as well as between the private sector and academia Ahmed and Wahed

[2020]. This is especially true for AI applications in some data-intensive scientific

fields such as bioinformatics or particle physics where ML training and inferencing

can be highly demanding in terms of memory and computational resources. The

existence of a computational divide can therefore impede the adoption of AI and

generate disparities in the productivity gains that AI can offer to science. In sum-

mary, our hypothesis is that:

H3: The presence of HPC cluster within a researcher’s organization increases the

likelihood of integrating AI into research.

2.2.2 Internal resources

We now turn to the internal resources of the domain scientist, which can be broadly

classified into three, somewhat overlapping, categories: cognitive skills, scientific and

technical knowledge, and contextual skills [Bozeman et al., 2001].

2.2.2.1 Scientific background and experience

Let us start with the most straightforward, scientific and technical knowledge. This

is the type of knowledge acquired through formal scientific education. It involves a

thorough understanding of particular theories, experimental and research findings,

and the ability to anticipate where research in a particular area is heading. From a

Kuhnian perspective, scientific and technical knowledge enables the scientist to feel
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part of a specific epistemic community, to be accepted by their peers as a member

of that community, and ultimately to adopt the shared scientific paradigm [Kuhn,

1962, Ch.2 and 3]. Contextual skills can be viewed instead a subset of scientific and

technical knowledge and relate more closely to the type of knowledge gained from

practical research experience. Unlike scientific and technical knowledge, contextual

skills often involve a tacit component that can only be obtained “on-the-job”, that

is, in the process of doing research.

In our study, we use a scientist’s first field of activity (i.e., domain of the first

publication) as a proxy for formal scientific education and context skills. While we do

not advance any specific research hypotheses, we believe that this variable is essential

to account for idiosyncratic differences in the propensity to adopt AI that may arise

due to an individual’s scientific background.

2.2.2.2 Taste for exploration

The third dimension is about cognitive skills, that can be viewed as those mental

abilities and processes that allow individuals to perceive, process, and use informa-

tion in a given environment. As such, they necessarily relate to science, but not

exclusively to it; they include skills such as reasoning, learning, and others. Here, we

are particularly interested in the dispositions or traits that underlie many cognitive

skills and processes. One of these is a taste for exploration.

Exploration is intimately linked to curiosity, a personal trait that prompts indi-

viduals to explore uncharted territories. We think that curiosity is a useful construct

for understanding scientists’ behavior in terms of technology adoption. Although

psychologists have not reached a consensus on its definition, it is generally accepted

that curiosity involves an intrinsic motivated desire for new information – an “ap-

petite for knowledge”, or more formally “a form of cognitively induced deprivation

that arises from the perception of a gap in knowledge or understanding” [Loewen-

stein, 1994, p. 75] 10.

But the curiosity to explore uncharted territories creates some tensions. In the

sociology of science, this strategic tension is commonly referred to as ‘succession’

versus ‘subversion’ [Bourdieu, 1975]; in organization science and innovation as ‘ex-

10It could be argued that an individual may also be curious about the topics she knows best.
However, it should be noted that our definition of curiosity extends beyond the inclination of
a scientist to expand her understanding within the area she is most knowledgeable about – a
characteristic that should be common to every scientist! – but rather encompasses the search for
knowledge and information far out in the knowledge space.

118



CHAPTER 2. BARRIERS AND DRIVERS OF AI ADOPTION

ploitation’ versus ‘exploration’ [March, 1991, Gupta et al., 2006]. Where do the

tensions come from? Science can be viewed as a competitive territory in which sci-

entists have to strategically choose what to study and what to cite. Compared to

the returns from staying within the boundaries of the discipline, the returns from

exploring other fields are systematically less certain, more distant in time, and often

negative. Hence, once a scientist occupies a dominant position in a specific field,

it is clear that deviating from the habitus can be perceived as a “risky gamble”.

Increasing returns from experience can trap individuals in exploiting old certainties,

refining and extending existing skills, whose returns are proximate and predictable

[March, 1991]. A conservative strategy allows scientists to secure publication more

likely and benefit from the S&T human capital they have accumulated. On the other

hand, transcending local search space and accessing more distant knowledge opens

up opportunities for originality, a prime requisite of academic reward and long-term

reputation [Foster et al., 2015]

How does all of this relate to the integration of AI into a scientist’s research

practice? We argue that epistemic-specific curiosity, or the desire for new knowl-

edge or a particular piece of information [Wagstaff et al., 2021], is a relevant driver

of AI adoption. In the realm of AI, curiosity can arise spontaneously when some

situational factors alert an individual to the existence of potential in that domain.

Situational factors can be of various kind, from exposure to a sequence of events

(e.g., seminars, online information) to the possession of information by someone else

– in line with our discussion in Section 2.1.1. Regardless of the specific factor, scien-

tists with a general inclination to explore ‘new stuff’ will be more likely to envision

potential applications of the technology and recognize its relevance to their field of

expertise. However, as mentioned earlier, strong tensions may arise when scientists

hold dominant positions within their fields, which may lead them to resist solutions

that diverge from established practices and avoid venturing beyond their disciplinary

boundaries.

Past scientific activity is a visible consequence of research choices, including a

taste for exploration; and citations provide evidence of others’ judgment of the rele-

vance of a scientist’s work. We will use both measures to test the following hypothe-

ses:

H4a: A higher ‘taste for exploration’ increases the likelihood of integrating AI into

research.
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H4b: A higher scientific reputation and recognition decrease the likelihood of inte-

grating AI into research.

2.3 Data and Methods

2.3.1 Data

Our main interest is the adoption of AI as a research method in science. More

specifically, we investigate whether and how the STHC endowment of a non-computer

scientist is related to her decision to adopt AI methods in her research. We measure

AI adoption on scientific publications, namely i) publishing one first paper applying

AI, and ii) reusing AI in at least a second paper.

Data set This question is investigated using scientific articles included in the

database OpenAlex [Priem et al., 2022]. OpenAlex is an open-source database with

more than 230 million scientific papers11. We use this dataset because of its large cov-

erage, and because it provides relevant information to our study: Titles and abstracts

of papers are used to identify papers dealing with machine learning. Authors are dis-

ambiguated such that we are able to trace the paper trail of our focal scientists as

well as of their co-authors. This allows for measuring the evolving co-author network

and the (publication) experience of scientists in that network. Authors’ affiliations

are also cleaned and geographically localized, and openAlex provides bibliometric

measures at the organizational level that we use. We add further information on the

organisations in our sample; notably the Shanghai ranking of the university and the

availability of high performance computing in town (see below). Finally, we rely on

a system of scientific categorization of journals provided by openAlex termed con-

cept12. In particular, we indicate the scientific field of a paper by OpenAlex’ 0-level

concept assigned to the journal of the paper.

Sample We focus on the trajectory of scientists that eventually applied AI in

their scientific domain (other than computer sciences), and we restrict the analysis

11We work with the entire database as of August 2022.
12Concepts are automatically ascribed to a journal by a classifier, trained on the MAG corpus,

that takes as input the title and the abstract of papers published in that journal as well as the title
of the journal (see https://docs.openalex.org/api-entities/concepts).
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to scientists with at least two publication records before the year of their first AI-

related paper.13 This allows for measuring the STHC endowment of a scientist before

AI adoption. In order to judge on the persistence of AI use, we also require at least

one publication record after the year of the first AI-related paper. Thus, a focal

scientist is observed over a period of at least three years.

The development of AI as a research tool is relatively recent, with diffusion of

serious AI applications taking off in the early 2010s [Bianchini et al., 2022]. More pre-

cisely, the year 2012 may be considered the beginning of the AI revolution, with signif-

icant advancements in deep learning leading to its widespread diffusion [Krizhevsky

et al., 2017]. This prompts us to restrict attention to the first AI use in the period

from 2012 (the year when AI took off) to 2020 (end of sample period). We further

limit the analysis to researchers who started research after 1980; excluding older

scientists at the end of their careers and, hence, in general less susceptible to adopt

AI in research.14 Our sampling definition of focal scientists is concisely described in

Figure 2.3.1.

Figure 2.1: Focal scientists 15

The sampling proceeds as follows. In the first step, we scanned the abstracts

and titles of all papers to identify AI papers. To qualify a scientific article as an

‘AI paper’, we build on a list of keywords provided by the Baruffaldi et al. [2020].

13Note that this restriction excludes scientists with a first non-computer science paper building
on AI methods. This is a deliberate decision. Given the current development of AI, it is probably
not far fetched to assume that future generations of scientists, in one way or another, will use AI in
their research as naturally as we use our computers today. Thus, the diffusion process will depend
to a large extent on i) the development of AI for various applications and, given a certain state of
development, ii) the adoption of AI methods by the generation of currently active scientists. The
latter is what we focus on.

14Researchers who began before 1980 are approaching the end of their careers, and thus their
AI adoption dynamics may be less influenced by their scientific and technical human capital, and
more affected by impending retirement.

15A focal scientist is active in a domain other than computer science (‘domain scientist’), has a
first paper and at least a second paper after year t = 1980, a first AI-related paper in the period
t + n = (2012, 2020), and a subsequent last paper in the period t + n + i = (2013, 2022), with
n, i ≥ 1.
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After manually cleaning the keyword list to preserve only terms related to machine

learning models we obtain a list of 47 terms (provided in the appendix). If any of the

selected terms are mentioned in an abstract or a title of an article, then that article

is considered as using AI. This approach results in a total of 1.62 million papers

written by 2.83 million authors. Based on the authors’ publication history, we define

a scientist to be a non-computer scientist if she has no publication in a computer

science journal (as indicated by openAlex’ main concept assigned to each journal).

In total, we identify 1,280,857 non-computer scientists with AI-related publications

in the period from 2012 to 2022.

We subsequently limit our analysis to individuals who were active both before

and after their exposure to AI, as illustrated in Figure 2.3.1. This ensures that a

transition toward AI was made and allows us to investigate whether AI became an

integral part of a researcher’s toolbox (by reusing AI subsequently). To approximate

STHC during the year of AI exposure, it is necessary for the researchers to have

published at least two papers prior to the exposure. After computing the variables

(see below) and excluding authors with missing information, our sample reduces to

76,344 authors. These focal scientists collectively authored 2,695,096 articles, among

which 56,733 were AI-based. This is the sample we work with.

A short reflection on how we categorize scientists as computer scientists may

be appropriate at this point. To accurately label computer scientists, we consider

a researcher’s entire career rather than focusing on their early publications. This

approach accounts for the fact that computer scientists may initially publish in

domain-specific journals outside of their primary field. We do not have access to

individual degrees, and it is common for computer scientists to have publications in

non-computer science journals. To determine if a researcher is a computer scientist,

we examine whether they have at least one publication in a journal with ”Computer

Science” as the main concept in OpenAlex. This method ensures that we capture the

computer science-related skills of a researcher even if they published in non-computer

science journals during the initial years of their career. While this criterion may be

restrictive, we believe that the ability to publish in a pure computer science journal

indicates a researcher possesses specific computer science expertise.

Our econometric strategy entails a matching approach to compare focal scientists

(AI adopters) and non-focal but similar scientists that did not adopt AI. However, the

implemented matching procedure makes use of various measures (similar in what?)
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and needs to be understood in light of the econometric strategy (why matching?).

This is where we turn to now. Basic descriptives of the expanded, matched sample

follow at the end of this section.

2.3.2 Measures

This paper attempts to provide empirical insights on how AI adoption of a focal

scientist relates to her STHC endowment. The following details how we measure AI

adoption (the response variables), STHC endowment (explanatory variables), and

further measures (control variables) for the empirical analysis.

AI adoption is measured on scientific papers written by a focal scientist. Whether

or not a paper uses AI is determined through AI keywords found in the title or ab-

stract (see above, in the Data section, the definition of a focal scientist). Conceptu-

ally, we think of AI adoption as a process that consists of (at least) two steps. The

first step is to use AI methods in research for the first time (henceforth ‘first use of

AI’). Then, given that first AI experience, a scientist may or may not employ AI

methods subsequently (‘re-use of AI’).

STHC endowment of a focal scientist is measured in three dimensions, i.e. insti-

tutional capital, social capital from peers, and individual human capital. Figure 2.3.2

summarizes our modelization of Scientific & Technical Human Capital, the construc-

tion of the different metrics is detailed in the following.

Figure 2.2: S&T Human capital 16

16Left figure: The institutional environment potentially provides information, directs attention,
and offers resources (computation facilities, human capital) related to AI; and institutions enjoy a
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Institutional capital is assessed by measuring a university’s prestige and scientific

excellence through Shanghai Ranking and citations. Institutional focus on AI is

captured through AI-related papers. Availability of relevant physical infrastructure

through the presence of high-performance computing in town. In detail, the following

measures are calculated:

Scientific excellence: Scientific excellence of an institution is captured by the average

number of citations per paper and year. In detail, we consider all papers in OpenAlex

with at least one affiliation to the institution for which we observe the number of

citations each paper received up to 2022. For each paper, we calculate the average

number of citations per year, and then average over all papers of the institution to

obtain our measure of ‘scientific excellence’.

Prestige: The university’s prestige is based on the Shanghai ranking17. The variable

‘prestige’ indicates whether a particular institution is listed in the Shanghai ranking

in a given year18.

Specialization: We proxy the resource in terms of competence present in a given

institution with the degree of specialization in the technology, i.e. if many members

contribute to research using AI, it is expected that the environment is relatively

supportive for conducting this type of research. The degree of specialization in AI is

assessed by the proportion of papers that are related to AI in a given institution and

a given year. From this, we construct the binary variable ‘specialized’ that is one if

the institution is among the top 10% institutions in terms of degree of specialization

and is zero else.

High-Performance computing (HPC) infrastructure: Access to massive computing

resources is sometimes necessary when using AI for research; suggesting that HPC

infrastructure at the university is potentially a relevant physical infrastructure. In

order to determine whether a university hosts HPC infrastructure we searched the

web through the platform perplexity.ai. Roughly, perplexity.ai is a sophisticated

question-answering system that utilizes large language models to provide answers to

certain level of reputation and scientific excellence. Middle figure: The prior co-author network
provides Human capital that is relevant to the focal scientists’ domain, computational analysis,
and/or AI. Right figure: The focal scientist’s human capital is described by her past research
output in terms of scientific content, quality, and internationality.

17see https://www.shanghairanking.com/rankings
18Note that our measures of ‘scientific excellence’ and ‘prestige’ are not imperative; there are

alternative measures. Neither do they exclusively proxy these concepts, as they are also correlated
with further relevant features of institutions. A university’s prestige for example helps to (and
allows for) the accumulation of various resources — as more recognition brings more resources and
vice versa.
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complex queries that include the internet links relevant to the answer given.19 We

ask the following question: ’Is there a High-Performance computing infrastructure

in the university of ...’ As the answers given to our question are formulated in a

very recurrent manner, it is relatively easy to code the answer text into ‘Yes’ and

‘No’ simply with regular expressions (we used 16 regular expressions). This way,

we submit queries to perplexity.ai asking for HPC availability in 12,500 cities and

obtain an explicit indication of HPC availability (’Yes’/’No’) for 12,050 cities. We

checked some of the 450 cities for which perplexity.ai gave no clear indication, found

that these are mostly small cities with probably no HPC, and coded all of these as

having no HPC.

Social capital in relation to peers is measured through the co-author network

of the focal author, classifying collaborators into domain scientists and computer

scientists. In addition, we note how many collaborators have experience with AI

(AI-experienced collaborators), and how many collaborators wrote their very first

paper with the focal scientist (collaboration with newbies).

More precisely, the overall co-author network consists of 25,348,325 authors with

joint papers published between 1990 and 2020. The prior co-author network in

year t builds on all papers (i.e. their authors and revealed co-authorship ties) from

1990 up to year t − 1. Each scientist in the prior network is classified as a domain

scientist or computer scientist based on her individual publication history over the

whole observation period. Additional co-author features taken into account are ‘AI

experienced’ and ‘newbie’ (of the past). The social (network) capital of a focal

scientist is then simply the number of prior co-authors of different types.

Domain collaborators: The number of prior co-authors without any paper in a com-

puter science journal and without any AI-related paper. More formally: The variable

‘domain collaborators’ of a focal scientist in year t corresponds to the number of the

focal scientist’s co-authors in the prior co-author network that have no computer

science publication and no AI experience up to year t− 1.

Computer science collaborators: The number of prior co-authors with at least one

paper in a computer science journal up to year t− 1.

AI experienced collaborators: The number of prior co-authors with at least one AI-

related paper up to year t− 1.

Collaboration with newbies: The number of collaborators who had never published

19While it employs OpenAI’s GPT-3 technology, it remains unclear how it determines the rele-
vance and ranking of web pages.
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before the year of the collaboration, these individuals are new to the database in

year t.

Individual human capital is assessed on the focal scientist’s prior publications.

Measures include the type of research conducted (‘scientific domain’), the propensity

to gravitate toward diverse scientific topics (‘scientific diversity’), recognition from

past publications (‘citations received’), and the propensity to engage in international

research collaboration (‘international collaboration’).

Scientific domain: The scientific domain of a domain scientist, i.e. a non-computer

scientist, is proxied by the highest level concept of her first paper.

Scientific diversity: To capture an individual’s ability to work on diverse topics, we

compute the diversity of articles preceding year t for a given researcher. For each

item, we represent its abstract in a vector space through word embedding methods

(i.e. word2vec – Mikolov et al. [2013]). Once these articles are represented in a vector

space, we can compute their cosine distance with all possible articles’ combinations.

The average distance gives us then an indication on the explorative profile of the

researcher.

Citations received: The variable ‘citations received’ proxies the number of citations

a focal scientist’s papers received up to a year t − 1. In detail, we use the citation

count from 2022 to estimate the citation count of a given article published in year

t− x up to a certain year t− 1 simply by assuming that the paper received in each

year the same number of citations.

International collaboration: We measure ‘international collaboration’ by the share of

prior articles that have multiple country affiliations.

2.3.3 Econometric strategy

We model the adoption of AI in the production of research papers essentially as

a combination of AI technology and STHC. An important aspect of AI research

technology is that it is not a monolithic, single technology. Rather, it should be

considered a bundle of various technologies undergoing specific developments, and

pertaining to science specialties with differing degrees (this has been pointed out

in the Introduction and Background sections). Therefore, we allow the state of AI

technology (A) to vary not only over time t but also over the science specialty of the

focal individual, denoted s(i), and write As(i),t.

In order to usefully apply AI in research, a focal scientist i may build on certain
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aspects of its STHC endowment accumulated up to time t−1, Hi,t−1. Note that H is

a vector incorporating organizational capital, social (network) capital, and individual

human capital of the focal scientist.

A scientist does not necessarily employ all STHC he or she is endowed with, i.e.

Hi,t−1, to publish an individual paper. Therefore, we also consider the realized STHC

employed in a given paper p, denoted Hp(i),t. Realized STHC (Hp(i),t) will be to a

large extent a part of the past STHC endowment (Hi,t−1), but some capital may be

acquired during research in year t, and some may be lost over time.

In order to fix ideas, we postulate a simple AI paper production function F (·)

that emphasizes the complementarity (or interaction) between AI technology and

the various aspects of capital:

F (As(i),t,Hp(i),t) = Aγ

s(i),t H
β

p(i),t

Our main argument is that in the presence of AI certain aspects of STHC will be

more valuable compared to research not dealing with AI. One immediate implication

is that the realized STHC employed for an AI paper is likely to differ from that

realized for a non-AI paper. Descriptive statistics at the end of this section suggest

that this is indeed the case.

Our focus is a second implication, namely, that the value of AI adoption increases

with the endowment (or presence) of AI-relevant STHC. The probability that an AI

paper is produced, rather than a non-AI paper, will thus depend on the availability of

those different factors of production in combination with the specific AI technology

applied. For the estimation we rely on the log-transformation and a logit regression:

p(yi,t = 1) = f(As(i),t,Hi,t−1)

p(yi,t = 1) = φ
(

γ log(A)s(i),t + β log(Hi,t−1) + νi,t
)

= φ (γs,t + βhi,t−1 + νi,t)

where p(yi,t = 1) is the probability that a paper produced applies AI (rather than

not) conditional on a paper produced at all, φ denotes the logit-function. hi,t−1 is the

log-transform of our measurements Hi,t−1. In principle, some relevant capital and/or

127



CHAPTER 2. BARRIERS AND DRIVERS OF AI ADOPTION

individual specific tendencies may be also unobserved νi,t.
20 With this estimation

equation, the dynamics of AI technologies is effectively dealt with by introducing

intercepts γs,t that vary over time and science specialty.

Our estimation strategy is based on a matching approach where we match scien-

tists belonging to the same science field and same cohort, but with different adop-

tion behavior. Conditional logit regressions on the matched pairs removes all their

common factors from the estimation regression. One common factor is the AI tech-

nology, another are cohort specific (unobserved) human capital and preferences. As

outlined above, it seems likely that scientists in the same field and belonging to the

same cohort face similar (exogenous) dynamic AI technology As(i),t. Furthermore,

scientists of same field and cohort may share some similarities in unobserved prefer-

ences and skills, νs(i),t. This leads us to write individual unobserved components as

the sum of average cohort effects ν̄s(i),t and individual deviations from that average

ν̃i,t, i.e. νi,t = ν̄s(i),t + ν̃i,t. By matching same cohort scientists i and j, we obtain

As(i),t = As(j),t and ν̄s(i),t = ν̄s(j),t.

These common factors can be removed in a conditional logits approach. First note

that matching is on the outcome such that in all matches one individual i adopts

AI and the other scientist j does not adopt AI (yi,t = 1, yj,t = 0), or vice versa.

The conditional logit model, takes into account that only two possible outcomes are

possible, and we estimate the probability of one of them:

p(yi,t = 1, yj,t = 0) =
exp(γs,t + βhi,t−1 + ν̄s(i),t + ν̃i,t)

exp(γs,t + βhi,t−1 + ν̄s(i),t + ν̃i,t) + exp(γs,t + βhj,t−1 + ν̄s(j),t + ν̃j,t)

=
exp(βhi,t−1 + ν̃i,t)

exp(βhi,t−1 + ν̃i,t) + exp(βhj,t−1 + ν̃j,t)

where common factors have been pulled out of the second equation.

In case individual unobserved components ν̃i,t are correlated with observed factors

in h, coefficient estimates are biased. Imagine for example that an individual has

an unobserved ’taste’ (or unobserved capacity) for data-intensive research, which led

him in the past to collaborate with computer scientists that we measure as a specific

20For convenience, the coefficients associated with AI research technology and STHC have the
same names in the paper production function and the adoption function, but they are of course not
the same.
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kind of social capital. Not including the unobserved component in a simple regression

would in that case over-estimate the effect of such social capital on the probability of

applying AI in research.21 That must be taken into account in the interpretation of

the estimation results, where we speak of correlations rather than of causal effects.

Note that in the estimation equation above the variation of AI technology is

dealt with as a simple scaling factor of the valuation of STHC. A more flexible and

probably more realistic formulation would be to allow for variation of the exponents

(β’s) of STHC with the dynamics of AI technologies. For example computer scientists

may be indeed needed in the early stages of AI development, whereas in, say, two

generations domain scientists may well be capable of autonomously using AI (because

of both different human capital formed during training and different AI technology).

We investigate the variation of STHC coefficients across scientific fields and time by

estimating additional regressions.

2.3.4 Matching strategy

Technology available at a time t, age of the researcher, initial training and research

trajectory influence the opportunity to use AI. When matching individuals with

similar potential to use AI, we consider only the technology’s advancement and ap-

plicability in a given field. To answer our two questions on adoption and reuse we

have performed two different matchings on the basis of the same criteria.

As shown in Figure 2.3, we construct two matched samples. The first matching is

used to investigate first-time AI use. Each focal scientist is matched with a non-focal

scientist who never published an AI-related paper, but published a first paper in the

same year and same scientific field as did the focal scientist, published a paper in the

same scientific field and same year as the focal scientists’ first AI paper, and published

at least one paper subsequently (as the focal scientist). Note that individuals with

computer science papers are excluded (focal and matched scientist).

The second matching is used to investigate re-use of AI. Here we compare two

focal scientists where both had a first-time AI paper in the same scientific field and

21The econometric literature discusses various ways to deal with the potential bias due to unob-
served effects. One possible avenue would be conditional logit, where one conditions on all outcomes
of an individual in order to extract an unobserved fixed effect. This however would be reasonable
only if one neglects the rapid technological development that is currently undergoing as time vary-
ing coefficients (γs,t) can not be introduced and other factors (e.g. AI relevant social capital) are
strongly trending (and detrending is never ’perfect’). Another possibility would be to instrument
h, for example by effects of (unexpected) job switches. A proper causal identification is left for
future research.
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Figure 2.3: Matched samples to investigate AI adoption, i.e. first-time AI research
and re-using AI.

year, but one scientist re-uses AI in a subsequent year and the other does not. As in

the first matching, we also require that both published their first paper in the same

field and year.

In both cases we realized an exact matching, for the adoption part, we used all

Openalex to get a correct tween. We manage to match 23,918 AI adopters with

non-adopters after cleaning our data. Concerning the second matching exercise we

were able to connect 13,211 adopting pairs, in each pair only one researcher produced

another AI-based document.

2.3.5 Descriptive statistics

This section provides in a first step aggregate statistics on the adoption of AI in

research by our focal scientists (i.e. scientists of scientific domains other than com-

puter sciences). In a nutshell, Figure 2.4a shows that the number of scientists with

first-time AI use is strongly increasing in particular since 2017, with a stable share
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the sample is 2012 with 4,000 scientists (see solid line in Figure 2.4b with scale on the

right vertical axis). Thus, the sample is comprised mostly by early- and mid-career

scientists, suggesting that older generations are less engaged in AI-related research.22

As shown by the bars in Figure 2.4b with scale on the left vertical axis, the share

of individuals reusing AI remains stable around 35% regardless of the seniority of

the individual. This suggests that persistent adoption of AI is indeed feasible across

generations.

Requirement of a different team: A basic tenet underlying this study is that AI

research is realized with specific STHC that differs from STHC used in non-AI re-

search. Ideally, one would like to observe the extent to which a focal scientist with

given STHC endowment leverages each dimension of her STHC for her different re-

search projects. This would allow to see which aspects of STHC are particularly

relevant when it comes to AI. Our publication data at hand does in general not

provide such information. The exception is the social capital dimension of STHC in

form of co-authors with their individual scientific background.

Table 2.1 compares therefore co-authors of non-AI papers with co-authors of

AI papers. The underlying sample includes for each focal scientist one (randomly

chosen) non-AI paper and one (randomly chosen) AI paper that both appeared in

the year of the focal scientist’s first-time AI use. On average, focal scientists work

with one more co-author in AI papers (11.65 authors in total) compared to non-

AI papers (10.73 authors in total). This ‘additional co-author’ tends to have a

computer science background. Besides, the research team is more likely to include

AI experienced scientists. On the other hand, the number of domain (non-computer)

scientists is on average the same in AI as in non-AI papers. Finally, newbies without

any prior publication contribute somewhat more often to AI papers than to non-AI

papers. The t-test strongly rejects the null hypothesis of no difference between AI

papers and non-AI papers for all co-author types except for the number of domain

scientists.

STHC endowment and AI adoption: Table 2.2 presents descriptive statistics for

both samples employed in the regression analysis of first-time AI use (left part) and

re-use of AI (right part). The upper part of the table highlights the disparities in

STHC endowment between those who engage with AI and those who do not. The

lower part shows differences in co-authors and citations received of the focal scientist’s

22A thorough comparison of academic age of focal scientists and non-focal, other scientists in
the overall population is not given here due to our sample restrictions.
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Table 2.1: Co-authors of first-time AI users in non-AI papers and AI papers

non-AI papers AI papers t-test

# authors 10.73 (10.31) 11.65 (12.51) 14.32∗∗∗

# CS aut. 2.19 (4.09) 3.12 (4.82) 36.66∗∗∗

# AI exp. aut. 1.71 (3.48) 2.84 (4.54) 49.34∗∗∗

# Domain aut. 8.53 (7.65) 8.53 (9.62) 0.04

# Newbies aut. 1.19 (1.7) 1.41 (2.82) 16.13∗∗∗

Observations 62712 62712

Notes: This table presents the descriptive statistics for Realized STHC for AI adopters. It compares
an AI paper with a non-AI paper published in the first year of AI exposure. The table provides averages
and standard deviations (in parentheses) of the number of different types of co-authors. T-tests determine
whether the mean differences between the groups are statistically significant. Significance levels are denoted
by ***, **, and * for the 1%, 5%, and 10% levels, respectively. Note that for this table focal scientists
without a non-AI paper in the year of their first-time AI paper are excluded.

first AI paper and the matched scientist’s paper (on the left side the matched paper

is non-AI of a non-adopter, on the right side the matched paper is the first AI paper

of a scientist trying out once AI but not re-using AI).

Consider first the upper part, STHC endowment. The t-tests indicate that nearly

all variables representing STHC endowment show significant mean differences be-

tween individuals who explore AI and those who abstain. At the institutional level,

the percentage of individuals in specialized institutions is elevated (AI inst. spec.),

and the citation impact of these institutions appears to be positively correlated with

AI adoption (Inst. cit.). This is true for first-time AI use and, to a lesser extent, for

re-using AI. Whether or not the university is listed in the Shanghai ranking seems to

make no difference.23 External resources associated with social networks seem more

crucial for individuals who embrace AI technology (be it first-time AI use or re-use of

AI). On average, the scope of these individuals’ networks is more extensive across all

categories of collaborators. In the case of first-time AI use, the strongest difference

(as indicated by the t-statistic) is in the number of computer science collaborators

and the number of collaborators with AI experience. In the case of re-using AI, the

t-statistic is similarly strong across all co-author types. One may note however that

focal scientists re-using AI are particularly inclined to collaborate with early-career

researchers, as their average experience working with such researchers is higher. Fi-

nally, at the individual level, the ability to navigate the knowledge space (exploratory

profile) and prior accomplishments (citation stock) also appear to be linked to AI

23One potential explanation is that our measure indicating whether the university is among the
top 1000 universities is too rough to capture existing ‘elite-effects’.
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Table 2.2: Descriptives statistics for both matching strategies

First-time AI Re-use AI

Variable Matched scientists Focal scientists T-test Matched scientists Focal scientists T-test
(without AI) (with AI) (not re-using AI) (re-using AI)

STHC endowment

AI inst. spec. 0.05 (0.22) 0.1 (0.29) 19.07∗∗∗ 0.08 (0.27) 0.09 (0.29) 2.73∗∗∗

Inst. cit. 2.86 (3.88) 3.04 (1.98) 6.57∗∗∗ 3.09 (2.09) 3.14 (2.03) 2.06∗∗

Shanghai ranked 0.03 (0.17) 0.03 (0.17) -0.09 0.03 (0.17) 0.03 (0.17) -0.47
HPC 0.71 (0.45) 0.74 (0.44) 6.16∗∗∗ 0.73 (0.44) 0.74 (0.43) 2.58∗∗∗

# Domain col. 146.84 (181.62) 155.58 (220.97) 4.73∗∗∗ 134.27 (190.6) 167.48 (245.87) 12.27∗∗∗

# CS col. 21.08 (33.88) 27.83 (44.68) 18.6∗∗∗ 23.86 (40.68) 31.46 (49.54) 13.62∗∗∗

# AI col. 9.3 (18.43) 14.56 (25.89) 25.62∗∗∗ 12.36 (24.12) 17.18 (29.74) 14.46∗∗∗

# Newbies col. 51.95 (68.31) 55 (81.34) 4.45∗∗∗ 46.83 (69.11) 59.05 (89.77) 12.41∗∗∗

Exploratory profile 0.18 (0.06) 0.18 (0.06) 2.29∗∗ 0.18 (0.06) 0.18 (0.06) 3.01∗∗∗

Citation stock 918.2 (2040.94) 1031.02 (2441.89) 5.48∗∗∗ 826.93 (1959.27) 1088.13 (2625.3) 9.16∗∗∗

% International pub. 0.3 (0.25) 0.3 (0.25) -1.73∗ 0.3 (0.26) 0.29 (0.25) -0.95

Co-authors and citations of (matched) paper

# Domain aut. 10.88 (9.99) 8.4 (8.9) -28.68∗∗∗ 8.38 (8.96) 7.67 (7.26) -7.04∗∗∗

# AI exp. aut. 1.31 (2.68) 2.77 (4.25) 44.9∗∗∗ 2.67 (4.38) 2.87 (4.39) 3.7∗∗∗

# CS aut. 1.78 (3.46) 3 (4.45) 33.42∗∗∗ 2.99 (4.73) 3.07 (4.55) 1.36
# Newbies aut. 1.28 (2.86) 1.24 (2.12) -1.63 1.23 (2.21) 1.21 (2.17) -0.66
# Citations 4.15 (13.49) 4.75 (10.82) 5.37∗∗∗ 4.54 (10.48) 5.43 (12.2) 6.37∗∗∗

Total 23918 23918 13211 13211

Notes: This table presents the descriptive statistics for various variables, including their mean values and standard deviations (in
parentheses) for different matching strategies: those who didn’t use AI and those who did, as well as those who didn’t reuse AI and
those who did. The table also provides results from t-tests to determine if the mean differences between the groups are statistically
significant. Significance levels are denoted by ***, **, and * for the 1%, 5%, and 10% levels, respectively. In the AI re-use section, the
matched individuals who do not reuse AI are also part of the focal scientists using AI for the first time in the first analysis.

adoption.

Now turn to the lower part of Table 2.2. AI papers authored by first-time AI

users (see left part of table) exhibit a composition of co-authors that is different to

papers of matched individuals who do not use AI. Specifically, the number of domain

scientists tends to be smaller for first-time AI users, while the presence of individuals

with computer science specialization and AI experience nearly doubles. Furthermore,

AI articles tend to have a higher average impact.

A similar pattern is observed when examining the co-authors in papers of re-users

and non-re-users (see right part of table). The citation count of the initial AI article

is higher among those who persist in using AI technology. Moreover, individuals

who incorporate AI into their subsequent research already possess a more specialized

STHC endowment in computer science and AI compared to other researchers who will

not continue using the technology. They are also more likely to be affiliated with

highly specialized AI institutions and have increased access to computing centers.

Ultimately, individuals who maintain the use of AI in their research exhibit a more

exploratory profile and demonstrate stronger past success than their counterparts

who do not continue.
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Tables 2.3 and 2.4 display basic descriptive statistics for our two estimation sam-

ples. We can immediately observe that the measures derived from collaboration net-

works are highly correlated among each other. In particular, the number of newbie

collaborators and the number of domain scientist collaborators are strongly corre-

lated with a Pearson correlation coefficient of above 0.9 in both estimation samples.

This is however expected because many newbies are likely to count as domain scien-

tists. Similarly, the number of collaborators with AI experience is strongly related

to the number of collaborators in computer science; in both samples the correlation

coefficient is above 0.8. Additionally, a clear positive correlation is visible between

the number of collaborations and the stock of citations. For completeness, the last

variable included in each table is the outcome variable, i.e. first-time AI use and

re-use of AI respectively. Note however that Table 2.2 is more appropriate to shed

light on the relation between our (binary) left-hand-side variable and right-hand-side

variables.

Table 2.3: Descriptive Statistics - first-time AI regression

Variables Mean Std (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) AI inst. spe. 0.07 0.26 1
(2) Inst. cit. 1.37 0.34 -0.01 1
(3) Shanghai ranked 0.05 0.21 0 0 1
(4) HPC 0.73 0.44 -0.03 0.22 0 1
(5) # Domain col. 4.29 1.14 -0.11 0.06 -0.03 0.04 1
(6) # CS col. 2.47 1.16 -0.05 0.22 -0.04 0.11 0.77 1
(7) # AI col. 1.61 1.11 -0.04 0.24 -0.05 0.12 0.64 0.82 1
(8) # Newbies col. 3.24 1.21 -0.07 -0.01 0 0 0.93 0.67 0.53 1
(9) Exploratory profile 0.18 0.06 -0.08 -0.1 0 -0.03 0.25 0.12 0.09 0.26 1
(10) Citation stock 5.45 1.77 -0.04 0.21 -0.02 0.09 0.73 0.68 0.54 0.69 0.06 1
(11) % International pub. 0.29 0.25 0 0.1 -0.03 0 0.18 0.27 0.25 0.09 -0.15 0.12 1
(12) First-time AI (yes/no) 0.50 0.50 0.11 0.07 0 0.03 -0.08 0.09 0.18 -0.06 0 -0.03 0 1

Notes: This table presents the descriptive statistics for the whole sample on AI adoption.

Massive adoption by researchers in life science: The majority of researchers in

our sample published in journals related to life sciences. Publications in medicine,

biology and chemistry account for 80% of first-time AI papers. The six fields pre-

sented in our regression (namely, Medicine, Biology, Chemistry, Physics, Psychology

and Materials science) represent 95% of our sample of AI papers. Researchers adopt-

ing AI tend to apply this technology in a field they are familiar with, i.e. the one

where their first research was published. In detail, 62% of researchers publish their

first AI article in the journal of the same scientific field as their first publication. We

provide estimation results on individual scientific fields after the main results on the

pooled sample in the next section.
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Table 2.4: Descriptive Statistics - re-using AI regression

Variables Mean Std (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)

(1) AI inst. spe. 0.10 0.29 1
(2) Inst. cit. 1.40 0.34 -0.04 1
(3) Shanghai ranked 0.05 0.21 -0.03 -0.01 1
(4) HPC 0.74 0.44 -0.06 0.22 -0.01 1
(5) # Domain col. 4.14 1.31 -0.14 0.09 -0.03 0.04 1

(6) # CS col. 2.56 1.23 -0.1 0.23 -0.04 0.11 0.8 1
(7) # AI col. 1.84 1.16 -0.1 0.24 -0.06 0.11 0.68 0.84 1
(8) # Newbies col. 3.10 1.34 -0.1 0.01 -0.01 0 0.94 0.71 0.58 1
(9) Exploratory profile 0.17 0.06 -0.11 -0.05 0 -0.01 0.34 0.2 0.15 0.33 1
(10) Citation stock 5.29 1.89 -0.09 0.2 -0.03 0.08 0.77 0.72 0.59 0.73 0.16 1

(11) % International pub. 0.29 0.26 0.01 0.09 -0.03 -0.01 0.17 0.26 0.24 0.1 -0.11 0.12 1
(12) # Domain aut. 1.91 0.61 -0.07 0.03 -0.02 0 0.34 0.19 0.22 0.29 0.13 0.13 0.15 1
(13) # AI exp. aut. 0.90 0.73 -0.03 0.14 -0.03 0.07 0.1 0.24 0.38 0.04 -0.01 0.06 0.14 0.26 1
(14) # CS aut. 1.07 0.73 -0.02 0.17 -0.03 0.08 0.14 0.35 0.31 0.08 0.02 0.09 0.19 0.2 0.65 1
(15) # Newbies aut. 0.49 0.57 0.02 -0.01 0.02 -0.03 0.07 -0.02 -0.02 0.1 0.05 -0.02 0.03 0.45 0.01 0.05 1

(16) # Citations 1.37 0.87 0.01 0.18 -0.01 0.02 0.01 0.08 0.08 -0.02 -0.04 0.11 0.1 0.09 0.19 0.23 0.02 1
(17) Re-use AI (yes/no) 0.50 0.50 0.02 0.04 0 0.01 0.08 0.13 0.16 0.08 0.02 0.07 0.01 -0.02 0.04 0.04 0.01 0.06 1

Notes: This table presents the descriptive statistics for the whole sample on re-using AI.

2.4 Results

2.4.1 Main results

2.4.1.1 Conditional Logit with matching: Adopting AI

Table 2.5 presents the results of the conditional logit regression of first-time AI use

on three dimensions of STHC, i.e. institutional, social, and individual factors. Recall

that in the estimation sample the outcome, first-time AI use, is one for focal scientists

and zero for matched scientists; and that STHC is measured up to the year before

first-time AI use (see also previous section).

Table 2.5 provides coefficient estimates of four models — one column for each

dimension of STHC separately and the fourth column for estimating all coefficients

jointly. The Loglikelihood ratio tests (LR Test) at the bottom of the table confirm

that all models improve significantly over the intercept-only-model. Considering the

log likelihood in increasing order, we see that the social dimension (Column 2) is the

most informative dimension for first-time AI use, followed by institutional factors

(Column 1), and individual factors (Column 3). This is consistent with the idea

that AI relevant STHC does not solely reside in the individual scientist, but is also

a result of the granularity with which we measure the various factors.

Institutional Factors: The positive and significant coefficients of AI institution

specialization (AI inst. spe.) and institutional citation impact (Inst. cit.) in models

(1) and (4) suggest that researchers affiliated with institutions specialized in AI and

with higher citation impact are more likely to adopt AI in their work, validating

Hypothesis H1b. One explanation could be that researchers are heavily influenced
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Table 2.5: Conditional Logit with matching (first-time AI use)

Dependent variable: First-time AI use
Institutional Social Individual Full Model

(1) (2) (3) (4)
AI inst. spe. 0.719∗∗∗ 0.585∗∗∗

(0.039) (0.043)

Inst. cit. 0.418∗∗∗ 0.241∗∗∗

(0.029) (0.033)

Shanghai ranked -0.019 -0.016
(0.058) (0.065)

HPC 0.053∗∗ -0.006
(0.021) (0.024)

# Domain col. -1.503∗∗∗ -1.422∗∗∗

(0.034) (0.036)

# CS col. 0.139∗∗∗ 0.173∗∗∗

(0.020) (0.021)

# AI col. 0.793∗∗∗ 0.783∗∗∗

(0.019) (0.019)

# Newbies col. 0.575∗∗∗ 0.549∗∗∗

(0.025) (0.026)

Exploratory profile 0.331∗∗ 1.699∗∗∗

(0.165) (0.193)

Citation stock -0.044∗∗∗ -0.083∗∗∗

(0.007) (0.011)

% International pub. -0.015 -0.191∗∗∗

(0.038) (0.046)

Observations 47,836 47,836 47,836 47,836
Log Likelihood -16,260.790 -14,171.280 -16,555.990 -13,969.870
LR Test 635.801∗∗∗ (df = 4) 4,814.822∗∗∗ (df = 4) 45.419∗∗∗ (df = 3) 5,217.655∗∗∗ (df = 11)

Notes: This table reports coefficients of the effect STHC on AI adoption on all fields. ***, ** and * indicate significance
at the 1%, 5% and 10% level, respectively. The effect of STCH on AI adoption is estimated using a conditional logit with
matching.

by their institutional environment, including shared norms, directives, and funding

focused on specific subjects. Thus, an institution with a strong AI specialization and

recognized research output can more easily leverage the financial means to facilitate

AI adoption. However, being affiliated with a Shanghai-ranked institution does not

significantly affect first-time AI use. Additionally, we partially reject Hypothesis H3

since access to high-performance computing (HPC) resources is significantly associ-

ated with AI adoption in model (1) but not in the full model (4). This suggests that

HPC may not be crucial. One reason could be that many AI models are available

pretrained and hence using them does not necessarily require elevated computational

resources. On the other hand, steep learning curves for using an HPC may create a
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barrier — that may be overcome with the help of skilled co-authors as the second

model suggests.

Social Factors: Model (2) and the full model (4) show that number of domain

collaborators (#Domain col.) has a negative and significant effect on AI adoption,

suggesting that a more extensive network of domain collaborators may actually re-

duce the likelihood of AI adoption. On the other hand, the number of computer

science collaborators (#CS col.) and AI collaborators (#AI col.) both have positive

and significant effects on AI adoption. This implies that having collaborators expe-

rienced in computer science and AI increases the likelihood of AI adoption, thereby

confirming Hypothesis H1a.

The relevance of having prior contacts to computer scientists and/or AI experi-

enced scientists may stem from two different effects. For one, such prior contacts

can facilitate subsequent collaboration in AI research through repeating ties, refer-

rals and other social processes. Moreover, individuals within a researcher’s network

help acquire about-knowledge, enabling the researcher to integrate more easily into

teams using AI. These individuals may have a greater capacity to interact with

experienced individuals, increasing their likelihood of becoming users themselves.

Researchers with too many domain-specific collaborators may be less exposed to

‘AI-related thinking’ or be part of niches where AI is still not widely used. Addition-

ally, The positive influence of early-career (#Newbies col.) research collaborators on

AI adoption confirms Hypothesis H2. Researchers can expand their research subjects

through the fresh perspectives of young researchers, and have an advantage in trying

out AI, as newer generations are better trained in modern statistical and compu-

tational approaches. Many universities, even in the social sciences, now offer data

science courses; thus, working with younger researchers may increase the probability

of using AI due to the growing proportion of individuals with the necessary skills

among the next generation.

Individual Factors: As shown in Models (3) and (4), we verify Hypothesis H4a

as having an exploratory profile positively impacts AI adoption. This suggests that

individuals with a more diverse cognitive profile are more used to exploring subjects

distant from their prior knowledge. These individuals could have an advantage in

integrating into teams using methods they have not previously used or re-orienting

their research focus to seize opportunities opened by AI methods.

Citation stock has a negative and significant effect on AI adoption, suggesting

that a higher number of past citations may reduce the likelihood of adopting AI.
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This may indicate that individuals who have already demonstrated success in their

past publications have fewer incentives to transition to AI. The negative impact

of citation stock on AI adoption validates Hypothesis H4b, indicating that scientists

with a higher scientific reputation and recognition are actually less likely to integrate

AI into their research.

Lastly, the percentage of international publications (% International pub.) does

not have a significant effect in model (3) but demonstrates a negative and significant

effect in the full model (4). Taken at face value, this could imply that researchers

who tend to work more with local colleagues have stronger connections that facili-

tate better knowledge transfer, thereby contributing more effectively to developing

a reasonably understanding of AI. Any interpretation must be cautiously however,

because the coefficient becomes significant with the introduction of (correlated) vari-

ables which hints to identification issues.

2.4.1.2 Conditional logit with matching: Re-using AI

Table 2.6 analyzes the effect of realized scientific and technical human capital (STHC)

employed in the first AI paper and STHC endowment on the re-use of AI in sub-

sequent studies. The models are similar to those in the regression of first-time AI,

but now the sample includes only focal scientists with AI experience; with scientists

re-using AI matched to those not re-using AI.

Again, log-likelihood tests indicate that all models improve significantly over the

intercept-only model. The order of model fit indicated by the log-likelihood slightly

changes: Prior co-authors (Column 2) still provide the best fit, but now individual

factors follow (Column 3), with institutional factors ranked third (Column 1). Note

that each model takes into account the experience of the first-use of AI (variables ‘#

Domain author’ to ‘# Citations’).

First-use of AI experience: The team composition of the first AI article seems to

be crucial for understanding how this technology will be integrated into the future

research of scientists. The stronger presence of individuals with prior AI experience

in a team indicates the team’s specialization in AI. It is this specialized social envi-

ronment that allows the researcher to increase his chances of reusing AI later on.

Consistently across all models (1-4), we observe that the number of domain ex-

perts (# Domain aut.) negatively effects the re-use of AI. The number of computer

science authors (# CS aut.) also has a negative effect throughout. In contrast, the

number of AI experts (# AI exp. aut.) shows positive and significant effects. It
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Table 2.6: Conditional logit with matching (re-using AI)

Dependent variable: re-using AI
Institutional Social Individual Full Model

(1) (2) (3) (4)
# Domain aut. -0.303∗∗∗ -0.330∗∗∗ -0.324∗∗∗ -0.315∗∗∗

(0.026) (0.028) (0.026) (0.028)

# AI exp. aut. 0.173∗∗∗ 0.063∗∗ 0.176∗∗∗ 0.061∗∗

(0.024) (0.027) (0.024) (0.027)

# CS aut. -0.055∗∗ -0.113∗∗∗ -0.061∗∗ -0.108∗∗∗

(0.024) (0.026) (0.024) (0.026)

# Newbies aut. 0.155∗∗∗ 0.184∗∗∗ 0.177∗∗∗ 0.183∗∗∗

(0.024) (0.025) (0.024) (0.025)

# Citations 0.151∗∗∗ 0.165∗∗∗ 0.133∗∗∗ 0.166∗∗∗

(0.016) (0.016) (0.016) (0.016)

AI inst. spe. 0.102∗∗ 0.114∗∗

(0.046) (0.047)

Inst. cit. 0.116∗∗∗ -0.021
(0.039) (0.041)

Shanghai ranked -0.020 -0.052
(0.078) (0.080)

HPC 0.042 0.033
(0.029) (0.030)

# Domain col. -0.258∗∗∗ -0.251∗∗∗

(0.038) (0.040)

# CS col. 0.079∗∗∗ 0.101∗∗∗

(0.027) (0.028)

# AI col. 0.274∗∗∗ 0.280∗∗∗

(0.025) (0.025)

# Newbies col. 0.245∗∗∗ 0.230∗∗∗

(0.030) (0.030)

Exploratory profile 0.957∗∗∗ 0.779∗∗∗

(0.232) (0.242)

Citation stock 0.132∗∗∗ 0.004
(0.010) (0.014)

% International pub. -0.137∗∗∗ -0.337∗∗∗

(0.052) (0.055)

Observations 26,422 26,422 26,422 26,422
Log Likelihood -9,008.229 -8,717.901 -8,923.676 -8,687.683
LR Test 297.877∗∗∗ (df = 9) 878.533∗∗∗ (df = 9) 466.984∗∗∗ (df = 8) 938.969∗∗∗ (df = 16)

Notes: This table reports coefficients of the effect of STHC endowment and realized STHC on re-using AI in all fields. ***,
** and * indicate significance at the 1%, 5% and 10% level, respectively. The effect of STCH on re-using AI is estimated using a
conditional logit with matching.

seems that the team shouldn’t be composed of too many computer scientists and do-

main scientists, i.e., the team should not be too large (since the sum of the two gives

the number of authors). Also, we see that the presence of early-career researchers (#
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Newbies aut.) is crucial, as they are more likely to bring new skills and may remain

connected to the team. For example, the re-use of AI could be induced by doctoral

students who publish several AI papers with their supervisors.

Interpretation of these findings is possible in light of an additional regression of

re-using AI based on a sample with focal scientists having a first AI paper earlier, up

to 2018 instead of 2020 (see appendix, Table 2.16). In that regression, the number

of collaborators in the first AI paper with prior experience in AI do not play a

significant role. Instead, it is the presence of newcomers in the first AI paper that

is crucial. This highlights the extent to which the new generation is initiating this

paradigm shift and transmitting it to researchers that are more advanced in their

careers. Indeed, in the larger sample that extends up to 2020, which is the basis

for our main regression results provided here, many of these newcomers have become

individuals with AI experience. This is why their contribution has become significant

in re-using AI.

Finally, the reward associated with the first AI publication in terms of citations

positively influences re-using AI. This shows the incentives that exist when peers

validate the article with which a researcher has transitioned to AI.

STHC Endowment : The results of this section are very similar to those of first-

use of AI for all dimensions of the measured STHC. However, there is one exception:

the citation stock of researchers and their institutions no longer seem to play a role

in encouraging continuing AI-based research.

Institutional Factors : In Model 1, AI institutional specialization (AI inst. spe.)

and institutional citation impact (Inst. cit.) have positive and significant effects on

re-using AI. However, the significance of the institutional citation impact disappears

in the full model (4). The Shanghai ranking and HPC variables are not significant

in any model. This suggests that, what sets apart scientists persistently applying AI

from those trying out once AI is not primarily their institutional resources.

Social Factors : Model 2 reveals findings similar to the regressions on the first use

of AI. Our analysis shows a negative effect of the number of domain collaborators

(# Domain col.) on re-using AI, while the number of computer science collaborators

(# CS col.) and the number of AI collaborators (# AI col.) exhibit positive effects.

Furthermore, the number of new collaborators (# Newbies col.) positively influences

re-using AI. All this is consistent with the full model (4).

Individual Factors : In Model 3, we see a strong positive and significant effect of

an exploratory profile on re-using AI. The citation stock exhibits a positive influence,
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but this effect disappears in the full model (4). Lastly, the percentage of interna-

tional publications (% International pub.) has a negative and significant impact on

re-using AI in both Model 3 and Model 4. This finding is consistent with the idea

that collaborating with geographically proximate researchers is essential for build-

ing long-term relationships to work on AI-related topics. Such proximity facilitates

communication and learning from colleagues [van der Wouden and Youn, 2023].

2.4.2 Extension: AI adoption across scientific fields and time

Table 2.7 delves into a field-level analysis, confirming that our results are generally

stable across fields but that there are also some relevant differences.

Table 2.7: Conditional Logit with matching across fields (first-use of AI)

Dependent variable: first-use of AI
Medicine Biology Chemistry Physics Psychology Materials science

(1) (2) (3) (4) (5) (6)
AI inst. spe. 0.650∗∗∗ 0.653∗∗∗ 0.271∗∗ 0.607∗∗∗ 0.700∗∗ 0.716∗∗∗

(0.082) (0.069) (0.123) (0.144) (0.295) (0.182)

Inst. cit. 0.303∗∗∗ 0.260∗∗∗ -0.198 0.253∗ 0.212 0.796∗∗∗

(0.051) (0.053) (0.131) (0.142) (0.243) (0.293)

Shanghai ranked 0.012 0.029 -0.094 -0.544 -0.393 -0.239
(0.110) (0.099) (0.223) (0.360) (0.392) (0.430)

HPC -0.032 -0.001 0.237∗∗∗ 0.114 0.026 -0.184
(0.037) (0.038) (0.087) (0.104) (0.175) (0.184)

# Domain col. -1.290∗∗∗ -1.450∗∗∗ -1.684∗∗∗ -1.620∗∗∗ -1.417∗∗∗ -1.285∗∗∗

(0.058) (0.057) (0.141) (0.145) (0.215) (0.265)

# CS col. 0.154∗∗∗ 0.243∗∗∗ 0.153∗∗ 0.054 -0.176 0.528∗∗∗

(0.033) (0.033) (0.074) (0.093) (0.155) (0.149)

# AI col. 0.799∗∗∗ 0.668∗∗∗ 0.701∗∗∗ 1.100∗∗∗ 1.290∗∗∗ 0.579∗∗∗

(0.030) (0.030) (0.070) (0.083) (0.132) (0.130)

# Newbies col. 0.605∗∗∗ 0.560∗∗∗ 0.537∗∗∗ 0.332∗∗∗ 0.311∗ 0.136
(0.041) (0.041) (0.095) (0.103) (0.163) (0.175)

Exploratory profile 2.271∗∗∗ 1.197∗∗∗ 1.866∗∗ 2.585∗∗ 2.303∗∗ -1.361
(0.288) (0.308) (0.867) (1.131) (1.108) (1.925)

Citation stock -0.088∗∗∗ -0.095∗∗∗ -0.023 -0.050 -0.105 -0.201∗∗

(0.016) (0.018) (0.043) (0.041) (0.074) (0.084)

% International pub. -0.338∗∗∗ -0.060 -0.124 -0.452∗∗ 0.594∗∗ 0.055
(0.073) (0.072) (0.174) (0.206) (0.295) (0.338)

Observations 19,684 18,484 3,400 2,758 1,374 1,022
Log Likelihood -5,818.122 -5,437.961 -966.666 -687.362 -333.878 -277.148
LR Test (df = 11) 2,007.665∗∗∗ 1,936.211∗∗∗ 423.369∗∗∗ 536.977∗∗∗ 284.627∗∗∗ 154.101∗∗∗

Notes: This table reports coefficients of the effect STHC on AI adoption across fields. ***, ** and * indicate significance at the
1%, 5% and 10% level, respectively. The effect of STCH on AI adoption is estimated using a conditional logit with matching.

Institutional factors : Our analysis shows that AI institution specificity (AI inst.

142



CHAPTER 2. BARRIERS AND DRIVERS OF AI ADOPTION

spe.) impacts is consistent across all fields. Institutional citations (Inst. cit.) are

also significantly positively related to first-use of AI in most fields, except in Chem-

istry, where the effect is insignificant. The Shanghai ranking is insignificant in any of

the fields. Our results indicate that HPC may be particularly relevant in Chemistry,

where it is significantly positively related with first-use of AI. One possible expla-

nation for this finding is that Chemistry often involves computationally intensive

tasks, such as molecular simulations, which require substantial computational power

provided by HPC resources. This may lead to a stronger dependence on HPC in

Chemistry compared to other fields, thus making it a more influential factor in AI

adoption.

Social factors : The number of domain collaborations (# Domain col.) is nega-

tively related to AI adoption across all fields. In contrast, the number of computer

science collaborators (# CS col.) positively relates to AI adoption in Medicine, Bi-

ology, Chemistry, and Materials Science. At the same time, it is not significant in

Physics and Psychology. This may reflect different AI integration levels but also dif-

ferences in prevalence of AI relevant skill sets across domains. Moreover, the number

of AI collaborations (# AI col.) relates consistently and significantly to AI adoption

in all fields.

Individual factors : The exploratory profile has a significant positive relation to

first-time AI use in Medicine, Biology, Chemistry, Physics, and Psychology, but not

in Materials Science. The citation stock has a significant negative effect on first-time

AI use in Medicine, Biology, and Materials Science, while it is not significant in the

other fields. The percentage of international publications (% International pub.) has

a significant negative effect on first-time AI use in Medicine and Physics, a significant

positive impact in Psychology, and is not significant in the other fields. Why that is

the case is not clear at the current state of research.

Table 2.8 shows results on AI re-use at the field level. Considering the realized

STHC in the first AI paper, we find that the number of domain authors (# Domain

aut.) is negatively and significantly associated with AI re-use across all fields, except

for Psychology, where the association is insignificant. This observation is consistent

with the pooled regression analysis. In contrast, the number of AI expert authors

(# AI exp. aut.) exhibits mixed results. It is positively and significantly related to

AI re-use in Medicine, yet negatively related in Chemistry and Psychology, and not

significant in other fields. This may indicate that the effectiveness of AI expertise in

promoting AI re-use varies between fields, depending on the particularities of each
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Table 2.8: Conditional Logit with matching across fields (Reusing AI)

Dependent variable: Reusing AI
Medicine Biology Chemistry Physics Psychology Materials science

(1) (2) (3) (4) (5) (6)
# Domain aut. -0.278∗∗∗ -0.297∗∗∗ -0.646∗∗∗ -0.393∗∗∗ 0.221 -0.469∗

(0.041) (0.050) (0.127) (0.102) (0.180) (0.268)

# AI exp. aut. 0.137∗∗∗ 0.065 -0.246∗∗ -0.136 -0.579∗∗∗ 0.001
(0.039) (0.047) (0.103) (0.112) (0.194) (0.232)

# CS aut. -0.095∗∗ -0.138∗∗∗ -0.037 -0.028 0.307∗ -0.155
(0.040) (0.045) (0.102) (0.104) (0.180) (0.231)

# Newbies aut. 0.229∗∗∗ 0.100∗∗ 0.270∗∗∗ 0.333∗∗∗ -0.410∗∗ 0.629∗∗

(0.036) (0.044) (0.102) (0.105) (0.179) (0.244)

# Citations 0.118∗∗∗ 0.199∗∗∗ 0.388∗∗∗ 0.139∗∗ 0.269∗∗ 0.491∗∗∗

(0.023) (0.029) (0.073) (0.068) (0.110) (0.134)

AI inst. spe. 0.040 0.093 0.220∗ 0.013 0.537∗ 0.175
(0.089) (0.082) (0.132) (0.129) (0.293) (0.222)

Inst. cit. 0.058 -0.141∗∗ -0.076 0.160 0.237 -0.311
(0.063) (0.069) (0.166) (0.153) (0.289) (0.372)

Shanghai ranked 0.029 -0.067 -0.408 0.191 -0.055 0.080
(0.132) (0.126) (0.262) (0.329) (0.458) (0.618)

HPC 0.139∗∗∗ -0.078 0.178∗ -0.099 0.007 0.022
(0.047) (0.051) (0.104) (0.116) (0.195) (0.230)

# Domain col. -0.246∗∗∗ -0.329∗∗∗ -0.229∗ -0.107 -0.140 -0.313
(0.066) (0.068) (0.134) (0.128) (0.220) (0.274)

# CS col. 0.104∗∗ 0.199∗∗∗ 0.123 -0.103 -0.110 -0.229
(0.045) (0.049) (0.092) (0.105) (0.179) (0.198)

# AI col. 0.293∗∗∗ 0.194∗∗∗ 0.311∗∗∗ 0.375∗∗∗ 0.649∗∗∗ 0.425∗∗

(0.039) (0.042) (0.090) (0.092) (0.169) (0.178)

# Newbies col. 0.265∗∗∗ 0.307∗∗∗ 0.131 -0.002 0.144 0.172
(0.049) (0.052) (0.102) (0.097) (0.175) (0.213)

Exploratory profile 1.386∗∗∗ 0.425 -1.002 0.790 2.039 -2.230
(0.355) (0.413) (0.956) (1.163) (1.289) (2.513)

Citation stock 0.015 -0.031 -0.076 0.048 0.066 0.091
(0.020) (0.025) (0.053) (0.048) (0.084) (0.117)

% International pub. -0.331∗∗∗ -0.334∗∗∗ -0.228 -0.170 -0.460 -0.689∗

(0.087) (0.095) (0.211) (0.195) (0.317) (0.418)

Observations 11,982 8,752 2,042 1,808 886 520
Log Likelihood -3,862.273 -2,881.568 -656.582 -596.359 -270.364 -159.776
LR Test (df = 16) 580.743∗∗∗ 303.288∗∗∗ 102.243∗∗∗ 60.493∗∗∗ 73.400∗∗∗ 40.884∗∗∗

Notes: This table reports coefficients of the effect STHC on re-using AI across fields. ***, ** and * indicate significance at the
1%, 5% and 10% level, respectively. The effect of STHC on re-using AI is estimated using a conditional logit with matching.

discipline. The number of computer science authors (# CS aut.) is negatively and

significantly related to AI re-use in Medicine and Biology. Conversely, it is positively

related in Psychology and not significant in other fields. These contrasting effects

in different fields may be due to the varying roles of computer science expertise in
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driving AI adoption, contingent on the subject matter. Further research however is

needed to pinpoint the strong variation of coefficient estimates across scientific fields.

The number of new authors (# Newbies aut.) and the number of citations (#

Citations) are consistent with our findings at the aggregated level. An exception is

found in Psychology, where new authors do not appear to foster the re-use of the

technology. This might be because training in data science for psychologists is not

well-developed yet, or applications of AI in this field require skills beyond the scope

of individuals trained in this area.

Regarding STHC endowments, AI institutional specialization (AI inst. spe.) is

positively related to AI re-use in Chemistry and Psychology, while not significant in

other fields. This suggests that institutional support for AI may be more critical in

some fields than others and that these two fields primarily drive the positive effect

seen in the pooled regression. Although not significant in the pooled regression,

institutional citation impact (Inst. cit.) is negatively associated with AI re-use in

Biology. This could mean that higher institutional research quality reduces AI re-

use in Biology, possibly due to a reliance on expertise in more traditional methods.

High-performance computing (HPC) is positively related to AI re-use in Medicine

and Chemistry and not significant in other fields, emphasizing the importance of

computational resources in these domains for persistent integration of AI into re-

search.

Medicine and Biology drive the majority of the social factors observed in the

pooled sample, such as the number of domain collaborators (# Domain col.), com-

puter science collaborators (# CS col.), and new collaborators (# Newbies col.),

which are only significant in these fields. Also, the number of AI collaborators (# AI

col.) is consistent across all fields, highlighting that the availability of AI knowledge

through colleagues’ expertise is crucial in every field.

Regarding individual factors, the exploratory profile and citation stock variables

do not display a consistent pattern across fields. The effect of exploratory profiles

is only visible in Medicine. The percentage of international publications (% Interna-

tional pub.) is negatively related to AI re-use in Medicine, Biology, and Materials

Science.
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2.5 Conclusion

In this study, we examined factors influencing the adoption and reuse of AI in scien-

tific research, focusing on institutional, social, and individual factors.

First, we highlighted the importance of AI specialization within institutions:

when AI ‘is in the air’, the likelihood of adoption increases, which is not all that

surprising. Second, and contrary to our expectations, access to high-performance

computing resources and affiliation with top-tier universities may not be decisive

factors, at least in most fields of application (except, for example, medicine). Third,

regarding social factors, we showed that network position matters, particularly when

scientists are closely connected to peers who have already used AI in their research.

Also, collaborations with early-career researchers – i.e., newbies – seem to contribute

significantly to the adoption process, presumably because of their up-to-date training

and expertise. Finally, we found that some individual characteristics are important

when it comes to integrating AI into scientific practices. A taste for exploration, for

instance, seems to enhance the ability of individuals to recognize the potential of AI

in their application domains and prompt them to ‘give it a try’; conversely, having

a dominant position and high reputation within a field tends to hinder this propen-

sity. Taken together, our findings offer some insights for policymakers and science

administrators aiming to enhance the diffusion of AI tools in the sciences, providing

them with a broader understanding of the complex interplay between these factors.

Some critical reflections are therefore in order.

Let us begin with how one might rethink the institutional context in which re-

search takes place. An organizational climate that emphasizes individual competition

over cooperation may pose a barrier to knowledge sharing and circulation. Indeed,

given the relative ease with which funding for AI research can be obtained (at least

at present), scientists may be reticent to share their AI-related knowledge with their

colleagues to avoid intensifying competition. Incentives can be put in place to create

a supportive culture and foster knowledge circulation within institutions as well as

among epistemic communities. Such incentives can be intrinsic, such as recognition

and praise, and further supplemented with extrinsic rewards, such as bonuses and

higher salaries.

While incentives are valuable, facilitating knowledge sharing can also be achieved

by establishing a work environment that promotes interactions among scientists and

communication across departments. This can be accomplished, for instance, through

informal AI-focused events rather than (often futile) interdisciplinary ambitions. In
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this regard, organizations should be able to identify ‘boundary-spanning’ individuals

who are eager to share their (tacit) AI knowledge and expertise with their peers,

while also possessing effective communication skills to engage non-AI experts and

pique their interest. Lastly, we think that organizations could set some research

priorities around AI, thus creating a sense of group identity and personal respon-

sibility [Cabrera and Cabrera, 2002]. A relevant theory for this purpose is that of

‘organization-based self-esteem’ (OBSE), which refers to the degree to which an in-

dividual considers him/herself capable, significant, and worthy as a member of the

organization (Wang and Noe, 2010). As such, scientists may be more likely to share

their knowledge with others if they feel their competencies align with the organiza-

tion’s goals.

Our results seem to suggest that computational resources are not a major de-

terminant of AI adoption, except for some areas. Thus, if the policy ambition is

to democratize AI in as many application domains as possible, one may wonder

whether large investments in computational facilities such as HPC – which come

with substantial overheads and the need for specialized human resources – are the

most effective strategy. Alternatively, a more modest but widespread investment in

data science/ML laptops and workstations can be a powerful vehicle for AI adoption

in the sciences and, why not, a mechanism to broaden access to technology and close

computing divides.

We do not rule out, however, that computational resources are a significant asset

when it comes to cutting-edge AI research, as evidence suggests (Sevilla et al., 2022).

According to a recent study by the OECD [2023], when asked about the main barriers

or challenges to accessing AI computation, about 50 % of respondents cited the cost

of AI compute. Thus, the lack of financial resources for most public and private

organizations can give a group of big players an unfair advantage that results in a

concentration of power. More in general, we believe that further research is needed

to understand better the demand for AI compute, particularly in domain-specific

applications, and not solely for core AI research.

Finally, we refrain from making recommendations on how to nudge individual

choices toward exploration while maintaining some degree of exploitation, which is

nonetheless essential for scientific progress. Yet we can state with some confidence

that current trends in science policy and scientific communities, from impact assess-

ments to targeted research funding (see, e.g., Franzoni et al., 2022), are unlikely to

favor exploratory research paths. Perhaps it is time to rethink these habits as well.
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2.6 Appendix

Data

This section details some aspects of the data set and how it was treated.

Table 2.9: Number of authors per concept for first AI publication and first publica-
tion in the sample

Concept AI pub. first concept First pub. first concept

Medicine 29762 31823
Biology 29469 23200
Physics 5727 5995
Chemistry 5691 7525
Psychology 2549 2489

Materials science 1763 1856
Geology 1213 1085
Economics 1080 414
Engineering 856 905
Geography 357 297

Mathematics 180 243
Political science 103 187
Philosophy 54 114
Environmental science 41 53
Business 32 49

Sociology 17 34
Art 10 57
History 3 18

Total 78907 76344

Notes: This table reports the number of authors per concept for their first AI publication and their first
publication in the sample
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Table 2.10: Number of authors per first publication concept on all OpenAlex

concept share (all) ai concept share (AI)

NaN 133883095 0.55 1621837 0.57
Art 2992083 0.01 2843 0.00
Biology 22657217 0.09 288427 0.10
Business 1123248 0.00 9979 0.00
Chemistry 12103929 0.05 98775 0.03

Computer science 8907260 0.04 837505 0.30
Economics 2590735 0.01 44780 0.02
Engineering 4904995 0.02 149083 0.05
Environmental science 150569 0.00 1206 0.00
Geography 789458 0.00 22084 0.01

Geology 1919726 0.01 34395 0.01
History 1351900 0.01 782 0.00
Materials science 4353568 0.02 48982 0.02
Mathematics 2000396 0.01 51949 0.02
Medicine 47610267 0.20 395575 0.14

Philosophy 2531771 0.01 7312 0.00
Physics 10253095 0.04 221476 0.08
Political science 4234858 0.02 13403 0.00
Psychology 3947498 0.02 38739 0.01
Sociology 681340 0.00 1722 0.00

Nb unique author 242118813 1.00 2837138 1.00

Notes: This table reports the number of authors per concept of first publication on all Ope-
nAlex, and for AI articles.
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Table 2.11: AI terms used to label articles

Terms

adversarial network
generative adversarial network
artificial intelligence
autoencoder
backpropagation
Bayesian learning
bayesian network
deep belief network
deep learning
ensemble learning
hebbian learning
instance-based learning
Kernel learning
K-means
latent dirichlet allocation
latent semantic analysis
long short term memory
machine learning
extreme machine learning
Markovian
hidden Markov model
multi-layer perceptron
näıve Bayes classifier
natural language generation
natural language processing
natural language understanding
nearest neighbour algorithm
neural network
artificial neural network
convolutional neural network
deep convolutional neural network
deep neural network
recurrent neural network
neural turing
neural turing machine
Q-learning
random forest
regression tree
reinforcement learning
semi-supervised learning
stochastic gradient
supervised learning
support vector regression
transfer learning
unsupervised learning
variational inference
vector machine
support vector machine

Notes: This table reports the list of AI
terms used to identify AI articles.
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Table 2.12: Regular expression used to label HPC availability

Label Regular Expressions

Yes
’ŷes, ’
’̂the .{0,50} has a high( —-)performance computing’
’̂the .{0,50} does have a high( —-)performance computing’
’̂the university of .{0,50} has an infrastructure for high( —-)performance computing’
’̂there is a high( —-)performance computing’
’̂the university of .{0,50} has a computational infrastructure’
’it also has a high( —-)performance computing’

No
’n̂o, ’
’̂there is no information available’
’̂the university of .{0,50} is not mentioned’
’there is no evidence’
’there is no mention of’
’there is no evidence that the university .{0,50} has a high(-— )performance computing infrastructure’
’it is unclear (whether—if) the’
’̂ıt is not clear if the university of .{0,50} has a high( —-)performance computing’
’does not appear’
’̂the university of .{0,50} does not have a high’
’̂there is no clear information’
’i could not find .{0,4}information’
’does not have its high performance’
’it appears that the university of .{0,50} does not have’
’̂there is no information in the provided search’

Notes: This table reports the regular expressions used to label HPC availability in a given institution based on the answer
received from Perplexity.ai after asking ’...’
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Robustness check

As a robustness check, the same analysis has been reported on focal scientists with

a first AI paper in the years 2012 to 2018 (instead of 2020), and re-using AI up to

2022. This is of interest because it provides insights on earlier first-time AI papers,

and it increases the observation period after the first AI paper, which provides more

time to observe re-using AI.

Table 2.13: Descriptives statistics for both matching strategies (2012-2018)

First-time AI Re-use AI

Variable Matched scientists Focal scientists T-test Matched scientists Focal scientists T-test
(without AI) (with AI) (not re-using AI) (re-using AI)

STHC endowment

AI inst. spe. 0.04 (0.21) 0.1 (0.3) 17.03∗∗∗ 0.09 (0.29) 0.1 (0.3) 1.99∗∗

Inst. cit. 3.11 (5.34) 3.27 (1.86) 2.9∗∗∗ 3.26 (2) 3.34 (2) 2.41∗∗

Shanghai ranked 0.05 (0.21) 0.05 (0.21) 0.26 0.05 (0.21) 0.05 (0.21) -0.09
HPC 0.72 (0.45) 0.75 (0.43) 4.77∗∗∗ 0.74 (0.44) 0.75 (0.43) 1.65∗

# Domain col. 131.26 (161.92) 137.2 (202.37) 2.45∗∗ 117.15 (170.04) 156.82 (231.27) 11.57∗∗∗

# CS col. 18.72 (31.15) 25.28 (42.07) 13.39∗∗∗ 21.17 (36.41) 30.11 (46.68) 12.64∗∗∗

# AI col. 6.58 (14.07) 11.14 (20.46) 19.63∗∗∗ 9.14 (17.65) 14.35 (24.3) 14.51∗∗∗

# Newbies col. 47.65 (62.73) 49.82 (75.89) 2.36∗∗ 41.94 (64.41) 56.24 (85.36) 11.2∗∗∗

Exploratory profile 0.18 (0.06) 0.18 (0.06) -0.42 0.17 (0.06) 0.18 (0.06) 2.38∗∗

Citation stock 814.59 (1800.97) 883.4 (1893.5) 2.81∗∗∗ 723.18 (1642.2) 994.24 (2111.29) 8.49∗∗∗

% International pub. 0.29 (0.25) 0.29 (0.25) 0.74 0.29 (0.26) 0.29 (0.25) 0.79

Realized STHC

# Domain aut. 10.26 (9.67) 7.5 (7.78) -23.75∗∗∗ 7.49 (7.61) 7.22 (6.88) -2.2∗∗

# AI exp. aut. 0.94 (2.28) 2.25 (3.29) 34.97∗∗∗ 2.16 (3.22) 2.41 (3.62) 4.35∗∗∗

# CS aut. 1.75 (3.47) 2.9 (4.4) 21.98∗∗∗ 2.86 (4.7) 2.95 (4.21) 1.21
# Newbies aut. 1.17 (2.55) 0.98 (1.58) -6.88∗∗∗ 0.97 (1.71) 0.99 (1.62) 0.59
# Citations 4.55 (13.59) 5.28 (13.14) 4.13∗∗∗ 4.96 (12.49) 5.91 (14.38) 4.16∗∗∗

Total 11415 11415 7013 7013

Notes: This table presents the descriptive statistics for various variables for the period 2012-2018, including their mean values
and standard deviations (in parentheses) for different matching strategies: those who didn’t use AI and those who did, as well as
those who didn’t reuse AI and those who did. The table also provides results from t-tests to determine if the mean differences
between the groups are statistically significant. Significance levels are denoted by ***, **, and * for the 1%, 5%, and 10% levels,
respectively. In the AI re-use section, the matched individuals who do not reuse AI are also part of the focal scientists using AI for
the first time in the first analysis.
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Table 2.14: Conditional logit with matching (first-use of AI) (2012-2018)

Dependent variable: first-use of AI
Institutional Social Individual Full Model

(1) (2) (3) (4)
AI inst. spe. 0.969∗∗∗ 0.826∗∗∗

(0.058) (0.065)

Inst. cit. 0.420∗∗∗ 0.179∗∗∗

(0.042) (0.050)

Shanghai ranked 0.001 0.025
(0.069) (0.079)

HPC 0.078∗∗ -0.008
(0.032) (0.036)

# Domain col. -1.613∗∗∗ -1.520∗∗∗

(0.051) (0.053)

# CS col. 0.208∗∗∗ 0.233∗∗∗

(0.029) (0.030)

# AI col. 0.846∗∗∗ 0.838∗∗∗

(0.027) (0.027)

# Newbies col. 0.602∗∗∗ 0.570∗∗∗

(0.038) (0.039)

Exploratory profile -0.176 1.307∗∗∗

(0.230) (0.276)

Citation stock -0.059∗∗∗ -0.084∗∗∗

(0.010) (0.016)

% International pub. 0.096∗ -0.046
(0.056) (0.068)

Observations 22,832 22,832 22,832 22,832
R2 0.019 0.118 0.001 0.127
Max. Possible R2 0.500 0.500 0.500 0.500
Log Likelihood -7,695.999 -6,483.322 -7,896.683 -6,366.616
Wald Test 388.390∗∗∗ (df = 4) 1,999.590∗∗∗ (df = 4) 32.420∗∗∗ (df = 3) 2,105.850∗∗∗ (df = 11)
LR Test 433.939∗∗∗ (df = 4) 2,859.293∗∗∗ (df = 4) 32.570∗∗∗ (df = 3) 3,092.704∗∗∗ (df = 11)
Score (Logrank) Test 418.019∗∗∗ (df = 4) 2,502.995∗∗∗ (df = 4) 32.518∗∗∗ (df = 3) 2,683.228∗∗∗ (df = 11)

Notes: This table reports coefficients of the effect STHC on AI adoption on all fields for the period 2012-2018. ***, **
and * indicate significance at the 1%, 5% and 10% level, respectively. The effect of STCH on AI adoption is estimated using
a conditional logit with matching.
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Table 2.15: Conditional logit with matching (first-use of AI; 2012 – 2018)

Dependent variable: first-use of AI
Medicine Biology Chemistry Physics Psychology Materials science

(1) (2) (3) (4) (5) (6)
AI inst. spe. 1.080∗∗∗ 0.812∗∗∗ 0.557∗∗∗ 0.556∗∗ 0.999∗∗ 0.744∗∗

(0.135) (0.098) (0.194) (0.229) (0.408) (0.331)

Inst. cit. 0.103 0.310∗∗∗ -0.314 0.195 0.332 1.395∗∗∗

(0.085) (0.076) (0.204) (0.202) (0.327) (0.540)

Shanghai ranked 0.208 -0.003 -0.127 -0.312 -0.621 0.628
(0.137) (0.118) (0.279) (0.424) (0.401) (0.695)

HPC 0.017 -0.012 0.157 -0.057 0.005 -0.344
(0.062) (0.054) (0.136) (0.156) (0.224) (0.344)

# Domain col. -1.409∗∗∗ -1.536∗∗∗ -1.781∗∗∗ -1.872∗∗∗ -1.270∗∗∗ -1.942∗∗∗

(0.094) (0.079) (0.214) (0.224) (0.253) (0.491)

# CS col. 0.257∗∗∗ 0.297∗∗∗ 0.292∗∗∗ -0.027 -0.031 0.392
(0.053) (0.046) (0.109) (0.129) (0.204) (0.266)

# AI col. 0.850∗∗∗ 0.706∗∗∗ 0.796∗∗∗ 1.274∗∗∗ 1.345∗∗∗ 0.792∗∗∗

(0.047) (0.041) (0.105) (0.124) (0.176) (0.231)

# Newbies col. 0.684∗∗∗ 0.532∗∗∗ 0.636∗∗∗ 0.570∗∗∗ 0.137 0.101
(0.068) (0.058) (0.149) (0.163) (0.201) (0.350)

Exploratory profile 1.434∗∗∗ 1.241∗∗∗ 1.718 2.511 2.917∗∗ -2.420
(0.448) (0.417) (1.254) (1.718) (1.331) (3.703)

Citation stock -0.083∗∗∗ -0.093∗∗∗ -0.096 -0.038 -0.142 -0.078
(0.026) (0.025) (0.062) (0.061) (0.097) (0.155)

% International pub. -0.209∗ 0.114 0.206 -0.372 0.049 0.532
(0.116) (0.104) (0.262) (0.298) (0.390) (0.674)

Observations 8,182 9,814 1,632 1,350 902 378
R2 0.121 0.122 0.142 0.198 0.204 0.222
Max. Possible R2 0.500 0.500 0.500 0.500 0.500 0.500
Log Likelihood -2,309.781 -2,761.502 -440.586 -318.644 -209.607 -83.588
Wald Test (df = 11) 734.490∗∗∗ 885.070∗∗∗ 160.130∗∗∗ 160.190∗∗∗ 109.460∗∗∗ 48.710∗∗∗

LR Test (df = 11) 1,051.769∗∗∗ 1,279.543∗∗∗ 250.045∗∗∗ 298.460∗∗∗ 206.005∗∗∗ 94.834∗∗∗

Score (Logrank) Test (df = 11) 924.707∗∗∗ 1,115.180∗∗∗ 210.264∗∗∗ 237.112∗∗∗ 165.562∗∗∗ 75.269∗∗∗

Notes: This table reports coefficients of the effect STHC on AI adoption across fields for the period 2012-2018. ***, ** and *
indicate significance at the 1%, 5% and 10% level, respectively. The effect of STCH on AI adoption is estimated using a conditional
logit with matching.
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Table 2.16: Conditional logit with matching (re-using AI; 2012 – 2018)

Dependent variable: re-using AI
Institutional Social Individual Full Model

(1) (2) (3) (4)
# Domain aut. -0.175∗∗∗ -0.211∗∗∗ -0.198∗∗∗ -0.189∗∗∗

(0.034) (0.038) (0.035) (0.039)

# AI exp. aut. 0.125∗∗∗ -0.025 0.132∗∗∗ -0.027
(0.032) (0.037) (0.033) (0.037)

# CS aut. -0.003 -0.082∗∗ -0.015 -0.073∗∗

(0.032) (0.036) (0.032) (0.036)

# Newbies aut. 0.122∗∗∗ 0.149∗∗∗ 0.141∗∗∗ 0.143∗∗∗

(0.035) (0.036) (0.035) (0.037)

# Citations 0.125∗∗∗ 0.142∗∗∗ 0.098∗∗∗ 0.145∗∗∗

(0.021) (0.022) (0.021) (0.022)

AI inst. spe. 0.116∗∗ 0.133∗∗

(0.059) (0.062)

Inst. cit. 0.147∗∗∗ -0.062
(0.053) (0.058)

Shanghai ranked 0.009 -0.023
(0.088) (0.092)

HPC 0.031 0.026
(0.041) (0.042)

# Domain col. -0.335∗∗∗ -0.330∗∗∗

(0.052) (0.055)

# CS col. 0.115∗∗∗ 0.140∗∗∗

(0.037) (0.039)

# AI col. 0.358∗∗∗ 0.364∗∗∗

(0.033) (0.033)

# Newbies col. 0.321∗∗∗ 0.299∗∗∗

(0.042) (0.043)

Exploratory profile 1.058∗∗∗ 0.952∗∗∗

(0.314) (0.331)

Citation stock 0.166∗∗∗ 0.014
(0.014) (0.019)

% International pub. -0.101 -0.356∗∗∗

(0.072) (0.077)

Observations 14,026 14,026 14,026 14,026
R2 0.008 0.044 0.018 0.046
Max. Possible R2 0.500 0.500 0.500 0.500
Log Likelihood -4,807.279 -4,547.324 -4,736.299 -4,528.260
Wald Test 104.830∗∗∗ (df = 9) 551.500∗∗∗ (df = 9) 235.850∗∗∗ (df = 8) 581.250∗∗∗ (df = 16)
LR Test 107.525∗∗∗ (df = 9) 627.435∗∗∗ (df = 9) 249.483∗∗∗ (df = 8) 665.563∗∗∗ (df = 16)
Score (Logrank) Test 106.605∗∗∗ (df = 9) 599.997∗∗∗ (df = 9) 244.735∗∗∗ (df = 8) 634.974∗∗∗ (df = 16)

Notes: This table reports coefficients of the effect STHC on re-using AI in all fields for the period 2012-2018. ***,
** and * indicate significance at the 1%, 5% and 10% level, respectively. The effect of STCH on re-using AI is estimated
using a conditional logit with matching.

155



CHAPTER 2. BARRIERS AND DRIVERS OF AI ADOPTION

Table 2.17: Conditional logit with matching (re-using AI; 2012 – 2018)

Dependent variable: re-using AI
Medicine Biology Chemistry Physics Psychology Materials science

(1) (2) (3) (4) (5) (6)
# Domain aut. -0.058 -0.200∗∗∗ -0.559∗∗∗ -0.567∗∗∗ 0.155 -0.321

(0.062) (0.065) (0.191) (0.145) (0.208) (0.564)

# AI exp. aut. 0.024 0.001 -0.385∗∗∗ 0.003 -0.673∗∗∗ 0.379
(0.057) (0.061) (0.146) (0.160) (0.227) (0.514)

# CS aut. -0.014 -0.104∗ -0.073 -0.015 0.305 -0.086
(0.059) (0.058) (0.149) (0.143) (0.209) (0.526)

# Newbies aut. 0.152∗∗∗ 0.122∗∗ -0.029 0.663∗∗∗ -0.261 1.073∗

(0.058) (0.059) (0.150) (0.154) (0.215) (0.573)

# Citations 0.038 0.236∗∗∗ 0.352∗∗∗ 0.096 0.331∗∗∗ 1.102∗∗∗

(0.034) (0.037) (0.107) (0.095) (0.128) (0.326)

AI inst. spe. -0.003 0.129 0.292∗ 0.103 0.580∗ 0.183
(0.122) (0.104) (0.177) (0.181) (0.337) (0.521)

Inst. cit. 0.039 -0.206∗∗ 0.093 0.092 -0.171 -1.010
(0.100) (0.090) (0.230) (0.203) (0.383) (0.858)

Shanghai ranked 0.098 -0.119 -0.448 0.383 0.121 -0.472
(0.159) (0.140) (0.307) (0.409) (0.484) (1.025)

HPC 0.157∗∗ -0.058 0.041 -0.104 0.256 -0.423
(0.071) (0.068) (0.149) (0.163) (0.240) (0.547)

# Domain col. -0.320∗∗∗ -0.474∗∗∗ -0.522∗∗∗ -0.098 -0.176 0.289
(0.099) (0.089) (0.188) (0.186) (0.267) (0.561)

# CS col. 0.244∗∗∗ 0.209∗∗∗ 0.103 -0.289∗ -0.230 0.181
(0.067) (0.061) (0.122) (0.153) (0.211) (0.412)

# AI col. 0.340∗∗∗ 0.287∗∗∗ 0.409∗∗∗ 0.465∗∗∗ 0.809∗∗∗ 0.261
(0.056) (0.053) (0.127) (0.130) (0.206) (0.432)

# Newbies col. 0.314∗∗∗ 0.422∗∗∗ 0.488∗∗∗ -0.073 0.261 0.272
(0.075) (0.071) (0.150) (0.148) (0.202) (0.455)

Exploratory profile 1.548∗∗∗ 0.456 -0.268 3.018∗ 3.045∗ -3.208
(0.529) (0.533) (1.231) (1.680) (1.590) (6.220)

Citation stock 0.042 -0.040 -0.122∗ 0.233∗∗∗ 0.037 -0.722∗∗∗

(0.029) (0.032) (0.073) (0.070) (0.097) (0.275)

% International pub. -0.464∗∗∗ -0.148 -0.277 -0.015 -0.721∗ -1.094
(0.130) (0.126) (0.292) (0.283) (0.399) (1.058)

Observations 5,724 5,272 1,046 984 644 160
R2 0.073 0.045 0.058 0.062 0.086 0.167
Max. Possible R2 0.500 0.500 0.500 0.500 0.500 0.500
Log Likelihood -1,766.548 -1,705.258 -331.409 -309.618 -194.274 -40.847
Wald Test (df = 16) 352.880∗∗∗ 213.340∗∗∗ 51.710∗∗∗ 52.600∗∗∗ 44.570∗∗∗ 17.220
LR Test (df = 16) 434.478∗∗∗ 243.757∗∗∗ 62.215∗∗∗ 62.821∗∗∗ 57.838∗∗∗ 29.210∗∗

Score (Logrank) Test (df = 16) 404.309∗∗∗ 232.733∗∗∗ 58.259∗∗∗ 59.133∗∗∗ 52.944∗∗∗ 24.419∗

Notes: This table reports coefficients of the effect STHC on re-using AI across fields for the period 2012-2018. ***, **
and * indicate significance at the 1%, 5% and 10% level, respectively. The effect of STCH on re-using AI is estimated using
a conditional logit with matching.
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Chapter 3

Novelpy : A Python Package to

Measure Novelty and

Disruptiveness of Bibliometric and

Patent Data

This chapter was co-authored with

Kevin Wirtz

Summary of the chapter

Novelpy (v1.2) is an open-source Python package designed to compute bibliometric indica-

tors. The package aims to provide a tool for the scientometrics community that centralizes

various measures of novelty and disruptiveness, enables their comparison, and fosters repro-

ducibility. This paper offers a comprehensive review of the different indicators available in

Novelpy by formally describing these measures (both mathematically and graphically) and

presenting their advantages and limitations. We then compare the different measures on a

random sample of 1.5M articles drawn from the Pubmed Knowledge Graph to demonstrate

the module’s capabilities. We encourage anyone interested to participate in the develop-

ment of future versions.
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3.1 Introduction

Identifying and tracking relevant pieces of knowledge remains a core issue in the Sci-

ence of Science research. A better understanding of knowledge flow dynamics, mech-

anisms behind the emergence of new ideas, and identification of novel or impactful

documents are crucial for fostering effective science, which will, in turn, help address

future societal challenges [Fortunato et al., 2018, Foster et al., 2021, OECD, 2021].

This article proposes integrating various bibliometric indicators within a Python

package. It assembles within a single module novelty or, more broadly, creativity

measurements through combinatorial novelty indicators [Uzzi et al., 2013, Foster

et al., 2015, Lee et al., 2015, Wang et al., 2017, Shibayama et al., 2021], as well as

several impact measures, including disruptiveness metrics [Wu et al., 2019, Wu and

Yan, 2019, Wu and Wu, 2019, Bu et al., 2019, Bornmann et al., 2019a].

This module is intended for researchers in the emerging and multidisciplinary

field of Science of Science. There is an increasing tendency to create new scientomet-

ric indicators, but there are fewer initiatives to design reproducible experiments. For

novelty indicators, there is minimal reference to prior approaches when creating a

new indicator; thus, the flexibility in the choice of measures raises the temptation to

choose the measure that produces the intended outcome [Foster et al., 2021]. Only

a few studies attempt to establish a conceptual background of creativity and the

formalization of the indicators [Foster et al., 2021]. This article provides a mathe-

matical and graphical description of these indicators. To the best of our knowledge,

it is the first tool that enables the computation of these metrics.

Two macro types of analysis can describe Scientometrics: performance analysis

and Science Mapping Analysis (SMA) [Moral Muñoz et al., 2020]. Performance

analysis aims to assess the activities of scientific actors and their impact. Its purpose

is to assign a value to the productivity and pervasiveness of research conducted by a

unit (article, author, institution). SMA ”is mostly directed at monitoring a scientific

field to determine its (cognitive) structure, its evolution, and main actors within”

[Noyons et al., 1999]. It captures a snapshot of a part of the scientific system at

a given moment to analyze its structure. The present package allows performing

analysis through disruptiveness measures; it also assesses the creative potential of

papers using novelty indicators. Both metrics require science mapping analysis to be

measured since they are generated through maps of the structure of science. Inputs,

outputs, and impacts of these scientific activities are the three perspectives used
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in bibliometric analysis [Sugimoto and Larivière, 2018]1. Entities involved in most

combinatorial novelty indicators use only the output part of documents to compute

their measures [Uzzi et al., 2013, Foster et al., 2015, Lee et al., 2015, Shibayama

et al., 2021], except for Wang et al. [2017], which uses references from future articles

to control for re-utilization. Disruptiveness indicators [Wu et al., 2019, Bu et al.,

2019, Bornmann et al., 2020] take the outputs and impacts of a given document to

construct their metrics. They are based on both the references and citations of a given

document. This module focuses on metrics using outputs (references/keywords) and

impact features (citations/references and keywords from future articles).

While citation is an invaluable source of information, several limitations exist

when using the sheer number of citations to evaluate impact. Inter-field (and even

intra-field) comparisons can be challenging, as the sheer number of scientists and

the way science is performed vary significantly depending on the research domain

(methodology, solo author vs. team publication, citation habits). The gap in the

number of citations is mainly due to the field’s structure and does not necessarily

represent the documents’ quality. This phenomenon becomes an issue when raw

numbers are used to measure the importance of research [Purkayastha et al., 2019].

The same problem arises with self-citation, comparing national and international

journals, or document languages [Van Leeuwen et al., 2001].

Network effects have been observed in citation dynamics. Wallace et al. [2012]

showed that scholars tend to cite researchers with whom they have a deeper social

connection. They also found that researchers are more likely to cite collaborators

of collaborators, thereby creating a citation continuum. Articles with international

collaborations are more cited due to network effects [Wagner et al., 2019]. Other neg-

ative citation behaviors arise in Bornmann and Daniel [2008]; scholars tend to cite

papers to satisfy editors and reviewers, showing an apparent disconnection between

citation and actual importance during the creation process. Field-specific issues can

be addressed using normalization methods or different counting methods of citations

(see Waltman [2016] for a comprehensive review). One family of normalized indica-

tors is disruptiveness [Wu et al., 2019, Wu and Yan, 2019, Wu and Wu, 2019, Bu

et al., 2019, Bornmann et al., 2019a]. These measures analyze how a focal article

1Input refers to human and financial resources and captures the different interactions of agents
in the system at various levels (authors/institutional/country levels). Output results from the
research process, the different entities that characterize a document. Finally, impact measures
knowledge dissemination generated by an article through citations, attention by the general public,
or re-utilization of a document’s components.
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acts as a bottleneck between future papers and the references of the focal papers.

They capture whether a document consolidates a domain (i.e., future papers rely

on the same pieces of knowledge as the focal paper) or constitutes a starting point

for documents from various areas (i.e., future papers only use information from the

document).

Scientific advancement is the result of individuals’ creativity, where creativity is

defined as ”held to involve the production of high-quality, original, and elegant so-

lutions to complex, novel, ill-defined, or poorly structured problems” [Hemlin et al.,

2013]. Scholars have proposed measurements to complement these impact indicators

with creativity indicators, usually called “atypicality”, originality”, or “novelty” in-

dicators. The need for quantifying novelty comes from its position as an essential

component of the structure of the scientific and economic system. Novelty is at the

origin of peer recognition, which acts as a ”reward system” for individuals. The

”priority rule” grants recognition to the first person making the discovery [Merton,

1957, Carayol et al., 2019]. Novelty is also at the core of the theory developed in

evolutionary economics, in which technological progress and creativity influence the

cyclical nature of the economy [Schumpeter et al., 1939, Nelson, 1985, Amendola

et al., 2014]. Scientific progress remains elusive, and novelty indicators are intended

to approach creativity, as making relevant novel combinations is perceived as inno-

vative [Burt, 2004, Rodŕıguez-Navarro, 2016, Bornmann et al., 2019b]. The earliest

novelty indicators focused mainly on past information (i.e., using an entity created

the same year) or the distance between articles from a given year, based on their

references’ overlapping [Dahlin and Behrens, 2005].

More recently, scholars have integrated the conceptual framework of knowledge

recombination (a combination of pre-existing ideas that leads to invention) into nov-

elty indicators. This concept was already developed by Poincaré [1910]. Although he

refers to the specific case of science, it can be extended to any type of non-scientific

creative process where combinations can be both material and conceptual [Winter

and Nelson, 1982]. Weitzman [1998] discussed how knowledge could be generated

through a combinatorial process of past ideas and how this can generate economic

growth as long as potential new ideas are exploitable. At the same time, an invention

does not necessarily arise from combining two components together for the first time.

Indeed, it can also arise from creating a new relationship between two already linked

components [Schumpeter et al., 1939, Henderson and Clark, 1990]. This deepens the

idea brought by Jacob [1977] that scientific advancement emerges from looking at
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something from a new angle rather than incorporating a new instrument. Scientists

have proposed a more probability-based approach to capture this combinatorial pro-

cess. Instead of focusing solely on the degree of novelty of a combination, they look

at how unlikely this combination is to happen. The more distant the items in the

combination, the more complex and unlikely it is to make this combination. There-

fore, the combination is more novel. To solve mathematical problems, Poincaré used

the knowledge he found in another field [Poincaré, 1910]. The more distant the fields

were, the more insight he gained. However, novel documents exhibit higher variance

in citation performance. Academics adopting an exploration strategy face a higher

risk of failure [Fleming, 2001, Foster et al., 2015, Wang et al., 2017, OECD, 2021].

Indeed, scientific documents that have a fair mix of novel and conventional ideas

are more likely to be “sleeping beauties” than other documents (see Ke et al. [2015]

and Wang et al. [2017]). The idea of March [1991] that organizations which explore

and consolidate existing processes/technologies are more likely to survive can also

be applied in the scientific realm2. Novelty indicators can be applied to different en-

tities (patents, papers, webpages, etc.) using various units of knowledge (references,

keywords, MeSH terms, text, and others).

Most of the packages available in R and Python deal with performance or SMA.

Moral Muñoz et al. [2020] carried out a detailed and up-to-date review of the differ-

ent tools and libraries that help researchers in their daily work. Although much work

has been done to study citation, co-authorship, or any coupling, novelty and disrup-

tiveness indicators are still unavailable, and researchers have to code these metrics

themselves. Concerning the reproducibility of novelty studies, only Shibayama et al.

[2021] shared their code on Github to calculate their new novelty indicator, but this

is still an isolated event. This tool, therefore, ensures that indicators of novelty and

disruption used in future studies will be replicable.

The rationale for incorporating novelty and disruptiveness indicators in a single

package comes from the fact that they both capture different aspects of the docu-

ments: the former aims at quantifying the risky profile of research, looking at the

balance between exploitation and exploration [March, 1991] of the knowledge space.

At the same time, the latter analyzes how impactful an article is for science. The link

between novelty and citation count has been of interest in previous research [Uzzi

et al., 2013, Wang et al., 2017], and more recently, Lin [2021] studied the relation-

ship between novelty and disruptiveness indicators. The different studies only look

2Here, survival can be expressed as a high citation count.
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at specific novelty indicators, and a complete benchmark is still missing. This paper

contributes to an ongoing effort to systematically benchmark and compare multiple

indicators of impact and novelty by proposing an open-source tool to the community.

This article contributes to the Science of Science literature by providing an open-

source Python package, Novelpy, to compute Novelty and Disruptiveness measure-

ments. It unifies the existing indicators in a common framework using a formaliza-

tion based on graph theory and provides some hands-on experience. We hope that

Novelpy will contribute to homogenizing our practice in the science of science and

support researchers in their work. The package will be available in Python, one of

the most popular open-source programming languages (hence with the most promi-

nent community support), and will be maintained long-term. The package currently

works with a specific and documented data structure, but tools to easily use well-

known data sources are under development. The package will be hosted on PyPI

and also on Github, which allows the creation of bug reporting and/or proposition of

development3. The rest of the paper is structured in the following way. In Section

3.2 contains the formalization of the indicators that are implemented in Novelpy.

Section 3.3.2 demonstrates the package’s capabilities on a random sample drawn

from PubMed. We close the paper with a discussion on the remaining limitations of

novelty indicators’ usages and the purpose of the package.

3.2 Supported indicators

This section details the content of Novelpy, describes the computation for each indi-

cator, and the data required. The Novelpy Python package provides a set of functions

to perform quantitative analysis in scientometrics. The structure of the module is

divided between novelty and disruptiveness indicators. Novelty indicators are also

separated between indicators based on co-occurrence matrices and ones based on

text embedding techniques, as represented in figure 3.1.

Practically, disruptiveness indicators are all calculated through the same function,

while novelty indicators have a function for each measure. All functions are explained

in the module’s documentation (https://novelpy.readthedocs.io/).

Different data types can be employed depending on the indicator, as shown in

3.1. All indicators working with a co-occurrence matrix can use references, journals,

or keywords, and disruption indices rely on the citation network. Shibayama et al.

3Documentation is available here https://novelpy.readthedocs.io/en/latest/usage.html
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Figure 3.1: Novelpy ’s module structure

[2021]’s indicators use the citation network and title or abstract to represent the

article’s semantics in a vector space. Various tools to preprocess bibliometric data are

also included within the package to simplify the computation of proposed measures4

(e.g., co-occurrence matrix construction, text embedding, citation and co-authorship

network creation). Table 3.1 summarizes the indicators available in the module, their

strengths and weaknesses, and the possible variables to compute them.

The module supports a wide range of data sources as long as they are in the proper

format; note that transforming data to the expected structure is relatively simple.

Helper functions are available to directly transform PubMed Knowledge Graph data

into the desired structure5. For other databases, further backend to OpenAlex, Web

of Science, Scopus, and PATSTAT are under construction. The package currently

works with documents in JSON or MongoDB format. Mongo will be preferred for

large databases to avoid overflowing the RAM.

3.2.1 Novelty Indicators

We focus on novelty indicators in the package based on the combinatorial idea. As

discussed in section 3.1, novelty indicators can be differentiated into two groups

regarding how they compute the distance between items. The first group uses a

combination of items, such as keywords and journals, to create a co-occurrence ma-

trix. Algorithms make use of this matrix to compute the distance. The more distant,

4see https://novelpy.readthedocs.io/en/latest/utils.html
5Expected structure is presented here: https://novelpy.readthedocs.io/en/latest/

usage.html#format-supported
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Type Indicator Pros Cons Variables used
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Novelty Uzzi et al. [2013]
Conserve dynamical
citation structure

Computationally
intensive X X

Lee et al. [2015]
Computationally lightweight
Data-saving

Conceptually
less advanced X X

Foster et al. [2015]
Consider undirect link
Computationally lightweight

Discret distances X X

Wang et al. [2017] Computationally lightweight Data-Intensive X X

Shibayama et al. [2021] High granularity
Computationally and
data-intensive O O

Disruptiveness Wu et al. [2019] Normalized
Data-intensive
Issue with term KFP

X

Bornmann et al. [2019a] Normalized Data-intensive X

Bu et al. [2019] Normalized Data-intensive X

Table 3.1: Novelpy ’s available indicators. X means that you can run the indicator on either variable. O Means you
need both variables to run it

the more unexpected and, therefore, novel the combination. The second type of indi-

cator maps items in a Euclidean space with text embedding techniques like word2vec

[Mikolov et al., 2013b]. The distance is then computed in this semantic space. As

shown in Figure 3.1, novelty indicators are split between those using co-occurrence

of entities such as journals or keywords and those using word embedding techniques.

For the first group of indicators, we first need to create a co-occurrence matrix for

each year of the given dataset. While some indicators only use the focal year to com-

pute the score for each combination [Uzzi et al., 2013, Lee et al., 2015, Carayol et al.,

2019], others take into account past combinations in the score calculation [Foster

et al., 2015] and future re-utilization [Wang et al., 2017].

Atypicality [Uzzi et al., 2013], Commonness [Lee et al., 2015], and Novelty [Wang

et al., 2017] are all indicators that use references of an article at a journal level.

Previous studies usually focused on one type of knowledge unit, but as long as one

can create a co-occurrence matrix between items, it becomes trivial to generalize.

Carayol et al. [2019] reformulate Lee et al. [2015] and apply it to keywords and con-

struct the indicator accounting for inter-field heterogeneity by splitting the analysis.
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Fleming [2001] computes a combination of patent subclasses, a prevalent practice

in patentometrics. Dahlin and Behrens [2005] propose a novelty measure based on

the overlapping between documents’ references that was reused by Trapido [2015].

Based on this work Matsumoto et al. [2021] propose an extension that computes

the average share of references that are shared between a focal paper and all other

documents in the same field. These indicators are not present in Novelpy (v1.2) but

will be added in future versions.

Although the co-occurrence matrix can be considered an adjacency matrix, only

a handful of indicators use graph theory to compute the distance between items. In-

deed, indicators à la Uzzi et al. [2013], or Lee et al. [2015] take into account only the

direct neighborhood during distance calculation. If items A and B are close, items B

and C are close, and D is unrelated to any of them, then the combination of A and C

is more likely to happen than A and D. This logic is completely ignored if one con-

siders the direct neighbors. Wang et al. [2017] integrated this into their indicator by

considering the cosine similarity between nodes’ neighbors, which considers common

friends (A and C in the example above). Using community detection as in Foster

et al. [2015], one can better represent the distance between two units by using the

global structure of the network. However, the discrete nature of the novelty score can

be argued. Using text embedding, one can have a continuous representation of the

distance between items. This distance is related to the text’s structure since word

similarity depends on their neighborhood. Some initiatives used these techniques

with different purposes but could be used to create a novelty score. Hain et al.

[2020] create a similarity measure between patents using word2vec [Mikolov et al.,

2013b]. Shibayama et al. [2021] was the first to apply word embedding techniques

in a novelty context. They embed references in a Euclidean space using spaCy and

then compute a distribution of cosine distances between documents present in the

references for a given document.

We propose a mathematical formalization of these indicators. Setting up this

framework offers a basis for defining future new indicators. These indicators are

formulated based on graph theory, where the network’s nodes are units of knowledge

(journals, keywords, or references), and edges represent the co-occurrence of these

units in entities (documents or patents).

• Co-occurrence matrix can be written as a graph G = (V,E,w).

• Set of nodes V of dimension v represent here the entities (e.g. keywords,
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journals), a given entity is defined as Vi.

• Set of edges is noted E.

• Number of combinations between Vi and Vj is the weight for the edge (Vi, Vj)

and is written w(Vi, Vj).

• Degree of a node Vi is written ki. N is the sum of the weighted edges in G

without self-loops, N = Σv−1
i=1 Σv

j=i+1w(Vi, Vj).

D define our set of documents of dimension n. Each focal paper, FP , has

its network, which can be defined as GFP , EFP is the subset of edges present in

document FP . GFP uses the same set of nodes V as G and can be express as

GFP = (V,EFP , wFP ). In some cases, GFP is an unweighted network and will

be written then GFP = (V,EFP ). The number of links, w(Vi, Vj), is then de-

fined as the sum of all combinations of two given entities overall document in D,

w(Vi, Vj) = Σn
d=1wd(Vi, Vj) where wd(Vi, Vj) is binary if the graph is unweighted at

the document level. G(V,E,w) can be split at a year level. For example, in year t,

and the associated network will be noted Gt(V,Et, wt). Uzzi et al. [2013], Lee et al.

[2015], use only the subgraph Gt for calculation. Foster et al. [2015] use the accu-

mulation of past networks. For Wang et al. [2017], several subgraphs are involved in

computing the indicator. The novelty indicators à la Wang et al. [2017] deal with

four subgraphs of G. One needs to consider two different past sets of documents

(noted P and B) and a set of future documents (noted F ).

3.2.1.1 Uzzi et al. [2013]: Atypicality

The goal of the measure proposed by Uzzi et al. [2013], called “Atypicality”, is to

compare an observed network with a random network. The network is shuffled,

preserving the temporal distribution of references at the paper level. As shown in

Figure 3.2, a document citing two articles from, for example, 1985 and one from

1987 will still cite articles published the same year, but the journal can change.

The frequency of the combination (Vi, Vj) at time t is defined as wt(Vi, Vj), and

we extract the adjacency matrix of observed frequencies. The idea is basically to

compute the frequency Z-score for each journal combination. The Z-score is defined

as z = (obs− exp)/σ; an observed frequency is compared with a theoretical one.

The theoretical frequency is generated through Markov chain Monte Carlo sim-

ulation, preserving the dynamical structure of citations. In the case of Atypicality,
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does not allow measuring distances between communities and proposes only a binary

distinction.

3.2.1.4 Wang et al. [2017]: Novelty

Wang et al. [2017] propose a measure of difficulty for pairs of references that have

never been made before. These new pairs need to be reused after the given publica-

tion’s year (scholars do not have to cite directly the paper that creates the combina-

tion, but only the combination itself). The idea is to compute the cosine similarity

for each journal combination based on their co-citation profile b years before t. The

cosine similarity between WB
i and WB

j is defined:

COS(WB
i ,WB

j ) =
WB

i .WB
j

∥WB
i ∥∥WB

j ∥

where WB
i represent all links of entity i, B years before year t.

Novelty à la Wang et al. [2017] relies on four subgraphs of G constructed using two

different past sets of documents, a set of future documents, and the set of documents

for the focal year. These different subgraphs are defined as follows (note the first

year of the dataset y0 and the last as yn):

• Gt = (V,Et, wt) is a subgraph of G from year t (documents published year t)

• GP = (V,EP , wP ) is a subgraph of G from year t0 to t−1 (documents published

before year t)

• GB = (V,EB, wB) is a subgraph of G from year t− b to t−1 is used to measure

the cosine similarity between nodes. This set is a subgraph of GP (documents

are published in a given window before year t)

• GF = (V,EF , wF ) is a subgraph of G from year t + 1 to t + f (documents

published in a given window after year t)

This indicator focuses on new combinations reused afterwards and not achieved

before the given year yt. One needs to keep all elements of Et /∈ EP and Et ∈ EF .

More precisely, edges belonging to the following subset (that we call EN) are the

only edges used to compute this indicator EN = (Et ∩ EF ) ∩ EP

Cosine similarities are calculated using GB. For each document, we compute

an undirected and unweighted network. The novelty is the sum of all edges from

EFP ∈ EN , that is:
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disruptive. Quoting Bornmann et al. [2019a], “[...] many citing documents not refer-

ring to the FP’s cited references indicate disruptiveness. In this case, the FP is the

basis for new work which does not depend on the context of the FP, i.e., the FP gives

rise to new research.” All presented measures normalize citation and give a relative

perspective on a publication’s impact [Bu et al., 2019]. Disruptiveness indicators

consider the importance of pieces of knowledge (references) in a given article for

other articles, whereas Depth and Breadth, as proposed in Bu et al. [2019], capture

how the knowledge generated by that given item is reused and whether it allows for

the consolidation of a domain or is instead used in a disparate manner.

Consider a directed unweighted graph G(V,E) containing the citation network.

• For a given document FP we note a document cited by FP , r. The set of

nodes that are cited by FP is then InFP = {r ∈ V |(FP, r) ∈ E}

• For a given document FP we note a document citing FP , c. The set of nodes

that are citing FP is then OutFP = {c ∈ V |(c, FP ) ∈ E}

• The number of citations for FP is then deg−(FP ) = |OutFP | and number of

references deg+(FP ) = |InFP |

• The set of references for an article citing FP is then noted Inc

3.2.2.1 Wu et al. [2019]: Disruptiveness

By adapting Wu et al. [2019] notation, we called IFP the set of nodes with FP as

a parent that does not have FP ’s parents as parents. More formally IFP = {c ∈

OutFP |Inc /∈ InFP}. The set of J l
FP is the set of nodes with FP as a parent that

share at least l parents with FP . We note J l
FP = {c ∈ OutFP ||{Inc ∈ InFP}| > l}.

Finally, KFP is the set of nodes that share parents with FP but that do not have

FP as a parent: KFP = {v ∈ V |v ∈ InFP}.

The disruptiveness à la Wu et al. [2019] is then noted :

DI1 =
|IFP | − |J1

FP |

|IFP | + |J1
FP | + |KFP |

Some variants that consider only paper sharing at least l references have been

proposed:

DI5 =
|IFP | − |J5

FP |

|IFP | + |J5
FP | + |KFP |
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paper
|IFP |

|IFP | + |J1
FP |

=
DInok1 + 1

2
if |OutFP | > 0

All these measures are quite demanding in terms of data requirements. Indeed,

for each given article, we need to access the references, the articles citing the focal

paper, and the articles citing the references of the focal paper.

3.3 Sample analysis

3.3.1 Descriptive statistics

This section provides examples of applications that could be performed with Novelpy.

We use the Pubmed Knowledge Graph (PKG) sample [Xu et al., 2020], which stores

research articles published on Pubmed and offers metadata for all papers. This anal-

ysis is proposed as an example to demonstrate our module features after computing

the indicators12. All figures and tables can be found in the appendix. The sample is

restricted from 1995 to 2015; the focal period is 2000-2010. The sample is composed

of 1,469,352 papers and 2,959,650 distinct authors. Authors are disambiguated in

PKG using advanced heuristics and algorithms. The sample was selected so that

every article has the attributes needed to run the indicators. Each paper lists refer-

ences, mesh terms, authors, titles, and abstracts. Table 3.2 and Figure 3.9 summarize

the statistics of the sample. On average, the number of references used in a paper is

23, consistent with typical citation behavior [Abt and Garfield, 2002]. The number

of papers almost doubled in 10 years, which is in line with the literature [Fortunato

et al., 2018].

3.3.2 Results

As discussed in previous sections, research on novelty indicators still needs to be

conducted across multiple dimensions. Novelpy will facilitate computing different

indicators on various entities. Researchers can then use the novelty scores provided

by the package to perform their analyses. Individual-level analysis can be conducted

by examining the distribution of novelty scores, as shown in Figure 3.10. Comparing

indicators and studying the evolution of novelty over the years are the primary mo-

12Interested readers will find code and resources to create tables, plots, and indicators here
https://novelpy.readthedocs.io/en/latest/usage.html#id5
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tivations for this package. Only a few studies examine the dynamics of novelty over

time. Nevertheless, understanding the evolution of creativity in papers, patents, or

other entities can offer insights into the trade-off between exploration and exploita-

tion of the research space in a given field. Figure 3.11 displays the evolution of the

mean novelty score for each indicator, given the variable (references, mesh terms).

We cannot draw conclusions since the sample is random and aggregated across all

fields within Pubmed. The pattern of trends varies significantly depending on the

indicator and variable. This heterogeneity might be evidence that further investiga-

tion is required to understand precisely what these indicators capture and in which

cases they best predict novelty. This question is even more relevant, considering the

lack of correlation between indicators in Figure 3.12.

3.4 Discussion

This paper aims to demonstrate the capabilities of the new Python package Novelpy.

We presented a sample analysis using the functions within this package to showcase

how it can assist interested readers in computing and analyzing existing indicators

or addressing current challenges related to novelty measurement. Several critiques

can be made on current novelty measurements, and addressing these points is crucial

for solidifying our understanding and usage of these indicators.

The diversity and convergence in how novelty indicators are created raise ques-

tions about what they measure. As observed in our sample analysis, the results

are highly dependent on the indicator used, which confirms previous concerns about

cherry-picking the indicator [Shibayama et al., 2021, Foster et al., 2021]. Simulta-

neously, indicators often focus on the same entity (keywords or reference journals).

Recent measures like Shibayama et al. [2021] and Arts et al. [2021] broaden this

domain by utilizing text information from references. Novelty indicators are rarely

conceptualized and often require a qualitative background. Qualitative studies like

Tahamtan and Bornmann [2018] question the significance of literature in authors’

creative processes. The link between references and creativity is debated, and fur-

ther investigation is needed to determine if references can be reliably used as a proxy

variable for creativity.

Research evaluation was once performed solely by experts in the scientometric

field and specialists working for public institutions. Open access data has recently

led to entrusting this evaluation to a broader range of researchers and public workers.
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These new actors need the necessary tools to compute scientometric indicators and

some understanding of their relevance. Using software creates a gap between the user

and the actual data, which may lead to issues if the assumptions necessary for the

indicators’ relevance are overlooked. Data-driven decisions can become inefficient if

the algorithm used is a black box and is misused. A solid background in how and

why these indicators are created is necessary to limit bias in selecting indicators when

used in research. As seen in Section 3, every indicator has its pros and cons, different

hyperparameters (time window, re-utilization, number of samples, and others), and

is highly dependent on the database used. The coverage varies greatly depending

on the database (language, fields, nationality, and others) [Sugimoto and Larivière,

2018]. These aspects and the increasing number of novelty indicators create arbi-

trary decision-making when using them. Sugimoto and Larivière [2018] suggests that

indexing and classification of documents differ between databases, making it chal-

lenging to reproduce studies on other databases. Constructing a general indicator

applicable to all scientific disciplines is difficult, as citation habits are heterogeneous,

making comparisons between fields risky [Carayol et al., 2019] (proposing to compute

scores by field, but this is not the norm). Depending on the country, methods and

standards may differ within a discipline, and the historical practice of a field may

change the representations.

Improving novelty measurement is essential for supporting innovative research.

Highly novel documents are less likely to be cited in the short run and are less likely to

be published in high-impact factor journals [Wang et al., 2017, Mairesse et al., 2021].

Due to the pressure from citation count evaluation, the exploration of science is less

likely to occur. Researchers may tend to conform to conventional references within

their field, which is already accentuated during the submission process. Documents

that are already highly cited, considered stepping stones in the field, will thus receive

even more citations, creating a vicious circle. This vicious circle has the consequence

of narrowing research, where only those who agree with the existing paradigm are

rewarded with citations.

This phenomenon is already observed in AI research, where topics become in-

creasingly less diverse [Klinger et al., 2020]. The goal of science is not to persist with

merely satisfactory solutions but to explore a range of possibilities, even those that

may prove fruitless. Citation indicators typically do not emphasize researchers who

take risks by attempting novel approaches. Various funding methods exist to sup-

port high-risk, high-reward (i.e., highly novel) research [OECD, 2021]. Experts are
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not free from bias when evaluating novelty, funding processes are not uniform, and

many decisions remain arbitrary. Currently, none of them uses novelty indicators

to evaluate proposals. Novelty measurement might be relevant in providing reliable

information when awarding grants to research proposals.

We conclude this discussion with a roadmap and our aspirations for Novelpy. The

primary feature we aim to develop in future versions is automatic execution using

well-known databases (PATSTAT, Microsoft Academic Knowledge Graph, Arxiv,

etc.). At present, users must pre-process data to match our format. Although we

provide a comprehensive example and make the sample available here https://

novelpy.readthedocs.io/en/latest/usage.html#id5, we believe that expanding

the accepted inputs will aid researchers in working on improving novelty indicators.

The second feature we plan to add is a time complexity analysis. To conduct a

proper benchmark between indicators, we need to compare their computing speeds.

Users can currently perform this manually, but we intend to streamline the process

and add plots to address this gap. Finally, we will selectively add new and past

indicators. Anyone interested in contributing to the module can visit GitHub https:

//github.com/Kwirtz/novelpy and create a pull request.
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Chapter 4

Unpacking Scientific Creativity: A

Team Composition Perspective

This chapter was co-authored with

Kevin Wirtz

Summary of the chapter

This paper investigates the relationship between cognitive diversity within scientific teams

and their ability to generate innovative ideas and gain scientific recognition. We pro-

pose a novel author-level metric based on the semantic representation of researchers’ past

publications to measure cognitive diversity at individual and team levels. Using PubMed

Knowledge Graph (PKG), we analyze the impact of cognitive diversity on novelty, as mea-

sured by combinatorial novelty indicators and peer labels on Faculty Opinion. We assessed

scientific impact through citations and disruption indicators. Cognitive diversity between

team members appears to be always beneficial to combine more distant knowledge. We

show that while the effect is positive, it is marginally decreasing. Our findings reveal

also that within-team average exploratory profiles follow an inverse U-shaped relationship

with combinatorial novelty and citation impact. We show that the presence of highly ex-

ploratory individuals is profitable to generate distant knowledge combinations only when

balanced by a significant proportion of highly exploitative individuals. Also, teams with

a high share of exploitative profiles consolidate science, while those with a high share of

both profiles disrupt it. These results emphasise the implication of team composition in

scientific creativity, suggesting that combining these two types of individuals leads to the

most disruptive and distant knowledge combinations.
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4.1 Introduction

Creativity is a crucial driving force in fostering the production of new knowledge in

an ever-growing landscape of scientific research and technological innovation [Geuna,

1999, Amendola et al., 2014, Witt, 2016]. A broadly accepted definition of creativity

assumes a bipartite composition involving a combination of novelty and effectiveness

[Runco and Jaeger, 2012]. As science moves towards a team-based model [Wuchty

et al., 2007], the creativity of scientific publications should be studied from a social

perspective. The cognitive dimension (i.e. differences in thinking, problem-solving

approaches, and perspectives among individuals) plays a crucial role in enabling ex-

change of information and creation of new knowledge [Nooteboom, 2000, Nooteboom

et al., 2007]. It is induced by individuals’ characteristics and the trade-off carried out

between exploration and exploitation [March, 1991] of the knowledge space during

their career. In the context of science, exploration involves actively pursuing the ex-

pansion of one’s understanding and curiosity across various areas of knowledge. On

the other hand, exploitation refers to individuals specializing in a specific field and

continuously building upon their expertise in that area. The presence of individuals

with exploratory profiles appears to facilitate communication among team members

who are cognitively distant and foster creativity as the intersection of different per-

spectives is commonly required to solve complex scientific problems [Page, 2008].

This paper aims to study the extent to which the exploratory nature of scholars

and the cognitive diversity of scientific teams shape their ability to generate innova-

tive ideas and obtain scientific recognition. We propose a new author-level measure

of cognitive diversity based on the semantic representation of their past papers; this

metric allows us to proxy both intra-individual and inter-individual cognitive dimen-

sions and their impacts on creativity in science.

In scientific creativity, originality and success emerge as two essential components

[Runco and Jaeger, 2012]. However, the focus has predominantly shifted towards suc-

cess. The excessive emphasis on success through measures such as citation counts for

articles or authors has been found to constrain novelty and originality by providing

limited incentives for researchers, ultimately leading to suboptimal research choices.

The reliance on an impact metric to reward and evaluate researchers created a harm-

ful behavior whereby scientists maximize the metric to become more appealing to

funding agencies or institutions. As Goodhart’s law states, “when a measure becomes

a target, it ceases to be a good measure” [Goodhart, 1984]. The h-index, although

heavily criticized, became a central evaluation instrument of researchers [Costas and
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Franssen, 2018]. And this negatively impacts novelty as innovative research tends

to be less cited in the short run [Wang et al., 2017]. Researchers are discouraged

from opting for a more exploratory approach when developing a research question,

as work that is too innovative tends to be rejected when it deviates too much from

the established paradigm [Carayol and Dalle, 2007, Trapido, 2015].

Career choices are directly affected by this phenomenon. Given the heterogeneity

in terms of the impact of novel research, researchers have less incentive to produce

too innovative work because of the uncertainty linked with novel research. In the

short term, individuals might turn to more conventional research questions to max-

imise their h-index while minimizing the risk associated with novel research.The bias

toward maximizing the h-index already has a tangible impact on limiting novelty in

various research fields. The imbalance between growth in the scientific workforce and

research funding has led to ’hyper-competition’ in the medical sciences; the scien-

tific system favors individuals who can ensure outcomes over those with potentially

groundbreaking ideas that might disrupt the field [Alberts et al., 2014]. Such a focus

of the researcher on his or her impact is done at the expense of his or her novelty,

showing a clear disconnection between the goal of science and its operationalization.

One of the goals of science is to advance the boundary of the knowledge space

[Shi et al., 2015, Witt, 2016, Veugelers and Wang, 2019]. The novelty (also referred

to as originality or invention) lies at the cornerstone of innovative research, bridging

existing knowledge and unexplored scientific territories. Effectiveness, on the other

hand, refers to the recognition attributed to this novelty. Novelty is at the foundation

of peer recognition and acts as a “reward system” wherein the individual credited

with the initial discovery garners recognition. [Merton, 1957, Stephan, 1996, Carayol

et al., 2019]. Novelty is crucial for scientists to develop new solutions to the grand

challenges of the century (climate change, poverty, global pandemics, and others)

[Petersen et al., 2021]. Highly innovative research is frequently referred to as “High-

Risk High-Reward” (HRHR) to reflect its high volatility of outcomes (i.e., novelty

does not imply effectiveness). In particular, highly novel research receives more

citations on average, but the uncertainty is also more considerable [Wang et al.,

2017]. Funding opportunities are limited for innovative research due to its risky

nature [Ayoubi et al., 2021, OECD, 2021, Franzoni et al., 2022]. Multiple grant

initiatives try to support HRHR research, and funding decisions are all based on

expert judgment [OECD, 2021]. But there is a direct bias towards novelty when

scholars evaluate a peer’s work [Wang et al., 2017, Ayoubi et al., 2021] and the effect
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is accentuated by the intellectual distance with the examiner [Boudreau et al., 2016].

Measures such as novelty indicators attempt to estimate the originality of a document

and might guide experts to support innovative research. Yet, these novelty indicators

are still relatively recent and understudied as it is mostly intended to explain success.

As a result, it is essential to explore and validate new methods to understand better

how to detect potential innovative and impactful research based on different criteria

than past novelty or previous success.

Not all idea combinations are worth exploring, hence the challenge of distin-

guishing between novel and impactful ones. [March, 1991] distinguishes two different

strategies for invention in organizations: “Exploration and exploitation”. Exploita-

tion focuses on a combination of ideas that are closely related to each other, thus

representing a low-risk strategy. On the other hand, exploration represents the nav-

igation through the knowledge space to combine more distant ideas, inducing more

volatile results. March [1991] supports the idea that a mix of exploitation and ex-

ploration is the key to organization’s survival. Put differently, producing a valuable

invention would require a proper mix of typical and atypical combinations of knowl-

edge, as seen in Uzzi et al. [2013]. This dichotomy has been studied in different

domains, as mentioned in Foster et al. [2015] (e.g., ”conformity” versus ”dissent” in

the philosophy of science), and can also be applied to research. As the body of knowl-

edge in science expands, researchers increasingly specialize their competencies [Jones

et al., 2008, Jones, 2009] and thus are better able to recombine information locally in

the knowledge space, facing incentives to collaborate [Fleming, 2001, Boudreau et al.,

2016]. Science is seen as a social phenomenon [Fleck, 2012]. Indeed, agents that re-

combine knowledge are individuals embedded in a social context, and cognitive and

social phenomena strongly influence the invention process [Fleming, 2001]. Team

size has been shown to impact creativity [Paulus and Nijstad, 2003, Shin and Zhou,

2007, Wuchty et al., 2007, Falk-Krzesinski et al., 2011, Erren et al., 2017, Mueller,

2019]; however, the authors’ characteristics have not been adequately considered in

the process as current novelty indicators primarily focus on the information within a

document1. We contend here that the cognitive distance between co-authors and the

team composition of a research paper may be among the most critical factors influ-

encing knowledge creation. So, based on the concept of exploration and exploitation,

we propose an indicator that serves as a proxy for exploratory vs. exploitative trade-

1E.g. references, text, keywords. A detailed review of classical re-combinatory novelty indicators
can be found in Pelletier and Wirtz [2022].
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off at both the individual and team levels through past publications. In a nutshell,

our indicator measures the cognitive distance between team members as well as the

individual propensity to work on various subjects.

We are unaware of previous studies that have used individuals’ past research

experiences to investigate how the cognitive dimension influences the novelty and

recognition of the resulting articles. Note that we do not consider our indicator as

a replacement for current novelty indicators but rather as a tool that could enhance

our understanding of the mechanisms behind creativity. In fact, by incorporating the

cognitive dimension into novelty studies, we can develop a more comprehensive un-

derstanding of the complex relationship between cognitive aspects, interdisciplinary

efforts, and the nature of scientific innovation. Furthermore, examining these ques-

tions enables us to provide valuable insights and guidance for researchers and insti-

tutions striving to enhance scientific progress while avoiding potentially misleading

interpretations of research performance measurement.

Using PubMed Knowledge Graph (PKG), we empirically investigate the role of

these cognitive diversities in the production of novel research outcomes and the ability

to obtain scientific recognition. We performed the analysis on novelty on five com-

binatorial novelty indicators [Uzzi et al., 2013, Lee et al., 2015, Foster et al., 2015,

Wang et al., 2017, Shibayama et al., 2021], both on references and MeSH terms, as

well as on perceived novelty, using labels submitted by researchers to qualify the

contribution of an article (Faculty Opinion)2. For scientific recognition, we rely on

the traditional number of citations and six indicators of disruption and consolidation

[Wu et al., 2019, Bu et al., 2019, Bornmann et al., 2019a].

Our findings emphasize the crucial role of cognitive dimensions in creativity, sig-

nificantly impacting originality and success. We show that cognitive diversity always

seems beneficial to combine more distant knowledge. In contrast, the within-team

average exploratory profile follows an inverse U-shaped relation with combinatorial

novelty (i.e. there is a turning point where it is no longer beneficial). The same re-

lation can be found with citation counts, but we show that the cognitive dimension

also strongly influences the nature of citations. Teams with more exploitative profiles

consolidate science, while those with high exploratory profiles disrupt it only if they

are associated with exploitative researchers. The union of those two types of individ-

uals leads to the most disruptive and distant knowledge combinations. To maximize

the relevance of these combinations, maintaining a limited number of highly ex-

2More information can be found here: https://facultyopinions.com/
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ploratory individuals is essential, as highly specialized individuals must question and

debate their novel perspectives. These specialized individuals are the most qualified

to extract the full potential from novel ideas and situate them within the existing

scientific paradigm.

The remainder of the paper is organized as follows. In section 4.2 we review the

existing literature. Section 4.3 details the creation of our metrics and the method-

ology for addressing our research questions. Section 4.4 presents the results of our

analysis. Section 4.5 concludes the paper and outlines future directions for develop-

ing novelty indicators.

4.2 Background and literature review

This section highlights the team’s relevance in fostering creativity in science and

emphasises how team size can influence this process. We also underscore the impor-

tance of identifying the social dimensions of the team, a crucial factor in generating

new knowledge. Finally, we propose a new approach based on the semantic repre-

sentation of authors’ past publications that allows studying the role of the cognitive

dimension in a team’s ability to produce new and impactful knowledge.

4.2.1 Team science as an engine of creativity

Over the past two decades, there has been a significant increase in interest surround-

ing the Science of Team Science (SciTS) [Falk-Krzesinski et al., 2011]3. Since the

1950s, the average number of authors per paper has risen across all scientific disci-

plines [Wuchty et al., 2007]. Research collaborations have also become more diverse,

inter-institutional collaborations in science and engineering and social science grew

by 32.8% and 34.4%, respectively, between 1975 and 2005 [Jones et al., 2008]. In

addition, international collaboration has also expanded, with one in five research

projects now involving multiple countries [Xie and Killewald, 2012].

Teamwork has proven to be a practical approach to producing impactful scien-

tific results. Articles written by teams tend to have a higher impact, receiving more

citations on average and are more likely to become influential than articles authored

solely [Wuchty et al., 2007, Whitfield, 2008]. Researchers benefit from collabora-

tion in various ways. Collaborative efforts can enhance rigour through co-authors’

3For an up-to-date and comprehensive review, see Wang and Barabási [2021].
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verification [Leahey, 2016] and facilitate the dissemination of their work beyond

their immediate networks [Leahey, 2016]; this effect is further amplified when col-

laborations are international or inter-institutional [Adams, 2013, Jones et al., 2008].

Additionally, teams have better access to resources, as projects executed by groups

are more likely to apply for funding and succeed in obtaining it [Rawlings and Mc-

Farland, 2011]. Teams are more likely to produce novel articles than solo-authored

publications [Carayol et al., 2019, Uzzi et al., 2013, Wagner et al., 2019]. As highly

cited work is often associated with a combination of novel and conventional ideas

[Uzzi et al., 2013], teams of researchers may be more adept at generating novel ideas

or striking a balance between novel and traditional concepts than individual authors.

Successful team performances put individuals and their interactions at the heart

of the creative process. Over recent decades, the perception of teamwork has under-

gone significant changes. In the early 1990s, the prevailing belief was that groups

should not be used for creativity because of inherent process loss in the creative

process. This perspective has shifted dramatically, and team collaboration is now

considered a critical factor in promoting creativity [Paulus and Nijstad, 2003]. Cre-

ativity relies on individual’s existing knowledge base: “Creative thinking cannot hap-

pen unless the thinker already possesses knowledge of a rich and/or well-structured

kind” [Boden, 2001]. Knowledge exists on a continuum, ranging from explicit to

tacit [Nonaka, 1994]. The generation of new knowledge occurs through interactions

between explicit and tacit knowledge via a process known as the socialization, exter-

nalization, combination, and internalization (SECI) spiral. Tahamtan and Bornmann

[2018] highlighted various approaches reported by researchers for fostering creativity.

Engaging in conversations with colleagues seems to remain central to problem-solving

and generating new, practical ideas. Hence, new ideas are becoming more challeng-

ing to discover as the idea space expands linearly while scientific publications grow

exponentially [Bloom et al., 2020, Milojević, 2015]. As scientific knowledge increases,

team sizes grow, and agents increasingly specialize their competencies [Jones et al.,

2008, Jones, 2009].

The burst of possible combinations in the knowledge space suggests that agents

can more effectively recombine information locally [Fleming, 2001]. “Local search”

for an inventor involves exploiting existing combinations or using standard techno-

logical components. Agents tend to direct their research towards familiar subjects,

focusing on topics related to their expertise or that of their co-authors (local search/-

exploitation) [Fleming, 2001, Nelson, 1985, March, 1991]. Conversely, exploration (or
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”distant search”) is characterized by using new components or testing novel combi-

nations [Fleming, 2001, March, 1991]. The nature of the new combinations realized

depends on agents’ trade-offs between exploiting and exploring the knowledge land-

scape. Exploitation reduces the risk of failure, as researchers draw from experience

with combinations and architectures that have previously failed [Vincenti, 1990].

Researchers must then collaborate with others to explore the knowledge space more

efficiently, and the team’s composition might determine this balance between explo-

ration and exploitation.

4.2.2 Team characteristics in the creative process

We review here some dimensions of the team composition that affect the scientific

process.

Size dimension: The importance of co-authors during the process of creativity

has been debated in the literature, and the effect of team size and composition on

creativity has been the focus of multiple studies [Paulus and Nijstad, 2003, Shin

and Zhou, 2007, Wuchty et al., 2007, Falk-Krzesinski et al., 2011, Erren et al., 2017,

Mueller, 2019]. Team size shapes and is shaped by the nature of the work carried

out. Large teams tend to be more risk-averse and consolidate a field rather than in-

troducing new opportunities [Christensen and Christensen, 2003, Paulus et al., 2013,

Lakhani et al., 2013, Wu et al., 2019]. Larger teams use more up-to-date and influ-

ential research in their work, consequently fostering greater engagement within their

scientific community and further increasing their impact [Wu et al., 2019]. However,

large teams are more prone to coordination and communication failures as the entire

team must have faith in the project to succeed, as agreement and communication

between team members can be challenging and time-consuming [Bikard et al., 2015].

In fact, the number of people involved in a project can have heterogeneous effects

on creativity, and no optimal team size fits every project. A small team may be

more useful in the conceptualization phase, while a larger team might be beneficial

in the implementation and testing phase of the project [Wang and Barabási, 2021].

Shin and Zhou [2007] highlight the organization’s importance for creativity. Using

evidence from Cambridge and AT&T’s Bell Laboratories (home to numerous Nobel

Prize winners), they discuss researchers’ ideal context for fostering creativity and

conclude that the presence of a healthy environment for a small group of people

(up to seven) promotes creativity. These results are further confirmed by Lee et al.

[2015] and Carayol et al. [2019], indicating that the relationship between team size
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and novelty appears U-shaped and is highly heterogeneous across disciplines.

Structural and relational social capital : Nahapiet and Ghoshal [1998] conceptu-

alize three dimensions of social capital that impact intellectual capital development:

structural, relational and cognitive. Though primarily used to understand intellec-

tual capital development in organizations and firms, the dimensions of social capital

presented in Nahapiet and Ghoshal [1998] can be applied to the context of knowledge

production in science due to their intrinsic relevance to relationship and network dy-

namics [Liao, 2011]. Structural capital examines the links between individuals, and

structural distances have been widely studied through collaboration networks (see

Kumar [2015] for an extensive review on network collaborations). Relational capital

represents the nature and intensity of the connections between team members. A

critical factor in intellectual development is the ability to communicate with each

other, and the actors’ experience reinforces the phenomena [Taylor and Greve, 2006,

Liao, 2011, Kelchtermans et al., 2020]. For instance, McFadyen and Cannella Jr

[2004] emphasize the role of the intensity of past relationships between scientists in

fostering new knowledge. Indeed, members with strong relationships, norms, obli-

gations, and mutual trust tend to communicate more easily [Liao, 2011]. Other

relational aspects, such as hierarchical or geographical dimensions, also impact the

knowledge space exploration. For example, supervising doctoral students is not only

associated with entering new areas but also extending towards more distant fields

[Kelchtermans et al., 2020] – See also Chapter 2 of this thesis.

Cognitive social capital : The cognitive capital remains challenging to measure as

it is linked to the shared background between coauthors and their common language.

Cognitive diversity is often encouraged through interdisciplinary projects as the in-

tersection of different perspectives is commonly required to solve complex scientific

problems [Page, 2008]. Indeed, people from outside a domain may have some ad-

vantage to offer fresh ideas through their distinct knowledge [Jeppesen and Lakhani,

2010, Kuhn, 1962]. The effectiveness of generating new knowledge is impacted by

factors such as variations in background, belief and reasoning styles among scien-

tists, all of which contribute to cognitive diversity. The cognitive distance between

team members is expected to display an inverted U-shaped correlation with both

learning and innovation [Nooteboom et al., 2007], as people being too distant will

face difficulty in communicating, and those being cognitively too similar benefit less
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from distinct perspectives in the knowledge creation process.

Cognitive distances between individuals can be studied through various metrics.

Kumar et al. [2017] used, for example, citations networks and citations context in

full text. Boudreau et al. [2016] represented the cognitive distance between funding

evaluators and the proposal through MeSH terms similarity. Similarly, Ayoubi et al.

[2017] represent the distance between the focal scientist and her team by comparing

cosine similarities of referenced journals from scientists’ past publications. Other

measurements, without being explicit, may relate to cognitive dimensions, Wagner

et al. [2019] discovered that international collaborations negatively affect novelty and

produce more conventional knowledge combinations, highlighting barriers and trans-

action costs that influence the production of creative work. Finally, measures of cog-

nitive distance strongly relate to interdisciplinarity. Petersen et al. [2021] represent

author diversity using the discipline of the institution. Using authors’ disciplinary

diversity, Abramo et al. [2018] show that more distant coauthors produce articles

with more diverse references.

Exploratory profile: Individual characteristics and the ability to interact with in-

dividuals from different fields are essential to efficiently managing cognitive diversity

in a team. When the distance between disciplines is too high, a “Renaissance” in-

dividual [Jones, 2009] can ease their connection [Wu et al., 2022]. The presence of

a scientist with a multifaceted profile bridges the gap between the different back-

grounds of other team members. This is crucial as a shared knowledge base between

researchers streamlines the socialization process and facilitates knowledge recombina-

tion, fostering creativity. Shin and Zhou [2007] focused on the relationship between

diversity (interdisciplinarity) and creative ideas in groups. Shin and Zhou [2007]’s

idea is that the presence of a ”transformational leader”, whose role is to mediate

between individuals, each specialized in a different field, leads to greater team cre-

ativity. Xu et al. [2022] provided a first answer to this hypothesis by examining

the share of team members engaged in the conceptual work, the L-ratio, which was

deduced from the analysis of author contribution reports. The findings suggest that

hierarchical teams generate less novelty than egalitarian teams and tend to develop

existing ideas more frequently.4 We argue that the notion of transformational leader

4Interestingly, their method was expanded in an article with no contribution reports. Through
Louvain algorithms, they identified clusters of co-occurring research activities in their first dataset.
They then built a neural network to infer author roles based on their characteristics and predicted
it for 16 million articles on Microsoft Academic Graph (MAG).
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or renaissance individual is connected to exploratory profile à la March [1991], indi-

viduals enabled to link others in the knowledge space due to their ability to navigate

in different spaces.

4.2.3 Exploring the cognitive dimension

We investigate scientific impact through citation networks and recent indicators of

disruption and breath and depth Wu et al. [2019], Wu and Wu [2019], Bu et al.

[2019], Bornmann et al. [2019a]. These indicators determine whether a document

consolidates a domain or constitutes a founding step. To explore its influence on

novelty, we use two approaches, one based on combinatorial novelty indicators [Uzzi

et al., 2013, Lee et al., 2015, Foster et al., 2015, Wang et al., 2017, Shibayama et al.,

2021] and one based on external validation via Faculty Opinion (previously called

F1000) following Bornmann et al. [2019b]. Faculty Opinion is a website hosting re-

views of papers tagged as presenting “New Results”, “Novel Drug target”, “Technical

advancement”, “Interesting hypothesis”, and “Controversial results”, among other

categorizations labelled by experts in the field. It allows us to empirically assess the

capacity of novelty indicators and our indicators to predict the novelty as perceived

by other researchers in the community.

Novelty indicators have been compared and evaluated based on citation count

[Uzzi et al., 2013, Lee et al., 2015, Foster et al., 2015, Wang et al., 2017]. Fontana

et al. [2020] compared Wang et al. [2017] and Uzzi et al. [2013], Lee et al. [2015] using

randomized citation networks and demonstrated the ability of the Uzzi et al. [2013],

Lee et al. [2015] indicators to better track novelty. Their findings are supported by

using some Nobel Prize winners’ articles and a list of APS milestone articles. Other

studies have evaluated these indicators based on surveys, such as Shibayama et al.

[2021] and Matsumoto et al. [2021], whereas Bornmann et al. [2019b] have evaluated

them based on labels collected on Faculty Opinion and found similar results as in

Fontana et al. [2020]. However, only a few indicators have been compared and tested

simultaneously. This study intends to validate the effect of the cognitive dimension

on a large variety of metrics.

Our indicator is not a substitute for other novelty indicators. It does not repre-

sent the novelty of an article as it is based upon previous information and would be

similar even without the focal article. Instead, it provides an understanding of team

composition that would benefit creativity in science. We can think of our measure

as a measure of potential novelty, i.e. opportunities for new knowledge recombina-
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tion available through the diversity of background in the team and the capacity of

individuals to bridge the gap between other team members. In comparison, combi-

natorial novelty indicators would capture then the realized novelty, i.e. the output of

the research conducted by this team in terms of pieces of knowledge used. Finally,

Faculty Opinion labelling and other external validation methods can describe the

perceived novelty, i.e. the peers’ perception of this study. Hence, in these terms,

we ask whether potential novelty contributes to realized and perceived novelty and

its scientific recognition. Two research questions can be drawn regarding the effect

of the cognitive dimension on creativity. Do teams with higher cognitive diversity

are more likely to approach a subject creatively, demonstrating originality (perceived

and realized) and recognition? Does the presence of explorative individuals within

a team enhance communication among members and facilitate their exploration of

the knowledge space to develop new and relevant solutions to research problems?

Studying the cognitive dimension of creativity in science is of great interest, espe-

cially as it can help identify how to improve collaboration and communication among

researchers with diverse cognitive profiles. Through our metric, we also offer a differ-

ent approach to resource allocation decisions, giving another picture of teams with

a high potential for creative output.

4.3 Data and methods

4.3.1 Measuring cognitive diversity and exploratory profile

The proposed metric examines the semantic heterogeneity of researchers’ work as a

proxy for their cognitive diversity. It thus offers an alternative to using categories,

keywords, or citation networks, more complex to be monitored directly by the re-

searchers themselves. Following Hain et al. [2020] and [Shibayama et al., 2021], we

can embed this list of documents in a vectorial space to apply a distance measure

such as cosine similarity [Mikolov et al., 2013b]. We assume that an author of a

paper in a specific position within the semantic space possesses knowledge embed-

ded around that position. Our indicator has two properties: it offers a measure

of researchers’ profiles at the individual level and a measure of distances between

them. Consequently, we can proxy the trade-off between exploitation and explo-

ration that a researcher undergoes throughout their career (intra-individual) and the

trade-off materializing during the formation of a team (inter-individual) within the
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same mathematical space.

Figure 4.1: Construction of the indicator

As explained in Figure 4.1, we track authors to create a list of authors’ past

publications. Then, we can create a cognitive profile for each author at a given time

t; each publication is embedded in the semantic space and represents the cognitive

landscape of the author. We restrict to publications up to b years before t to account

for researchers’ current topics of interest and difficulty retaining information [Argote

et al., 1990]. We can finally define a researcher’s exploratory profile at time t by

calculating pairs of cosine distances between past papers published. This will create

a density of cosine distances which, using the taxonomy of March [1991], can be

interpreted the following way: the fatter the right (left) tail is, the more exploratory

(exploitative) the researcher. The same holds for the team. A sizeable right tail in-

dicates a cognitively distant researchers team. This provides us with information on

how distant their knowledge base is from others. The greater the distance, the less

likely their respective knowledge space can be combined, thus affecting the probabil-

ity of combining novel ideas. An intra-author and inter-author distribution enables

a wide exploration of the relationship between novelty, creativity, and teams.
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the set of past publications Outt−b
a . All Outt−b

a elements vectorial representations are

compared, from which distribution of cosine distances are calculated. The distance

between two documents i, j ∈ Outt−b
a is dij = 1 − COS(Ti, Tj) where Ti is the dense

vector text representation for document i.

Intra-author semantic distances: A distribution of semantic distance score Da is

computed through cosine similarity using all document i, j ∈ Outt−b
a , the process is

repeated for each authors a ∈ InFP . The intra-author distance for a given author a

is the q-th percentile (Pq) of this distribution and is written as:

Intraa = Pq(Da)

A general distribution of the intra-authors publication distances is constructed

using the set of distances for all authors AFP = {Da : a ∈ InFP}, the individual

trade-off between exploitation/exploration is then captured through the average of

the exploratory profiles in a given team.

IntraFP =

∑

a(Pq(Da))

|InFP |

Inter-authors semantic distances: A distribution of semantic distance score be-

tween authors’ previous work is constructed by comparing different authors’ pub-

lications. For two given authors a, e ∈ InFP , |Outt−b
a | × |Outt−b

e | distances are

used to construct the distribution of distances Da,e between a and e. The final

distribution then groups together all distances between authors’ previous works

BFP = {Da,e : a, e ∈ InFP}, the trade-off between exploitation/exploration in team

composition is captured through the percentile of BFP :

InterFP = Pq(BFP )

Current techniques for large-scale author disambiguation allow the investigation

of individual trajectories in science. However, the use of this information comes with

a computational cost. This indicator pushes towards a massive use of data because

one needs all authors’ past publications for a given set of documents. Structur-

ing the data to compute the measure is time-consuming and data-intensive. One

needs indeed all papers’ text from all authors in a given database. However, using

pre-trained embedding models allows direct computing indicators without the re-
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quirement of complete database access. Therefore, measures are not dependent on

the study sample as indicators of novelty based on cooccurrence matrices but rather

on the sample used to train the model. Also, by processing titles and abstracts

through embedding techniques, the authors’ background is represented with greater

granularity than through the keywords or the journals where the authors have been

published.

4.3.2 Data

Our analysis relies on two databases. The first, PubMed Knowledge Graph (PKG),

allows us to test the effect of the cognitive dimension on scientific impact and realized

novelty of articles, while the second, Faculty Opinion verifies whether the cognitive

dimension affects the perceived novelty by peers.

We use Pubmed Knowledge Graph (PKG), a collection of 35 million scientific

papers and books from life science and biomedical journals provided by the National

Library of Medicine (NLM) at the National Institutes of Health (NIH). Authors are

disambiguated by leveraging Natural Language Processing (NLP) and online data,

as outlined by Xu et al. [2020]. We based our analysis on all the 3.5M articles writ-

ten by 3,276,250 authors and published in 9,348 journals between 2000 and 2005.

We selected fairly old data due to the nature of the process studied. Indeed, novel

articles are more likely to become ”sleeping beauties” and accumulate citations in

the long run [Lin et al., 2021]. Also to compute novelty indicators, we require in-

formation about references. We rely both on abstracts of references to embed their

semantics and calculate the distance as in Shibayama et al. [2021]. Also, we use past

publication references’ journals to build past cooccurrence matrices used to capture

combination existence and difficulty for other novelty indicators. For this purpose,

we used the database between 1980 and 2005 to get all information needed, repre-

senting 11,261,955 documents.

To test if our indicators affect the novelty perceived by peers, we used Faculty

Opinion following Bornmann et al. [2019b]. Faculty Opinion is a database featuring

papers tagged as presenting ’New Results’, ’Novel Drug target’, ’Technical advance-

ment’, ’Interesting hypothesis’, and ’Controversial results’, among other categoriza-

tions determined by the platform users. The platform hosts reviews of the most

significant research in Biology and Medicine. This makes it easy to match the arti-

cles in the database with PKG. Indeed, from the 190k articles in Faculty Opinion,

we found 27,122 in our sample (2000-2005).
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4.3.3 Empirical strategy

To explore the relationship between the team’s cognitive dimension and its ability to

recombine pieces of knowledge in novel ways and achieve recognition, we start with

a basic exploratory data analysis followed by three econometric analyses to test our

hypotheses.

The first two analyses aim to understand how a team’s cognitive diversity and

the exploratory profiles of its members impact perceived novelty (i.e., peer labelling

on Faculty Opinion) and realized novelty (i.e., indicators of combinatorial novelty).

Then our analysis seeks to comprehend the effect of the cognitive dimension on

scientific recognition using citation and disruption measures.

Realized novelty and scientific impact connections with cognitive dimension are

both investigated through PKG, the normalization performed at the field and year

levels of this measure provides a measure ranging between 0 and 1, which we model

using linear models with cluster robust standard errors at the journal level. Lastly,

we examine how the presence of highly exploratory and exploitative individuals in-

fluences the team’s creativity. This analysis will help determine if cognitive diversity

and the presence of exploratory profiles are explicitly visible in an article’s knowledge

composition.

For the analysis of perceived novelty, we employ the Faculty Opinion database

and model, through Logit and Poisson regressions, the likelihood of an article be-

ing labelled with “novel” categories (“Technical Advance”, “Interesting Hypothesis”,

“Novel Drug Target”). In our sample, 80% of the observations are labelled as ’New

Findings’, and 95% of the total sample would be considered new using the top 4 most

represented categories (22,216 novel articles versus 1,750 not-novel). The fact that

most articles are labelled as new findings makes this category less informative; there-

fore, we decided to exclude it and remove articles solely labelled with this category.

As a result, our prediction is based on a more balanced sample (8,950 novel articles

versus 3,605 not-novel). This will enable us to understand whether the cognitive

dimension is associated with perceived novelty. We do not expect a direct effect but

rather hypothesize that cognitive diversity influences a latent variable representing

the article’s actual contribution. This actual contribution of the paper may or may

not be visible in the realized novelty measured by novelty indicators but might be

then reflected in labelling made by peers.
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4.3.4 Variables

Variables used in our empirical analysis can be separated into four categories: novelty

indicators, scientific impact, cognitive, and control variables. For control variables,

aside from data from PKG, we use journals listed in Scimago to control for scientific

domains and measure of the impact associated with the journal. Each of our vari-

ables is at the paper level. For the empirical strategy, novelty, impact and cognitive

measures will be field weighted by year using the percentile rank procedure – noted

(FW). We use the first category of the journal from Scimago to approximate the

field.

Novelty indicators

The indicators used in our analysis are Uzzi et al. [2013], Lee et al. [2015], Foster

et al. [2015], Wang et al. [2017], Shibayama et al. [2021]. A formal mathematical

description of them can be found in Chapter 3 of this thesis. Note that we have

inversed the sign of the measures related to Uzzi et al. [2013] for simplicity and

comparison with other indicators. The computation is done with Novelpy5.

Scientific impact variables

For impact measures, we use citation counts and disruptiveness indicators, also de-

scribed in Chapter 3. We used all available indicators in Novelpy, namely: Wu et al.

[2019], Bu et al. [2019] and Bornmann et al. [2019a].

Cognitive variables

Team cognitive diversity: The mean of the inter-authors semantic distance as defined

in Section 4.3.1 with q=90 for a given paper. It measures to what extent a team is

composed of highly cognitively distant authors (i.e. Author 1 background is vastly

dissimilar to Author 2 background). Furthermore, we suppose the relation between

the team’s cognitive diversity and other measures is not linear. We take the square

of the team’s cognitive diversity to test this.

Average exploratory profile: The mean of the intra-authors semantic distance as de-

fined in Section 4.3.1 with q=90 for a given paper. It captures to what extent a team

5Novelpy is a python package that allows computing novelty and disruptiveness indicators.
More details can be found here: https://novelpy.readthedocs.io/
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comprises authors with distant past publications (i.e. Author 1 worked on diverse

subjects). As for team cognitive diversity, we add a square term in the regressions.

Number of highly exploratory authors: To have more information on the team struc-

ture, we decided to define a threshold to identify highly exploratory authors. Looking

at the intra- author’s semantic distance as defined in Section 4.3.1. An author is con-

sidered highly exploratory if its 90th percentile is in the top 10% of all IntraFP in

our sample.

Number of highly exploitative authors: We expect highly exploratory authors to work

best with highly exploitative authors (i.e. Novelty is probably most successful with

a combination of typical and atypical individuals). We construct this measure fol-

lowing the same procedure as exploratory authors. Looking at the intra- author’s

semantic distance as defined in Section 4.3.1. An author is considered highly ex-

ploitative if its 90th percentile is below our sample’s median of all IntraFP .

Interaction term between highly exploratory and highly exploitative authors: We added

an interaction term between the two types of profiles as both competencies might

complement each other.

Control variables

We included as control variables the number of authors, references and MeSH terms.

We also controlled for the year and information related to the journal of publication.

Scimago Journal Ranking (SJR): An indicator of a journal’s prestige based on weighted

citation and eigenvector centrality derived from Scopus’ citation networks by Scimago

[González-Pereira et al., 2009].

Scimago Journal Category: Scimago provides a classification of journals based on

various fields. We used the first category linked to a journal; our database contains

journals from 271 categories.
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4.3.5 Descriptive statistics and preliminary evidence

We further clean our database and restrict it to papers with at least 2 references/

MeSHterms/ authors and with a journal ISSN. Our final dataset represents approx-

imately 2.1M articles.

Table 4.1 presents the descriptive statistics for the variables in our sample. Exam-

ining their distribution, it is worth noting that some indicators concentrate novelty

around a small number of articles, as in Foster et al. [2015] or in Wang et al. [2017],

merely 21% of the articles possess non-zero values (measured on references). Also,

indicators such as citation count or Uzzi et al. [2013] among others, display rela-

tively extreme values. Specifically for Uzzi et al. [2013], it is highly dependent on the

z-score computation, when the variance of the journal combination is minimal, the

z-score can rapidly become substantial. These disparities in distribution prompted

us to apply a percentile rank procedure by field and year, as explained in the previous

subsection.

Table 4.1: Descriptive statistics

Statistic Min. Pctl(25) Median Mean Pctl(75) Max St. Dev. N

# References 2 12 22 27.37 36 2690 25.76 2108280
# Meshterms 2 9 13 13.25 16 51 5.19 2108280
# Authors 2 3 4 5 6 282 2.94 2108280
# Citations 0 9 22 46.99 50 81577 129.47 2108280
SJR 0.1 0.627 1.130 1.787 2.035 39.946 2.22 2094669

Disruption1 -1 -0.007 -0.001 0.003 05179 1 0.06 2108280
Disruption1noK -1 -0.588 -0.269 -0.192 0.111 1 0.51 2108280
Disruption5 -1 0 0.001 0.018 0.009 1 0.07 2108280
DisruptionDeIn 0 0.79 1.662 2.067 2.875 92.5 1.81 2108280
Breadth 0 0.307 0.5 0.517 0.714 1 0.26 2108280
Depth 0 0.258 0.5 0.458 0.672 1 0.26 2108280

Share Exploratory 0 0 0 0.063 0 1.0 0.14 2108280
Share Exploitative 0 0 0.333 0.365 0.6 1 0.32 2108280
Author intra abs 0 0.22 0.29 0.29 0.36 1.02 0.09 1837749
Author inter abs 0 0.26 0.33 0.33 0.40 1.02 0.09 1837748

Shibayama abs 0 0.222 0.274 0.275 0.327 0.991 0.07 2081854
UzziRef -62396.32 -7.34 3.66 -18.03 14.02 199.49 206.82 1891079
LeeRef -17.581 0.145 0.840 0.567 1.466 6.006 1.45 2092283
FosterRef 0 0.117 0.4 0.366 0.583 1 0.25 2092283
WangRef 0 0 0 0.583 0 2872.106 4.79 2092283
UzziMesh -287.0 -1.1 0.9 2.7 4.5 189.1 8.19 765751
LeeMesh -7.996 0.4562 0.807 0.794 1.174 4.717 0.60 2105186
FosterMesh 0 0.274 0.476 0.424 0.591 1 0.22 2105186
WangMesh 0 0 0 0.299 0.307 28.668 0.76 2105186
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The correlogram in Figure 4.3 illustrates the various indicators’ interconnection.

A hierarchical clustering algorithm is applied to the correlation matrix and several

clusters emerge. It includes citation and consolidation indicators, novelty indicators,

cognitive dimension indicators, and disruption indicators. Regardless of whether

MeSH terms or references are used to derive the indicators, the novelty indicators

group remains consistent, suggesting that combinatorial novelty indicators capture

a shared underlying dimension of innovation in scientific research. The correlation

between Lee et al. [2015] and Uzzi et al. [2013] is particularly robust since both mea-

sures are nearly identical except for the incorporation of the reference’s publication

year in Uzzi et al. [2013]’s resampling process. It should be noted that a negative

correlation is expected since low values signify atypicality in Uzzi et al. [2013], while

high values represent novelty in Lee et al. [2015], this is why we inverse the sign of

Uzzi et al. [2013] to get positive correlation between indicators. A strong correlation

is observed between Shibayama et al. [2021] and our indicators, as it employs the

same measurement on references, and some elements may overlap. Specifically, self-

citation increases the correlations between Shibayama et al. [2021] and our indicator

since the same combinations are calculated in the author and reference parts. More-

over, the clustering differentiates between citation count, consolidation indicators

(Depth, DeIN), and disruption indicators (DI1, DI5, DI1nok, and Breadth). These

distinctions emphasize how consolidation indicators are more closely related to cita-

tion count and demonstrate how disruption indicators capture other dimensions of

scientific impact.

The development of an author-level indicator necessitates examining its relation-

ship with team size. Figure 4.4 illustrates how intra- and inter-individual cognitive

indicators are strongly associated with team size. Although it is unclear whether

cognitive diversity generates a specific team size or if team size produces this diver-

sity, it is visible that as the cognitive diversity within a team increases, the average

exploratory profile must also rise to maintain a comparable team size. The hump-

shape relationship on both sides is easily observable, suggesting that the more diverse

the team and/or the more exploratory the individuals, the smaller the team. Con-

versely, highly homogeneous teams typically imply smaller average team sizes, even

if the average exploratory profile is high. This pattern is partially attributable to

the construction of our indicator, which averages distance. In larger teams high

distance between members might be compensated by other members that are close

to each other. This counterbalancing is less pronounced in smaller teams, resulting
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by introducing fresh and innovative ideas from their extensive knowledge. These in-

dividuals can challenge conventional thinking and steer the team in new directions.

Simultaneously, they might foster communication among group members with dis-

tant knowledge. In contrast, highly exploitative individuals are crucial for refining

and optimizing these novel ideas. Their specialized expertise allows the team to iden-

tify feasible and effective solutions, ensuring the creative potential of the exploratory

individuals is appropriately channelled into tangible outputs. Additionally, their

deep understanding of a specific field facilitates effective communication. The highly

exploratory profile complements the specialized knowledge and proficiency of the

highly exploitative team members. This dynamic enables the team to capitalize on

the full potential of their diverse cognitive abilities, optimizing the innovation pro-

cess and yielding scientific advancements.

4.4 Results

4.4.1 Cognitive dimension and novelty

4.4.1.1 Realized novelty

This subsection examines the relationship between the team’s cognitive dimension

and novelty indicators. To this end, we report the results of an OLS to identify the

joint impact of authors’ intra-diversity and inter-diversity on the indicators. The

outcomes of these models are presented in Table 4.2.

First, we confirm that cognitive diversity in a scientific team fosters realized

novelty. Team cognitive diversity (Row 1-2) reveals a significant positive effect on

combinatorial novelty. This suggests distant individuals can ease the combination

of distant journals in the references. The squared term has negative coefficients.

However, the turning point is higher than 1, meaning the relationship is strictly in-

creasing (See Table 4.13 in Appendix). However, it means that the marginal benefit

of cognitive distance is decreasing. When interpreting the coefficients, it is impor-

tant to remember that the independent and dependent variables are expressed in

percentile rank within a given field and year. A one percentage point increase in

the independent variable’s percentile rank implies a β percentage point increase in

the dependent variable. In our case, the marginal effect of a quadratic term depends

Shibayama et al. [2021] as it is measured in a similar manner. Self-citation also directly impacts
the relationship between these two metrics as the same combination of articles will be calculated
in both metrics.
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Table 4.2: Combinatorial Novelty: cognitive diversity and average exploratory pro-
file (Field-Weighted/ References)

Dependent variable:
Uzzi Lee Foster Wang Shibayama
(1) (2) (3) (4) (5)

Author inter abs (FW) 0.169∗∗∗ 0.166∗∗∗ 0.116∗∗∗ 0.098∗∗∗ 0.284∗∗∗

(0.008) (0.007) (0.010) (0.006) (0.007)

Author inter abs 2̂ (FW) -0.031∗∗∗ -0.034∗∗∗ -0.023∗∗ -0.028∗∗∗ -0.118∗∗∗

(0.007) (0.007) (0.009) (0.006) (0.007)

Author intra abs (FW) 0.056∗∗∗ 0.043∗∗∗ 0.041∗∗ -0.002 0.188∗∗∗

(0.014) (0.013) (0.019) (0.008) (0.009)

Author intra abs 2̂ (FW) -0.088∗∗∗ -0.094∗∗∗ -0.084∗∗∗ -0.026∗∗∗ -0.047∗∗∗

(0.011) (0.010) (0.015) (0.006) (0.010)

# References 0.002∗∗∗ 0.002∗∗∗ 0.001∗∗∗ 0.005∗∗∗ 0.002∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

# Meshterms 0.004∗∗∗ 0.006∗∗∗ 0.005∗∗∗ -0.001∗∗∗ 0.004∗∗∗

(0.0004) (0.0004) (0.0004) (0.0002) (0.0004)

# Authors 0.008∗∗∗ 0.007∗∗∗ 0.007∗∗∗ 0.001∗∗∗ 0.007∗∗∗

(0.0004) (0.0004) (0.0005) (0.0003) (0.0003)

SJR -0.012∗∗∗ -0.011∗∗∗ -0.014∗∗∗ -0.008∗∗∗ -0.011∗∗∗

(0.002) (0.002) (0.002) (0.001) (0.001)

Year Yes Yes Yes Yes Yes

Journal Cat. Yes Yes Yes Yes Yes

Observations 1,647,430 1,815,603 1,815,603 1,815,603 1,809,155
R2 0.055 0.062 0.039 0.122 0.130
Adjusted R2 0.055 0.062 0.039 0.122 0.130
Residual Std. Error 0.281 0.278 0.310 0.345 0.267
F Statistic 406.544∗∗∗ 512.283∗∗∗ 315.079∗∗∗ 1,065.575∗∗∗ 1,143.840∗∗∗

Notes: This table reports coefficients of the effect of cognitive diversity and average
exploratory profile on combinatorial novelty using PKG. Standard errors are cluster
robust at the journal level: ***, ** and * indicate significance at the 1%, 5% and 10%
levels, respectively. The effects are estimated with an OLS. Variables are field-weighted
and constant term, scientific field (Scimago Journal Category), and time-fixed effects are
incorporated in all model specifications.

on the value of the independent variable. We can calculate marginal effects at the

mean values of the independent variable. For example, in Uzzi et al. [2013] (model

1), the marginal effect of Author interabs (FW) at the mean value is calculated this

way: ∆y

∆(inter)
= 0.169− 2 ∗ (−0.031) ∗Mean(Inter). Since variables are expressed in

percentile rank, the mean and the median are 0.5. The marginal effect can be then

calculated easily, ∆y

∆(inter)
= 0.169 − ∗(−0.031) = 0.2. This means that by increasing
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one percentage point on the ranking of team diversity in a given field and year, one

can increase by 0.2 percentage points in the ranking of the most novel articles in the

field and year.

On the contrary, the average exploratory profile must remain reasonable to max-

imize novelty. As visible in Table 4.13, the turning points are around 30% for all

indicators except Shibayama et al. [2021], for which it is upper than one. This can

mean two things, and this is what we will examine in the second part of this re-

sults section, either the researchers have a rather moderate explorative profile, or

there is a balance between exploratory and exploitative individuals. A set of profiles

that are too exploratory seems detrimental, as does a set of too exploitative profiles.

As shown in Table 4.2, this holds for all indicators on references, except for Wang

et al. [2017], for which the individual effect is negative, one explanation can be the

fact that Wang et al. [2017] control for future reutilization of the novel combination.

Indeed this gives a ’scientific impact’ dimension to the metrics and the presence of

more specialized individuals may impact the relevance of the combination for the

community, making it more likely to be reused.

On MeSH terms, as visible in Table 4.11 in the Appendix, individual exploratory

aspects appear to have a direct negative impact. Indexers assign the MeSH terms

and may be subject to bias or misinterpretation. In contrast, the references directly

relate to the researchers’ choices and reflect their interests and preferences. There

are two possibilities, indexers may be unable to capture all the nuances and sub-

tleties of research conducted by individuals with high-average exploratory profiles.

Alternatively, the novelty of references could be induced by an author bias in citing

previous works irrelevant to the contribution. Researchers’ past publications do not

directly impact indexers, so she might not need to qualify the article with distant

MeSH terms because the novelty is not sufficiently explicit. This suggests that MeSH

terms do not reflect the diversity of knowledge and ideas present in individual past

work but rather the diversity of competencies between team members.

These relations remain consistent when regressions are not performed using per-

centage rank information, and indicator behavior with MeSH terms and references

seems to be much more corroborated, as visible in Table 4.14 and 4.15 in the Ap-

pendix. The fact that the effect is nearly the same on most of the indicators of novelty

demonstrates the robustness of this analysis - our measure captures something simi-

lar regardless of the construction of the novelty indicator and the information used.
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The potential for novelty seems more apparent when looking at the exact compo-

sition in terms of exploratory profiles, i.e., the share of explorative individuals and

the share of highly exploitative individuals. In Table 4.3, we replace the average

exploratory profile variables with the exploitative and exploratory individual shares

and the interaction of these two variables.

Table 4.3: Combinatorial Novelty: Cognitive diversity, highly exploratory and ex-
ploitative profile (Field-Weighted/ References)

Dependent variable:
Uzzi Lee Foster Wang Shibayama
(1) (2) (3) (4) (5)

Author inter abs (FW) 0.168∗∗∗ 0.163∗∗∗ 0.107∗∗∗ 0.066∗∗∗ 0.400∗∗∗

(0.014) (0.012) (0.020) (0.008) (0.012)

Author inter abs 2̂ (FW) -0.007 -0.006 0.028 0.001 -0.160∗∗∗

(0.012) (0.011) (0.018) (0.007) (0.012)

Share exploratory -0.166∗∗∗ -0.173∗∗∗ -0.214∗∗∗ -0.084∗∗∗ -0.022∗∗∗

(0.007) (0.007) (0.010) (0.004) (0.006)

Share exploitative 0.027∗∗∗ 0.053∗∗∗ 0.057∗∗∗ 0.002 -0.092∗∗∗

(0.003) (0.003) (0.005) (0.002) (0.004)

Share exploratory * Share exploitative 0.298∗∗∗ 0.273∗∗∗ 0.390∗∗∗ 0.080∗∗∗ -0.112∗∗∗

(0.016) (0.016) (0.020) (0.011) (0.018)

# References 0.002∗∗∗ 0.002∗∗∗ 0.001∗∗∗ 0.005∗∗∗ 0.002∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

# Meshterms 0.004∗∗∗ 0.006∗∗∗ 0.005∗∗∗ -0.001∗∗∗ 0.004∗∗∗

(0.0004) (0.0003) (0.0003) (0.0002) (0.0004)

# Authors 0.008∗∗∗ 0.007∗∗∗ 0.007∗∗∗ 0.001∗∗∗ 0.006∗∗∗

(0.0004) (0.0004) (0.0005) (0.0002) (0.0003)

SJR -0.012∗∗∗ -0.011∗∗∗ -0.014∗∗∗ -0.008∗∗∗ -0.011∗∗∗

(0.002) (0.001) (0.002) (0.001) (0.001)

Year Yes Yes Yes Yes Yes

Journal Cat. Yes Yes Yes Yes Yes

Observations 1,647,430 1,815,603 1,815,603 1,815,603 1,809,155
R2 0.059 0.068 0.046 0.122 0.129
Adjusted R2 0.059 0.068 0.046 0.122 0.129
Residual Std. Error 0.280 0.277 0.308 0.345 0.267
F Statistic 436.681∗∗∗ 556.617∗∗∗ 372.829∗∗∗ 1,065.763∗∗∗ 1,132.467∗∗∗

Notes: This table reports coefficients of the effect of cognitive diversity and highly exploratory and
exploitative profiles on combinatorial novelty using PKG. Standard errors are cluster robust at the
journal level: ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively. The
effects are estimated with an OLS. Variables are field-weighted and constant term, scientific field
(Scimago Journal Category), and time-fixed effects are incorporated in all model specifications.

While cognitive diversity appears to be always beneficial to combine new knowl-

edge, the presence of too many explorative individuals is harmful. Indeed, its pres-

ence only becomes beneficial when counterbalanced by a higher share of exploitative
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individuals. We can clearly see how this trade-off is necessary to create novelty in the

regressions. In the same way as before, the coefficients can be interpreted directly, a

percentage point increase in the share of highly explorative individuals increases by

β percentage point in the ranking of the most novel articles in the field and year.

Exploratory individuals will develop new perspectives that specialized individuals

will capitalize on to make them succeed. A larger share of specialized individuals

facilitates communication among members if they are in the same field; otherwise,

scientists with diverse backgrounds appear to facilitate communication among team

members who are cognitively distant [Page, 2008]. This mirrors the ”Renaissance”

individual of [Jones, 2009] or the ”transformational leader” of Shin and Zhou [2007]

who can ease connections between distant members and foster the team’s creativity.

Too many such individuals would make the exploration less efficient, and the

emerging ideas would potentially not be successfully implemented because the em-

bedding of the conducted research in a scientific paradigm would not be sufficient.

The results are similar across novelty indicators, except for Shibayama et al. [2021],

in which the best team composition is made from non-exploitative, non-highly ex-

ploratory researchers. Table 4.12 in the Appendix shows that the results also hold

for indicators based on MeSH terms.

The two sets of results on the impact of cognitive distance and researcher profile

show that combining specialized and exploratory profiles is a good proxy for potential

novelty as it enhances the realized novelty in the team7. While Uzzi et al. [2013] show

that this trade-off between conventional and atypical combinations of knowledge is

the most impactful, we demonstrate that this idea holds at the team level as well

and that these configurations are most likely to achieve atypical combinations.

4.4.1.2 Perceived novelty

In this subsection, we examine the relationship between the cognitive dimension and

novelty as assessed by experts. Specifically, we employ a Logit model to identify the

impact of authors’ intra-diversity and inter-diversity on the likelihood of being classi-

fied in at least one novel category. The results of these models are presented in Table

4.4. The effect of team cognitive diversity plays a positive role in perceived novelty,

as seen in the first and second specifications. This effect is less clear when considering

individual characteristics. The average exploratory profile has a negative impact. In

7Table 4.17 provided in the Appendix shows that the results are similar when considering un-
normalized indicators
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model 3, we can see that our previous results on realized novelty (Table 4.2) only

holds for the cognitive distance between individuals when tested on perceived novelty.

In contrast, when examining the specifications with the share of highly exploratory

and exploitative individuals, the results corroborate the regressions performed on re-

alized novelty. The proportion of highly exploratory individuals has a negative effect.

Instead, typical individuals play a positive role, and the intersection of both types of

researchers is indeed positive for predicting novelty. Note that in this specification,

cognitive diversity between members is no longer significant.

Table 4.4: Faculty Opinions: cognitive diversity and average exploratory profile,
highly exploratory and exploitative profile (Field-Weighted)

Dependent variable:
Novelty Perceived

(1) (2) (3) (4) (5)

Author inter abs (FW) 0.306∗∗ 0.715∗ 0.330
(0.126) (0.388) (0.302)

Author intra abs (FW) -0.532∗∗∗ -0.196
(0.155) (0.419)

Author inter abs 2̂ (FW) -0.438 -0.270
(0.376) (0.325)

Author intra abs 2̂ (FW) -0.364
(0.379)

Share exploratory -0.675∗∗ -1.233∗∗∗ -1.238∗∗∗

(0.275) (0.371) (0.384)

Share exploitative 0.339∗∗∗ 0.317∗∗∗ 0.337∗∗∗

(0.117) (0.118) (0.115)

Share exploratory * Share exploitative 2.360∗∗ 2.289∗∗

(1.052) (1.062)

Control variables YES YES YES YES YES

Observations 12,555 12,555 12,555 12,555 12,555
Log Likelihood -7,076.944 -7,073.965 -7,072.608 -7,070.408 -7,069.551
AIC 14,423.890 14,421.930 14,415.220 14,412.820 14,415.100

Notes: This table reports coefficients of the effect of cognitive diversity, average exploratory profile,
highly exploratory and exploitative profiles on perceived novelty from Faculty Opinions. Standard errors
are cluster robust at the journal level in parentheses: ***, ** and * indicate significance at the 1%, 5%
and 10% level, respectively. The effects is estimated using a Logit model. Variables are field-weighted
and constant term, scientific field (Scimago Journal Category) and time fixed effects are incorporated
in all model specifications.

However, when examining Table 4.7 in the Appendix, we can see that the effects

are quite heterogeneous across labels. We chose the four labels for which more than
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1000 papers had been classified to perform the regressions. The effect of cognitive

distance between team members is visible in the “Technical Advance” category but

not significant for the remaining labels. Conversely, in Table 4.9, we can see that

the results in terms of exploratory profiles are mainly driven by the ’Interesting Hy-

pothesis’ label. Results here are a bit different since we observe a U shape, meaning

that highly specialized or highly diverse teams most often publish articles labelled

as “Interesting hypotheses”. Results are quite similar when using Poisson regression

and modelling the number of times a paper is labelled in a given category as visible

in Table 4.8 and Table 4.10 in the Appendix.

4.4.2 Cognitive dimension and impact

This subsection examines the relationship between the team’s cognitive dimension

and impact measures. To this end, we report the results of an OLS to identify the

joint impact of authors’ intra-diversity and inter-diversity on the indicators. The

outcomes of these models are presented in 4.5 and 4.6.

Our analysis emphasises the need to differentiate the forms of impact to under-

stand better how the cognitive aspect influences scientific recognition. Indeed, we

use the traditional indicator of the number of citations and indicators of disruption

and consolidation. The composition of the teams has a significant influence on the

type of impact of the studies conducted.

The Table 4.5 regression tables indicate a double inverse U-shaped relationship

between the cognitive dimension and the number of citations. Table 4.13 shows

that both turning points are around 45%. Following Uzzi, a too-conventional work

might not be as impactful as the contribution is more marginal. Conversely, peers

may not sufficiently consider a too-novel study. This phenomenon is reflected in the

composition of the teams as we can see in the differences between consolidation and

disruption indicators. Indeed, to consolidate, it is necessary to have a team with a

low average exploratory profile and low average cognitive distance between members.

The relationship is negative for consolidation indicators (DeIn and Depth) for both

intra and inter-individual levels; the effect is sometimes captured via quadratic terms.

This means that cognitive diversity is negatively related to the fact that papers citing

the focal paper also cite each other or cite many of the references from the focal

article. Specialized teams are the ones who consolidate the science.

For disruptive indicators, the picture is rather different (DI1, DI5, DI1nok and

Breadth). Cognitive distance still seems to be globally favorable for disruption.
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Table 4.5: Scientific recognition: cognitive diversity and average exploratory profile
(Field-Weighted)

Dependent variable:
# cit. DI1 DI5 DI1nok DeIn Breadth Depth
(1) (2) (3) (4) (5) (6) (7)

Author inter abs (FW) 0.031∗∗∗ 0.021∗∗∗ 0.034∗∗∗ 0.047∗∗∗ -0.067∗∗∗ -0.010∗ 0.002
(0.007) (0.006) (0.007) (0.007) (0.007) (0.006) (0.007)

Author inter abs 2̂ (FW) -0.036∗∗∗ 0.012∗∗ 0.005 0.002 0.008 0.015∗∗∗ -0.012∗∗

(0.007) (0.006) (0.006) (0.006) (0.006) (0.005) (0.006)

Author intra abs (FW) 0.070∗∗∗ -0.057∗∗∗ 0.026∗∗∗ -0.008 0.009 0.014∗∗ -0.004
(0.008) (0.007) (0.008) (0.008) (0.009) (0.006) (0.008)

Author intra abs 2̂ (FW) -0.072∗∗∗ 0.038∗∗∗ 0.009 0.024∗∗∗ -0.030∗∗∗ 0.021∗∗∗ -0.038∗∗∗

(0.008) (0.007) (0.007) (0.007) (0.007) (0.006) (0.007)

# References 0.003∗∗∗ -0.001∗∗∗ -0.003∗∗∗ -0.002∗∗∗ 0.004∗∗∗ -0.0001∗ 0.001∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.00005) (0.0001)

# Meshterms 0.008∗∗∗ -0.002∗∗∗ -0.003∗∗∗ -0.003∗∗∗ 0.005∗∗∗ -0.003∗∗∗ 0.006∗∗∗

(0.0004) (0.0002) (0.0003) (0.0003) (0.0003) (0.0002) (0.0004)

# Authors 0.012∗∗∗ -0.006∗∗∗ -0.002∗∗∗ -0.005∗∗∗ 0.006∗∗∗ -0.009∗∗∗ 0.012∗∗∗

(0.0004) (0.0003) (0.0003) (0.0003) (0.0004) (0.0003) (0.0004)

SJR 0.039∗∗∗ -0.019∗∗∗ 0.002 -0.006∗∗∗ 0.008∗∗∗ -0.026∗∗∗ 0.030∗∗∗

(0.005) (0.002) (0.002) (0.001) (0.002) (0.003) (0.004)

Year Yes Yes Yes Yes Yes Yes

Journal Cat. Yes Yes Yes Yes Yes Yes

Observations 1,826,207 1,826,207 1,826,207 1,826,207 1,826,207 1,826,207 1,826,207
R2 0.173 0.029 0.069 0.034 0.137 0.051 0.075
Adjusted R2 0.173 0.029 0.069 0.034 0.137 0.051 0.075
Residual Std. Error 0.266 0.281 0.281 0.280 0.270 0.270 0.291
F Statistic 1,621.946∗∗∗ 233.770∗∗∗ 575.115∗∗∗ 269.625∗∗∗ 1,227.699∗∗∗ 413.321∗∗∗ 629.396∗∗∗

Notes: This table reports coefficients of the effect of cognitive diversity and average exploratory profile on
scientific recognition using PKG. Standard errors are cluster robust at the journal level: ***, ** and * indicate
significance at the 1%, 5% and 10% levels, respectively. The effects are estimated with an OLS. Variables
are field-weighted and constant term, scientific field (Scimago Journal Category), and time-fixed effects are
incorporated in all model specifications.

Then, the Breadth disruption indicator, which examines how often articles citing

the focal paper also cite each other, seems to indicate a U-shaped relationship with

a turning point at 0.33, i.e. if the individuals are very distant or if they are very

close, this produces the most disruptive articles in the sense that the citations will

be concentrated towards the focal paper.

Although not always significant, the intra-individual effect is more mixed; teams

with higher average explorative profiles globally appear to have a higher disruption

potential, but this does not hold for DI1. The DI1NOK index follows the same

pattern as DI5, with the exception that it is the quadratic term that takes over.

The articles that are consolidating science are articles with low team diversity and

low average exploratory profiles. Here we can observe the notion of highly specialized

214



CHAPTER 4. UNPACKING SCIENTIFIC CREATIVITY

individuals who conduct more confirmatory and therefore consolidating research.

The opposite is true for disruption. The teams’ diversity always seems beneficial for

proposing disruptive ideas. Articles receiving the most citation are again a matter

of a trade-off between a cognitively not-too-distant team and a somewhat reasonable

average level of exploration8.

In Table 4.6, we specify the team’s composition in terms of exploratory/exploita-

tive profile and found that the relationship of the cognitive distance with the impact

measures remains almost similar. For consolidation metrics and citation counts, the

share of exploitative individuals is clearly beneficial. The exploitative profile reduces

the risk of failure as researchers learn from experience and combinations that have

failed [Vincenti, 1990]. Whereas too exploratory profiles seem to affect the expected

number of citations negatively, the effect appears mixed for consolidation since it is

positive DeIn and insignificant for Depth. In both cases, combining the two types of

profiles is harmful. At the same time, the share of exploitative individuals is positive,

suggesting that combining these two types of profiles is not optimal for consolidating

research. To achieve disruption, it is better to minimize the number of individuals

who are too exploratory or too specialized, but combining both types of profiles

seems once again essential. We can see how the impact of highly explorative profiles

is always negative, and the impact of exploitative profiles is also negative. Still, the

interaction between the two is always positive for all disruptiveness measures.

In conclusion, the analysis shows how teams with a high share of specialized

individuals or low average exploratory profiles are teams that consolidate science. In

contrast, teams that get the most recognition in terms of disruption combine highly

exploitative and highly exploratory individuals and have cognitively more distant

members9.

4.5 Conclusion

This paper examines the effect of exploratory scholars and, in a broader way, team

composition on creativity. Our findings suggest that the cognitive dimension plays

8For regressions without field-year normalization as presented in Table 4.16, the results are
more mixed and less clear. The cognitive aspect seems to follow a U-shaped pattern, with teams
that are very close or distant being the most disruptive. The results are more robust for breadth,
with diversity consistently appearing to be beneficial.

9For regressions without field-year normalization (see Table 4.19), the results are less homo-
geneous for the cognitive distance aspect, but the combination of explorative and exploitative is
robust. The interaction of the two consistently leads to disruption.
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Table 4.6: Scientific recognition: cognitive diversity, highly exploratory and ex-
ploitative profile (Field-Weighted)

Dependent variable:
# cit. DI1 DI5 DI1nok DeIn Breadth Depth
(1) (2) (3) (4) (5) (6) (7)

Author inter abs (FW) 0.088∗∗∗ -0.058∗∗∗ 0.020∗ 0.004 -0.019 -0.004 0.003
(0.010) (0.009) (0.011) (0.010) (0.012) (0.007) (0.009)

Author inter abs 2̂ (FW) -0.073∗∗∗ 0.067∗∗∗ 0.026∗∗∗ 0.042∗∗∗ -0.037∗∗∗ 0.025∗∗∗ -0.028∗∗∗

(0.010) (0.009) (0.009) (0.008) (0.009) (0.007) (0.008)

Share exploratory -0.023∗∗∗ -0.055∗∗∗ -0.041∗∗∗ -0.056∗∗∗ 0.058∗∗∗ -0.006 -0.003
(0.006) (0.005) (0.006) (0.005) (0.006) (0.004) (0.005)

Share exploitative 0.029∗∗∗ -0.033∗∗∗ -0.056∗∗∗ -0.049∗∗∗ 0.058∗∗∗ -0.024∗∗∗ 0.032∗∗∗

(0.003) (0.003) (0.003) (0.002) (0.003) (0.002) (0.003)

Share exploratory * Share exploitative -0.023∗∗ 0.132∗∗∗ 0.047∗∗∗ 0.096∗∗∗ -0.087∗∗∗ 0.059∗∗∗ -0.034∗∗∗

(0.012) (0.010) (0.011) (0.010) (0.011) (0.011) (0.012)

# References 0.003∗∗∗ -0.001∗∗∗ -0.003∗∗∗ -0.002∗∗∗ 0.004∗∗∗ -0.0001∗ 0.001∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.00005) (0.0001)

# Meshterms 0.008∗∗∗ -0.002∗∗∗ -0.003∗∗∗ -0.003∗∗∗ 0.005∗∗∗ -0.003∗∗∗ 0.006∗∗∗

(0.0004) (0.0002) (0.0003) (0.0003) (0.0003) (0.0002) (0.0004)

# Authors 0.012∗∗∗ -0.007∗∗∗ -0.003∗∗∗ -0.005∗∗∗ 0.006∗∗∗ -0.010∗∗∗ 0.013∗∗∗

(0.0004) (0.0003) (0.0003) (0.0003) (0.0004) (0.0003) (0.0004)

SJR 0.038∗∗∗ -0.018∗∗∗ 0.003 -0.006∗∗∗ 0.007∗∗∗ -0.026∗∗∗ 0.030∗∗∗

(0.005) (0.002) (0.002) (0.001) (0.002) (0.003) (0.004)

Year Yes Yes Yes Yes Yes Yes Yes

Journal Cat. Yes Yes Yes Yes Yes Yes Yes

Observations 1,826,207 1,826,207 1,826,207 1,826,207 1,826,207 1,826,207 1,826,207
R2 0.174 0.030 0.071 0.035 0.139 0.051 0.075
Adjusted R2 0.174 0.030 0.071 0.035 0.139 0.050 0.075
Residual Std. Error 0.266 0.281 0.280 0.280 0.270 0.270 0.291
F Statistic 1,619.636∗∗∗ 239.244∗∗∗ 586.510∗∗∗ 281.922∗∗∗ 1,243.711∗∗∗ 410.608∗∗∗ 626.296∗∗∗

Notes: This table reports coefficients of the effect of cognitive diversity and highly exploratory and exploitative profiles on
scientific recognition using PKG. Standard errors are cluster robust at the journal level: ***, ** and * indicate significance
at the 1%, 5% and 10% levels, respectively. The effects are estimated with an OLS. Variables are field-weighted and constant
term, scientific field (Scimago Journal Category), and time-fixed effects are incorporated in all model specifications.

a crucial role in the creative process, and significantly influences the two pillars of

creativity: originality and success. We first show that the team’s cognitive diver-

sity strongly influences novelty (realized and perceived) of the research conducted.

We also show that a double-inversed U-shaped relationship exists between cognitive

dimensions (intra and inter) and the impact in terms of citations. Our study also

highlights the strong connection between the cognitive dimension and the nature of

these citations. Teams with more exploitative profiles tend to consolidate science,

while those with more exploratory individuals disrupt it and propose more distant

knowledge combinations, only when associated with exploitative ones. Our research

underscores how team composition in terms of profiles lies at the heart of scientific

creativity.

Multiple limitations arise in our study. First, concerning data used, PKG is based
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on advanced heuristics and algorithms to disambiguate authors using affiliation and

additional metadata Xu et al. [2020]. While there is a considerable amount of research

on addressing noise in Knowledge Graphs [Fasoulis et al., 2020] and improvements in

these methods may increase their reliability in the future, we cannot guarantee that

errors or inconsistencies will not occur when dealing with author-level information

in PKG.

Other shortcomings are directly related to the creation of our indicator. First,

many methods and hyper-parameters were chosen for the simplicity of computation.

The embedding is a pre-trained model from SpaCy and is not state-of-the-art. One

should compare the behavior of different embedding techniques but also on what kind

of text they are applied and the distance measure used. We suspect that the two

papers might be close given a specific embedding and distance measure but highly

distant given other parameters. In addition, the distance between the two papers

would vary depending on whether the distance metric is applied to the paper’s title,

abstract, or full text. The semantic distances between researchers can be influenced

by biases inherent in the fields and journal practices. For example, if researchers

publish in different journals, the structure and format of their abstracts may be

affected even if their research topic or area of expertise remains unchanged. Another

hyper-parameter we used is the time window for an author’s past publication. We

considered a time window of 5 years. This suggests that any paper published by the

author before this point would not be captured. One could argue that past behavior

influences current behavior, and a highly diverse background can be proxied by

recent publications. Yet no evidence supports this hypothesis. Another issue is how

we define authors’ cognitive aspect by considering only past publications. Although

we do not try to approximate the skills of a researcher but only their disposition to do

diverse research, we are not sure how working on a topic is enough to understand then

and manage this new knowledge. This raises the question of the exact competencies

of a transformational leader and if the past paper is sufficient to proxy it. Also, a

specialized author could have previously worked on distant papers but only on his

topic/methodology. Our measure defines it as diverse, yet is it true? Although solo

publications can be used to construct an author’s profile, the increasing significance

of teamwork in scientific research makes it uncertain whether a complete and precise

profile can be established solely on this basis. Another option could be to incorporate

external information, such as educational background, and assign greater weight to

papers that align with the author’s education. However, obtaining this information
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can be challenging as it often requires web scraping, which is not easily scalable. The

last issue in our mind about using past publications is ghost and honorary authorship

as it is common that some authors contributed very little to the production of the

article. [Sugimoto and Larivière, 2018, Pruschak and Hopp, 2022]. Both are problems

to consider while defining a coauthored paper as part of your knowledge space.

In our analysis, we solely focused on the cognitive diversity of researchers, but di-

versity encompasses various aspects as highlighted by prior research studies [Medin

and Lee, 2012, Hofstra et al., 2020]. According to Koopmann et al. [2021], there

are four proximity dimensions among researchers, namely cognitive, institutional,

social, and geographical. Relying solely on PKG to approximate all of these di-

mensions could be challenging. Still, alternative sources such as OpenAlex could

provide more comprehensive information on a researcher’s institutions, past insti-

tutions, and authors’ characteristics. For instance, relying on PKG to construct a

researcher’s seniority could be biased because of the restriction on health sciences

papers. Exploring these additional channels could lead to developing supplementary

measures that complement cognitive diversity.

Another area worth exploring is the temporal dynamic between exploring new

ideas and exploiting existing ones. As we discussed earlier, discovering new con-

cepts is essential for addressing major challenges. However, there is often a pattern

of moving through cycles of exploration and exploitation within a particular field.

Similarly, authors may initially focus on a particular subject and then switch to a

different area to gain a fresh perspective on the first one once they have developed

sufficient expertise.

To increase the efficiency of the scientific system, it is necessary to conduct further

research on the composition of research teams and their impact on creativity. Our

preliminary results indicate that policymakers and grant evaluators should consider

both individual and team-level characteristics and not only citations when making

decisions about research funding and support. We have explored some research av-

enues to deepen our understanding of this phenomenon, and we encourage other

researchers to build upon our work in this area. By continuing to investigate these

factors, we can develop more effective strategies for supporting and fostering cre-

ativity within research teams, ultimately leading to more impactful and innovative

scientific outcomes.
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Regressions

Novelty indicators and Faculty Opinion

Table 4.7: Faculty Opinions: Cognitive diversity and average exploratory profile
(Field-Weighted)

Dependent variable:
Logit Model

Interesting Hyp. Technical Adv. Confirmation Controversial

Author inter abs (FW) -0.625 1.485∗∗∗ -0.427 -0.757
(0.387) (0.338) (0.386) (0.491)

Author inter abs 2̂ (FW) 0.414 -1.101∗∗∗ 0.310 0.543
(0.382) (0.328) (0.381) (0.516)

Author intra abs (FW) -0.191 0.209 0.001 0.278
(0.388) (0.336) (0.384) (0.580)

Author intra abs 2̂ (FW) -0.016 -0.465 0.199 0.016
(0.383) (0.324) (0.365) (0.602)

# References 0.006∗∗∗ -0.012∗∗∗ -0.0002 -0.001
(0.001) (0.002) (0.001) (0.002)

# Meshterms 0.019∗∗∗ -0.040∗∗∗ 0.011∗∗∗ 0.004
(0.004) (0.006) (0.004) (0.005)

# Authors -0.026∗∗∗ 0.018∗∗∗ 0.005 -0.017∗

(0.006) (0.005) (0.004) (0.009)

SJR 0.065∗∗∗ -0.019∗∗ -0.008 0.006
(0.011) (0.010) (0.005) (0.008)

Year Yes Yes Yes Yes

Journal Cat. Yes Yes Yes Yes

Observations 12,555 12,555 12,555 12,555
Log Likelihood -7,919.383 -7,202.326 -7,657.496 -3,866.333
Akaike Inf. Crit. 16,112.770 14,678.650 15,588.990 8,006.667

Notes: This table reports coefficients of the effect of cognitive diversity and average
exploratory profile on perceived novelty from Faculty Opinions. Standard errors are
cluster robust at the journal-level: ***, ** and * indicate significance at the 1%, 5% and
10% level, respectively. The effects are estimated with a Logit model. Variables are field-
weighted and constant term, scientific field (Scimago Journal Category) and time fixed
effects are incorporated in all model specifications.
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Table 4.8: Faculty Opinions: Cognitive diversity and average exploratory profile
(Field-Weighted)

Dependent variable:
Poisson Model

Interesting Hyp. Technical Adv. Confirmation Controversial

Author inter abs (FW) -0.410∗ 1.225∗∗∗ -0.330 -0.828∗∗

(0.209) (0.204) (0.287) (0.413)

Author inter abs 2̂ (FW) 0.291 -0.918∗∗∗ 0.259 0.689
(0.210) (0.192) (0.285) (0.440)

Author intra abs (FW) -0.009 0.320 0.129 0.271
(0.184) (0.217) (0.248) (0.495)

Author intra abs 2̂ (FW) -0.119 -0.492∗∗ -0.041 -0.108
(0.181) (0.219) (0.223) (0.521)

# References 0.003∗∗∗ -0.006∗∗∗ -0.0001 0.0005
(0.001) (0.002) (0.001) (0.001)

# Meshterms 0.013∗∗∗ -0.024∗∗∗ 0.007∗ 0.002
(0.002) (0.005) (0.003) (0.005)

# Authors -0.017∗∗∗ 0.009∗∗∗ 0.003 -0.012
(0.004) (0.003) (0.003) (0.009)

SJR 0.039∗∗∗ -0.0004 0.002 0.014∗

(0.007) (0.007) (0.004) (0.007)

Year Yes Yes Yes Yes

Journal Cat. Yes Yes Yes Yes

Observations 12,555 12,555 12,555 12,555
Log Likelihood -10,420.250 -9,880.221 -8,978.963 -4,358.803
Akaike Inf. Crit. 21,114.510 20,034.440 18,231.920 8,991.606

Notes: This table reports coefficients of the effect of cognitive diversity and average
exploratory profile on perceived novelty from Faculty Opinions. Standard errors are
cluster robust at the journal level: ***, ** and * indicate significance at the 1%, 5% and
10% level, respectively. The effects are estimated with a Poisson model. Variables are
field-weighted and constant term, scientific field (Scimago Journal Category) and time
fixed effects are incorporated in all model specifications.
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Table 4.9: Faculty Opinions: Cognitive diversity, highly exploratory and exploita-
tive profile (Field-Weighted)

Dependent variable:
Logit Model

Interesting Hyp. Technical Adv. Confirmation Controversial

Author inter abs (FW) -0.859∗∗∗ 1.500∗∗∗ -0.289 -0.476
(0.277) (0.317) (0.309) (0.377)

Author inter abs 2̂ (FW) 0.590∗ -1.244∗∗∗ 0.228 0.421
(0.308) (0.338) (0.333) (0.371)

Share exploratory -0.754∗ -0.644 0.868∗∗ -0.193
(0.450) (0.443) (0.441) (0.607)

Share exploitative 0.304∗∗∗ -0.014 -0.070 -0.097
(0.083) (0.118) (0.097) (0.160)

Share exploratory * Share exploitative 2.911∗∗∗ 0.015 -1.069 1.822
(1.073) (1.132) (1.048) (1.650)

# References 0.006∗∗∗ -0.012∗∗∗ -0.0001 -0.001
(0.001) (0.002) (0.001) (0.002)

# Meshterms 0.019∗∗∗ -0.041∗∗∗ 0.012∗∗∗ 0.004
(0.004) (0.006) (0.004) (0.005)

# Authors -0.024∗∗∗ 0.018∗∗∗ 0.005 -0.018∗

(0.006) (0.005) (0.004) (0.009)

SJR 0.065∗∗∗ -0.019∗ -0.008 0.005
(0.010) (0.010) (0.005) (0.008)

Year Yes Yes Yes Yes

Journal Cat. Yes Yes Yes Yes

Observations 12,555 12,555 12,555 12,555
Log Likelihood -7,910.400 -7,202.819 -7,655.698 -3,866.431
Akaike Inf. Crit. 16,096.800 14,681.640 15,587.400 8,008.863

Notes: This table reports coefficients of the effect of cognitive diversity and highly exploratory and
exploitative profiles on perceived novelty from Faculty Opinions. Standard errors are cluster robust at
the journal-level: ***, ** and * indicate significance at the 1%, 5% and 10% level, respectively. The
effects are estimated with a Logit model. Variables are field-weighted and constant term, scientific field
(Scimago Journal Category) and time fixed effects are incorporated in all model specifications.
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Table 4.10: Faculty Opinions: Cognitive diversity, highly exploratory and exploita-
tive profile (Field-Weighted)

Dependent variable:
Poisson Model

Interesting Hyp. Technical Adv. Confirmation Controversial

Author inter abs (FW) -0.485∗∗∗ 1.336∗∗∗ -0.171 -0.560∗

(0.157) (0.224) (0.248) (0.322)

Author inter abs 2̂ (FW) 0.318∗ -1.106∗∗∗ 0.121 0.472
(0.163) (0.224) (0.261) (0.332)

Share exploratory -0.718∗∗ -0.550∗ 0.478∗ -0.083
(0.334) (0.312) (0.246) (0.513)

Share exploitative 0.135∗∗∗ -0.026 -0.020 -0.084
(0.049) (0.077) (0.066) (0.171)

Share exploratory * Share exploitative 2.112∗∗∗ -0.106 -0.564 1.674
(0.662) (0.762) (0.640) (1.504)

# References 0.003∗∗∗ -0.006∗∗∗ -0.0001 0.0005
(0.001) (0.002) (0.001) (0.001)

# Meshterms 0.013∗∗∗ -0.024∗∗∗ 0.007∗∗ 0.002
(0.002) (0.005) (0.003) (0.005)

# Authors -0.016∗∗∗ 0.009∗∗∗ 0.003 -0.013
(0.004) (0.003) (0.003) (0.009)

SJR 0.039∗∗∗ 0.00003 0.002 0.014∗

(0.007) (0.007) (0.004) (0.007)

Year Yes Yes Yes Yes

Journal Cat. Yes Yes Yes Yes

Observations 12,555 12,555 12,555 12,555
Log Likelihood -10,415.010 -9,880.661 -8,977.912 -4,358.090
Akaike Inf. Crit. 21,106.010 20,037.320 18,231.830 8,992.180

Notes: This table reports coefficients of the effect of cognitive diversity and highly exploratory and
exploitative profiles on perceived novelty from Faculty Opinions. Standard errors are cluster robust at
the journal level: ***, ** and * indicate significance at the 1%, 5% and 10% level, respectively. The
effects are estimated with a Poisson model. Variables are field-weighted and constant term, scientific
field (Scimago Journal Category) and time fixed effects are incorporated in all model specifications.
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Novelty indicators with Mesh Terms

Cognitive diversity and average exploratory profile effect on Novelty

Table 4.11: Combinatorial Novelty: cognitive diversity and average exploratory
profile (Field-Weighted/ Meshterms)

Dependent variable:
Uzzi Lee Foster Wang
(1) (2) (3) (4)

Author inter abs (FW) 0.067∗∗∗ 0.114∗∗∗ 0.056∗∗∗ 0.062∗∗∗

(0.009) (0.007) (0.008) (0.006)

Author inter abs 2̂ (FW) -0.016∗∗ -0.050∗∗∗ -0.025∗∗∗ -0.008
(0.008) (0.006) (0.008) (0.006)

Author intra abs (FW) -0.020∗ 0.025∗∗∗ -0.029∗∗ -0.055∗∗∗

(0.012) (0.009) (0.013) (0.009)

Author intra abs 2̂ (FW) -0.047∗∗∗ -0.062∗∗∗ -0.042∗∗∗ -0.010
(0.010) (0.008) (0.011) (0.007)

# References 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.0002∗∗∗

(0.0001) (0.00005) (0.0001) (0.00003)

# Meshterms 0.007∗∗∗ 0.014∗∗∗ 0.0004 0.029∗∗∗

(0.001) (0.001) (0.0004) (0.0004)

# Authors 0.002∗∗∗ 0.008∗∗∗ 0.005∗∗∗ 0.001∗∗∗

(0.0004) (0.0004) (0.0004) (0.0003)

SJR -0.004∗∗∗ -0.006∗∗∗ -0.005∗∗∗ 0.003∗∗∗

(0.001) (0.001) (0.001) (0.001)

Year Yes Yes Yes Yes

Journal Cat. Yes Yes Yes Yes

Observations 661,821 1,823,859 1,823,859 1,823,859
R2 0.029 0.083 0.015 0.153
Adjusted R2 0.029 0.083 0.015 0.152
Residual Std. Error 0.285 0.276 0.300 0.360
F Statistic 86.982∗∗∗ 699.050∗∗∗ 121.183∗∗∗ 1,390.452∗∗∗

Notes: This table reports coefficients of the effect of cognitive diversity and average exploratory
profile on combinatorial novelty using PKG. Standard errors are cluster robust at the journal level:
***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively. The effects are
estimated with an OLS. Variables are field-weighted and constant term, scientific field (Scimago
Journal Category), and time-fixed effects are incorporated in all model specifications.
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Share of Highly Exploratory Profile

Table 4.12: Combinatorial Novelty: Cognitive diversity, highly exploratory and
exploitative profile (Field-Weighted/ Meshterms)

Dependent variable:
Uzzi Lee Foster Wang
(1) (2) (3) (4)

Author inter abs (FW) 0.045∗∗∗ 0.115∗∗∗ 0.007 0.002
(0.011) (0.010) (0.013) (0.008)

Author inter abs 2̂ (FW) 0.013 -0.032∗∗∗ 0.030∗∗ 0.027∗∗∗

(0.010) (0.010) (0.012) (0.007)

Share exploratory -0.107∗∗∗ -0.113∗∗∗ -0.150∗∗∗ -0.063∗∗∗

(0.006) (0.006) (0.007) (0.005)

Share exploitative 0.068∗∗∗ 0.045∗∗∗ 0.056∗∗∗ 0.026∗∗∗

(0.003) (0.003) (0.004) (0.002)

Share exploratory * Share exploitative 0.185∗∗∗ 0.189∗∗∗ 0.254∗∗∗ 0.106∗∗∗

(0.016) (0.013) (0.016) (0.012)

# References 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.0002∗∗∗

(0.00005) (0.00005) (0.0001) (0.00003)

# Meshterms 0.007∗∗∗ 0.014∗∗∗ 0.0004 0.029∗∗∗

(0.001) (0.001) (0.0004) (0.0004)

# Authors 0.003∗∗∗ 0.008∗∗∗ 0.005∗∗∗ 0.001∗∗∗

(0.0004) (0.0004) (0.0004) (0.0003)

SJR -0.004∗∗∗ -0.006∗∗∗ -0.004∗∗∗ 0.003∗∗∗

(0.001) (0.001) (0.001) (0.001)

Year Yes Yes Yes Yes

Journal Cat. Yes Yes Yes Yes

Observations 661,821 1,823,859 1,823,859 1,823,859
R2 0.033 0.086 0.019 0.152
Adjusted R2 0.032 0.086 0.019 0.152
Residual Std. Error 0.284 0.275 0.299 0.360
F Statistic 97.014∗∗∗ 721.442∗∗∗ 149.772∗∗∗ 1,383.049∗∗∗

Notes: This table reports coefficients of the effect of cognitive diversity and highly exploratory and
exploitative profiles on combinatorial novelty using PKG. Standard errors are cluster robust at the
journal level: ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively. The
effects are estimated with an OLS. Variables are field-weighted and constant term, scientific field
(Scimago Journal Category), and time-fixed effects are incorporated in all model specifications.
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Turning points

Table 4.13: Turning Points for Combinatorial Novelty and Scientific Impact

Regression Author intra abs (FW) Author inter abs (FW)

Uzzi 0.318 2.725

Lee 0.229 2.441

Foster 0.244 2.521

Wang 0.038 1.75

Shibayama 2 1.203

# Cit. 0.486 0.43

DI1 0.75 0.875

DI5 -1.44 -3.4

DI1nok 0.166 -11.75

DeIn 0.15 -4.187

Breadth -0.33 0.33

Depth -0.052 0.083

Notes: This table reports the turning points of the effect of cognitive diversity and
average exploratory profiles on combinatorial novelty and scientific recognition in
Table 4.2 and 4.5.
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Regression without field-year weighting

Table 4.14: Combinatorial Novelty: cognitive diversity and average exploratory
profile (References)

Dependent variable:
Uzzi Lee Foster Wang Shibayama
(1) (2) (3) (4) (5)

Author inter abs 183.520∗∗∗ 4.377∗∗∗ 0.940∗∗∗ 3.061∗∗∗ 0.268∗∗∗

(23.173) (0.204) (0.033) (0.252) (0.008)

Author inter abs 2̂ -176.966∗∗∗ -3.915∗∗∗ -1.005∗∗∗ -1.936∗∗∗ -0.195∗∗∗

(31.732) (0.270) (0.043) (0.335) (0.012)

Author intra abs 198.281∗∗∗ 3.825∗∗∗ 1.052∗∗∗ 0.095 0.226∗∗∗

(22.235) (0.222) (0.074) (0.365) (0.011)

Author intra abs 2̂ -403.151∗∗∗ -8.090∗∗∗ -2.057∗∗∗ 0.130 -0.153∗∗∗

(38.759) (0.381) (0.107) (0.619) (0.018)

# References 0.518∗∗∗ 0.009∗∗∗ 0.001∗∗∗ 0.076∗∗∗ 0.0004∗∗∗

(0.072) (0.0004) (0.00004) (0.007) (0.00002)

# Meshterms 1.287∗∗∗ 0.025∗∗∗ 0.003∗∗∗ -0.043∗∗∗ 0.001∗∗∗

(0.119) (0.002) (0.0003) (0.003) (0.0001)

# Authors 1.371∗∗∗ 0.025∗∗∗ 0.004∗∗∗ 0.005 0.002∗∗∗

(0.113) (0.001) (0.0004) (0.004) (0.0001)

SJR -1.151∗∗∗ -0.020∗∗∗ -0.011∗∗∗ -0.093∗∗∗ -0.002∗∗∗

(0.264) (0.004) (0.002) (0.021) (0.0003)

Year Yes Yes Yes Yes Yes

Journal Cat. Yes Yes Yes Yes Yes

Observations 1,647,446 1,815,631 1,815,631 1,815,631 1,809,185
R2 0.020 0.168 0.151 0.158 0.253
Adjusted R2 0.020 0.168 0.151 0.158 0.253
Residual Std. Error 192.756 1.258 0.235 4.341 0.066
F Statistic 139.319∗∗∗ 1,504.472∗∗∗ 1,328.955∗∗∗ 1,399.846∗∗∗ 2,523.818∗∗∗

Notes: This table reports coefficients of the effect of cognitive diversity and average ex-
ploratory profile on combinatorial novelty using PKG. Standard errors are cluster robust at
the journal level: ***, ** and * indicate significance at the 1%, 5% and 10% levels, respec-
tively. The effects are estimated with an OLS. The constant term, scientific field (Scimago
Journal Category), and time-fixed effects are incorporated in all model specifications.
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Table 4.15: Combinatorial Novelty: cognitive diversity and average exploratory
profile (Meshterms)

Dependent variable:
Uzzi Lee Foster Wang
(1) (2) (3) (4)

Author inter abs 14.010∗∗∗ 1.829∗∗∗ 0.399∗∗∗ 0.951∗∗∗

(1.109) (0.067) (0.023) (0.070)

Author inter abs 2̂ -16.049∗∗∗ -2.002∗∗∗ -0.495∗∗∗ -0.915∗∗∗

(1.477) (0.087) (0.034) (0.086)

Author intra abs 11.644∗∗∗ 1.408∗∗∗ 0.405∗∗∗ -0.177∗

(1.403) (0.095) (0.041) (0.105)

Author intra abs 2̂ -28.595∗∗∗ -2.603∗∗∗ -1.066∗∗∗ -0.578∗∗∗

(2.138) (0.140) (0.063) (0.154)

# References 0.038∗∗∗ 0.002∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.002) (0.0001) (0.00004) (0.0001)

# Meshterms -0.022∗ 0.028∗∗∗ 0.001∗∗∗ 0.058∗∗∗

(0.013) (0.001) (0.0003) (0.001)

# Authors 0.012 0.011∗∗∗ 0.002∗∗∗ -0.0001
(0.008) (0.001) (0.0003) (0.001)

SJR -0.052 -0.011∗∗∗ -0.002∗∗∗ 0.015∗∗∗

(0.032) (0.002) (0.001) (0.003)

Year Yes Yes Yes Yes

Journal Cat. Yes Yes Yes Yes

Observations 661,832 1,823,889 1,823,889 1,823,889
R2 0.064 0.179 0.120 0.174
Adjusted R2 0.063 0.179 0.120 0.174
Residual Std. Error 7.929 0.536 0.206 0.716
F Statistic 193.801∗∗∗ 1,638.907∗∗∗ 1,020.027∗∗∗ 1,586.294∗∗∗

Notes: This table reports coefficients of the effect of cognitive diversity and average ex-
ploratory profile on combinatorial novelty using PKG. Standard errors are cluster robust at
the journal level: ***, ** and * indicate significance at the 1%, 5% and 10% levels, respec-
tively. The effects are estimated with an OLS. The constant term, scientific field (Scimago
Journal Category), and time-fixed effects are incorporated in all model specifications.
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Table 4.16: Scientific recognition: cognitive diversity and average exploratory pro-
file

Dependent variable:
# cit. DI1 DI5 DI1nok DeIn Breadth Depth
(1) (2) (3) (4) (5) (6) (7)

Author inter abs 39.622∗∗∗ -0.019∗∗∗ -0.043∗∗∗ 0.640∗∗∗ -3.961∗∗∗ 0.044∗ -0.080∗∗∗

(12.175) (0.006) (0.008) (0.050) (0.306) (0.023) (0.024)

Author inter abs 2̂ -55.784∗∗∗ 0.034∗∗∗ 0.068∗∗∗ -0.485∗∗∗ 3.848∗∗∗ -0.023 0.057∗

(15.267) (0.008) (0.010) (0.066) (0.379) (0.032) (0.033)

Author intra abs 99.833∗∗∗ -0.064∗∗∗ -0.067∗∗∗ -0.090 -2.059∗∗∗ 0.111∗∗∗ -0.033
(12.635) (0.007) (0.008) (0.073) (0.385) (0.032) (0.033)

Author intra abs 2̂ -130.168∗∗∗ 0.069∗∗∗ 0.094∗∗∗ 0.138 2.499∗∗∗ -0.021 -0.141∗∗∗

(16.543) (0.010) (0.012) (0.105) (0.541) (0.047) (0.049)

# References 0.681∗∗∗ -0.0002∗∗∗ -0.0004∗∗∗ -0.003∗∗∗ 0.023∗∗∗ -0.0002∗∗∗ 0.001∗∗∗

(0.027) (0.00001) (0.00002) (0.0001) (0.001) (0.00004) (0.0001)

# Meshterms 0.338∗∗∗ -0.0004∗∗∗ -0.001∗∗∗ -0.006∗∗∗ 0.019∗∗∗ -0.003∗∗∗ 0.005∗∗∗

(0.080) (0.00004) (0.0001) (0.0005) (0.002) (0.0002) (0.0003)

# Authors 3.405∗∗∗ -0.0004∗∗∗ -0.0002∗∗∗ -0.009∗∗∗ 0.023∗∗∗ -0.008∗∗∗ 0.010∗∗∗

(0.365) (0.00003) (0.00005) (0.0005) (0.002) (0.0003) (0.0004)

SJR 16.482∗∗∗ -0.001∗∗∗ 0.001∗∗∗ -0.013∗∗∗ 0.025∗∗∗ -0.023∗∗∗ 0.025∗∗∗

(1.269) (0.0001) (0.0002) (0.002) (0.009) (0.003) (0.003)

Year Yes Yes Yes Yes Yes Yes

Journal Cat. Yes Yes Yes Yes Yes Yes

Observations 1,826,237 1,826,237 1,826,237 1,826,237 1,826,237 1,826,237 1,826,237
R2 0.116 0.042 0.077 0.133 0.238 0.107 0.159
Adjusted R2 0.116 0.042 0.077 0.133 0.238 0.107 0.158
Residual Std. Error 126.203 0.056 0.061 0.467 1.591 0.250 0.241
F Statistic 984.300∗∗∗ 328.932∗∗∗ 626.917∗∗∗ 1,151.082∗∗∗ 2,343.227∗∗∗ 904.045∗∗∗ 1,416.198∗∗∗

Notes: This table reports coefficients of the effect of cognitive diversity and average exploratory profile
on scientific recognition using PKG. Standard errors are cluster robust at the journal level: ***, ** and *
indicate significance at the 1%, 5% and 10% levels, respectively. The effects are estimated with an OLS.
The constant term, scientific field (Scimago Journal Category), and time-fixed effects are incorporated in all
model specifications.
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Table 4.17: Combinatorial Novelty: Cognitive diversity, highly exploratory and
exploitative profile (References)

Dependent variable:
Uzzi Lee Foster Wang Shibayama
(1) (2) (3) (4) (5)

Author inter abs 280.445∗∗∗ 6.383∗∗∗ 1.533∗∗∗ 1.696∗∗∗ 0.430∗∗∗

(30.366) (0.225) (0.066) (0.347) (0.011)

Author inter abs 2̂ -311.743∗∗∗ -6.771∗∗∗ -1.834∗∗∗ -0.650 -0.350∗∗∗

(39.387) (0.298) (0.082) (0.493) (0.015)

Share exploratory -22.978∗∗∗ -0.416∗∗∗ -0.087∗∗∗ -0.328∗∗∗ 0.009∗∗∗

(3.028) (0.029) (0.005) (0.034) (0.001)

Share exploitative 8.714∗∗∗ 0.234∗∗∗ 0.048∗∗∗ -0.468∗∗∗ -0.021∗∗∗

(1.809) (0.015) (0.004) (0.082) (0.001)

Share exploratory * Share exploitative 29.023∗∗∗ 0.541∗∗∗ 0.186∗∗∗ 0.208 -0.052∗∗∗

(8.047) (0.084) (0.013) (0.129) (0.004)

# References 0.514∗∗∗ 0.009∗∗∗ 0.001∗∗∗ 0.076∗∗∗ 0.0004∗∗∗

(0.073) (0.0004) (0.00004) (0.007) (0.00002)

# Meshterms 1.292∗∗∗ 0.025∗∗∗ 0.004∗∗∗ -0.042∗∗∗ 0.001∗∗∗

(0.119) (0.002) (0.0003) (0.003) (0.0001)

# Authors 1.472∗∗∗ 0.027∗∗∗ 0.005∗∗∗ 0.002 0.001∗∗∗

(0.118) (0.001) (0.0004) (0.003) (0.0001)

SJR -1.206∗∗∗ -0.022∗∗∗ -0.011∗∗∗ -0.090∗∗∗ -0.002∗∗∗

(0.260) (0.004) (0.002) (0.020) (0.0003)

Year Yes Yes Yes Yes Yes

Journal Cat. Yes Yes Yes Yes Yes

Observations 1,647,446 1,815,631 1,815,631 1,815,631 1,809,185
R2 0.020 0.167 0.150 0.158 0.252
Adjusted R2 0.020 0.167 0.150 0.158 0.252
Residual Std. Error 192.763 1.258 0.235 4.340 0.067
F Statistic 138.223∗∗∗ 1,493.115∗∗∗ 1,310.908∗∗∗ 1,399.600∗∗∗ 2,503.790∗∗∗

Notes: This table reports coefficients of the effect of cognitive diversity and highly exploratory and ex-
ploitative profiles on combinatorial novelty using PKG. Standard errors are cluster robust at the journal
level: ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively. The effects are esti-
mated with an OLS. The constant term, scientific field (Scimago Journal Category), and time-fixed effects
are incorporated in all model specifications.
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Table 4.18: Combinatorial Novelty: Cognitive diversity, highly exploratory and
exploitative profile (Meshterms)

Dependent variable:
Uzzi Lee Foster Wang
(1) (2) (3) (4)

Author inter abs 23.097∗∗∗ 2.721∗∗∗ 0.573∗∗∗ 0.687∗∗∗

(1.222) (0.095) (0.036) (0.103)

Author inter abs 2̂ -28.625∗∗∗ -3.128∗∗∗ -0.798∗∗∗ -0.852∗∗∗

(1.611) (0.118) (0.047) (0.125)

Share exploratory -0.852∗∗∗ -0.091∗∗∗ -0.068∗∗∗ -0.073∗∗∗

(0.100) (0.007) (0.004) (0.007)

Share exploitative 1.977∗∗∗ 0.078∗∗∗ 0.045∗∗∗ 0.057∗∗∗

(0.092) (0.007) (0.003) (0.006)

Share exploratory * Share exploitative 1.251∗∗∗ 0.083∗∗∗ 0.130∗∗∗ 0.135∗∗∗

(0.393) (0.023) (0.010) (0.025)

# References 0.038∗∗∗ 0.002∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.001) (0.0001) (0.00004) (0.0001)

# Meshterms -0.022∗ 0.028∗∗∗ 0.001∗∗∗ 0.058∗∗∗

(0.013) (0.001) (0.0003) (0.001)

# Authors 0.028∗∗∗ 0.012∗∗∗ 0.003∗∗∗ 0.001
(0.008) (0.001) (0.0003) (0.001)

SJR -0.064∗∗ -0.012∗∗∗ -0.003∗∗∗ 0.015∗∗∗

(0.031) (0.002) (0.001) (0.003)

Year Yes Yes Yes Yes

Journal Cat. Yes Yes Yes Yes

Observations 661,832 1,823,889 1,823,889 1,823,889
R2 0.065 0.179 0.119 0.174
Adjusted R2 0.065 0.179 0.119 0.174
Residual Std. Error 7.923 0.537 0.206 0.716
F Statistic 197.576∗∗∗ 1,631.871∗∗∗ 1,014.063∗∗∗ 1,574.819∗∗∗

Notes: This table reports coefficients of the effect of cognitive diversity and highly exploratory
and exploitative profiles on combinatorial novelty using PKG. Standard errors are cluster robust
at the journal level: ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively.
The effects are estimated with an OLS. The constant term, scientific field (Scimago Journal
Category), and time-fixed effects are incorporated in all model specifications.
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Table 4.19: Scientific recognition: cognitive diversity, highly exploratory and ex-
ploitative profile

Dependent variable:
# cit. DI1 DI5 DI1nok DeIn Breadth Depth
(1) (2) (3) (4) (5) (6) (7)

Author inter abs 114.316∗∗∗ -0.088∗∗∗ -0.115∗∗∗ 0.313∗∗∗ -4.628∗∗∗ 0.114∗∗∗ -0.095∗∗∗

(13.961) (0.009) (0.011) (0.084) (0.556) (0.030) (0.033)

Author inter abs 2̂ -122.966∗∗∗ 0.101∗∗∗ 0.143∗∗∗ -0.193∗ 4.793∗∗∗ -0.093∗∗ 0.041
(16.903) (0.011) (0.013) (0.103) (0.669) (0.039) (0.043)

Share exploratory -2.597∗∗ -0.006∗∗∗ -0.005∗∗∗ -0.057∗∗∗ 0.176∗∗∗ 0.007∗∗ -0.009∗∗∗

(1.100) (0.001) (0.001) (0.005) (0.018) (0.003) (0.003)

Share exploitative 3.759∗∗∗ -0.005∗∗∗ -0.008∗∗∗ -0.085∗∗∗ 0.284∗∗∗ -0.021∗∗∗ 0.027∗∗∗

(1.085) (0.0005) (0.001) (0.004) (0.015) (0.002) (0.002)

Share exploratory * Share exploitative -23.770∗∗∗ 0.019∗∗∗ 0.014∗∗∗ 0.115∗∗∗ -0.181∗∗∗ 0.031∗∗∗ -0.017∗

(3.529) (0.002) (0.002) (0.017) (0.064) (0.010) (0.010)

# References 0.679∗∗∗ -0.0002∗∗∗ -0.0004∗∗∗ -0.003∗∗∗ 0.023∗∗∗ -0.0002∗∗∗ 0.001∗∗∗

(0.027) (0.00001) (0.00002) (0.0001) (0.001) (0.00004) (0.0001)

# Meshterms 0.337∗∗∗ -0.0004∗∗∗ -0.001∗∗∗ -0.006∗∗∗ 0.019∗∗∗ -0.003∗∗∗ 0.005∗∗∗

(0.080) (0.00004) (0.0001) (0.0005) (0.002) (0.0002) (0.0003)

# Authors 3.430∗∗∗ -0.0004∗∗∗ -0.0003∗∗∗ -0.010∗∗∗ 0.025∗∗∗ -0.009∗∗∗ 0.011∗∗∗

(0.364) (0.00003) (0.00005) (0.0005) (0.002) (0.0003) (0.0004)

SJR 16.427∗∗∗ -0.001∗∗∗ 0.001∗∗∗ -0.012∗∗∗ 0.024∗∗ -0.023∗∗∗ 0.025∗∗∗

(1.268) (0.0001) (0.0002) (0.002) (0.009) (0.003) (0.003)

Year Yes Yes Yes Yes Yes Yes Yes

Journal Cat. Yes Yes Yes Yes Yes Yes Yes

Observations 1,826,237 1,826,237 1,826,237 1,826,237 1,826,237 1,826,237 1,826,237
R2 0.116 0.042 0.078 0.134 0.239 0.107 0.159
Adjusted R2 0.116 0.042 0.078 0.134 0.239 0.107 0.159
Residual Std. Error 126.204 0.056 0.061 0.467 1.590 0.250 0.241
F Statistic 980.132∗∗∗ 328.824∗∗∗ 630.089∗∗∗ 1,160.693∗∗∗ 2,346.784∗∗∗ 901.029∗∗∗ 1,411.683∗∗∗

Notes: This table reports coefficients of the effect of cognitive diversity and highly exploratory and exploitative profiles on
scientific recognition using PKG. Standard errors are cluster robust at the journal level: ***, ** and * indicate significance at
the 1%, 5% and 10% levels, respectively. The effects are estimated with an OLS. The constant term, scientific field (Scimago
Journal Category), and time-fixed effects are incorporated in all model specifications.
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General Conclusion

This thesis provides several insights concerning AI implications in science. It is

organized into four chapters: the first two chapters focus on AI’s impact on scientific

discovery and the drivers of AI adoption for domain scientists. The last two chapters

emphasize the relationship between team composition and scientific discovery. This

conclusion briefly summarizes the chapters and proposes an extension of this work

in light of recent changes in the landscape of artificial intelligence.

Chapter 1 examines the dissemination and impact of artificial intelligence, specif-

ically neural networks, in science. We show that while neural network methods do

not serve as an autopilot for knowledge navigation, they represent a powerful and

versatile research tool that impacts knowledge creation in tangible ways. The chap-

ter proposes that AI be considered an emerging general method of invention and

provides a comprehensive perspective on AI’s role in fostering knowledge creation.

Chapter 2 explores the drivers of AI adoption for domain scientists. It uses Scien-

tific & Technical Human Capital (STHC) as a valuable framework for understanding

these incentives, revealing that institutional factors and social environment compo-

sition are strongly related to AI adoption. Furthermore, we show the importance of

collaborating with early-career researchers and that individuals with diverse back-

grounds adopt AI easily. This perspective shifts the focus from aggregate trends in

AI adoption to individual researchers’ characteristics and their social and institu-

tional environments, enabling a more nuanced understanding of how AI is integrated

into research practices.

Chapter 3 introduces Novelpy, an open-source Python package designed to com-

pute novelty and disruption indicators for scientific documents or patents. This tool

offers the scientometrics community a centralized module to analyze and compare

various measures of novelty and disruptiveness. The creation of this tool addresses a

gap in the scientometrics community and sets the groundwork for future studies to

explore the relationship between these indicators systematically.
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Chapter 4 develops an indicator at the author level. It explores the relationship

between the team’s composition, the article’s novelty and its scientific recognition.

We highlight the essential role of the cognitive dimension in the creative process, as it

significantly affects originality and success. The chapter emphasizes the importance

of team composition in terms of cognitive profiles for scientific creativity, showing

that teams that combine both highly exploratory and exploitative individuals are

more able to disrupt science and propose more novel knowledge combinations.

However, this work can be further expanded, particularly in how AI involvement

in research can be considered. This thesis views AI as a tool explicitly mentioned

in scientific articles. As this technology spreads, its use will be less explicit, and it

will become increasingly difficult to see the submerged part of the iceberg, i.e., the

implicit use of AI. When we began this work, AI was still extremely task-specific, and

our analyses showed that AI could be considered a new super microscope with the

flexibility to analyze any content. Now, generative textual AI completely changes the

game. GPT-like models are also trained on specific tasks, predicting word sequences

in a text. However, to make this prediction, it is necessary to understand all the

entities present in a text and be able to combine them. GPT-4 does not answer 2 to

1+1 only because it read it but because it understood the concept of counting and

addition. This subtle difference is significant because it implies that the exploration

of the entire knowledge space can be achieved within the same entity.

With the centralization of almost all information from the internet in a single

model, capable of understanding its meaning and relation with other information,

we witness a potential second shift in how AI will impact science. Today, discus-

sions mainly revolve around considering AI as a potential author (see recent debates

on Nature). Still, this method allows for much more than simply transcription of

ideas into academic language. It truly enables a “Human + Machine” experience

for researchers, as they can use this chatbot during the conceptualization and data-

processing phases, but also to suggest articles suitable for a research question, and

point out inconsistencies and shortcomings in a text. It opens the door to a more

systematic exploration of the knowledge space in an informal manner for users since

it takes place through interposed messages. In fact, GPT-4 is the AI entity the closer

to the competent colleague you meet at the coffee machine, with whom a quick in-

formal exchange on a given problem can quickly solve it. These interactions with

these hypothetical colleagues will mostly be mentioned in the acknowledgements of

an article; their contribution to the knowledge-creation process remains almost in-

234



GENERAL CONCLUSION

visible. The same goes for generative AI. Today, individuals using generative AI in

their research do not explicitly mention it, which makes it increasingly difficult to

understand how it can modify research. Therefore it would seem necessary to con-

sider a qualitative approach to this phenomenon. While quantitative methods offer

large-scale results, the lack of detailed personal narratives or experiences deprives us

of an in-depth understanding of the use of AI, the actors involved, and its precise

role in the knowledge-creation process.
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Conclusion Générale

Cette thèse fournit plusieurs enseignement sur les implications de l’utilisation de l’IA

dans la science. Elle est organisée en quatre chapitres : les deux premiers se concen-

trent sur l’impact de l’IA sur la découverte scientifique et les moteurs de l’adoption

de l’IA pour les scientifiques de domaine d’application. Les deux derniers chapitres

de la thèse met en avant la relation entre la composition de l’équipe et la découverte

scientifique. Cette conclusion résume brièvement les chapitres et propose une ex-

tension de ce travail au vu des changements récents dans le secteur de l’intelligence

artificielle.

Le chapitre 1 donne un aperçu de la diffusion et de l’impact de l’intelligence ar-

tificielle, en particulier des réseaux neuronaux, dans la science. Nous montrons que

si les réseaux neuronaux ne constituent pas des systèmes capable naviguer automa-

tiquement dans un espace de connaissances, ils représentent néanmoins un outil de

recherche puissant et polyvalent qui a un impact tangible sur la création de con-

naissances. Le chapitre suggère que l’IA doit être considérée comme une méthode

générale d’invention émergente et fournit une perspective globale sur le rôle de l’IA

dans la stimulation de la création de connaissances.

Le chapitre 2 explore les moteurs de l’adoption de l’IA par les scientifiques de

domaine d’application. Il fait appel au capital humain scientifique et technique

(STHC) comme cadre de référence pour comprendre ces incitations, et révèle que les

facteurs institutionnels et la composition de l’environnement social sont étroitement

liés à l’adoption de l’IA. Nous montrons l’importance des chercheurs en début de

carrière et des personnes ayant des expériences diverses pour favoriser l’adoption et

la réutilisation de l’IA. Cette perspective met l’accent non plus sur les tendances glob-

ales de l’adoption de l’IA, mais sur les caractéristiques individuelles des chercheurs

et sur leur environnement social et institutionnel. Cela permet une compréhension

plus nuancée de la manière dont l’IA est intégrée dans les pratiques scientifiques.

Le chapitre 3 présente Novelpy, un module Python open-source conçu pour cal-
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culer des indicateurs de nouveauté et de disruption sur des documents scientifiques

ou des brevets. Cet outil offre à la communauté scientométrique un moyen centralisé

d’analyser et de comparer systématiquement ces mesures. La création de cet outil

comble une lacune dans la communauté scientométrique et jette les bases de futures

études visant à explorer la relation entre ces indicateurs de manière systématique.

Le chapitre 4 développe un indicateur au niveau auteur. Il explore la relation entre

la composition de l’équipe, la nouveauté d’un article et sa reconnaissance scientifique.

Nous montrons le rôle essentiel de la dimension cognitive dans le processus créatif,

dans la mesure où elle influe considérablement sur l’originalité et la réussite. Le

chapitre souligne l’importance de la composition de l’équipe en termes de profils

cognitifs pour la créativité scientifique, en montrant que les équipes qui combinent

des individus hautement exploratifs et exploitatifs sont plus à même de bouleverser

la science et de proposer des combinaisons de connaissances plus nouvelles.

Toutefois, ce travail peut être développé davantage, en particulier en ce qui con-

cerne la manière dont l’implication de l’IA dans la recherche est envisagée. Cette

thèse considère l’IA comme un outil nécessairement mentionné explicitement dans

un article scientifique. Au fur et à mesure que cette technologie se répandra, son util-

isation sera moins explicite et il deviendra de plus en plus difficile de voir la partie

immergée de l’iceberg, c’est-à-dire l’utilisation implicite de l’IA. Lorsque nous avons

commencé ce travail, l’IA restait extrêmement ciblée, et nos analyses ont montré que

l’IA pouvait être considérée comme un nouveau super microscope ayant la flexibilité

d’analyser n’importe quel contenu. Aujourd’hui, l’IA textuelle générative change

complètement la donne. Les modèles de type GPT sont également formés à des tâches

spécifiques, en prédisant les mots suivants dans un texte. Cependant, pour faire cette

prédiction, il est nécessaire de comprendre toutes les entités présentes dans un texte et

d’être capable de les combiner. GPT-4 ne répond pas 2 à 1+1 uniquement parce qu’il

l’a lu, mais parce qu’il a compris le concept de dénombrement et d’addition. Cette

différence subtile est considérable car elle implique que l’exploration de l’ensemble

de l’espace de connaissances peut être réalisée au sein d’une même entité.

Avec la centralisation de la quasi-totalité des informations provenant d’Internet

dans un modèle unique, capable de comprendre leur signification et leur relation

avec d’autres informations, nous assistons à un second changement potentiel dans

la manière dont l’IA influencera la science. Aujourd’hui, les discussions tournent

principalement autour du fait de considérer l’IA comme un auteur potentiel (voir les

récents débats sur Nature). Pourtant, cette méthode permet bien plus qu’une simple

237



CONCLUSION GÉNÉRALE

retranscription d’idées dans un langage académique. En effet, les chercheurs peu-

vent utiliser ce chatbot pendant les phases de conceptualisation et de traitement des

données, se faire suggérer des articles adaptés à une question de recherche et signaler

les incohérences et les lacunes dans un texte. Cela ouvre la porte à une exploration

plus systématique de l’espace de connaissances de manière informelle, puisque cela

se fait par messages interposés. En fait, GPT-4 est l’entité IA la plus proche du

collègue compétent que l’on rencontre à la machine à café, avec lequel un échange

informel rapide sur un problème donné permet de le résoudre rapidement. Ces inter-

actions avec ces collègues hypothétiques seront le plus souvent mentionnées dans les

remerciements d’un article ; leur contribution au processus de création de connais-

sances reste presque invisible. Il en va de même pour l’IA générative. Aujourd’hui,

les personnes qui utilisent l’IA générative dans leur recherche ne la mentionnent pas

explicitement, ce qui rend de plus en plus difficile la compréhension de la manière

dont elle peut modifier la recherche. Il semble donc nécessaire d’envisager une ap-

proche qualitative de ce phénomène. Bien que les méthodes quantitatives offrent des

résultats à grande échelle, l’absence de récits ou d’expériences personnelles détaillés

nous prive d’une compréhension approfondie de l’utilisation de l’IA, des acteurs im-

pliqués et de son rôle précis dans le processus de création de connaissances.
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L. Wu, A. Kittur, H. Youn, S. Milojević, E. Leahey, S. M. Fiore, and Y.-Y. Ahn.

Metrics and mechanisms: Measuring the unmeasurable in the science of science.

Journal of Informetrics, 16(2):101290, 2022.

Q. Wu and Z. Yan. Solo citations, duet citations, and prelude citations: New mea-

sures of the disruption of academic papers. arXiv Preprint arXiv:1905.03461, 2019.

S. Wu and Q. Wu. A confusing definition of disruption, Apr 2019.

S. Wuchty, B. F. Jones, and B. Uzzi. The increasing dominance of teams in produc-

tion of knowledge. Science, 316(5827):1036–1039, 2007.

Y. Xie and A. A. Killewald. Is American science in decline? Harvard University

Press, 2012.

F. Xu, L. Wu, and J. Evans. Flat teams drive scientific innovation. Proceedings of

the National Academy of Sciences, 119(23):e2200927119, 2022.

J. Xu, S. Kim, M. Song, M. Jeong, D. Kim, J. Kang, J. F. Rousseau, X. Li, W. Xu,

V. I. Torvik, et al. Building a pubmed knowledge graph. Scientific Data, 7(1):

1–15, 2020.

Q. Zhang, L. T. Yang, Z. Chen, and P. Li. A survey on deep learning for big data.

Information Fusion, 42:146–157, 2018.

S. Zhang, L. Yao, A. Sun, and Y. Tay. Deep learning based recommender system:

A survey and new perspectives. ACM Computing Surveys (CSUR), 52(1):1–38,

2019.

258



BIBLIOGRAPHY

S. Zuboff. The age of surveillance capitalism: The fight for a human future at the

new frontier of power: Barack Obama’s books of 2019. Profile Books, 2019.

259



List of Figures

1.1 Trends in NN publication activity by scientific area . . . . . . . . . . 52

1.2 Global diffusion of NN in science across countries . . . . . . . . . . . 54

1.3 Trends in annual citations of influential NN publications . . . . . . . 56

1.4 NN publications cross-classified as ‘Computer Science’ . . . . . . . . . 58

2.1 Focal scientists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

2.2 S&T Human capital . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

2.3 Matched samples to investigate AI adoption, i.e. first-time AI research

and re-using AI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

2.4 Number of author per year and share that reuse it . . . . . . . . . . . 131

3.1 Novelpy ’s module structure . . . . . . . . . . . . . . . . . . . . . . . 163

3.2 Uzzi et al. [2013] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

3.3 Lee et al. [2015] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

3.4 Foster et al. [2015] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

3.5 Wang et al. [2017] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

3.6 Shibayama et al. [2021] . . . . . . . . . . . . . . . . . . . . . . . . . 172

3.7 Wu et al. [2019], Bornmann et al. [2019a] . . . . . . . . . . . . . . . 174

3.8 Bu et al. [2019] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

3.9 Density of number of authors, meshterms and references . . . . . . . 180

3.10 Distribution of novelty indicators for PMID 10698680 . . . . . . . . . 181

3.11 Novelty evolution over time . . . . . . . . . . . . . . . . . . . . . . . 182

3.12 Novelty indicators correlation . . . . . . . . . . . . . . . . . . . . . . 182

4.1 Construction of the indicator . . . . . . . . . . . . . . . . . . . . . . . 195

4.2 Exploratory profile and cognitive diversity . . . . . . . . . . . . . . . 196

4.3 Correlogram with hierarchical clustering . . . . . . . . . . . . . . . . 204

4.4 Team size, exploratory profiles and cognitive diversity . . . . . . . . . 205

260



LIST OF FIGURES

4.5 Relation between the share of highly exploitative and highly ex-

ploratory profile in a team with and Novelty/ Scientific Impact . . . . 206

4.6 Relation between cognitive diversity, average exploratory profile and

Novelty/ Scientific Impact . . . . . . . . . . . . . . . . . . . . . . . . 219

261



List of Tables

1.1 NN-related search terms from word embedding . . . . . . . . . . . . . 51

1.2 Influential NN publications . . . . . . . . . . . . . . . . . . . . . . . . 55

1.3 Novelty profile of NN publications . . . . . . . . . . . . . . . . . . . . 65

1.4 Impact profile of NN publications . . . . . . . . . . . . . . . . . . . . 66

1.5 Descriptive statistics of the variables . . . . . . . . . . . . . . . . . . 74

1.6 Atypical profile of NN publications . . . . . . . . . . . . . . . . . . . 75

1.7a Word embedding obtained via Word2Vec [arXiv.org sample] . . . . . 77

1.7b Word embedding obtained via Word2Vec [arXiv.org sample] . . . . . 78

1.8 List of acronyms replaced by full name . . . . . . . . . . . . . . . . . 79

1.8 List of acronyms replaced by full name – continued . . . . . . . . . . 80

1.8 List of acronyms replaced by full name – continued . . . . . . . . . . 81

1.9 Deep learning documents broken down by period and WoS research

areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

1.10 Deep learning publication activity broken down by country and period 83

1.12 Sampled papers by journal and period . . . . . . . . . . . . . . . . . 83

1.12 Sampled papers per journal and period – continued . . . . . . . . . . 84

1.12 Sampled papers per journal and period – continued . . . . . . . . . . 85

1.12 Sampled papers per journal and period – continued . . . . . . . . . . 86

1.12 Sampled papers per journal and period – continued . . . . . . . . . . 87

1.12 Sampled papers per journal and period – continued . . . . . . . . . . 88

1.11 WoS subject categories defining ‘health sciences’ . . . . . . . . . . . . 89

1.13 Health sciences sample and deep learning articles . . . . . . . . . . . 90

1.14 Subject categories combinations (All Sciences) . . . . . . . . . . . . . 93

1.15 Subject categories combinations (No CS) . . . . . . . . . . . . . . . . 94

1.16 Subject categories combinations (Only HS) . . . . . . . . . . . . . . . 95

1.17 Descriptive statistics of the variables – Neuroscience articles excluded 96

262



LIST OF TABLES

1.18 Novelty profile of deep learning publications – Neuroscience articles

excluded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

1.19 Impact profile of deep learning publications – Neuroscience articles

excluded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

1.20 Descriptive statistics of the variables – Neural network(s) articles

excluded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

1.21 Novelty profile of deep learning publications – Neural network(s)

articles excluded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

1.22 Impact profile of deep learning publications – Neural network(s)

articles excluded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

1.23 Novelty and impact profile – Matching . . . . . . . . . . . . . . . . . 102

1.24 Atypical profile of deep learning publications . . . . . . . . . . . . . . 103

1.24 Atypical profile of deep learning publications – continued. . . . . . . . 104

1.24 Atypical profile of deep learning publications – continued. . . . . . . . 105

2.1 Co-authors of first-time AI users in non-AI papers and AI papers . . 133

2.2 Descriptives statistics for both matching strategies . . . . . . . . . . . 134

2.3 Descriptive Statistics - first-time AI regression . . . . . . . . . . . . . 135

2.4 Descriptive Statistics - re-using AI regression . . . . . . . . . . . . . . 136

2.5 Conditional Logit with matching (first-time AI use) . . . . . . . . . . 137

2.6 Conditional logit with matching (re-using AI) . . . . . . . . . . . . . 140

2.7 Conditional Logit with matching across fields (first-use of AI) . . . . 142

2.8 Conditional Logit with matching across fields (Reusing AI) . . . . . . 144

2.9 Number of authors per concept for first AI publication and first

publication in the sample . . . . . . . . . . . . . . . . . . . . . . . . . 148

2.10 Number of authors per first publication concept on all OpenAlex . . . 149

2.11 AI terms used to label articles . . . . . . . . . . . . . . . . . . . . . . 150

2.12 Regular expression used to label HPC availability . . . . . . . . . . . 151

2.13 Descriptives statistics for both matching strategies (2012-2018) . . . . 152

2.14 Conditional logit with matching (first-use of AI) (2012-2018) . . . . . 153

2.15 Conditional logit with matching (first-use of AI; 2012 – 2018) . . . . 154

2.16 Conditional logit with matching (re-using AI; 2012 – 2018) . . . . . . 155

2.17 Conditional logit with matching (re-using AI; 2012 – 2018) . . . . . . 156

3.1 Novelpy ’s indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

3.2 Sample Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

263



LIST OF TABLES

4.1 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

4.2 Combinatorial Novelty: cognitive diversity and average exploratory

profile (Field-Weighted/ References) . . . . . . . . . . . . . . . . . . . 208

4.3 Combinatorial Novelty: Cognitive diversity, highly exploratory and

exploitative profile (Field-Weighted/ References) . . . . . . . . . . . . 210

4.4 Faculty Opinions: cognitive diversity and average exploratory profile,

highly exploratory and exploitative profile (Field-Weighted) . . . . . 212

4.5 Scientific recognition: cognitive diversity and average exploratory

profile (Field-Weighted) . . . . . . . . . . . . . . . . . . . . . . . . . 214

4.6 Scientific recognition: cognitive diversity, highly exploratory and

exploitative profile (Field-Weighted) . . . . . . . . . . . . . . . . . . . 216

4.7 Faculty Opinions: Cognitive diversity and average exploratory profile

(Field-Weighted) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

4.8 Faculty Opinions: Cognitive diversity and average exploratory profile

(Field-Weighted) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

4.9 Faculty Opinions: Cognitive diversity, highly exploratory and ex-

ploitative profile (Field-Weighted) . . . . . . . . . . . . . . . . . . . . 222

4.10 Faculty Opinions: Cognitive diversity, highly exploratory and ex-

ploitative profile (Field-Weighted) . . . . . . . . . . . . . . . . . . . . 223

4.11 Combinatorial Novelty: cognitive diversity and average exploratory

profile (Field-Weighted/ Meshterms) . . . . . . . . . . . . . . . . . . 224

4.12 Combinatorial Novelty: Cognitive diversity, highly exploratory and

exploitative profile (Field-Weighted/ Meshterms) . . . . . . . . . . . 225

4.13 Turning Points for Combinatorial Novelty and Scientific Impact . . . 226

4.14 Combinatorial Novelty: cognitive diversity and average exploratory

profile (References) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

4.15 Combinatorial Novelty: cognitive diversity and average exploratory

profile (Meshterms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

4.16 Scientific recognition: cognitive diversity and average exploratory

profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

4.17 Combinatorial Novelty: Cognitive diversity, highly exploratory and

exploitative profile (References) . . . . . . . . . . . . . . . . . . . . . 230

4.18 Combinatorial Novelty: Cognitive diversity, highly exploratory and

exploitative profile (Meshterms) . . . . . . . . . . . . . . . . . . . . . 231

264



LIST OF TABLES

4.19 Scientific recognition: cognitive diversity, highly exploratory and

exploitative profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

265






	General Introduction
	Introduction générale
	Artificial Intelligence in Science: An Emerging General Method of Invention
	Introduction
	Data-intensive scientific discovery
	Identifying neural network research
	Technology diffusion in the sciences
	Neural networks in the health sciences
	Empirical analysis
	Robustness analysis

	Concluding remarks
	Appendix

	Barriers and Drivers of AI Adoption in Science
	Introduction
	Conceptual framework and hypotheses
	External resources
	Internal resources

	Data and Methods
	Data
	Measures
	Econometric strategy
	Matching strategy
	Descriptive statistics

	Results
	Main results
	Extension: AI adoption across scientific fields and time

	Conclusion
	Appendix

	Novelpy: A Python Package to Measure Novelty and Disruptiveness of Bibliometric and Patent Data
	Introduction
	Supported indicators
	Novelty Indicators
	Disruptiveness Indicators

	Sample analysis
	Descriptive statistics
	Results

	Discussion
	Appendix

	Unpacking Scientific Creativity: A Team Composition Perspective
	Introduction
	Background and literature review
	Team science as an engine of creativity
	Team characteristics in the creative process
	Exploring the cognitive dimension

	Data and methods
	Measuring cognitive diversity and exploratory profile
	Data
	Empirical strategy
	Variables
	Descriptive statistics and preliminary evidence

	Results
	Cognitive dimension and novelty
	Cognitive dimension and impact

	Conclusion
	Appendix

	General Conclusion
	Conclusion Générale
	Bibliography
	List of figures
	List of tables

