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General Introduction

Launched on March 14, 2023, the new version of ChatGPT, GPT-4, marks a turning
point in Artificial Intelligence (AI). Due to its ability to combine text and vision, it
can now successfully pass exams — with high grades — in nearly any domain. When
I started this thesis in 2019, only seven years had passed since we could recognize
a cat with 75% accuracy [Le, 2013], and only four years since Microsoft’s Al had
“surpassed” humans in their ability to recognize entities in images [He et al., 2015].
Four years later, we have seen an explosion in the development of Al, especially in
natural language processing, and still, little is known about its potential implications
and dangers (e.g. misinformation and fake news, cybersecurity risks, ethical concerns
or psychological impact on individuals). In response to this growing development of
Al for which we do not fully comprehend and handle the consequences, an open letter
calling on Al research to immediately pause for at least six months the training of
other Al systems more powerful than GPT-4 was published the 22 March 2023. This
petition was signed by more than 25,000 individuals including 1,000 AT researchers
and experts'. The proliferation of AI and its abilities for ten years involves societal
changes and might alter how science works. This thesis specifically addresses the
relationship between science and artificial intelligence technology. Specifically, it
aims to understand how various Al applications can affect the nature of research
conducted in application domains. In doing so, we consider social factors to better
understand how researchers adopt technology and produce new knowledge. In the
following, we provide an overview of the role of Al in the new scientific paradigm.
Scientists depend on evolving technology to conduct experiments and validate
theories. New technologies often enable scientists to explore the knowledge space dif-
ferently and make new discoveries. As Derek de Solla Price states, “The changes of

paradigm that accompany great and revolutionary changes may sometimes be caused

Including Joshua Bengio, one of the three founding fathers of deep learning and winner of the
Turing Prize. The petition can be found here: https://futureoflife.org/open-letter /pause-giant-ai-
experiments/
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GENERAL INTRODUCTION

by inspired thought, but much more commonly they seem due to the application of
technology to science” [de Solla Price, 1963]. Science and technology have a bidi-
rectional relationship: science provides fundamental principles for the development
of new technologies, and technology, in turn, generates the instrumentation and
technics needed to address novel and more challenging scientific questions more ef-
ficiently [Brooks, 1994]. Several technological advances have reshaped the scientific
landscape throughout history. Think of the invention of the microscope which led
to the discovery of cells or X-ray crystallography that facilitated the elucidation
of three-dimensional molecular structures. These developments have deepened our
understanding of biological mechanisms and provided a foundation for countless dis-
coveries and innovations in various scientific disciplines. More recently, advances in
informatics have enabled scientists to create complex mathematical models and solve
problems previously considered intractable. For example, computers have been used
to solve problems in number theory, cryptography, combinatorial optimization, sim-
ulate natural phenomena (climate systems, molecular dynamics, galaxy structures),
and finally, enable the emergence of artificial intelligence.

AT lies at the core of the current technological paradigm, sharing several simi-
larities in scale and scope with previous technological revolutions that have shaped
and fueled long-term cycles of economic growth and structural change. The term
“Artificial Intelligence” was coined by the computer scientist John McCarthy for
the 1956 Dartmouth Summer Research Project on Artificial Intelligence, a seminal
event for the field [McCarthy et al., 1955]. The goal of Al was to make machines
use language, form abstractions, solve human problems, and improve themselves.
Definitions of Al have varied but generally involve machines simulating intelligent
behavior, performing complex tasks, and learning from experience. For instance,
the European Commission refers to Al as “machines or agents capable of observing
their environment, learning, and taking intelligent action or proposing decisions”
[Annoni et al., 2018, p.19]. According to the OECD, Al systems are machine-based
systems that can make predictions, recommendations, or decisions for a given set of
human-defined objectives " [OECD, 2019, p.23]. WIPO defines Al systems as learn-
ing systems that can improve at tasks typically performed by humans with limited
or no human intervention " [WIPO, 2019, p.19]. Terms like machine learning, deep

learning, and artificial intelligence are often used interchangeably.
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GENERAL INTRODUCTION

In the early days, AI focused on solving problems that formal mathematical
rules could describe. These problems are intellectually challenging for humans but
simpler for computers, as real-world knowledge can be hard-coded into formal lan-
guages, allowing logical inference rules to find solutions. This method, known as the
"’knowledge-based’ approach, involves a typical architecture with a knowledge base
and an inference engine. The knowledge base stores real-world information, while the
inference engine enables the machine to deduce insights from the stored information.
This approach was dominant during the first few decades, with applications like “ex-
pert systems” introduced in the 1970s to simulate human judgment and behavior in
specific fields. These systems were effective for certain problem types but not those
requiring substantial subjective and intuitive knowledge or perceptual capabilities.
Such problems are easy for humans to perform but difficult to articulate formally
and mathematically [Nilsson, 2009].

In the same period, an alternative approach to machine intelligence began to take
hold in the scientific community. This approach soon became known as “machine
learning”, which focused on designing intelligent systems that can acquire knowledge
by extracting patterns from raw data. Unlike knowledge-based systems, machine
learning methods construct hypotheses directly from the data through inductive in-
ference, allowing machines to tackle problems involving real-world knowledge and
achieve some human-like abilities, such as recognizing objects. Although machine
learning proved to be a successful alternative to knowledge-based systems and be-
came one of the most prominent branches of Al starting in the 1980s, particular
challenges remained. Mainly, traditional machine learning methods encountered sig-
nificant difficulties in extracting high-level abstract features from raw data due to
factors of variation, such as different shapes, shadows, and viewing angles [Nilsson,
2009, Goodfellow et al., 2016]. All these attributes are known as factors of varia-
tions, essentially constructs in the human mind that can be thought of as high-level
abstractions that help us make sense of the rich variability of the observed data.

The “deep learning” approach to machine intelligence emerged as an effective so-
lution to the challenges faced by traditional machine learning methods. Deep learning
(DL) systems learn from experience and comprehend the world through a hierarchy of
abstract concepts, each defined in relation to simpler concepts [Schmidhuber, 2015,
LeCun et al., 2015, Goodfellow et al., 2016]. This approach offers two significant
advantages. First, like simpler machine learning algorithms, the machine acquires

knowledge from past experiences, eliminating the need for humans to provide all the
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formal knowledge required to achieve a specific goal. Second, the complexity and
abstraction of concepts are no longer barriers, as the machine can reconstruct and
combine them on top of each other. This hierarchy of concepts makes the learning
process that can be seen as structured into multiple layers, hence the term “deep”. Al
technics have been successfully used in diverse areas as predicting the 3D structure
of proteins [Jumper et al., 2021], regulating nuclear fusion plasma in the tokamak
configuration [Degrave et al., 2022], predicting the formation of the structure of the
Universe [He et al., 2019], and creating a map of the brains of small insects [Winding
et al., 2023] to name few. In 2017, Al witnessed another remarkable breakthrough
with the emergence of Transformer models with self-attention mechanisms [Vaswani
et al., 2017].

The impressive results of Generative Pre-trained Transformers (GPT), such as
ChatGPT or GPT-4, now clearly illustrate artificial intelligence’s general-purpose
technology (GPT) nature, showcasing their adaptability and broad applicability
across numerous domains. These models not only interact with users on various
subjects but also support human thought processes by providing additional perspec-
tives backed by near-expert knowledge on diverse topics. Thus, GPTs are GPTs.
In March 2023, Eloundou et al. [2023] immortalized the wordplay and published the
paper “GPTs are GPTs: An early look at the labor market impact potential of large
language models”, highlighting GPT-4’s capabilities and its potential impact on the
job market, suggesting that 15% of all worker tasks in the US could be completed
significantly faster while maintaining the same quality level. Note that some of these
tasks are also part of the scientific system, like programming and writing [Eloundou
et al., 2023]. AI possesses the attributes of a general-purpose technology, with wide-
ranging applications across numerous disciplines. GPTs, such as Al, stand out from
other innovations due to their extensive application across various sectors, ability to
catalyze further innovation in application sectors, and continuous rapid improvement
[David, 1990, Bresnahan and Trajtenberg, 1995]. Classic examples of GPTs include
the electric motor and the microprocessor, which have driven significant technologi-
cal and organizational change across diverse sectors like manufacturing, agriculture,
retail, and residential construction.

AT’s role as a GPT in science is further exemplified by its function as an “Inven-
tion in the Method of Invention” (IMI). IMIs create or improve specific products and

provide a new way of generating new products with broader applications. For exam-
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ple, double-cross hybrid in agriculture was an IMI that led to the development of nu-
merous new crop varieties, profoundly impacting agricultural productivity [Griliches,
1957]. The economic impact of Al as a research tool extends beyond merely reducing
the costs of specific innovation activities as it enables an entirely new approach to
innovation itself. The pervasive nature of Al as a GPT and IMI positions it as a
unique technology capable of driving organizational change across a wide range of
scientific fields. Yet, it should be used responsibly. This is why institutions such
as the Furopean Commission are supporting a regulatory and investment-oriented
approach to promoting Al uptake while addressing risks associated with the technol-
ogy [European-Commission, 2020]. Similar initiatives have been implemented by the
OECD, which launched a specific technology observatory to closely monitor technol-
ogy evolution and provide evidence-based policy analysis on AI?. These initiatives
are not limited to Europe, since 2019 institutions such as Stanford University have
regularly reported yearly metrics on Al’s evolution, labor market, skills, and automa-
tion to guide responsible and ethical decision-making 3.

Ongoing advancements in Al within scientific disciplines, particularly the remark-
able accomplishments achieved through neural network technics, extend beyond pro-
viding impressive anecdotal discoveries. Instead, these advancements have resulted
in increasing pressure to transition from hypothesis-driven to data-driven scientific
exploration. The emerging scientific paradigm is founded upon data-intensive com-
puting, facilitated by the widespread implementation of intelligent machines capable
of discerning representations, rules, and patterns in an ever-growing volume of struc-
tured and unstructured data [King et al., 2009, Hey et al., 2009]. Scientific discovery
can be viewed as the process or product of successful scientific inquiry. In its narrow-
est sense, the term discovery might refer to the so-called ’eureka moment’ of gaining
new insights. However, in this context, we adopt its broadest meaning—using the
term discovery as synonymous with ’successful scientific endeavour’ as a whole. His-
torically, the process of scientific inquiry has evolved through paradigms, i.e. sym-
bolic generalizations, metaphysical commitments, values, and exemplars shared by
a community of scientists that guide their research [Kuhn, 1962]. For most of hu-
man history, scientists have observed phenomena and postulated laws or principles
to simplify the complexity of observations into more manageable concepts. Initially,

there were only experimental and theoretical sciences. Hey et al. [2009] refer to

2https://oecd.ai/en/
3https://aiindex.stanford.edu/report/
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empirical observation and logical (theory) formulation as the first and second scien-
tific paradigms, respectively. However, by the mid-20th century, numerous problems
became too complex for analytical solutions, leading researchers to adopt simula-
tion methods. Science entered a third paradigm characterized by the development
of computational models and simulations to understand complex phenomena. We
are transitioning towards a fourth scientific paradigm where scientific investigation
is rooted in data-intensive computing, enabled by the extensive deployment of intel-
ligent machines capable of extracting representations, rules, and patterns from data
[King et al., 2009, Hey et al., 2009].

The shift towards this fourth scientific paradigm implies that there may be a
change in the way science progresses. Scientific advancements stem from individu-
als’ abilities to balance exploration and exploitation of the knowledge space efficiently
[Uzzi et al., 2013]. With the integration of data-intensive computing and intelligent
machines, the process of knowledge creation could potentially be transformed or
even accelerated as these new technologies help uncover representations, rules, and
patterns from vast amounts of data. The theory of re-combinatorial knowledge cre-
ation posits that new knowledge primarily results from the recombination of existing
pieces of knowledge [Weitzman, 1998, Uzzi et al., 2013, Wang et al., 2017]. Scien-
tific progress is thus the outcome of individual and collective creativeness, where
creativity is defined as the “production of high-quality, original, and elegant solu-
tions to complex, novel, ill-defined, or poorly structured problems” [Hemlin et al.,
2013]. Innovation relies on the exploration of the knowledge space. The way orga-
nizations manage the balance between exploring new ideas and exploiting existing
ones can be easily transferred to the scientific community. This balance determines
the trade-off that organizations face when attempting to innovate while preserving
established routines and practices [March, 1991]. March argues that organizations
must find a suitable compromise between these two aspects to survive and succeed
in the long run. The same stand for science since scientists try to innovate within
established paradigms, and survival in science can be considered through peer recog-
nition. This perspective emphasizes two facets of creativity in science: the novelty
and relevance of the research conducted. Measures of novelty or atypicality are based
on the concept of knowledge recombination [Uzzi et al., 2013, Lee et al., 2015, Fos-
ter et al., 2015, Wang et al., 2017, Shibayama et al., 2021]. One can approximate

the difficulties of combining pieces of knowledge within a scientific document (i.e.
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an article). Although these measures may contain biases due to their reliance on
citation networks, they remain crucially helpful. They provide evidence of possible
biases in journals’ peer-review processes [Wang et al., 2017] as well as in funding
allocations towards too-novel research [Boudreau et al., 2016, Carayol et al., 2017,
Franzoni et al., 2022]. Furthermore, these metrics also provide a basis for analyzing
the influence of technology on research. They help to identify whether the technology
offers a more cross-disciplinary viewpoint by helping navigation through the knowl-
edge space or allows for exploiting this space by providing a sharper perspective on
a well-defined problem. These questions of how Al would lead to further exploration
or exploitation of the knowledge space and how it affects the associated recognition
will be addressed in Chapter 1 of this thesis.

Since science is a social phenomenon [Fleck, 2012], factors related to individuals’
social capital will determine how Al disseminates within the scientific community.
This paradigm shift suggests that technology can impact the nature of the research
conducted but also implies that a growing number of researchers in various applica-
tion domains will focus on these technics. Not all individuals have equal access to
Al-based technologies. A researcher’s ability to adopt Al largely depends on their
scientific and technical human capital, including cognitive skills, scientific and tech-
nical knowledge, and contextual skills. Resources can be divided into two broad
categories: those that reside within the individual and those that are anchored in
the relationships between the individual and their working environment [Bozeman
et al., 2001, Bozeman and Corley, 2004]. Consequently, the adoption of Al in sci-
ence is closely linked to how researchers mobilize and are limited by their resources.
Although the objective is not for all researchers to necessarily use Al, it still seems
important to understand the factors that promote its adoption to uncover mech-
anisms that enable a broader range of researchers to benefit from the advantages
linked to AI. Chapter 2 will discuss the relationship between individuals’ scientific
and technical human capital and the adoption of artificial intelligence in application
domains.

The third contribution of this thesis, presented in Chapters 3 and 4, focuses on
the relation between the cognitive dimension within a research team and knowledge
creation. Nahapiet and Ghoshal [1998] conceptualizes three dimensions of social
capital that impact intellectual capital development: structural, relational, and cog-
nitive. Structural capital examines the connections between individuals and their

respective networks; relational capital represents the nature and intensity of the

17



GENERAL INTRODUCTION

relationships between team members; and cognitive capital symbolises the shared
background between individuals and their common language. In science, cognitive
diversity is often promoted through interdisciplinary projects, as the intersection of
different perspectives is commonly needed to solve complex scientific problems [Page,
2008]. Indeed, people from outside a domain may have an advantage in offering fresh
ideas through their distinct knowledge [Jeppesen and Lakhani, 2010, Kuhn, 1962].
Chapters 3 and 4 enhance our understanding of novelty, scientific impact indicators,
and their association with social dimensions. Chapter 3 introduces an open-source
Python-based tool, “Novelpy”, which allows the computing of various metrics of
novelty and disruption. This chapter also formalises existing indicators mathemati-
cally in a common framework. It seems essential to consider the social dimension of
the innovation process to better understand how to identify potentially innovative
research without solely relying on measures based on citation networks. The final
chapter of this thesis, chapter 4, takes a step back and analyzes the origin of these
novelty indicators, considering the cognitive dimension of the team as a determining

factor of its creativity.

Outline of the thesis

In the current context of artificial intelligence becoming a transformative force in
research, there is a growing need to address questions surrounding its adoption and
impact on the scientific process. The primary objective of this thesis is to shed light
on three main questions:

e How does Al affect the knowledge production process in terms of novelty and

scientific recognition?

e What are the factors that promote the adoption of this technology in scientific

application domains?

e How individuals’ ability to explore the knowledge space, and cognitive distances
between team members influence their capacity to combine distant knowledge
and the resulting recognition?

To answer these questions, Chapters 1 and 2 will offer insights into the two first
queries, while Chapters 3 and 4 will concentrate on the third one. The subsequent
sections will present a comprehensive overview of each chapter and the methodologies

employed throughout this thesis.
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Chapter 1

This initial chapter provides insights into the dissemination and impact of artificial
intelligence, specifically neural networks, in science. Some recent studies have doc-
umented the diffusion of Al and deep learning in science [Cockburn et al., 2018,
Klinger et al., 2021], but none have explored how its use influences scientific discov-
ery. Our article addresses this gap by examining how the use of neural networks
(NNs) affects combinatorial novelty and the scientific impact of articles in the health
sciences.

To identify articles using Al, we employed a new and original method based on
word embedding which allowed us to identify some 250,000 documents published
between 1990 and 2018 from Web of Science. By analyzing these documents, we
considered five key attributes that define a technology as ’emerging’” — namely: (i)
radical novelty, (ii) fast growth, (iii) coherence, (iv) prominent impact, and (v) uncer-
tainty and ambiguity [Rotolo et al., 2015] — and demonstrated that NNs conform to
these properties. We found that NN research activity has grown exponentially across
nearly all sciences and globally, with the diffusion process following a double-boom
cycle and a strong reconfiguration of global actors. The diffusion of NN methods
into application domains began cross-disciplinary involving the computer sciences,
breaking their way into ‘pure’ field-specific research within the various application
domains.

We subsequently investigated the impact of technology adoption on scientific dis-
covery, particularly focusing on health sciences. We found a negative correlation
between adopting NN methods and combinatorial novelty by employing novelty in-
dicators from Uzzi et al. [2013] and Wang et al. [2017]. At the same time, we observed
a positive correlation with the expectation and dispersion of citations received, thus
increasing a contribution’s likelihood of becoming a "big hit.’

Our findings prompt us to adopt a more moderate stance in the recent debate
regarding Al’s influence on knowledge development. We conclude that while NN
methods do not yet function as an autopilot for navigating the sea of knowledge and
connecting ideas, they represent a potent and versatile research tool that impacts
knowledge creation in tangible ways. As such, we propose that Al be considered as

an emerging general method of invention.

19



GENERAL INTRODUCTION

Chapter 2

This chapter aims to understand the factors that promote AI adoption by domain
scientists. While most literature focuses on an article-level analysis, we propose
studying the dynamics of Al adoption at the individual level.

We relied on the Scientific & Technical Human Capital (STHC) framework pro-
posed in the seminal paper by Bozeman and Corley [2004] and, hence, divided the
authors” STHC into three main dimensions: individual characteristics, social en-
vironment, and institutional context. We operationalized the three dimensions by
blending OpenAlex data with information on the computational capabilities of in-
stitutions, social networks and exploratory profiles of individuals.

In this study, we show that the proportion of researchers adopting AI who will
eventually use the technology again remains relatively stable at around 35%. Despite
technological advancements and the increasing availability of resources to facilitate
AT utilization, incorporating Al into a researcher’s future work seems not determined
by its progress and accessibility. Researchers adopting Al often apply this technology
in a familiar field, with 62% publishing their first AI article in a journal sharing
the same primary concept as their initial publication. On average, the number of
researchers with computer science or Al skills is higher in Al-based papers involving
domain scientists, suggesting that published Al articles demand specialized skills
compared to researchers’ prior publications.

Our results indicate that the STHC offers a valuable framework for understand-
ing drivers of Al adoption in application domains. Some institutional dimensions,
such as the degree of specialization, significantly affect individuals’ ability to tran-
sition to Al usage and to appropriate it in the long term. Physical infrastructures
(High-performance computing) appear beneficial only in some domains, emphasiz-
ing that the lack of local physical infrastructure may not be the most significant
barrier to undertaking Al research contrary to the popular belief and evidence from
macro-level studies [Ahmed and Wahed, 2020]. Also, the composition of the social
environment (i.e. past collaboration network) is strongly related to Al integration in
researchers’ practices and its long-term adoption; both adopters and reusers belong
to networks populated by computer scientists or individuals with AI backgrounds at
the expense of domain scientists. Scholars with more diverse backgrounds are more
likely to embrace and reuse Al in their research, indicating that individuals with
a more exploratory profile are more prone to transitioning toward new technology.

Lastly, we found that young researchers enhance Al adoption and reuse; many past
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collaborations with young researchers make Al adoption more straightforward, and
their presence on the team during initial trials strongly influences the reuse of the
technology.

Institutions must foster a culture that encourages knowledge sharing, promotes
interaction among scientists, and identifies and supports ’boundary-spanning’ indi-
viduals who can bridge the gap between AI expertise and other scientific domains.
Additionally, reconsidering the allocation of resources towards more modest but
widespread investments in data science or ML infrastructure could democratize Al,

promoting its adoption across a broader range of scientific disciplines.

Chapter 3

Chapter 3 is a methodological chapter. It proposes Nowvelpy, an open-source Python
package designed to compute novelty and disruption indicators for scientific arti-
cles and patents. This chapter also provides a comprehensive review of the various
indicators available in Novelpy by formally describing these measures (both mathe-
matically and graphically).

Novelty measures are based on the concept of knowledge combination, the indi-
cators calculate the difficulty associated with the combinations realized in an article
to determine whether it is based on distant or proximate knowledge within a certain
knowledge space. As it is common in the literature, pieces of knowledge are repre-
sented by the journals or abstracts of an article’s references or its keywords.

Disruption measures, on the other hand, analyze how a focal article acts as a
bottleneck between future papers and the references of the focal papers. They capture
whether a document consolidates a domain (i.e., future papers rely on the references
used in the focal paper) or disrupts it (i.e., future papers only reference the focal
paper).

Although there are several packages available in R and Python designed to study
citation, co-authorship, or any coupling (e.g. ScientoPy, Ruiz-Rosero et al. [2019] ;
sciento Text, Uddin et al. [2016]; Metaknowledge, McLevey and Mcllroy-Young [2017]
or bibliometriz, Aria and Cuccurullo [2017]), yet libraries to compute novelty and
disruptiveness indicators remain unavailable. Our effort aims to provide the scien-
tometrics community with a tool that centralizes different measures of novelty and
disruptiveness, facilitates their comparison, and promotes reproducibility.

Novelpy package incorporates novelty measures from Uzzi et al. [2013], Foster
et al. [2015], Lee et al. [2015], Wang et al. [2017], and Shibayama et al. [2021], as
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well as disruptiveness measures from Wu et al. [2019], Bornmann et al. [2019a], and
Bu et al. [2019]. To demonstrate the module’s capabilities, we close the chapter by
comparing the different measures on a random sample of 1.5M articles drawn from
the PubMed Knowledge Graph.

Chapter 4

This final chapter focuses more closely on novelty in science. Only a few studies seek
to explain the mechanisms that give rise to novelty. In this work, we develop a new
indicator that allows us to measure the team’s cognitive diversity and the propensity
of its members to explore the knowledge space. The indicator is built using word
embedding techniques on the publication history of team members. We test its
relationship with novelty indicators and validate it using peer recommendations from
Faculty Opinions, following Bornmann et al. [2019b].

We can think of our indicator as a measure of potential novelty, i.e., opportunities
for new knowledge recombination available through the diversity of backgrounds in
the team and the capacity of individuals to bridge the gap between other team
members. In comparison, combinatorial novelty indicators would capture the realized
novelty, i.e., the output of the research conducted by this team in terms of pieces
of knowledge used. Finally, Faculty Opinion labelling and other external validation
methods can describe the perceived novelty, i.e., the peers’ perception of this study.
Seen from this perspective, we investigate whether potential novelty contributes to
realized and perceived novelty and its scientific recognition, measured with metrics
of disruptiveness [Wu et al., 2019, Bornmann et al., 2019a, Bu et al., 2019]. To this
end, we use the PubMed Knowledge Graph and examine approximately 1.8M articles
from the 2000-2005 period, focusing on less recent publications to manage the fact
that novel articles are more often “sleeping beauties” and accumulate citations in
the long run [Lin et al., 2021].

Our findings emphasize the critical role of the cognitive dimensions in creativity,
as it significantly influences originality and success. We show that cognitive diver-
sity always seems beneficial to combine more distant knowledge. In contrast, the
within-team average exploratory profile follows an inverse U-shaped relation with
combinatorial novelty (i.e. there is a turning point where it is no longer beneficial).
The same relation can be found when examining the impact in terms of citations.
However, our study highlights the strong connection between the cognitive dimen-

sion and the nature of these citations. More specifically, teams with more exploitative
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profiles tend to consolidate science, while those with more ezploratory individuals
disrupt it when associated with exploitative ones.

In short, our research underscores the importance of team composition in terms of
profiles for scientific creativity. We show that the joint presence of highly exploratory
and exploitative individuals constitutes the most effective team compositions for
disrupting science, yet a limited number of highly exploratory individuals is essential

to maximize the relevance of knowledge combinations achieved.

Methodology

This thesis is largely based on quantitative analyses of science, employing methods
from bibliometrics and scientometrics. Thus, we make use of massive databases
represented as graphs, connecting scientific entities with one another, such as authors,
articles, institutions, etc. A brief history of these domains is in order.

The term bibliometrics was first defined by Belgian author Paul Otlet in 1934
[Otlet, 1934] and reintroduced in its English version by Pritchard et al. [1969] in
the paper “Statistical Bibliography or Bibliometrics?”. The discipline’s early fo-
cus was improving the classification and organization of books to avoid the flood of
knowledge. More precisely, librarians used it to select relevant items for their col-
lections [Sugimoto and Lariviere, 2018]. In 1955, chemist and documentalist Eugene
K. Garfield proposed the creation of a citation index to offer an analysis tool by
studying the links between different scientific documents. The Institute for Scien-
tific Information, founded by Garfield in 1960, developed the Science Citation Index
(SCI), first launched in 1963 for researchers and librarians. However, the beginning
of bibliometrics studies was in the 1960s, with one of the central figures being Derek
J. de Solla Price [de Solla Price, 1965, Boyack et al., 2005]. Back then, the initial
focus was to understand research as a system by examining the growth in publica-
tions and the outline of citation activity. Early on, the number of references, the
density of citation count for papers, and the inequality in the citation process was of
particular interest. The fundamental problems of keeping track of relevant pieces of
knowledge and the progression of the science system remain at the core of the science
of science research [Fortunato et al., 2018]. The number of databases used by scholars
has increased in the last decades. New database structures like Knowledge Graphs
(KG) emerged (e.g. Microsoft Academic Graph (MAG, replaced by OpenAlex in
2022), PubMed Knowledge Graph (PKG)). Although the name KG was first used
in Schneider [1973], it was only popularized in 2012 when Google presented their
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own KG. MAG and PKG help match different knowledge units for a paper, a crucial
task in scientometrics. These units can be an author profile, a journal, a reference,
or even topics. KGs help us understand more deeply how science is structured and
performed.

The increasing availability of data has led in turn to a diversification in the field
of scientometrics. Scholars often use terms like Bibliometrics, Scientometrics, Infor-
metrics, Webometrics, and Altmetrics interchangeably. Extensive literature traces
the history of these fields and seeks to understand their inter-differences, as well as
creating intra-field taxonomies. They all share a common goal: studying science as
a system, using scientific methods. Yet some differences remains, Informetrics is a
sub-discipline of information sciences and is defined as the application of mathemat-
ical methods to the content of information science [Chellappandi and Vijayakumar,
2018]. In other words, Informetrics is the highest level of abstraction, and every
other field is a subset of Informetrics. Bibliometrics, as we have seen above, fo-
cuses on citations for collection management and document retrieval using specific
aspects of the document without placing it in the overall context in which it was
created. In contrast, Scientometrics is a “meta-science” that quantitatively analyzes
the production, dissemination, and underlying system’s mechanisms [Sugimoto and
Lariviere, 2018, Chellappandi and Vijayakumar, 2018]. Finally, Webometrics and
Altmetrics are both concerned with information available on the web, but Webo-
metrics is document-focused, with the document being a web page, while Altmetrics
is focused on the networking aspect and complements citations with the number of
likes and retweets [Mingers and Leydesdorff, 2015].

This thesis is essentially built on methods from Scientometrics. But Scientomet-
rics itself can be further divided into two macro types of analysis: performance and
Science Mapping Analysis (SMA) [Moral Mufioz et al., 2020]. The goal of the former
is to assess scientific actors’ activities and their impact. Its purpose is, therefore, to
assign a value to the productivity and pervasiveness of the research conducted by a
unit (article, author, institution). SMA “is mostly directed at monitoring a scientific
field to determine its (cognitive) structure, its evolution, and main actors within”
[Noyons et al., 1999]; it takes a snapshot of a part of the scientific system at a given
moment to analyze its structure.

Inputs, outputs, and impacts of these scientific activities are the three perspec-
tives used in performance analysis and SMA [Sugimoto and Lariviere, 2018|. Input

refers to human and financial resources and captures the different interactions of
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agents in the system at various levels (Authors/Institutional/Country levels); output
is the end result of the research process, which is the composition of this document
and the different entities that characterize it; and finally, impact measures study the
repercussions of the outputs, the dissemination of knowledge that an article generates
through citations, attention by the general public, or reutilization of the document’s
component.

This thesis addresses these three dimensions in the study of artificial intelligence
in science. Indeed, in Chapter 1, as outlined earlier, we investigate the outputs
and scientific impact of Al publications. In Chapter 2, we study the inputs of this
research. Chapters 3 and 4 aim finally to understand the relationships between the
inputs at the author level, the outputs of the conducted research and their scientific

impact.
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Lancée le 14 mars 2023, la nouvelle version de ChatGPT, GPT-4, marque un tour-
nant dans le domaine de l'intelligence artificielle (IA). Grace a sa capacité & combiner
le texte et la vision, cette entité peut désormais passer avec succes des examens —
avec des notes élevées — dans presque tous les domaines. Lorsque j’ai commencé cette
these en 2019, il ne s’était écoulé que sept ans depuis que nous pouvions reconnaitre
un chat avec une précision de 75% [Le, 2013], et seulement quatre ans depuis que
I'TA de Microsoft avait “surpassé” les humains dans leur capacité a reconnaitre des
entités dans des images [He et al., 2015]. Quatre ans plus tard, nous avons assisté
a une explosion du développement de I'IA, en particulier dans le domaine du trai-
tement du langage naturel, et nous en savons encore peu sur ses implications et ses
dangers potentiels (par exemple, la désinformation et les “fake news”, les risques de
cybersécurité, les préoccupations éthiques ou l'impact psychologique sur les indivi-
dus). En réponse a ce développement croissant de I'TA; dont nous ne comprenons ni
ne gérons pleinement les conséquences, une lettre ouverte appelant la recherche sur
I'TA a faire une pause immédiate d’au moins six mois dans ’entrainement d’autres
systemes, plus puissants que GPT-4, a été publiée le 22 mars 2023. Cette pétition
a été signée par plus de 25 000 personnes, dont 1 000 chercheurs et experts en IA%.
La prolifération de I'TA et 'amélioration de ses capacités depuis dix ans impliquent
des changements sociétaux et pourrait modifier la facon dont la science fonctionne.
Cette these aborde spécifiquement la relation entre la science et la technologie de
Iintelligence artificielle. Plus précisément, elle vise a comprendre comment les di-
verses applications de I'TA peuvent affecter la nature de la recherche menée dans les
domaines d’application. Pour ce faire, nous prenons en compte les facteurs sociaux
afin de mieux comprendre comment les chercheurs adoptent la technologie et pro-

duisent de nouvelles connaissances. Nous présentons ci-dessous une vue d’ensemble

4Parmi lesquels Joshua Bengio, I'un des trois peres fondateurs de 'apprentissage profond et
lauréat du prix Turing. La pétition est disponible a ’adresse suivante : https://futureoflife.org/open-
letter /pause-giant-ai-experiments/
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du role de I'TA dans ce nouveau paradigme scientifique.

Les scientifiques dépendent de 1’évolution de la technologie pour mener des ex-
perience et valider des théories. Grace aux nouvelles technologies, les scientifiques
peuvent explorer différemment I'espace de connaissances et faire de nouvelles décou-
vertes. Comme le souligne Derek de Solla Price, “The changes of paradigm that
accompany great and revolutionary changes may sometimes be caused by inspired
thought, but much more commonly they seem due to the application of technology
to science” [de Solla Price, 1963]. La science et la technologie entretiennent une
relation bidirectionnelle : la science fournit des principes fondamentaux pour le
développement de nouvelles technologies, et la technologie, a son tour, génere les ins-
truments et les techniques nécessaires pour répondre plus efficacement a des questions
scientifiques nouvelles et plus difficiles [Brooks, 1994]. Plusieurs avancées technolo-
giques ont remodelé le paysage scientifique au cours de I'histoire. Il suffit de penser a
I'invention du microscope, qui a conduit a la découverte des cellules, ou a la cristal-
lographie aux rayons X, qui a facilité la compréhension des structures moléculaires
et de ’ADN. Ces développements ont permis d’approfondir notre compréhension des
mécanismes biologiques et ont servi de base a de nombreuses découvertes et innova-
tions dans diverses disciplines scientifiques. Plus récemment, les progres de I'informa-
tique ont permis aux scientifiques de créer des modeles mathématiques complexes et
de résoudre des problemes auparavant considérés comme insolubles. Par exemple, les
ordinateurs ont été utilisés pour résoudre des problemes de théorie des nombres, de
cryptographie, d’optimisation combinatoire, pour simuler des phénomenes naturels
(systemes climatiques, dynamique moléculaire, structures des galaxies) et enfin, ont
permis I'émergence de 'intelligence artificielle.

L’TA est au coeur du paradigme technologique actuel, partageant plusieurs simili-
tudes en termes d’échelle et de portée avec les révolutions technologiques précédentes.
Le terme “intelligence artificielle” a été lancé par I'informaticien John McCarthy a
I'occasion du projet de recherche estival de Dartmouth sur l'intelligence artificielle
en 1956, un événement fondateur pour le domaine [McCarthy et al., 1955]. L’objec-
tif de I'TA était de faire en sorte que les machines utilisent le langage, construisent
des abstractions, résolvent des problemes humains et s’améliorent d’elles-mémes. Les
définitions de I'TA varient, mais elles impliquent généralement que les machines si-
mulent un comportement intelligent, exécutent des taches complexes et tirent des
enseignements de leurs expériences. Par exemple, la Commission européenne définit

I'TA comme suit : “machines or agents capable of observing their environment, lear-
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ning, and taking intelligent action or proposing decisions” [Annoni et al., 2018, p.19].
Selon 'OCDE, les systemes d’IA sont des “machine-based systems that can make pre-
dictions, recommendations, or decisions for a given set of human-defined objectives
7[OECD, 2019, p.23]. L’OMPI définit les systemes d'TA comme des “learning sys-
tems that can improve at tasks typically performed by humans with limited or no
human intervention ”[WIPO, 2019, p.19]. Les termes “apprentissage automatique”,
“apprentissage profond” et “intelligence artificielle” sont souvent utilisés de maniere

interchangeable.

Au début, I'TA s’est concentrée sur la résolution de problemes que des regles
mathématiques formelles pouvaient décrire. Ces problemes sont intellectuellement
difficiles pour les humains, mais sont plus simples pour les ordinateurs car ils peuvent
étre codés formellement, ce qui permet de trouver des solutions a l'aide de regles
d’inférence logiques. Cette méthode, connue sous le nom d’approche “basée sur
la connaissance”, implique une architecture avec une base de connaissances et un
mécanisme d’inférence. La base de connaissances stocke les informations du monde
réel, tandis que le mécanisme d’inférence permet a la machine de déduire des sche-
mas a partir des informations stockées. Cette approche a été dominante au cours des
premieres décennies, avec des applications telles que les “systemes experts” introduits
dans les années 1970 pour simuler le jugement et le comportement humains dans des
domaines spécifiques. Ces systemes étaient efficaces pour certains types de problemes,
mais pas pour ceux qui nécessitaient des connaissances substantielles subjectives et
intuitives ou des capacités de perception. Ces problemes sont faciles a résoudre pour
les humains, mais difficiles a formuler de maniere formelle et mathématique [Nilsson,
2009]. Au cours de la méme période, une autre approche a l'intelligence machine
a commencé a s'imposer dans la communauté scientifique. Cette approche est ra-
pidement devenue connue sous le nom d’“apprentissage machine”. L’ “apprentissage
machine” se concentre sur la conception de systemes intelligents capables d’acquérir
des connaissances en extrayant des régularités a partir de données brutes. Contrai-
rement aux systemes basés sur la connaissance, les méthodes d’apprentissage auto-
matique construisent des hypotheses directement a partir des données par inférence
inductive, ce qui permet aux machines de s’attaquer a des problemes impliquant des
connaissances du monde réel et d’atteindre certaines capacités semblables a celles de
I’homme, telles que la reconnaissance d’objets. Bien que 'apprentissage automatique

se soit avéré etre une alternative efficace aux systemes basés sur la connaissance et
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qu’il soit devenu I'une des branches les plus importantes de I'IA a partir des années
1980, des défis particuliers subsistaient. Principalement, les méthodes traditionnelles
d’apprentissage automatique ont rencontré d’importantes difficultés pour extraire des
caractéristiques abstraites de haut niveau a partir de données brutes en raison de
facteurs de variation, tels que les différentes formes, les ombres et les angles de vue.
Ces facteurs de variation sont essentiellement des constructions de I'esprit humain
qui peuvent étre considérés comme des abstractions de haut niveau qui nous aident
a donner un sens a la riche variabilité des données observées [Nilsson, 2009, Goodfel-
low et al., 2016]. L’approche "apprentissage profond’ de l'intelligence artificielle est
apparue comme une solution efficace aux défis posés par les méthodes traditionnelles
d’apprentissage automatique. Les systemes d’apprentissage profond (DL) apprennent
par 'expérience et appréhendent le monde a travers une hiérarchie de concepts abs-
traits, chacun défini en relation avec des concepts plus simples [Schmidhuber, 2015,
LeCun et al., 2015, Goodfellow et al., 2016]. Cette approche présente deux avantages
significatifs. Premierement, a l'instar des algorithmes d’apprentissage automatique
plus simples, la machine acquiert des connaissances a partir d’expériences passées, ce
qui évite aux humains de devoir fournir toutes les connaissances formelles nécessaires
pour atteindre un objectif spécifique. Deuxiemement, la complexité et I’abstraction
des concepts ne sont plus des obstacles, car la machine peut les reconstruire et les
combiner les uns avec les autres. Cette hiérarchie de concepts fait que le processus
d’apprentissage peut étre considéré comme structuré en plusieurs couches, d’ou le
terme “profond”. Les techniques d’TA ont été utilisées avec succes dans des domaines
aussi variés que la prédiction de la structure 3D des protéines [Jumper et al., 2021],
la régulation du plasma de fusion nucléaire dans la configuration du tokamak [De-
grave et al., 2022], la prédiction de la formation de la structure de I’Univers [He
et al., 2019], ou la création d’une carte du cerveau des petits insectes [Winding et al.,
2023], pour n’en citer que quelques-uns. En 2017, Uintelligence artificielle a connu
une autre avancée remarquable avec I’émergence de modeles de Transformers dotés

de mécanismes d’auto-attention [Vaswani et al., 2017].

Les résultats impressionnants des “Generative Pre-trained Transformers” (GPT),
tels que ChatGPT ou GPT-4, illustrent désormais clairement la nature de technolo-
gie polyvalente de 'intelligence artificielle (General-Purpose Technology - GPT), en
montrant leur adaptabilité et leur large applicabilité dans de nombreux domaines.

Ces modeles ne se contentent pas d’interagir avec les utilisateurs sur divers sujets,
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aussi ils peuvent accompagner les humains dans un processus de pensée, en appor-
tant des perspectives supplémentaires étayées par des connaissances quasi-expertes
sur divers sujets. Les GPTs (Generative Pre-trained Transformers) sont donc des
GPTs (General-Purpose Technologies). En mars 2023, Eloundou et al. [2023], ont
immortalisé le jeu de mots en publiant I'article “GPTs are GPTs : An early look at
the labor market impact potential of large language models”, qui met en lumiere les
capacités du GPT-4 et son impact potentiel sur le marché du travail, suggérant que
15 % de toutes les taches des travailleurs aux Etats-Unis pourraient étre accomplies
beaucoup plus rapidement tout en conservant le méme niveau de qualité. A noter
que certaines de ces taches font également partie du monde scientifique, comme la
programmation et I’écriture [Eloundou et al., 2023]. L’intelligence artificielle possede
les attributs d'une technologie a usage universel, avec des applications tres variées
dans de nombreuses disciplines. Les GPT, comme I'TA, se distinguent des autres in-
novations par leur application étendue dans divers secteurs, leur capacité a catalyser
d’autres innovations dans les secteurs d’application et leur amélioration rapide et
continue [David, 1990, Bresnahan and Trajtenberg, 1995]. Parmi les exemples clas-
siques de GPT, on peut citer le moteur électrique et le microprocesseur, qui ont
entrainé d’importants changements technologiques et organisationnels dans divers
secteurs tels que I'industrie manufacturiere, I’agriculture, le commerce de détail et la
construction de logements.

Le role de I'TA en tant que GPT dans la science est également illustré par sa posi-
tion d’“invention dans les méthodes d’invention” (IMI). Les IMI créent ou améliorent
des produits spécifiques et fournissent une nouvelle fagon de générer de nouveaux
produits avec des applications plus larges. Par exemple, le croisement en agricul-
ture est une IMI qui a conduit au développement de nombreuses nouvelles variétés
de plantes cultivées, ce qui a eu un impact profond sur la productivité agricole.
L’impact économique de I'TA en tant qu’outil de recherche va au-dela de la simple
réduction des cotits d’activités liés a des innovations spécifiques, car elle permet une
approche entierement nouvelle de I'innovation elle-méme. L’omniprésence de I'TA en
tant que GPT et IMI la positionne comme une technologie unique capable de conduire
des changements organisationnels dans un large éventail de domaines scientifiques.
Cependant, elle doit étre utilisée de maniere responsable. C’est pourquoi des institu-
tions telles que la Commission européenne soutiennent une approche réglementaire
et axée sur l'investissement pour promouvoir 'adoption de I'TA tout en abordant

les risques associés a la technologie [European-Commission, 2020]. Des initiatives
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similaires ont été mises en ceuvre par 'OCDE, qui a lancé un observatoire de la
technologie spécifique pour suivre de pres ’évolution de la technologie et fournir une
analyse politique de I'TA fondée sur des données empiriques®. Ces initiatives ne se
limitent pas a I’Europe; depuis 2019, des institutions comme 1’Université de Stan-
ford publient régulierement des données annuelles sur I’évolution de I'TA, le marché
du travail, les compétences et I'automatisation, afin de guider la prise de décisions
responsables et éthiques®.

Les progres continus de I'TA dans les disciplines scientifiques, en particulier les
réalisations remarquables obtenues grace aux techniques des réseaux neuronaux, ne
se limitent pas a des découvertes anecdotiques impressionnantes. Au contraire, ces
progres ont entrainé une tendance croissante a passer d’une exploration scientifique
fondée sur des hypothese a une exploration scientifique fondée sur des données. Le pa-
radigme scientifique émergent est fondé sur le recours intensif aux données, facilité par
la généralisation de machines intelligentes capables de discerner des représentations,
des regles et des schémas dans un volume sans cesse croissant de données structurées
et non-structurées. La découverte scientifique peut étre considérée a la fois comme le
processus et le produit d’une étude scientifique aboutie. Dans son sens le plus étroit,
le terme de découverte peut se référer a ce que I'on appelle le “moment d’euréka”,
qui consiste a acquérir de nouveaux points de vue. Toutefois, dans ce contexte, nous
adoptons le sens le plus large de découverte, comme synonyme d’* effort scientifique
fructueux”.

Historiquement, le processus de recherche scientifique a évolué a travers des pa-
radigmes, c’est a dire, des généralisations symboliques, des principes philosophiques,
des valeurs et des références partagés par une communauté de scientifiques qui
guident leurs recherches [Kuhn, 1962|. Durant la majeure partie de l'histoire de
la science, les scientifiques ont observé des phénomenes et postulé des lois ou des
principes pour simplifier la complexité des observations en concepts plus faciles a
manipuler. Au départ, il n’existait que des sciences expérimentales et théoriques.
Hey et al. [2009] considerent I'observation empirique ainsi que la formulation logique
(théorie) comme étant respectivement le premier et le deuxiéme paradigme scienti-
fique. Toutefois, vers le milieu du 20e siecle, de nombreux problemes sont devenus
trop complexes pour étre résolus de maniere analytique, ce qui a conduit les cher-

cheurs a adopter des méthodes de simulation. La science est entrée dans un troisieme

Shttps://oecd.ai/en/
Shttps://aiindex.stanford.edu/report/
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paradigme caractérisé par le développement de modeles informatiques et de simula-
tions pour comprendre des phénomenes complexes. Nous sommes en train de passer a
un quatrieme paradigme scientifique dans lequel I'investigation scientifique est ancrée
dans le traitement intensif des données, rendu possible par le déploiement a grande
échelle de machines intelligentes capables d’extraire des représentations, des regles

et des régularités a partir des données [King et al., 2009, Hey et al., 2009].

Le passage a ce quatrieme paradigme scientifique implique qu’il pourrait y avoir
un changement dans la facon dont la science progresse. Les progres scientifiques
découlent de la capacité des individus a équilibrer efficacement 1’exploration et 1’ ex-
ploitation de l'espace de la connaissance [Uzzi et al., 2013]. Avec l'intégration de
données et de machines intelligentes, le processus de création de connaissances pour-
rait potentiellement étre transformé, voire accéléré. Ces nouvelles technologies per-
mettent, de maniere autonome, de découvrir des représentations, des regles et des
modeles a partir de vastes quantités de données. La théorie de la création de connais-
sances par recombinaison postule que les nouvelles connaissances résultent principa-
lement de la re-combinaison de connaissances existantes [Weitzman, 1998, Uzzi et al.,
2013, Wang et al., 2017]. Le progres scientifique est donc le résultat de la créativité in-
dividuelle et collective, créativité étant définie comme la “production of high-quality,
original, and elegant solutions to complex, novel, ill-defined, or poorly structured pro-
blems”. [Hemlin et al., 2013]. L’innovation repose sur I’exploration de l'espace des
connaissances, en effet la maniere dont les organisations gerent cet équilibre entre 1’ex-
ploration de nouvelles idées et I'exploitation des idées existantes peut étre facilement
transposée au monde scientifique. Cet équilibre détermine les compromis auxquels
les organisations sont confrontées lorsqu’elles tentent d’innover tout en préservant les
routines et les pratiques établies [March, 1991]. March soutient que les organisations
doivent trouver un équilibre adéquat entre ces deux aspects pour survivre et réussir
a long terme. Il en va de méme pour la science, puisque les scientifiques tentent
d’innover dans le cadre des paradigmes établis, et que la survie en science peut étre
envisagée par le biais de la reconnaissance par les pairs. Cette perspective met 1'ac-
cent sur deux aspects de la créativité en science : la nouveauté et la pertinence de la
recherche menée. Les mesures de nouveauté ou d’atypicité sont basées sur le concept
de recombinaison des connaissances [Uzzi et al., 2013, Lee et al., 2015, Foster et al.,
2015, Wang et al., 2017, Shibayama et al., 2021]. On peut estimer les difficultés a

combiner des éléments de connaissance au sein d’un article scientifique. Bien que
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ces mesures puissent présenter des biais en raison de leur dépendance aux réseaux
de citations, elles n’en demeurent pas moins d’une utilité capitale. Elles fournissent
des preuves d’éventuels biais dans les processus d’évaluation par les pairs dans les
revues [Wang et al., 2017] ainsi que dans les allocations de fonds en défaveur des re-
cherches trop novatrices [Boudreau et al., 2016, Carayol et al., 2017, Franzoni et al.,
2022]. Ces indicateurs fournissent également une base pour analyser I'influence de la
technologie sur la recherche. Ils permettent de comprendre si la technologie offre un
point de vue plus transversal, en aidant a naviguer dans ’espace des connaissances
ou permet d’exploiter cet espace en offrant une perspective plus fine sur un probleme
bien défini. Ces questionnements sur la maniere dont I'TA peut conduire a une ex-
ploration ou une exploitation de ’espace de connaissance et comment cela affecte la
reconnaissance seront traités dans le chapitre 1 de cette these.

La science étant un phénomene social [Fleck, 2012], les facteurs liés au capital
social des individus déterminent la maniere dont I'ITA se diffuse au sein de la com-
munauté scientifique. Ce changement de paradigme suggere que la technologie peut
avoir un impact sur la nature de la recherche menée, mais implique également qu'un
nombre croissant de chercheurs dans divers domaines d’application se concentreront
sur ces techniques. Toutefois, tous les individus n’ont pas le méme acces aux techno-
logies basées sur I'TA. La capacité d’un chercheur a adopter I'A dépend largement
de son capital humain scientifique et technique, notamment de ses compétences cog-
nitives, de ses connaissances scientifiques et techniques et de ses compétences contex-
tuelles. Les ressources d'un individu peuvent étre divisées en deux grandes catégories :
celles propres a 'individu et celles qui sont ancrées dans les relations entre I'individu
et son environnement de travail [Bozeman et al., 2001, Bozeman and Corley, 2004].
L’adoption de I'TA dans le domaine scientifique est étroitement liée a la maniere
dont les chercheurs mobilisent leurs ressources et sont limités par celles-ci. Bien que
I’objectif ne soit pas que tous les chercheurs utilisent nécessairement 1'TA, il semble
néanmoins important de comprendre les facteurs qui favorisent son adoption et son
application afin de comprendre les mécanismes permettant a un plus grand nombre
de chercheurs de bénéficier des avantages liés a I'TA. Le chapitre 2 examine la rela-
tion entre le capital humain scientifique et technique des individus et ’adoption de
I'intelligence artificielle dans les domaines d’application.

La troisieme contribution de cette these, présentée dans les chapitres 3 et 4, se
concentre sur la relation entre la dimension cognitive dans une équipe de recherche et

la création de connaissances. Nahapiet and Ghoshal [1998] conceptualise trois dimen-
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sions du capital social qui influencent le développement du capital intellectuel : le
capital structurel, relationnel et cognitif. Le capital structurel examine les liens entre
les individus et leurs réseaux respectifs ; le capital relationnel représente la nature et
I'intensité des relations entre les membres de ’équipe ; et le capital cognitif symbolise
les compétences partagées entre les individus et leur langage commun. En science,
la diversité cognitive est souvent encouragée par des projets interdisciplinaires, car
I'intersection de différents points de vue est généralement nécessaire pour résoudre
des problemes scientifiques complexes [Page, 2008]. En effet, les personnes extérieures
a un domaine peuvent avoir l'avantage d’apporter des idées nouvelles grace a leurs
connaissances distinctes [Jeppesen and Lakhani, 2010, Kuhn, 1962]. Les chapitres
3 et 4 améliorent notre compréhension de la nouveauté, des indicateurs d’impact
scientifique et de leur association avec les dimensions sociales. Le chapitre 3 présente
“Novelpy”, un outil open-source basé sur Python visant a calculer divers indicateurs
de nouveauté et de disruption. Ce chapitre formalise également mathématiquement
ces indicateurs. Pour mieux comprendre comment identifier des recherches potentiel-
lement innovantes sans s’appuyer uniquement sur des mesures basées sur le réseau
de citations, il semble important de considérer la dimension sociale de ce processus
d’innovation. Le dernier chapitre de cette these, le chapitre 4, fait un pas en arriere
et analyse la source de ces indicateurs de nouveauté, en considérant la dimension

cognitive de I’équipe comme un facteur déterminant de sa créativité.

Description de la these

Dans un contexte ou l'intelligence artificielle constitue une source de mutation de
la science, il est de plus en plus nécessaire d’aborder les aspects liés a son adoption
et son impact sur le processus scientifique. L’objectif principal de cette these est de
faire la lumiere sur trois questions principales :

e Comment I'TA affecte-t-elle le processus de production de connaissances en

termes de nouveauté et de reconnaissance scientifique ?

e Quels sont les facteurs qui favorisent I'adoption de cette technologie dans les

domaines d’application scientifiques ?

e Comment I'aptitude des individus a explorer 1'espace de connaissances, ainsi
que les distances cognitives entre les membres de ’équipe, influencent leurs
capacités a combiner des connaissances éloignées et la reconnaissance scienti-

fique ?
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Pour répondre a ces questions, les chapitres 1 et 2 apporteront des éclaircissements
sur les deux premiere questions, tandis que les chapitres 3 et 4 se concentreront sur
la troisieme. Les sections suivantes présenteront un apercu de chaque chapitre et des

méthodologies employées tout au long de cette these.

Chapitre 1

Ce premier chapitre donne un apercu de la diffusion et de 'impact de l'intelligence
artificielle, en particulier des réseaux neuronaux, dans la science. Certaines études
récentes ont documenté la diffusion de I'IA et de 'apprentissage profond dans la
science [Cockburn et al., 2018, Klinger et al., 2021], mais aucune n’a exploré la fagon
dont leur utilisation influence la découverte scientifique. Notre article répond a cette
question en examinant comment 'utilisation des réseaux neuronaux (NN) affecte la
nouveauté combinatoire et 'impact scientifique des articles dans les sciences de la
santé.

Pour identifier les articles utilisant I'TA, nous avons employé une méthode nouvelle
et originale basée sur la vectorisation de mots qui a permis d’identifier environ 250
000 documents publiés entre 1990 et 2018 provenant de la base de données Web of
Science. En analysant ces documents, nous avons pris en compte cing attributs clés
qui définissent une technologie comme “émergente” - a savoir : (i) nouveauté radicale,
(ii) croissance rapide, (iii) cohérence, (iv) impact important, et (v) incertitude et
ambiguité [Rotolo et al., 2015] - et avons démontré que les NNs se conforment a ces
propriétés. Nous avons constaté que l'activité de recherche sur les NNs a connu une
croissance exponentielle dans presque toutes les sciences et a 1’échelle mondiale, le
processus de diffusion suivant un cycle a deux phases et une forte recomposition des
acteurs mondiaux. La diffusion des méthodes de NN dans les domaines d’application
a démarré de maniere transdisciplinaire en impliquant les sciences informatiques,
puis s’est frayée un chemin dans la “pure” recherche propre a différents domaines
d’application.

Nous avons ensuite étudié I'impact de I’adoption de la technologie sur la découverte
scientifique, en nous concentrant particulierement sur les sciences de la santé. Nous
avons constaté une corrélation négative entre I’adoption des méthodes NN et la nou-
veauté combinatoire en utilisant les indicateurs de nouveauté de Uzzi et al. [2013] et
Wang et al. [2017]. Dans le méme temps, nous avons observé une corrélation positive
avec la probabilité et la dispersion des citations regues, augmentant ainsi la probabi-

lité qu’une contribution devienne un “grand succes”, mais aussi un article peu cité.
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Nos résultats nous incitent a adopter une position plus modérée dans le récent
débat concernant I'influence de I'TA sur le développement des connaissances. Nous
concluons que si les méthodes de NN ne fonctionnent pas encore comme un pilote
automatique pour naviguer dans ’espace des connaissances et relier les idées, elles
représentent un outil de recherche puissant et polyvalent qui a un impact tangible
sur la création de connaissances. A ce titre, nous proposons que I'TA soit considérée

comme un méthode générale émergente d’invention.

Chapitre 2

Ce chapitre vise a comprendre les facteurs qui favorisent ’adoption de I'TA par les
scientifiques de domaine d’application. La plupart des études se concentrent sur une
analyse au niveau article, mais nous proposons d’étudier la dynamique de ’adoption
de I'TA au niveau individuel.

Nous avons utilisé le concept du capital humain scientifique et technique (STHC)
proposé dans 'article fondateur de Bozeman and Corley [2004] et, par conséquent,
nous avons divisé le STHC des auteurs en trois dimensions principales : les ca-
ractéristiques individuelles, I’environnement social et le contexte institutionnel. Nous
avons opérationnalisé ces trois dimensions en associant les données d’OpenAlex a des
informations sur les capacités informatiques des institutions.

Dans cette étude, nous montrons que la proportion de chercheurs qui adoptent
I'TA et qui finiront par utiliser a nouveau cette technologie reste relativement stable,
autour de 35 %. Malgré les avancées technologiques et la disponibilité croissante de
ressources pour faciliter I'utilisation de I'TA, I'intégration de I'IA dans le travail futur
d’un chercheur ne semble pas déterminée par ses progres et son accessibilité. Les
chercheurs qui adoptent I'TA appliquent souvent cette technologie dans un domaine
familier, 62 % d’entre eux publiant leur premier article sur I'TA dans une revue
partageant le méme concept principal que leur publication initiale. En moyenne, le
nombre de chercheurs ayant des compétences en informatique ou en IA est plus élevé
dans les articles basés sur I'TA impliquant des scientifiques du domaine, ce qui suggere
que les articles publiés basés sur I'TA requierent des compétences plus spécialisées que
les publications antérieures du chercheur.

Nos résultats indiquent que le STHC offre un cadre pertinent pour comprendre
les catalyseurs de l'adoption de I'TA dans les domaines d’application. Certaines di-
mensions institutionnelles, telles que le degré de spécialisation, affectent de maniere

significative la capacité des individus a faire la transition vers I'utilisation de I'TA et de
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se l'approprier a plus long terme. Les infrastructures physiques ("High performance
computing”) ne semblent bénéfiques que dans certains domaines, ce qui souligne que
le manque d’infrastructures physiques locales n’est peut-étre pas l'obstacle le plus
important a ’adoption de I'TA, contrairement a ce que 'on croit généralement et a
ce que montrent les études au niveau macroéconomique [Ahmed and Wahed, 2020].
En outre, la composition de I'environnement social (c¢’est-a-dire le réseau de collabo-
rations antérieures) est étroitement liée a l'intégration de I'TA dans les pratiques des
chercheurs et a son adoption a long terme; les chercheurs qui essaient I'TA et ceux
qui réutiliseront cette technologie par la suite appartiennent a des réseaux peuplés
d’informaticiens ou d’individus ayant une expérience de I'IA, au détriment des scien-
tifiques du domaine. Les chercheurs ayant des profils plus variés sont plus susceptibles
d’adopter et de réutiliser I'TA dans leurs recherches, ce qui indique que les personnes
ayant un profil plus exploratoire sont plus susceptibles de s’orienter vers de nouvelles
technologies. Enfin, nous avons constaté que les jeunes chercheurs favorisent I’adop-
tion et la réutilisation de I'TA ; de nombreuses collaborations passées avec de jeunes
chercheurs rendent ’adoption de I'TA plus simple, et leur présence dans I’équipe lors
des premiers essai influe fortement sur la réutilisation de la technologie.

Les institutions doivent encourager une culture favorisant le partage des connais-
sances, la promotion des interactions entre chercheurs et I'identification et le soutien
des individus ”interdisciplinaires” capables de combler le fossé entre I'expertise en
IA et les autres domaines scientifiques. De plus, une réévaluation de l’allocation des
ressources vers des investissements plus modestes mais généralisés dans les infra-
structures de science des données ou d’apprentissage automatique pourrait faciliter

la démocratisation de I'TA.

Chapitre 3

Le chapitre 3 est un chapitre méthodologique. Il propose Novelpy, un module Python
open-source cong¢u pour calculer des indicateurs de nouveauté et de disruption d’ar-
ticles scientifiques et de brevets. Ce chapitre fournit également un apergu détaillé
des différents indicateurs disponibles dans Nowelpy en décrivant formellement ces
mesures (a la fois mathématiquement et graphiquement).

Les mesures de nouveauté sont basées sur le concept de combinaison de connais-
sances, et les indicateurs calculent la difficulté associée aux combinaisons réalisées
dans un article pour déterminer s’il est basé sur des connaissances éloignées ou

proches dans un certain espace de connaissances. Comme couramment dans la littérature,
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les éléments de connaissance sont représentés par les revues ou les abstracts des
références d’un article ou par ses mots-clés.

Les mesures de disruption, quant a elles, analysent la maniere dont un article
cible agit comme un goulot d’étranglement entre les futurs articles et les références
de l'article cible. Elles déterminent si un document consolide un domaine (c’est-a-dire
que les futurs articles s’appuient sur les références utilisées dans 'article cible) ou le
bouleverse (c’est-a-dire que les futurs articles ne font référence qu’a l'article cible).

Bien qu’il existe plusieurs packages disponibles dans R et Python congus pour
étudier la citation, la coécriture ou tout autre couplage (par exemple ScientoPy de
Ruiz-Rosero et al. [2019]; scientoText de Uddin et al. [2016]; Metaknowledge de
McLevey and Mcllroy-Young [2017] ou bibliometriz de Aria and Cuccurullo [2017]),
les bibliotheques permettant de calculer les indicateurs de nouveauté et de pertur-
bation restent inexistantes. Notre effort vise a fournir a la communauté de la scien-
tométrie un outil qui centralise les différentes mesures de nouveauté et de disruption,
facilitant leur comparaison et promouvant leur reproductibilité.

Le module Novelpy integre les mesures de nouveauté de Uzzi et al. [2013], Foster
et al. [2015], Lee et al. [2015], Wang et al. [2017], et Shibayama et al. [2021], ainsi
que les mesures de disruption de Wu et al. [2019], Bornmann et al. [2019a], et Bu
et al. [2019]. Pour démontrer les capacités du module, nous terminons le chapitre en
comparant les différentes mesures sur un échantillon aléatoire de 1,5 million d’articles
tirés du PubMed Knowledge Graph.

Chapitre 4

Ce dernier chapitre s’intéresse de plus pres a la nouveauté en science. Seules quelques
études ont cherché a expliquer les mécanismes a l'origine de la nouveauté. Dans
ce travail, nous développons un nouvel indicateur qui nous permet de mesurer la
diversité cognitive d'une équipe et la propension de ses membres a explorer 1'espace
des connaissances. L’indicateur est construit a ’aide de techniques de plongement de
mots (word2vec, Mikolov et al. [2013b]) sur I’historique des publications des membres
de 1’équipe. Nous testons sa relation avec les indicateurs de nouveauté et nous le
validons en utilisant les recommandations des pairs de la Faculty Opinions, en suivant
Bornmann et al. [2019b].

Nous pouvons considérer notre indicateur comme une mesure de la nouveauté
potentielle, c’est-a-dire des possibilités de nouvelles combinaisons de connaissances

offertes par la diversité des profils d'une équipe et la capacité des individus a établir
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des passerelles entre les autres membres de ’équipe. En comparaison, les indica-
teurs de nouveauté combinatoire captureraient la nouveauté réalisée, c’est-a-dire le
résultat de la recherche menée par cette équipe en termes d’éléments de connais-
sance utilisés. Enfin, la labellisation des membres de Faculty Opinions et d’autres
méthodes de validation externe peuvent décrire la nouveauté percue, c¢’est-a-dire la
perception de cette recherche par les pairs. Dans cette perspective, nous cherchons a
savoir si la nouveauté potentielle contribue a la nouveauté réalisée et percue et a sa
reconnaissance scientifique, mesurée a l’aide de métriques de disruption [Wu et al.,
2019, Bornmann et al., 2019a, Bu et al., 2019]. Pour ce faire, nous utilisons PubMed
Knowledge Graph et examinons environ 1,8 million d’articles de la période 2000-
2005, en nous concentrant sur les publications moins récentes pour gérer le fait que
les nouveaux articles sont plus souvent des “beautés endormies” (sleeping beauties)
et accumulent davantage de citations sur le long terme [Lin et al., 2021].

Nos résultats soulignent le role critique de la dimension cognitive dans la créativité,
car elle influence de maniere significative ’originalité et le succes. Nous montrons que
la diversité cognitive semble toujours bénéfique pour combiner des connaissances plus
éloignées. En revanche, le profil exploratoire moyen au sein de 1’équipe suit une rela-
tion en forme de U inversé avec la nouveauté combinatoire (c¢’est-a-dire qu’il existe un
point d’inflexion ou cela n’est plus bénéfique). La méme relation peut étre trouvée en
examinant I'impact en termes de citations. Cependant, notre étude met en évidence le
lien étroit entre la dimension cognitive et la nature de ces citations. Plus précisément,
les équipes composées d’individus exploitatifs ont tendance a consolider la science,
tandis que celles composées de profils plus exploratifs, lorsqu’ils sont associés a des
profils exploitatifs, la “disruptent”. En résumé, notre recherche souligne I'importance
de la composition des équipes en termes de profil cognitif pour la créativité scienti-
fique.

Nous montrons que la présence conjointe d’individus hautement exploratifs et ex-
ploitatifs constitue la composition d’équipe la plus efficace pour perturber la science ;
cependant, un nombre limité d’individus hautement exploratifs est essentiel pour

maximiser la pertinence des combinaisons de connaissances créées.

Méthodologie

Cette these repose en grande partie sur des analyses quantitatives de la science,
employant des méthodes issues de la bibliométrie et de la scientométrie. Ainsi, nous

utilisons des bases de données massives représentées sous forme de graphes, reliant
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les entités scientifiques entre elles, telles que les auteurs, les articles, les institutions,
etc. Un bref historique de ces domaines s’impose.

Le terme bibliométrie a été défini pour la premiere fois par le Belge Paul Otlet
en 1934 [Otlet, 1934] et réintroduit dans sa version anglaise par Pritchard et al.
[1969] dans 'article “Statistical Bibliography or Bibliometrics ?” L’objectif initial
de la discipline était d’améliorer la classification et l'organisation des livres pour
contenir I'afflux de connaissances. Plus précisément, les bibliothécaires 'utilisaient
pour sélectionner les articles pertinents pour leurs collections [Sugimoto and La-
riviere, 2018]. En 1955, le chimiste et documentaliste Eugene K. Garfield proposa
la création d’un index des citations pour offrir un outil d’analyse en étudiant les
liens entre différents documents scientifiques. L’'Institute for Scientific Information,
fondé par Garfield en 1960, a développé le Science Citation Index (SCI), lancé pour
la premiere fois en 1963 a l'intention des chercheurs et des bibliothécaires. Toutefois,
les études bibliométriques ont débuté dans les années 1960, I'une des figures centrales
étant Derek J. de Solla Price [de Solla Price, 1965, Boyack et al., 2005]. A I’époque,
I’objectif initial était de comprendre la recherche en tant que systeme en examinant
la croissance des publications et les grandes lignes de I'activité de citation. Tres tot, le
nombre de références, la densité du nombre de citations pour les articles et 1'inégalité
dans le processus de citation ont fait I’objet d’un intérét particulier. Les problemes
fondamentaux liés a la détection des connaissances importantes et a la progression
du systeme scientifique restent au coeur de la recherche en science des sciences [For-
tunato et al., 2018]. Le nombre de bases de données utilisées par les chercheurs a
augmenté au cours des dernieres décennies. De nouvelles structures telles que les
graphes de connaissances (KG) sont apparues’. Bien que le nom KG ait été utilisé
pour la premiere fois dans Schneider [1973], il n’a été popularisé qu’en 2012 lorsque
Google a présenté son propre KG. Ils permettent de faire des correspondances entre
différentes entités liées un article, une tache cruciale en scientométrie. Ces unités
peuvent étre un profil d’auteur, une revue, une référence ou méme des sujets. Ces
entités nous aident a mieux comprendre la maniere dont la science est structurée et
réalisée.

La disponibilité croissante des données a entrainé une diversification du domaine
de la scientométrie. Les chercheurs utilisent souvent de maniere interchangeable des

termes tels que bibliométrie, scientométrie, informétrie, webométrie et altmétrie. Une

"Par exemple, Microsoft Academic Graph (MAG, qui a été remplacé par OpenAlex en 2022)
ou bien PubMed Knowledge Graph (PKG)
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littérature abondante retrace I’histoire de ces domaines et cherche a comprendre leurs
différences, ainsi qu’a créer des taxonomies intra-champ. Ils partagent tous un ob-
jectif commun : étudier la science en tant que systeme, en utilisant des méthodes
scientifiques. L’informétrie est une sous-discipline des sciences de l'information et
se définit comme 'application de méthodes mathématiques au contenu des sciences
de Tinformation [Chellappandi and Vijayakumar, 2018]. En d’autres termes, 1'in-
formétrie est le plus haut niveau d’abstraction, et tous les autres domaines sont un
sous-ensemble de 'informétrie. La bibliométrie, comme nous I'avons vu plus haut, se
concentre sur les citations pour la gestion des collections et la recherche de documents
en utilisant des aspects spécifiques du document sans le placer dans le contexte global
dans lequel il a été créé. En revanche, la scientométrie est une ”méta-science” qui
analyse quantitativement la production, la diffusion et les mécanismes du systeme
sous-jacent [Sugimoto and Lariviere, 2018, Chellappandi and Vijayakumar, 2018].
Enfin, Webometrics et Altmetrics s’intéressent tous deux aux informations dispo-
nibles sur le web, mais Webometrics est centré sur le document, le document étant
une page web, tandis qu’Altmetrics est centré sur l'aspect réseau et complete les
citations par le nombre de likes et de retweets [Mingers and Leydesdorff, 2015].

Cette these est essentiellement basée sur des méthodes issues de la scientométrie.
Mais la scientométrie elle-méme peut étre divisée en deux macro-types d’analyse : la
performance et 'analyse de la cartographie des sciences (SMA) [Moral Mufioz et al.,
2020]. L’objectif de cette premiere est d’évaluer les activités des acteurs scientifiques
et leur impact. Son but est donc d’attribuer une valeur a la productivité et a I’étendue
de la recherche menée par une unité (article, auteur, institution). SMA “is mostly
directed at monitoring a scientific field to determine its (cognitive) structure, its
evolution, and main actors within” [Noyons et al., 1999]; elle prend un cliché d’une
partie du systeme scientifique & un moment donné pour analyser sa structure.

Les intrants, les extrants et les impacts de ces activités scientifiques sont les
trois perspectives utilisées dans 1’analyse de performance et la SMA [Sugimoto and
Lariviere, 2018]. L’input fait référence aux ressources humaines et financieres et
capture les différentes interactions des agents du systeme a différents niveaux (ni-
veaux Auteur/Institutionnel /Pays); loutput est le résultat final du processus de
recherche, c’est-a-dire la composition de ce document et les différentes entités qui le
caractérisent ; et enfin, les mesures d’impact étudient les répercussions des outputs,
la diffusion des connaissances qu’'un article génere a travers les citations, I’attention

du grand public, ou la réutilisation des composantes du document.
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Cette these aborde ces trois dimensions dans le cadre de I'étude de l'intelligence
artificielle en science. En effet, dans le chapitre 1, comme indiqué dans l'introduction,
nous étudions les extrants et I'impact scientifique des publications utilisant I'IA. Dans
le chapitre 2, nous étudions les intrants de la recherche en TA. Les chapitres 3 et 4
visent enfin a comprendre les relations entre les intrants au niveau de 'auteur et les

extrants de la recherche menée et leur impact scientifique.
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Chapitre 1

Artificial Intelligence in Science :
An Emerging General Method of

Invention

This chapter was co-authored with

Stefano BIANCHINI and Moritz MULLER

Summary of the chapter

This paper offers insights into the diffusion and impact of artificial intelligence in
science. More specifically, we show that neural network-based technology meets the
essential properties of emerging technologies in the scientific realm. It is novel, be-
cause it shows discontinuous innovations in the originating domain and is put to new
uses in many application domains; it is quick growing, its dimensions being subject
to rapid change; it is coherent, because it detaches from its technological parents,
and integrates and is accepted in different scientific communities; and it has a promi-
nent impact on scientific discovery, but a high degree of uncertainty and ambiguity
associated with this impact. Our findings suggest that intelligent machines diffuse
in the sciences, reshape the nature of the discovery process and potentially affect
the organization of science. We propose a new conceptual framework that considers
artificial intelligence as an emerging general method of invention and, on this basis,

derive its policy implications.

43



CHAPTER 1. AN EMERGING GENERAL METHOD OF INVENTION

Publication: This chapter was published in a similar version as:

BIANCHINI, Stefano, MULLER, Moritz, and PELLETIER, Pierre. Artificial
intelligence in science: An emerging general method of invention. Research Policy,
2022, vol. 51, no 10, p. 104604. DOI:10.1016/j.respol.2022.104604

Acknowledgement. The research leading to the results of this chapter has received
financial support from the CNRS through the MITT interdisciplinary programs [ref-
erence: Artificial intelligence in the science system (ARISE)] and the French Na-
tional Research Agency [reference: DInnAMICS -ANR-18-CE26-0017-01]. Earlier
versions of this paper were presented at the INNOVA MEASURE III Expert Work-
shop ‘Brainstorming in Ispra’; 7th European Conference on Corporate R&D and
Innovation, Seville (Spain); EMAEE 2019 ‘Economics, Governance and Manage-
ment of Al, Robots and Digital Transformations’, Brighton (UK); OLKC 2019 ‘The
Human Side of Innovation — Understanding the Role of Interpersonal Relations in
an Increasingly Digitised Workplace’; CAGE-NESTA Workshop on ‘Data Science for
the Economics of Science, Technology and Innovation’, London (UK); and the Work-
shop Series on ‘The Economics and Management of Al Technologies’, Copenhagen
(Denmark) and Strasbourg (France). The authors thank seminar participants and
in particular Tommaso Ciarli, Giacomo Damioli, Mirko Draca, Daniel S. Hain, Bjorn
Jindra, Bertrand Koebel, Roman Jurowetzki, Patrick Llerena, Juan Mateos-Garcia,
Maria Savona, Simone Vannuccini, Daniel Vertesy, and Marco Vivarelli. We also are

very grateful to two anonymous referees for their constructive criticism.

44



CHAPTER 1. AN EMERGING GENERAL METHOD OF INVENTION

1.1 Introduction

Measurable research outputs such as papers, patents, and innovations have been
subject to high enduring growth rates over the last century. Yet, recent empirical
evidence suggests that research productivity is ever falling and new ideas are be-
coming increasingly harder to find [Gordon, 2016, Bloom et al., 2020]. A common
narrative for this decline in productivity rests on the so-called ‘knowledge burden’.
Over the past few decades, data and information have begun to grow and accumulate
on an unprecedented scale, and searching through an increasingly vast and complex
knowledge space has become prohibitively expensive [Weitzman, 1998, Fleming, 2001,
Jones, 2009].

Recent advances in artificial intelligence (AI) — in particular the rapid improve-
ments in prediction achieved by (multi-layer) neural networks (NN) — have brought
a wave of optimism that these technologies will speed up scientific discovery [Hey
et al., 2009, Agrawal et al., 2018, Cockburn et al., 2018]. NN-based models have been
found to be particularly good for discovering representations, invariances, and laws,
that is, unusual and interesting patterns that are hidden in high-dimensional data
[LeCun et al., 2015, Schmidhuber, 2015, Goodfellow et al., 2016]. In other words,
NNs have shown themselves to be particularly suited to addressing scientific prob-
lems.

The first question we raise in this article is whether NNs are, in fact, diffusing
into the sciences and, if so, what the mechanics of this diffusion process might be.
In so doing, we consider five key attributes that allow a technology to be defined
as ‘emerging’ — namely: (i) radical novelty, (ii) fast growth, (iii) coherence, (iv)
prominent impact, and (v) uncertainty and ambiguity [Rotolo et al., 2015] — and
show that NNs conform to these properties.

The second question we address is how NNs influence scientific discovery. Ma-
chines are becoming much more than mere scientific instruments, and might even be
described as teammates. Today, intelligent machines can engage in various stages of
a (complex) problem-solving process. They can, for example, define the problem(s),

identify root causes, propose and evaluate solutions, choose between different op-

Rotolo et al. [2015] conceive of an emerging technology as “[a/ radically novel and relatively
fast growing technology characterized by a certain degree of coherence persisting over time and with
the potential to exert a considerable impact on the socio-economic domain(s) which is observed in
terms of the composition of actors, institutions and patterns of interactions among those, along
with the associated knowledge production processes. Its most prominent impact, however, lies in the
future and so in the emergence phase is still somewhat uncertain and ambiguous” (p.1828).
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tions, make plans, take actions, and learn from interactions [Seeber et al., 2020]. Al
and, in particular, multi-layer NNs have been qualified as a general-purpose inven-
tion in the method of invention [Cockburn et al., 2018], a conceptual framework that
blends the concepts of the method of invention (MI) [Griliches, 1957] and general-
purpose technology (GPT)[Bresnahan and Trajtenberg, 1995]. Building on this idea,
Agrawal et al. [2018] suggest that NN-based prediction machines can alter the knowl-
edge production function in combinatorial-type research problems by affecting two
dimensions: those of ‘search’ and ‘discovery’. NN ‘search’ methods would support
knowledge access by making existing relevant knowledge available to the researcher,
whereas NN ‘discovery’ methods would help identify valuable combinations among
elements of that available knowledge. Thus, in a needle-in-a-haystack problem, the
‘search’” dimension would arrange the haystack and the ‘discovery’ dimension would
find the needle.

This distinction between ‘search’ and ‘discovery’ is conceptually interesting. Yet,
it tells us little about how Al influences the direction of knowledge development,
because it only deals with one body (or one haystack to stick with the analogy)
of pre-existing elements of knowledge. However, there are two sides to the knowl-
edge explosion: increasing knowledge within each domain (i.e., larger haystacks) and
an increasing number of domains (i.e., more haystacks). A priori, Al can either
help scientists explore familiar conceptual spaces — structured styles of thought — in
depth or transform the space by making unfamiliar combinations of distant knowl-
edge elements [Boden, 2004, 2009]. The fundamental question, then, is whether AT
is currently being used to cope with the knowledge explosion within a domain or
to facilitate knowledge creation across domains — that is, in-depth exploration of a
known domain vis-a-vis the transformation of the domain through knowledge recom-
bination across other domains.

Hence, we are interested in investigating empirically how NN methods contribute
to science in terms of recombinatorial novelty and impact, an analysis confined here
to the health sciences. In this study, the concept of recombinatorial novelty refers
to novel recombinations across domains, as proxied by scientific journals, whereas
the concept of impact refers to the relative importance of a study in the scientific
community, as proxied by citation indices. We find that NN adoption is negatively
associated with recombinatorial novelty, suggesting that researchers are using NNs as
a research tool primarily to cope with the knowledge explosion within domains rather

than across domains. Interestingly, our results also reveal a considerable degree of
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uncertainty as regards impact, reflected by a high variation in citation performance.
We suggest that this outcome is consistent with the intrinsic nature of emerging
technologies, but also with a sort of ‘mode effect’ whereby ‘everyone wants to be Al
and data savvy, but few are ready’.

The rest of this paper is structured as follows. Section 2 discusses the emer-
gence of the new data-intensive scientific paradigm; Section 3 presents the method
for identifying NN-related research and our sample construction; Section 4 docu-
ments aspects of the NN diffusion process in the sciences; Section 5 presents our
analysis of the contribution of NN methods to the health sciences; and, the final
section concludes by identifying a number of areas that might benefit from policy

considerations.

1.2 Data-intensive scientific discovery

“Few fields are untouched by the machine-learning revolution, from materials science

to drug exploration; quantum physics to medicine.” [Nature-Editorial, 2019]

Historically, the process of scientific inquiry has evolved through paradigms, seen
as symbolic generalizations, metaphysical commitments, values and exemplars that
are shared by a community of scientists and that guide the research of that commu-
nity [Kuhn, 1962].

For most of human history, scientists have been observing phenomena, postulat-
ing laws or principles to generalize the complexity of their observations into simpler
concepts — i.e., compressed, elegant mathematical representations that offer insights
into the functioning of the universe. Originally there were just two sciences, the
experimental and the theoretical. Indeed, Hey et al. [2009] identify empirical obser-
vation and logical (theory) formulation as the first and second scientific paradigms,
respectively. Towards the middle of the last century, however, many problems proved
too complicated to be solved analytically and researchers had to start simulating.
Science entered a third paradigm, one characterized by the development of computa-
tional models and simulations to understand complex phenomena. As the knowledge
frontier expands and the landscape gets more complex, it is becoming harder and
harder for researchers to know enough to find (useful) combinations of knowledge
that produce new (valuable) ideas.

Ongoing developments in Al, especially the impressive achievements made using

47



CHAPTER 1. AN EMERGING GENERAL METHOD OF INVENTION

NN techniques, have led to mounting pressure to shift from hypothesis-driven to
data-driven scientific discovery. The emerging scientific paradigm is being built
on data-intensive computing with the massive deployment of intelligent machines
capable of finding representations, rules, and patterns in an ever-increasing volume
of structured and unstructured data [King et al., 2009, Hey et al., 2009, Nature-
Editorial, 2019]. Even today, Francis Bacon’s basic insight continues to hold: the
scientists’ job is to search for regularities in the empirical data. Bacon probably
could not have foreseen that this search is best achieved today with the support of
Al

What makes NNs particularly powerful is the learning process, that is, they learn
from past experience and understand the world in terms of a hierarchy of concepts,
where each concept is defined by the way it relates to simpler concepts [Schmidhuber,
2015, Goodfellow et al., 2016]. It is clear that the term ‘artificial neural networks’ has
been coined by analogy with biological neural networks, complete with their neurons,
connections and firings. In a general NN model, the variables observed in the data
are presented to an input or visible layer composed of several nodes; then a series
of hidden layers (also composed of nodes) extracts increasingly abstract features
from the data. The term ‘hidden’ stresses the idea that there is no predetermined
structure; rather, it is the model itself that learns which concepts are useful to
explain the relationships observed in the data. The nodes in the input, the hidden
and output layers are all vaguely similar to biological neurons, and the connections
between these nodes can be thought of as reflecting the connections between neurons
[Hassabis et al., 2017].

NN-based methods can be applied in scientific settings in a variety of ways (see,
e.g., Raghu and Schmidt [2020]). The most common application is to use NNs to
tackle complex prediction problems — i.e., mapping inputs to predicted outputs. By
way of example, the input might be an MRI image and the machine has to output a
prediction of whether there are any signs of cancer. A second common application is
to obtain interpretable insights into which property of the data led to the observed
prediction — that is, from prediction to understanding. For example, some tools can
be used to analyse the hidden representations of a neural network and detect which
features of the input are most critical. A third application is to perform complex
transformations of input data, such as image super-resolution and data compression,
which in turn make data analysis easier and save space. Other recent tools, although

in their infancy, would help scientists write better papers and co-write codes.
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It is clear that intelligent machines can help shoulder the ‘knowledge burden’
within a scientific domain, act as a fertilizer of knowledge recombination across do-
mains, and thus enrich and transform the knowledge space. In short, intelligent
machines can influence both ‘search’ and ‘discovery’ processes.

In the case of the ‘search’ process, NNs can support access to knowledge by
predicting which elements of knowledge and information are most relevant to the
researcher. Three examples will serve to illustrate this function. First, NN-based
recommender systems can offer high quality cross-domain recommendations by ex-
ploiting numeric measurements, images, text and interactions in a unified joint frame-
work [Zhang et al., 2019]. Second, transformational learning can improve learning
tasks in one domain by using knowledge transferred from other (related) domains,
and in turn capture generalizations and differences across domains [Olier et al., 2021].
And, third, AI can be used for fact-checking, that is, assessing the veracity of scien-
tific claims in sensitive areas such as climate change or Covid-19 pandemic [Wadden
et al., 2020].

In the case of the ‘discovery’” process, NNs provide a better prediction of which
elements of knowledge can be combined to produce new knowledge and of the value
of that knowledge. Literature-based discovery, for example, is a way to understand
implicit (hidden) associations from existing studies, which can result in interesting,
surprising, non-trivial hypotheses that are worth studying. Other NN-based tools,
such as machine reading comprehension systems, can propose variations on an exper-
iment after having identified gaps in the literature [Baradaran et al., 2022]. Highly
efficient forms of deep active learning have also been developed that can reduce the
uncertainty associated with those regions of the experiment space that are sparsely
populated with results [Daugherty and Wilson, 2018].

A major consequence of considering Al as a research tool — indeed, as a teammate
—is that its impact is not limited to its ability to reduce the costs of specific scientific
activities, but that it can facilitate a new approach to science itself, by modifying
the scientific paradigm in the domains where the new research tool is deployed. Ex-
ploring the emergence of NN-based technology in science and its impact on scientific

discovery is at the core of our study.
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1.3 Identifying neural network research

Our empirical analysis of scientific publications exploits two databases: arXiv.org and
Web of Science (WoS). First, we use arXiv.org to draw up an appropriate list of search
terms referring to NNs based on the natural language processing of scientific abstracts
from publications in the subject areas of ‘Computer Science’, ‘Mathematics’, and
‘Statistics’. Second, these search terms are used to query the WoS database and to
extract a sample of NN papers across all scientific fields.

Reliance on a list of search terms for document retrieval is a common practice
in research on emerging technologies and science in general. Unfortunately, extant
studies do not provide us with an authoritative ‘ready-to-use’ list of search terms.
Here, we train the word embedding model Word2Vec [Mikolov et al., 2013] with
scientific abstracts from arXiv.org’s documents in order to learn NN-related terms.

Our training sample consists of scientific abstracts from arXiv.org. Al research
tends to be a blend of statistics and informatics, but is developed in the main within
the computer sciences. Informatics is a fast-developing field in which conference
proceedings traditionally play an important role. More recently, however, the rapid
dissemination of research is (best) achieved via open access journals and platforms.
Of these, arXiv.org is the most prominent and provides us with a rich corpus for the
identification of NN-related terms. We downloaded a total of 197,439 abstracts of
papers from the subject areas of ‘Computer Science’, ‘Mathematics’ and ‘Statistics’,
for the period 1990-2018. The three areas represented roughly 50% of all arXiv.org
documents in 2018, and just 10% in the early 2000s.

Once pre-processed (details in Supplementary Material), the corpus was used to
train the Word2Vec model in its skip-gram with negative sampling version. The main
outcome of this model is one vector representation for each term in the vocabulary.
Hence, we were able to identify the terms that appear in the same cluster as the term
‘neural network’. The resulting list of potential search terms included individual
words (uni-grams) as well as technical terms consisting of multiple words (n-grams).
We opted to retain only those terms consisting of multiple words — i.e., we removed
all uni-grams — in order to err on the side of conservativism and to ensure only the
inclusion of terms that relate unambiguously to NNs. Moreover, we retained only
the 30 most frequent n-grams after eliminating terms considered as being too generic
(e.g., ‘short term’ or ‘supervised learning’). The final list of search terms used in our
study is shown in Table 1.

A more complete list of terms for all clusters identified by word embedding can
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Table 1.1: NN-related search terms from word embedding

n-gram Count n-gram Count
neural network 402,996  long short term memory 3,122
neural networks 173,470  hidden layers 2,080
artificial neural 100,749  restricted boltzmann 1,635
artificial neural network 99,794  auto encoder 1,444
deep learning 24,104  generative adversarial 1,242
convolutional neural 20,742  encoder decoder 1,198
convolutional neural network 20,595  adversarial network 1,192
recurrent neural 14,355  generative adversarial network 1,085
recurrent neural network 13,965  fully convolutional network 688
deep neural 9,418 convolutional layers 568
multilayer perceptron 9,352  variational autoencoder 216
deep neural network 9,181 adversarial attacks 197
hidden layer 7,810 adversarial examples 92
deep convolutional 4,263  variational autoencoders 75
deep convolutional neural network 3,384  adversarial perturbations 24

Notes: The count refers to how many times a given term occurs in the Web of Science corpus. A
document may (and very often does) include several terms. Adding more terms would only slightly
change the number of documents retrieved from WoS, as can be seen from the counts of the last few
terms.

be found in Appendix.

Our sample for subsequent analysis included all publications in the WoS Core
Collection published between 1990 and 2018, and having at least one of the search
terms (Table 1) in their title, keywords, or abstract. In total, we identified 260,459
documents (144,095 articles; 39,925 conference proceedings; 76,439 others).

1.4 Technology diffusion in the sciences

This Section documents the diffusion of NN-based methods in the sciences. We show
that the diffusion dynamics and the characteristics of the technology largely conform

to properties of emerging technologies.

(Relative) fast growth. One of the defining attributes of an emerging technology is

the speed of its growth, which is evident in such dimensions as the number of actors
involved, the funding made available, and the knowledge output produced.

Our data confirm a ‘burst of research activity’ in all scientific areas (Figure 1),
although the volume (blue line) varied markedly. ‘Technology’ (Panel A) is the
dominant field, which can be explained in part by the fact that it includes ‘Computer
Science’, the main field of origin. It is followed, with about five times fewer papers,

by ‘Physical Sciences’ (Panel B), which in turn is closely followed by ‘Life Sciences
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Figure 1.1: Trends in NN publication activity by scientific area
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Notes: The blue lines show the number of publications and the orange lines plot the growth rates
in each scientific area. Growth rates are calculated as three-year moving averages and omitted
publications before 2001. Scientific areas correspond to WoS research areas. Panel H refers to
research published on arXiv.org, based on the sample discussed in Section 3.

& Biomedicine’ (Panel C). Publications in ‘Health Sciences’ (Panel D) — defined as
a subset of ‘Life Sciences & Biomedicine’ and the focus of the analysis conducted
in the next Section — largely parallel those of ‘Life Sciences’. Publication counts
in ‘Social Sciences’ (Panel E) are relatively low, becoming negligible for ‘Arts &
Humanities’ (Panel F). Panel G, which combines all WoS documents into one, shows
that the (three-year average) growth rate (orange line) in NN publication activity
around 2005 was high (at about 10%), it then suffered something of a decline in the
years around 2010, before recovering and experiencing steady growth to the end of
the observation period (reaching 20%). Indeed, the individual areas exhibited very

similar growth patterns.?

2The overall number of NN-related documents varies according to the sub-disciplines within each
scientific area (not shown here). The general trend in ‘Technology’ is driven mainly by ‘Computer

52



CHAPTER 1. AN EMERGING GENERAL METHOD OF INVENTION

Publication activity on arXiv.org (Panel H) follows essentially the same dynamics.
Growth rates mimic the shape described above but are about five times higher than
those in the WoS panels. The comparatively higher rates are attributable it would
seem to the fact that open platforms are increasingly popular, given their efficiency
and speed, as a channel of communication between researchers, particularly within
the machine learning and computer science communities [Sutton and Gong, 2017].

Research output increased not only in absolute numbers but also relative to the
overall number of papers in a given scientific area, albeit at a lower level. In 2018,
NN documents represented 2.6% of all papers in ‘Technology’, 1.02% in ‘Physical
Sciences’, and 0.3% in ‘Life Sciences & Biomedicine’. This means NN publications
still account for only a tiny fraction of the whole research volume, in particular
in application domains. However, recent growth rates in these shares are remark-
able. NN-related research presents the highest growth rates in the ‘Life Sciences &
Biomedicine’ (47.3% in the period 2017-2018), ranks second in ‘Physical Sciences’
(42%), and in ‘Technology’ presents a growth rate of roughly 18%.

Spatial diffusion and actor re-configuration. Another of the defining attributes of an

emerging technology is the speed of change in the configuration of actors — e.g.,
countries, users, and scientists.

Figure 1.2 shows the dynamics of science at the country level. Each document
is attributed to a given country when the affiliation of at least one of its authors is
in that country. During the first period, 1990-1999, most of the documents (about
5,000) were published by scientists in the United States. Publishing activity was
relatively low in absolute numbers in the European countries, Australia and China,
and negligible or non-existent in most other countries. In the following decade,
2000-2009, China became the most prolific country with about 20,000 documents.
The US ranked second with around 14,000 articles, whereas European countries,
Australia, Canada, and India grew sufficiently to maintain their relative strength in
the field. Interestingly, in this decade, NN research activity took off in an increas-
ing number of countries. These trends were further reinforced in the last period,

2010-2018. Compared to the previous decade, China doubled its research output,

Science’ (103,729 documents), ‘Engineering’ (95,638) and ‘Automation & Control Systems’ (24,721).
In the case of ‘Physical Sciences’, it is driven by ‘Physics’ (7,239), ‘Mathematics’ (5,123) and
‘Chemistry’ (3,702), while in ‘Life Sciences & Biomedicine’, it is driven by ‘Environmental Sciences
& Ecology’ (2,632), ‘Neurosciences & Neurology’ (2,032), and ‘Biochemistry & Molecular Biology’
(1,728).
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Figure 1.2: Global diffusion of NN in science across countries
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Notes: The intensity of colour reflects a country’s relative number of NN publications in a given
period, with no observed NN publication activity in hatched countries [WoS sample].

widening the gap with the US and, to a lesser extent, with the EU.

In summary, our data seem to suggest that NN research has diffused rapidly
at the global scale, and that since the early stages of development there has been
a re-configuration of global actors. We consistently observed high volatility in the

rankings, with some countries climbing the ladder and others lagging behind.

Radical novelty and ‘double-boom’ cycle. NNs have experienced a discontinuous wave

of major innovations, which points to the radical nature of this technology. (Artificial
intelligence has a long, rich history dating back to the 1950s, when researchers from
different domains began to explore various paths toward mechanizing intelligence —
interested readers may consult Nilsson [2009] and Russell [2010]).

Novelty can also arise from putting the technology to a new use — that is, applying
it from one domain to another [Adner and Levinthal, 2002]. The originating domain

of NN research is predominately computer science; thus, it seems appropriate to
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follow Cockburn et al. [2018] and assume that NN publications in all areas other
than computer science represent applications of NN methods to address field-specific
research problems.

The diffusion of emerging technologies from the originating domain to the appli-
cation domains typically follows a ‘double-boom’ cycle [Schmoch, 2007]. Initially, the
new technology seems to be of high potential, and high expectations trigger consid-
erable development efforts, especially theoretical — the first boom. However, during
these early development activities, several actors discover the difficulties of trans-
lating theory into practice. Most fail and cease their innovation activities, putting
an end to the first boom. But some continue and, as time passes, they overcome
some of the more important practical hurdles and are able to demonstrate genuine
advances — starting the second boom. Interestingly, this pattern is largely consistent
with the growth patterns recorded in Figure 1 (orange lines), where the first boom,

subsequent decline, and second boom are clearly evident.

Table 1.2: Influential NN publications

Title | Journal Cluster # Citations Share [%)]
Multilayer feedforward networks are universal approximators | NN 1 5,904 0.14
Neural networks and physical systems with emergent ... | PNAS 1 4,658 0.11
Learning representations by back-propagating errors | Nature 1 4,645 0.11
Learning internal representations by error propagation | MIT Press 1 3,921 0.09
Approximation by superpositions of a sigmoidal function | MCSS 1 3,657 0.09
Training feedforward networks with the Marquardt algorithm | IEEE TNNLS 1 3,128 0.07
ANFIS: adaptive-network-based fuzzy inference system | IEEE SMC 1 2,909 0.07
Identification and control of dynamical systems using ... | [IEEE TNNLS 1 2,551 0.06
Cellular neural networks: theory | IEEE CAS 1 2,267 0.05
ImageNet classification with deep convolutional neural networks | NeurIPS 2 7,177 0.17
Gradient-based learning applied to document recognition | IEEE Proceedings 2 3,590 0.09
Deep learning | Nature 2 3,542 0.08
Long short-term memory | NC 2 3,074 0.07
A fast learning algorithm for deep belief nets | NC 2 2,710 0.06
Reducing the dimensionality of data with neural networks | Science 2 2,621 0.06
Very deep convolutional networks for large-scale image recognition | arXiv 2 2,582 0.06
Particle swarm optimization | IEEE Proceedings ICNN 2 2,568 0.06
Deep residual learning for image recognition | IEEE Proceedings CVPR 2 2,160 0.05

Notes: This table reports the references (title and journal) of the most cited articles from the WoS publica-
tion sample over the period 2000-2018. From a total of 4,190,306 references (1,618,836 unique) cited by the
documents in our sample, we selected the five most used references for each year. This gives us 18 time series
that were clustered. Clustering is obtained via k-medoid and dynamic time warping. References within clusters
ranked by total number of citations.

We also find that the second boom is marked by a shift in emphasis from theoret-
ical principles to practical applications. In support of this evidence, we considered
the top five cited references in each year of the observation period (i.e., those doc-
uments with the highest annual shares of all cited references in our publications),

which gave us a list of 18 unique articles and their corresponding citation counts,
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as shown in Table 1.2. Using dynamic time warping (DTW) to measure dissimi-
larity between time series, we then clustered these temporal sequences by means of
k-medoids [Berndt and Clifford, 1994]. As shown in Figure 1.3, we obtained two
clusters. In the first period, the most cited articles in our sample were theoretical
contributions, including a discussion of the possibility of using multilayer feedforward
networks as universal function approximators, training algorithms (backprop), and
parallel computing theories (cellular NN). In the second period, the most influential
articles were no longer theoretical contributions, but rather articles that show how
to put theoretical principles into practice. These contributions included inventions
that have brought enormous performance gains to real-world tasks, especially for im-
age and text analyses (e.g., deep convolutional neural networks and long short-term

memory (LSTM) architectures).

Figure 1.3: Trends in annual citations of influential NN publications

Citation share in %

0.0-

2000 2005 2010 2015

Notes: This figure shows the annual share of all citations in the Web of Science sample for the two
clusters of most cited NN articles. The shaded areas are time series intervals defined by minimum
and maximum citation shares. In the main, the orange profile represents ‘theoretical’ contributions
and the blue profile represents ‘applications’. Due to the limited number of articles that could be
cited in the initial period, we clustered the time series from 2000 onwards.

Coherence. Another defining attribute of an emerging technology is its coherence,

understood as the shared interpretation and acceptance of the technology within a
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community. Signals of coherence can include the creation of dedicated conference ses-
sions, new specialist journals and new categories in established classification systems.
Here, we consider the transition from cross-disciplinary to disciplinary research effort
as a sign of coherence, as this would mean that the technology has moved beyond its
conceptual stage requiring close interaction between users and developers, and has
become ‘common practice’ in application domains.

Each document is labelled by WoS as belonging to at least one subject category on
the basis of the journal in which it was published. In most instances, a document falls
into more than one category. The extent to which publications in a given scientific
area are cross-classified as computer science contributions can therefore proxy cross-
disciplinarity with respect to computer science. Thus, for each broad scientific area
and year, we calculated the fraction of NN documents that are (also) labelled as
‘Computer Science’.

Figure 1.4 shows the corresponding time trends. Each point of the plot for ‘Tech-
nology’ (Panel A) represents the average number of ‘Technology’ NN documents
cross-classified as ‘Computer Science’ in a given year. For example, in 1990 about
60% of ‘Technology’ publications also fell into the ‘Computer Science’ category (first
dot). The overall trend (blue line) follows a flat U-shape that reaches around 70% in
2005, before falling to less than 50% by the end of the observation period. Indeed, in
2018, a large proportion of papers in ‘Technology’ are no longer labelled as computer
science contributions. ‘Physical Sciences’ (Panel B) also presents an inverse U-shape,
with an increase in cross-classified computer science documents that reached 20% in
2000, before falling to 10% by the end of the period. No increase in computer sci-
ence cross-classification was observed in ‘Life Sciences & Biomedicine’ (Panel C).
From the very high share of 70% at the beginning of the period, a continuous de-
cline was subsequently recorded (with significant drops around 2000 and again in
2010), finishing the period at around 20%. ‘Health Sciences’ (Panel D) presents the
same evolution. ‘Social Sciences’ (Panel E) increased their share of computer science
documents to 40% around 2010, but this was followed by a sharp downturn, while
in ‘Arts & Humanities’ (Panel F), the share of computer science documents is very
noisy, and no particular trend can be deciphered.

Taken together, these dynamics suggest that NNs diffuse from computer science,
the originating discipline, into other application-oriented scientific disciplines. Thus,
over time, we see a greater propensity of different communities to integrate the tech-

nology into their discipline, which is a good signal of coherence.
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Figure 1.4: NN publications cross-classified as ‘Computer Science’

Panel A : Technology Panel B : Physical Sciences
0.7
0.2
0.6
0.1
0.5
0
1990 1995 2000 2005 2010 2015 1990 1995 2000 2005 2010 2015
Panel C : Life Sciences Biomedicine 0.8 Panel D : Health Sciences
0.6
0.6
0.4
0.4
0.2
1990 1995 2000 2005 2010 2015 1990 1995 2000 2005 2010 2015
Panel E : Social Sciences Panel F : Arts Humanities
1
0.4
03 0.5

1990 1995 2000 2005 2010 2015 1990 1995 2000 2005 2010 2015

0.6 Panel G : All Documents

0.5

0.4

1990 1995 2000 2005 2010 2015

Notes: The figures show the fraction of NN documents cross-classified as ‘Computer Science’. Or-
ange dots represent the share of cross-classified papers in each year. The blue curve corresponds
to a simple local regression, with the surrounding shaded area representing the 95% confidence
interval around the mean.

In short, it is more than apparent that NN technology fulfils many of the con-
ditions to be classified as an emerging technology. It exhibits rapid growth in all
domains; it has experienced a turbulent shift and reconfiguration of the actors in-
volved in its development and adoption; and it presents a degree of coherence that
persists over time. However, the picture arrived at in the first part of this analysis
is incomplete. How does the technology influence scientific discovery in its domains
of application? What can be learned about its undoubted impact yet, at the same
time, the uncertainty that is often associated with its adoption? We address these

questions in the next Section.
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1.5 Neural networks in the health sciences

Here, we specifically address the impact of NN-based methods in the ‘Health Sci-
ences’, one of the application domains with the highest short-term societal impacts
[Raghupathi and Raghupathi, 2014, Miotto et al., 2018]. Al, in general, and deep
learning, in particular, have already contributed to a variety of data-driven innova-
tions in the health domain — improving healthcare systems, supporting clinicians,
and monitoring patient diseases, among others. A review of the literature enabled
us to identify applications in virtually all sub-disciplines: health informatics and
biomedical research [Marx, 2013, Ravi et al., 2016], computational biology [Anger-
mueller et al., 2016], genomic medicine [Leung et al., 2015], medical imaging [Litjens
et al., 2017, Shen et al., 2017, Savadjiev et al., 2019], drug discovery and pharmacoge-
nomics [Ma et al., 2015], real-time patient monitoring [Rajkomar et al., 2018], public
health[Miotto et al., 2018, Zhang et al., 2018], and neuroscience and the cognitive
sciences [Marblestone et al., 2016, Hassabis et al., 2017, Lake et al., 2017].3

Novelty and impact in science. A ‘scientific contribution’ is typically considered
as comprising two elements: novelty and impact. Different terms for essentially this
same idea were used in earlier studies of science, so that debates centred on discus-
sions of the notions of originality, discovery and breakthrough and contributions to
scientific progress [de Solla Price, 1963, Merton, 1957, Bourdieu, 1975]. It was Kuhn
[1962] who coined the term ‘novelty’ to describe a more radical contribution that does
not simply make an incremental advance in the ‘normal science’ in place, but rather
breaks the current paradigm. More recently, the term novelty has partly lost this
radical connotation, but it still carries the idea of a high degree of originality, while
the concept of ‘recombinatorial novelty’ has emerged to highlight the idea that new
knowledge arises out of the recombination of previously generated bits of knowledge
[Fleming, 2001, Arthur, 2009, Uzzi et al., 2013, Wang et al., 2017].

Only a very small percentage of the potential for useful recombinations in the
knowledge space is currently exploited. NNs can change the way science develops by
helping to overcome our human limitations [Agrawal et al., 2018, Cockburn et al.,
2018, Furman and Teodoridis, 2020]. Yet, how exactly does NN adoption correlate

with novelty? The answer to this question depends very much on how the technology

3We define the ‘Health Sciences’ as comprising 83 Web of Science subject categories within
the ‘Life Sciences & Biomedicine’ research area. The complete list of categories included can be
consulted in the Supplementary Material.
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is used in the scientific complex. Indeed, scientists can adopt new methods either to
advance well-established research trajectories within a conceptual space or to explore
new avenues by altering the conceptual space with knowledge from other domains,
leading to low and high recombinatorial novelty, respectively.

The second element of a ‘scientific contribution’ concerns its impact, a key at-
tribute of emerging technologies. Impact is related to, but different from, novelty;
if research provides novelty, that novelty must be adopted by the scientific commu-
nity in order for its impact to be felt. And, moreover, research can have an impact
on subsequent research for reasons other than (recombinatorial) novelty, especially
when providing new insights within established knowledge structures.

Yet, nor should impact be considered fully independent of novelty. Evidence sug-
gests that a high degree of novelty is likely to increase the risk of delays and failures
[Azoulay et al., 2011]. Moreover, novel research often requires more complex and
risky collaborative social structures [Fleming et al., 2007, Foster et al., 2015]. Thus,
highly novel research can be subject to considerable variations in ‘quality’ Fleming
[2001], Wang et al. [2017] and, hence, to greater variations in impact. Uncertainty
and ambiguity are common features of the research process, especially because the
potential applications of the technology have yet to be explored and understood.
Social inertia can further reinforce the uncertainty associated with impact. Emerg-
ing technologies typically encounter resistance in society precisely because they cause
structural changes in roles and norms [Merton, 1957, Bourdieu, 1975]. This is partic-
ularly true of AI which operates at the intersection of ethical and legal considerations
and, as such, is shaping the future of both individuals and society as a whole [Lanier,
2011, O’neil, 2017, Zuboft, 2019].

1.5.1 Empirical analysis

We measure scientific knowledge creation in scientific papers published in peer-
reviewed journals and conference proceedings in the ‘Health Sciences’. Henceforth,
the term ‘journal’ is used to refer interchangeably to both peer-reviewed scientific
journals and conference proceedings. We restrict our focus to journals that are not
cross-classified as ‘Computer Science’ journals, ensuring that publications include
NN methods as a research tool.

Our approach is to compare publications that involve NNs with those that do
not involve NNs, while controlling for a set of confounding factors. Comparisons

are made in terms of their recombinatorial novelty and scientific impact. For the
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main analysis, we operationalize the concept of ‘recombinatorial novelty’ as the first
appearance of a knowledge combination, very much in line with Wang et al. [2017],
the details of which we describe below. Novelty a la Wang et al. complies with
the idea of NNs as a method of invention — i.e., a method for creating something
new and valuable. In the case of ‘scientific impact’, we operationalize this concept

as the subsequent use made of a paper, measured by the number of citations received.

Sample. We include all the articles for the whole observation period (2000-2018)
published in those health journals where research involving NNs has been most promi-
nent. This provides us with a relatively coherent knowledge base against which we
can examine the concepts of novelty and impact. In total, we identified 26,461 NN
health papers in about 5,000 health journals and proceedings. Roughly 45% (11,520)
of these documents are published in the top 100 health journals in the sample. Hence,
we downloaded the entirety of these journals for the period 1990-2018. Our final sam-
ple, combining NN and non-NN publications, contains 1,081,223 articles.

Variables. Our main explanatory variable is a binary indicator of a paper’s NN
content: 1 if the paper involves the use of NN methods, 0 otherwise. Our main
dependent variables are (various measures of ) recombinatorial novelty and scientific
impact based on citation counts.

Recombinatorial novelty is measured in relation to the journals referenced by a
paper. Thus, each paper is examined to determine whether it makes ‘first-time-ever’
combinations of referenced journals — i.e., its list of references contains journal pairs
that have never previously appeared jointly in any list of references. In order to
exclude journal pairs that simply formed once by happenstance, we further impose
the condition that journal pairs be observed again within the next three years. A
paper with at least one journal pair in the reference list that is both novel and
that has been re-used, is considered as providing some novelty. Thus, we construct
a binary indicator of novelty, henceforth referred to as Novelty Dummy. A further
consideration is that a novel journal pair may span domains that vary in their distance
one from another (i.e., more or less distant). This subtlety is captured through the
co-citation profiles of the two journals forming a novel pair. The idea is that if both
journals are often (rarely) cited with the same third journal(s), they are likely to
span less (more) distant domains. In this way, we are able to construct a distance-

weighted (continuous) measure of novelty, henceforth referred to as Novelty.
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Calculations of the binary and weighted novelty measures follow Wang et al.
[2017]. However, our procedure differs in two major respects. First, we judge novelty
and co-citation distance only on journal pairs that are observed in the reference lists
of our sampled papers. Thus, we do not measure novelty per se but rather with
respect to a knowledge base covered by the sampled health journals.

Second, we calculate different measures of novelty by considering different sets
of journals in the references. In this way, we are able to capture the source of
novelty — i.e., where does this novelty come from? ICT, health, or other domains?
While it is true that all the articles in our sample are published in outlets of the
‘Health Sciences’, they can reference journals in various domains. For instance, a
health science paper involving NNs is likely to cite computer science journals where
the NN methods were first published. This translates into a recombinatorial novelty
‘simply’ because of the adoption of the method, but it does not necessarily reflect the
recombinatorial potential of NNs to connect and recombine knowledge in complex
knowledge landscapes. In other words, we seek to measure whether NN adoption
fosters novel recombinations within the health sciences and/or between the health
sciences and disciplines other than the computer sciences. Thus, we calculate novelty
not only in journal pairs, as indicated by ‘All Sciences’, but also limited to journal
pairs where (i) no referenced journal is classified as a computer science journal,
indicated by ‘No CS’; and (ii) both referenced journals are uniquely classified as
health sciences, indicated by ‘Only HS’. By way of example, the combination of
‘Biology & Biochemistry’ and ‘Computer Science’ journals can be regarded as an
‘All Sciences’ combination; ‘Engineering’ and ‘Molecular Biology & Genetics’ as a
‘No CS’ combination; and ‘Neuroscience & Behaviour’ and ‘Psychiatry/Psychology’
as an intra-domain ‘Only HS’ combination.

Combining these three recombinatorial options with the possibility of calculating
novelty as either a binary indicator or a continuous score, we obtain six different
novelty measures, namely: Novelty Dummy (All Sciences), Novelty Dummy (No CS),
Nowelty Dummy (Only HS), Novelty (All Sciences), Novelty (No CS), and Nowelty
(Only HS).

Impact is measured by the number of citations (# Citations) received by a paper
from its year of publication up to 2019, the time of data extraction. Furthermore, we
code dummy indicators for so-called ‘big hit’ contributions — i.e., highly cited papers.
Whether a paper is among the top 5 or 10% cited papers (Top 5% Cited and Top
10% Cited) is calculated with reference to other papers published in the same year
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and falling in the same WoS subject category.

We consider a set of control variables to capture various characteristics of a focal
paper. We control for the number of references made by a paper (# References)
as this might automatically increase the likelihood of its having new combinations.
In prior research, the number of authors has been shown to be positively associated
with both novelty and impact, hence we control for that (# Authors). The adop-
tion of AI in scientific settings can indeed have an ambiguous effect on team size.
Size may increase as new members are needed to manage the technology (at least
in the early stages), but the technology may also automatize some tasks, thereby
generating a replacement effect in the scientific workforce. International collabora-
tions may also be a source of novelty and impact, and may be instrumental in the
adoption of the technology. We proxy international collaboration by a dummy (In-
ternational Collab.) taking a value of 1 if there are at least two different countries in
the authors’ affiliations, 0 otherwise. For the same reason, we construct a dummy for
private sector participation (Private Partic.) taking a value of 1 if the paper has at
least one non-university affiliation in the list. We consider the journal impact factor
(JIF), since, on the one hand, high impact journals may be biased against novelty,
but, on the other, increase visibility and hence citations. We additionally control for
the journal age (Journal Age). Finally, we include a dummy indicating whether the
paper provides a review or survey of extant literature (Survey). A survey may in
fact cover separate streams of research without really connecting them.? Descriptive

statistics of the variables are reported in Appendix.

Estimation methods. We model three different types of outcome: (i) binary
indicators of novelty and impact, (ii) positive continuous measures of novelty, and
(iii) positive discrete measures of impact (number of received citations). Each type
of outcome requires a specific econometric setting.

All binary indicators are modelled with a Probit. Our continuous novelty measure
is censored at zero, hence we use a Tobit model. Citations are count data for which
the Poisson and negative binomial models are natural candidates. Over-dispersion

and the conditional mean of the outcome variable being much lower than its vari-

4 Private Partic. takes a value of 1 if we detect in the authors’ affiliation at least one of
the acronyms present in the Wikipedia page: ‘List of legal entity types by country’. We use the
SCImago Journal Rank to obtain the impact factor (JIF) for each journal in each year. Journal Age
is calculated as the time elapsed from the date of the journal’s creation to the year of publication.
Survey takes a value of 1 if we detect in the title of the paper the terms ‘Survey’, ‘Overview’ or
‘Review’.
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ance are the most common arguments for favouring the negative binomial over the
Poisson model. In our case, both empirical arguments hold; therefore, we opted for
the negative binomial to model mean and dispersion separately, each with a linear
predictor incorporating our main left-hand side variables and controls.

In all estimations, we include the control variables discussed above and a set of
dummies to control for scientific field and cohort effects. We proxy scientific field us-
ing WoS categories (field WC). As a paper may fall into several categories, we code
dummy variables taking a value of 1 for each category. Throughout the analysis,
robust standard errors clustered at the journal-level are obtained via bootstrapping

all journals.

Results. Table 1.3, Columns 1-3, shows the Tobit regressions of the continuous
measures of novelty, Novelty. Columns 4-6 report the Probit estimates of the binary
novelty indicators, Novelty Dummy.

When considering recombinatorial novelty across all sciences (Column 1), the
estimated coefficient is positive but non-significant, but when we exclude computer
science references (Column 2) the coefficient becomes negative yet remains non-
significant. Restricting references to health sciences only (Column 3) increases the
negative coefficient, which is now significant below the 1% significance level. The
same pattern is observed when we consider the results of the Probit regression of the
novelty dummy.

To what extent does the adoption of NN methods change our expectations of
recombinatorial novelty in the health sciences? To a considerable degree, given that
adopting NN decreases the degree of novelty by 18.6%. In addition, the marginal
effects of Probit (Column 6) tell us that, for the median observation, NN decreases
by 0.031 the probability of an article being novel (0.037 for the average observation).

In sum, NN adoption is not significantly correlated with novel recombinations
across the entire knowledge landscape, nor with novel recombinations involving any-
thing other than computer sciences. Yet, it is significantly and negatively correlated
with novel recombinations within the health sciences. These findings suggest that
NN methods tend to be adopted as part of a ‘balancing strategy’ in which the risk
associated with the (emerging) technology is counterbalanced by keeping the knowl-
edge landscape stable. Another way of interpreting this outcome is that NNs are
employed mainly as a research tool to support already formalized and well-defined

research trajectories in the health sciences community. This evidence is consistent
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Table 1.3: Novelty profile of NN publications

Tobit: Novelty Probit: Novelty Dummy
All Sciences No CS  Only HS All Sciences No CS Only HS
(1) (2) (3) (4) (5) (6)
NN 0.044 -0.031  -0.186*** 0.053 -0.008  -0.150***

(0.038)  (0.034)  (0.040)  (0.037)  (0.033) (0.037)

# References (log)  1.046™*  1.050* 1.029"*  0.878"*  0.879"** (.843***
(0.033)  (0.033)  (0.033)  (0.026)  (0.026) (0.023)

# Authors (log) 0.177***  0.184**  0.227**  0.184**  0.189™** (.223*
(0.021)  (0.022)  (0.024)  (0.020)  (0.020) (0.022)

International Collab. -0.053"* -0.058"* -0.084***  -0.050** -0.054*** -0.076"™**
(0.010)  (0.010)  (0.010)  (0.009)  (0.010) (0.009)

Private Partic. -0.004 -0.004 -0.027* -0.007 -0.008  -0.026**
(0.012)  (0.012)  (0.014)  (0.012)  (0.013) (0.013)
JIF -0.026 -0.024 -0.017 -0.025 -0.024  -0.017
(0.019)  (0.019)  (0.021)  (0.017)  (0.017) (0.018)
Journal Age (log) -0.098 -0.082 -0.044 -0.074 -0.061  -0.030
(0.099)  (0.100)  (0.108)  (0.090)  (0.090) (0.095)
Survey 0.225*  0.216™*  0.181*** 0.206*  0.199"* 0.163***
(0.049)  (0.047)  (0.050)  (0.049)  (0.047) (0.046)
Log Likelihood -263,098  -258,255 -221,241  -180,701 -178,639 -161,710
X2 [Null Model] 96,074 94,950"** 77,374.6"* 75,936"* 75,187 64,730
x? [w/o NN Modell 4.90* 2.20 60.90*** 6.70* 0.10  44.60**
# Obs 356,037 356,037 356,037 356,037 356,037 356,037

Notes: This table reports coefficients of the effect of NN methods (NN, dummy) on recombinatorial
novelty built by considering different knowledge landscapes. Bootstrapped (500 replications) standard
errors clustered at the journal-level in parentheses: *** ** and * indicate significance at the 1%, 5%
and 10% levels, respectively. The effect of NN on the positive continuous novelty measure is estimated
using a Tobit regression (Columns 1-3). The effect on the novelty dummy is estimated using a Probit
(Columns 4-6). Each novelty measure is calculated on three different sets of journal references: ‘All
Sciences’ — All cited journals, ‘No CS’ — All cited journals except for computer science journals, and
‘Only HS’ — Only citations to health science journals. Constant term, scientific field (WoS subject
category) and time fixed effects are incorporated in all model specifications. Likelihood-ratio tests are
used to compare the goodness-of-fit of two statistical models: (i) null model against complete model;
(ii) model without the NN variable against the complete model.

with the idea of extending science while maintaining the advantages of conventional
domain-level thinking [Boden, 2004, Uzzi et al., 2013].

Our estimates of the control variables echo previous research. Larger teams are

associated with more novelty [Fleming et al., 2007, Lee et al., 2015]; international col-
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Table 1.4: Impact profile of NN publications

NegBin: # Cit. Probit: Top 5% Cit. Probit: Top 10% Cit.

(1) (2) (3)
Panel A: Mean NN 0.101** 0.147** 0.155%**
(0.040) (0.041) (0.043)
Novelty (All Sciences) 0.153*** 0.200*** 0.191***
(0.023) (0.016) (0.015)
# References (log) 0.491*** 0.429*** 0.477***
(0.064) (0.075) (0.062)
# Authors (log) 02375+ 0.166*** 0.194***
(0.026) (0.039) (0.036)
International Collab. 0.064*** 0.083*** 0.085***
(0.013) (0.014) (0.013)
Private Partic. -0.029* -0.027 -0.034**
(0.015) (0.018) (0.015)
JIF 0.205"** 0.167*** 0.179**
(0.022) (0.017) (0.018)
Journal Age (log) 0.050 -0.066 -0.048
(0.036) (0.086) (0.079)
Survey 0.541** 0.667*** 0.627**
(0.060) (0.054) (0.049)
Panel B: Dispersion NN 0.136***
(0.051)
Novelty (All Sciences) 0.093***
(0.017)
# References (log) -0.496***
(0.038)
# Authors (log) -0.213***
(0.044)
JIF 0.040
(0.031)
Journal Age (log) -0.118***
(0.029)
Log Likelihood -1,519,720 -69,222 -110,788
X2 [Null Model] 318,463*** 19,317 31,564
% éw/o NN Model] 8.70%+* 24.80%** 40.00%**
% Obs 356,037 356,037 356,037

Notes: This table reports coefficients of the effect of NN methods (NN, dummy) on scientific impact
proxied by the number of citations received (Column 1) and ‘big hits’ (Columns 2 and 3). Bootstrapped
(500 replications) standard errors clustered at the journal-level in parentheses: *** ** and * indicate
significance at the 1%, 5% and 10% level, respectively. The effect of NN on the citation count is estimated
using a negative binomial regression. Estimates for the expectation and variance are reported in Panels
A and B, respectively. Effects on the binary indicators are estimated using a Probit. Constant term,
scientific field (WoS subject category) and time fixed effects are incorporated in all model specifications.
Likelihood-ratio tests are used to compare the goodness-of-fit of two statistical models: (i) null model
against complete model; (ii) model without the NN variable against the complete model.
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laborations are negatively associated with novelty [Wagner et al., 2019]; the chances
of providing a new combination of journal references increase with the number of
references [Wang et al., 2017]; and, literature reviews also tend to draw from a wider
range of sources leading to novel combinations of references. We find a negative
effect of private involvement and, finally, a journal’s age and impact factor seem to
play no role.

How does NN adoption correlate with impact? Table 1.4, Column 1, shows the
results of the negative binomial regression of citation counts. Here, the mean and
dispersion parameters may vary with various right-hand side factors.® We find that
NN adoption positively and significantly affects the number of citations received,
both in terms of expectation and variance. Compared to non-NN papers, ceteris
paribus, NN papers receive on average 10.32% more citations. The expectation of
citation count increases by a median of 6.01 for NN research. The dispersion of the
citation distribution is 19.57% higher for NN papers than for non-NN papers.

The Probit regressions used to model the probability of a paper falling in the right
tail (top 5% or 10%) of the year—field citation distribution corroborate the results.
The marginal effects suggest that research involving NN has a 0.019 (median value)
higher probability of being in the top 10% of the most influential contributions (0.027
mean value), and a 0.009 higher probability of being in the top 5% (0.014 mean value).

As for the controls, the number of authors is positively related to impact [Lee
et al., 2015] and reduces impact variation; international collaborations increase cita-
tion expectations [Glanzel and Schubert, 2001]; publishing in a high impact factor
journal further increases the average number of citations; surveys and other papers
with many references tend to attract more citations; and, finally, a negative effect
is found between private participation and scientific impact, albeit not particularly
significant.

In sum, the econometric analysis shows that research using NN has a high poten-
tial for greater impact, on the one hand, but that it is also associated with greater
uncertainty of having an impact, on the other. There are several (complementary)
explanations for this uncertainty: the ‘high-risk/high-gain’ that characterizes the
adoption of emerging technologies and breakthrough research [Rotolo et al., 2015,

Wang et al., 2017]; the challenge of integrating the scientific instrument into existing

5We excluded dummy variables other than NN to model the dispersion of citations because
these variables caused problems with the convergence of the maximum likelihood estimator. In
modelling the dispersion, we also tried simpler specifications by progressively incorporating a few
variables at a time.
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scientific practices [Rosenberg, 1992]; the ability to extract the true potential from
the instrument and not to adopt it simply because ‘everybody does’; and the possible
social resistance, especially in sensitive domains, as some areas of the health sciences

are known to be.

Based on these results, we propose that AI — here, specificallyy, NN methods
— be regarded as an emerging general method of invention: ‘emerging’ because it
shares the key attributes of emerging technologies; ‘general’ because it is increasingly
integrated as a research tool in many scientific domains; and, a ‘method of invention’
because it has great potential for impact in application domains. We consider it more
appropriate to consider Al an emerging general method of invention as opposed
to a general-purpose method of invention (as in Cockburn et al. [2018]) for two
reasons. First, as we have seen in Section 4, although growing, the proportion of
scientific contributions related to NNs remains marginal compared to the whole body
of scientific activity. Second, whether or not Al can be classified as a general-purpose
technology remains open to debate and we find more arguments to support the
contention that Al is better considered, for example, as a large technical system

with infrastructural properties [Vannuccini and Prytkova, 2021].

1.5.2 Robustness analysis

Our results are robust across a wide range of additional tests. Tables and further
material can be found in Appendix and Supplementary Material.

First, we excluded all articles that fall into the WoS ‘Neurosciences’ category.
This domain can be potentially problematic in that some terms (neural network,
first and foremost) may not necessarily refer to artificial intelligence but rather to
human intelligence and the biological brain. The sample falls by about 30% and
the number of NN articles almost halves. However, our results are consistent when
replicating the analysis on the sub-sample.

Second, we excluded all articles that contain the terms ‘neural network’ and
‘neural networks’ exclusively in their title, keywords, or abstract. Bear in mind that
an article may still contain a term such as ‘artificial neural network’ or ‘convolutional
neural network” which should now refer to artificial intelligence stricto sensu. In this
case, neuroscience papers may form part of the sample. This restriction is severe
insofar as the number of NN articles falls by more than 70%. Yet our results are

robust to this constraint.
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The third exercise consists of a different econometric approach. Instead of re-
gression analysis, we compared each NN paper with a ‘twin’ non-NN paper. More
precisely, the empirical strategy considers the adoption of NN as a ‘treatment’; hence,
we employ exact matching and 1:1 nearest neighbour matching on propensity scores
(PSM) to select an appropriate control group of untreated papers. Exact matching
is performed considering Web of Science categories, publication year, and journal
— that is, we compare a NN article in terms of novelty and impact with an article
belonging to the same domain(s), published in the same year and in the same jour-
nal. We obtain the propensity scores associated with the binary treatment via the
estimation of the Probit model containing the original set of variables. The average
treatment effects (ATT) for the selected variables lend further support to our results.

A final test concerns the way novelty is measured. Indeed, some research shows
that different novelty indicators are often inconsistent with each other and may
return different sets of novel contributions [Fontana et al., 2020]. Thus, we imple-
mented the indicator developed in Uzzi et al. [2013] to define an ‘atypical’ (nov-
elty /conventionality) quadrant: high-conventionality /high-novelty (HC-HN); high-
conventionality /low-novelty (HC-LN); low-conventionality /high-novelty (LC-HN);
and low-conventionality /low-novelty (LC-LN). The four categories are employed in
a multinomial logistic regression. We find that, within the knowledge landscape of
the health sciences, NN articles are more likely to draw on highly conventional combi-
nations of knowledge. Ceteris paribus, our estimates suggest that when NN methods
inject some highly (field-specific) unusual combinations, they do so primarily in an

exceptionally conventional knowledge space.

1.6 Concluding remarks

Most socio-economic analyses of Al have looked at the effects of technology on eco-
nomic growth [Brynjolfsson and McAfee, 2014, Aghion et al., 2018], labour market
and productivity dynamics [Furman and Seamans, 2019, Acemoglu and Restrepo,
2020, Van Roy et al., 2020], changes in skills [Graetz and Michaels, 2018, Brynjolf-
sson and Mitchell, 2017], and inequality and discrimination [O’neil, 2017, Zuboff,
2019]. Our contribution, here, provides insights into the diffusion and impact of Al
methods in the scientific system.

In this paper, we first examined the diffusion of NN research in the sciences

in an effort to verify whether NNs conform to certain characteristics of emerging
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technologies. We found that NN research activity has grown exponentially in almost
all sciences and all over the world, and the diffusion process has followed a double-
boom cycle with a strong re-configuration of global actors. The diffusion of NN
methods into application domains began in a cross-disciplinary fashion involving the
computer sciences, breaking their way into ‘pure’ field-specific research within the
various application domains. We then examined the impact of technology adoption
on scientific discovery, with a particular focus on the health sciences. We found the
adoption of NN methods to be negatively correlated with recombinatorial novelty;
however, a positive correlation was found with the expectation and dispersion of
citations received, increasing a contribution’s likelihood of becoming a ‘big hit’.

Conceptually, we considered scientific discovery to be a recombinatorial process
in which existing knowledge is recombined to create new knowledge, a process that
continues perpetually in a dynamic knowledge landscape. A traditional image of
science is one in which the knowledge landscape is made up of islands — i.e., (sub)-
disciplines or scientific fields — where most of this recombination takes place. The
islands reflect the structure of nature but also the need for a scientific mind to
organize the complexity of the world. Seen this way, scientists are sailors whose goal
it is to navigate from island to island, figure out their structure, and explore the
surrounding landscape. Sailors can opt to stay in the ‘comfort zone’ and further
their knowledge of one (or neighbouring) island(s), or they can sail to more distant
islands and connect new areas of the landscape. Both actions enrich the knowledge
space, one exploring well-formalized knowledge structures, the other reshaping and
rearranging the landscape. Our findings suggest that, at least as it is used today,
AT — the boat or the compass, to stick with the analogy — seems to be more in
line with the first action. However, the possibilities of discovering new and valuable
things about the known islands are far from obvious, as confirmed by our results on
scientific impact.

A general-purpose invention in the method of invention? Or a passing fad in
science? We think not. Our findings lead us to take up a more moderate stance in the
recent debate on how Al affects the development of knowledge. NN methods do not
(yet) serve as an autopilot for navigating the sea of knowledge and connecting ideas,
but they are, nevertheless, an extremely powerful and versatile research tool that
impacts knowledge creation in measurable ways. Thus, we propose that Al should
be considered an emerging general method of invention. But do not be fooled, we are

not simply seeking to win the race to coin the most attractive designation; rather, as
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we discuss below, thinking of this technology as ‘general’ and ‘emerging’ has policy
implications that differ substantially from those that might result from thinking of it
as a general-purpose technology (for more on the latter, see, e.g., Trajtenberg [2018],
Klinger et al. [2021].

First, the diffusion of intelligent machines as input in the research production
process calls into question the organization and management of science. Al may
trigger a short-term substitution towards capital and away from highly skilled labour
in the knowledge production process. Whether such a substitution effect is occurring
is doubtful and clearly requires further empirical investigation. In parallel, the arrival
of automation technologies in science puts a wide range of research tasks under threat,
either by reducing the cost of performing those tasks or by outperforming human
scientists in the performance of them. Some tasks within the occupation may be
suitable for automation while others may not, and the overall effects on employment
in science are very complex. Therefore, research-oriented organizations need a better
understanding of the set of tasks performed by their scientists, the coordination of
these tasks, and the respective strengths and weaknesses of humans (H) and machines
(M), before they can hope to unleash the benefits of H + M cooperation.

Machines are set to become more than tools; they have the potential to become
another teammate. As such, H-M interactions will require the coordination of com-
plex activities, including communication, joint actions and human-aware execution.
As these machine teammates will operate in different collaborative environments,
they need to be designed with different collaborative capabilities. This design area
will require considering such aspects as appearance (what machines should look like);
learning and knowledge processing (how they should learn); conversation (how they
should interact and socialize with their peers); architecture (what their main com-
ponents should be); reliability, responsibility and liability. (For a more in-depth dis-
cussion on design areas for human-machine collaboration, see Seeber et al. [2020]).

It seems that NN methods are being adopted in different scientific fields but
that existing knowledge structures are remaining relatively stable. This suggests
the full potential of the technology (and its future development) might be better
achieved by further spanning the boundaries between scientific areas. The bringing
together of expertise and knowledge from various domains could help in the identifi-
cation of blind spots and opportunities in the knowledge landscape. The concepts of
‘knowledge communities’ and ‘communities of practice’ seem particularly apt in this

context. Although communities often self-organize and self-sustain themselves, they
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can also benefit from policy endorsement. It seems crucial to us that institutions
and a policy environment be developed that are conducive to enhancing dialogue
and cross-fertilization between communities. This could be achieved, for instance,
by reinforcing both horizontal (intra-field) and vertical (inter-field) knowledge man-
agement. Digital platforms and knowledge hubs could be complemented by physical
‘collaborative spaces’ where the tacit knowledge of different communities might be
transferred face-to-face, documented and made accessible for later use. Another stan-
dard instrument is obviously research funding, which should not target individual
areas but rather research ‘priorities’ (e.g., fighting a given disease) involving different
communities that can frame their research questions together.

However, promoting collaboration between communities can pose certain chal-
lenges in terms of governance and data ownership. Data is a polymorphous category,
which means standards, principles and rules governing the various types of data are
not homogeneous across communities, let alone across countries. This opens up the
question of how data should be generated/used in compliance with different regula-
tions, and also how the value of data should be distributed [Savona, 2019].

The diffusion of Al, as a research instrument, can be self-sustaining only if there
is social acceptance — i.e., if the crew trusts the captain and the equipment. Several
AT applications represent innovations that can bring about far-reaching changes in
all aspects of our daily lives. These social innovations can have unintended yet neg-
ative consequences in terms of security, privacy and social equity [O’neil, 2017]. The
public will no longer tolerate being excluded from the debate and it is here that the
scientific and policy community have a key role to play. Both parties can improve the
channelling of scientific evidence into the public arena and fight the risks posed by
fake news. Policy can promote communication by setting the right, often intrinsic,
incentives to encourage as many scientists as possible to engage with different seg-
ments of the public. However, communicating science to non-scientific audiences can
be difficult since it requires a different approach from that of communicating science
to scientific audiences. This means scientists need to be able to detach the layers of
scientific complexity that characterize their research so as to deliver a clear message
to the public, a message, moreover, that should include both potential impacts and
ethical issues. ‘Listening mechanisms’ can also be used to inform citizens’ knowl-
edge, expectations, and imaginaries about intelligent machines and, why not, about
their role in science. There are a variety of means available for achieving these goals,

ranging from in-depth interviews and material deliberations to citizen science. We
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believe that citizen science has the potential to bring the greatest benefits to both
the public and the scientific system. The nonprofessional involvement of volunteers
in the scientific process, whether in more mundane tasks such as data collection or
in other phases of the research, offers great opportunities for the public to become
familiar with the technology but also provides researchers with great opportunities
to improve their results [Bonney et al., 2014, Sullivan et al., 2018]. However, fully
accountable institutional mechanisms are a precondition for guaranteeing trust be-
tween scientists and the public and for ensuring continuity in their relationship. For
instance, all results and the process used in reaching these results should be open
to scrutiny. Policy should promote feedback activities so as to maintain citizen in-
volvement and explain how their inputs were used in meeting research aims; reconcile
conflicting values and objectives; and, put in place collective intelligence mechanisms
that can help them develop a systemic understanding of the future implications of
technological progress and make better consensus decision-making — all very much in
line with the notion of ‘Decisions 2.0’ [Bonabeau, 2009]. Finally, we fully embrace the
concept of ‘boundary organisations’ specifically designed to deal with socio-economic
transformations in the digital age. These organisations would sit at the intersection
of scientific and political spheres and allow scientists and policy-makers to maintain
a constant dialogue with each other.

Although the AT revolution has been the subject under scrutiny here, ironically
this revolution offers the tools with the greatest potential for bringing about a radical
transformation in the interactions between the public, the scientific community and
the policy environment. These interactions, if exploited carefully, should serve to
give a boost to human efforts to better understand the greatest mystery of all: the

origin and function of the world and our place in it, that is, the tasks of science itself.
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1.7 Appendix

Descriptive statistics and results

Table 1.5: Descriptive statistics of the variables

NN Papers Non-NN Papers Total
Re-combinatorial Novelty
Novelty Dummy (All Sciences) 36.43 30.32 30.40
Novelty Dummy (No CS) 32.39 29.55 29.59
Novelty Dummy (Only HS) 20.96 23.52 23.49

Novelty (All Sciences)
Novelty (No CS)
Novelty (Only HS)

Scientific Impact

Top 5% Cited

Top 10% Cited

# Citations (Raw Count)
Citations (Yearly Normalized)

Controls

# References

# Authors
International Collab.
Private Partic.

0/0.81 (2.39)
0/0.65 (2.12)
0/0.37 (1.62)

8.33

15.68
17/38.34 (114.43)
2.06/4.06 (8.16)

40/45.92 (29.59)
4/4.07 (2.37)
26.21
6.80

0/0.74 (3.10)
0/0.71 (3.07)
0/0.50 (2.40)

5.77
11.38
18/35.48 (82.67)
2.08/3.75 (8.02)

33/37.12 (25.66)
4/4.90 (3.50)
23.02
7.09

0/0.74 (3.09)
0/0.71 (3.06)
0/0.5 (2.39)

5.80
11.43
18/35.51 (83.15)
2.08/3.75 (8.02)

33/37.23 (25.73)
4/4.89 (3.49)
23.06
7.09

JIF 1.39/2.12 (2.06) 1.73/2.42 (2.13) 1.73/2.41 (2.13)
Journal Age 22/28.57 (26.07) 33/38.47 (29.08) 32/38.35 (29.06)
Survey 0.72 0.78 0.77
Time Period [2001 — 2015] [2001 — 2015] [2001 — 2015]
# Scientific Fields 46 48 48

# Journals 92 92 92

# Papers

4,560(1.28%)

351,477(98.72%)

356,037(100%)

Notes: Binary indicators in [%], for continuous measures [median/mean (s.d.)]. The statistics
refer to the period used for the econometric analysis.

From word embeddings to search terms

This Appendix complements Section 1.3 by adding technical details on the learning

of search terms for data retrieval. Source data and codes are fully accessible upon

request.
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Table 1.6: Atypical profile of NN publications

Category All Sciences No CS Only HS
(1) (2) (3)
HC-HN 0.008 0.208 0.308**
(0.130) (0.133) (0.136)
HC-LN -0.041 0.090 -0.049
(0.157) (0.152) (0.154)
LC-LN -0.043 -0.086 0.021
(0.162) (0.163) (0.155)
Other variables Yes Yes Yes
Log Likelihood -374,002 -374,000 -363,855
x? [Null Model] 95,913*** 95,488*** 115,891***
x? [w/o NN Model] 259%** 158.20*** 144***
# Obs 320,587 320,587 320,587

Notes: This table reports coefficients of the effect of NN methods (NN, dummy) on atypical
profiles. Category LC-HN is the reference category for all models. Bootstrapped (500 replications)
standard errors clustered at the journal-level in parentheses: *** ** and * indicate significance at
the 1%, 5% and 10% levels, respectively. All variables are incorporated in all model specifications,
details in Supplementary Material. Likelihood-ratio tests are used to compare the goodness-of-fit
of two statistical models: (i) null model against complete model; (ii) model without the NN
variable against the complete model.

Preparation of the training data

The training data is a bulk download of article abstracts from arXiv.org via its
API provided by the R package ‘aRxiv’ [Ram and Broman, 2019]. We obtained in
total 197,439 documents submitted between 1990 (2 documents) and 2019 (16,533
documents at the time of downloading — July; 35,807 in 2018) in the ‘Computer
Science’, ‘Mathematics’ and ‘Statistics’ sections of arXiv.org. Preprocessing entails
removing all abstracts with less than 15 words; a pre-defined set of stop words; all
words occurring less than 5 times in the corpus. In addition, we paste unigrams
into bi-grams depending on the frequency of co-occurence. Following Mikolov et al.
[2013b] and Mikolov et al. [2013] a bi-gram is created when the score of the two words,

w; and w;, pass a given threshold. The score is calculated as follows: score(w;, w;) =
count(w;,w;)—8
count(w;)-count(w;)’

bi-grams consisting of very infrequent words to be formed. We choose a threshold of

where 0 is used as a discounting coefficient and prevents too many
50 to increase the number of bi-grams generated (default is 100).

After preprocessing, the training data includes 14,458,777 words from a vocabu-
lary of size 87,990. This leads to a weight matrix of dimension 45,050,880 (87,990 x
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512 dimensions).

Estimation of word representations

We estimate word representations with the continuous Skip-Gram model introduced
in Mikolov et al. [2013b] and Mikolov et al. [2013]. The Skip-Gram model is one
specific variant of a set of word embedding algorithms that have become popular
under the label of Word2Vec.

We use negative sampling. In ‘old school” parlance, this is essentially a Logit
model. The binary dependent variable indicates whether or not two terms are close
in the text corpus, at distance c. For each observed neighboring term pair (success),
one adds k ‘negative samples’ (failures). The scalar product of word representations
enters the model as the linear predictor. Sequential processing is achieved through
stochastic gradient descent.

The results presented along the main text have been obtained with the follow-
ing parameter settings. The main free parameter is the dimensionality of the dense
word representation, which we set to 512 dimensions.® We define a context window
(distance ¢) of 7 words from both sides around the target. For each observed neigh-
boring term pair, we draw k = 15 negative examples. A negative example is obtained
by replacing one word of the observed neighboring terms by another word from the
vocabulary that is drawn randomly with probability proportional to its frequency —
ie., P(w;) = Wm, which is close to draws uniformly at random. Further,
we make use of sub-sampling by specifying 30 epochs, so that the whole dataset is

passed 30 times through the network.

Word clustering

Estimation results — i.e., estimated word embeddings — serve as input to a cluster
analysis. Term clusters are identified with the k-means clustering procedure. We used
the gap statistics to determine the optimal number of clusters. The most frequent

n-grams for the 22 identified clusters are reported in Tables 1.7a and 1.7b.

6We tried several dimensions to represent dense representation: 256, 300, 512 and 1,024. Our
choice was guided by the results of the k-mean clustering; we opted for the dimension for which the
DL cluster was best defined.
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Table 1.7a: Word embedding obtained via Word2Vec [arXiv.org sample]

Cluster 1 (Deep Learning)

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

Cluster 8

Cluster 9

n-grams
adversarial_examples
artificial neural

. hani
convolutional neural

convolutional neural network

datasanmmentation
deep_convolutional
deep_learning
deep_neural
deep_neural network

encoder_decoder

fnetuning

generative_adversarial

alternating_dir
batch_size
belief_propagation
boundary_conditions

audio_visual
automatic_speech
bag_words
character_level

combinatorial_optimization collaborative_filtering

computational_cost

constrained_optimization

convergence _rate
convergence rates
convex_optimization
differential_equations
divide_conquer
dynamic_programming
dynamical_systems
easy-implement
empirical risk
evolutionary_algorithms

generative_adversarial_network faster_convergence

long_short_term_memory
lossfunetion

networks_cnns

neural network

neural networks
recurrent_neural
recurrent_neural network

trreeetdortnit
variational_autoencoder
Unigrams

architecture
architectures
classification

classifier

deep

feature

features

layer

learn

learned

learning

loss
network
networks
neural
representations
tasks

train

trained
training

finite_element
forward_backward
generalization_error
gradient_descent
linear_programming
local_minima
min_max

mini_batch
mixed_integer
numerical_experiments
objective_function
optimal_transport
partial_differential
particleswarm
primal_dual
sample_complexity
statistical_physics
stochastic_gradient
strongly_convex
theoretical_guarantees
variance_reduction
variational inference

approximation
approximations
convergence
convex
equations
formulation
gradient
greedy
heuristic
iteration
iterative
minimization
numerical
optimization
quadratic
smooth

solve

solving
stochastic
variational

context_aware
contextual_information
cross_lingual
domain_specific
emotion_recognition
fake news
feature_engineering
image_captioning
information_retrieval
knowledge_base
latent_dirichlet
link_prediction
low_resource
machine_translation
manually_annotated
named_entity
natural language
news_articles
nlp_tasks
processing nlp
question_answering
relation_extraction
semantic_similarity
sentence_level
sentiment_analysis
sentiment_classification
sequence_sequence
similarity_measures
speech_recognition
text_mining
topic_modeling
web_pages
word_embedding
word_embeddings
word_vectors

annotation
annotations
corpus
document
documents
embeddings
entities
extraction
linguistic
retrieval
semantic
sentence
sentences
speech

style

text

topic
translation
word

words

adjacency_matrix
analysis_pca
community_detection
component_analysis
compressed_sensing
compressive_sensing
covariance_matrices
dimension_reduction

action_spac
actor_critic
agent_learns
atari_games
contextual_bandit
contextual_bandits
control_policies
decision_processes

dimensionality_reduction deep_q_learning

distance_metric
euclidean_distance
euclidean_space
feature_selection
fourier_transform
gaussian_mixture
gaussian_noise
graph_laplacian
hilbert_space
ill_posed
linear_combination
linear_combinations
low_dimensional

low rank
matrix_completion
matrix_factorization
means_clustering
nearest_neighbor
nearest_neighbors
nuclear_norm
positive_definite
principal component
principal_components
reproducing_kernel
signal_noise
signal_processing
sparse_coding
spectral_clustering
subspace_clustering
support_vector
total_variation

clustering
coefficients
decomposition
dictionary
inverse

kernel

kernels
manifold
matrices
matrix
nonlinear
projection
rank
regularization
signal

sparse
sparsity
spectral
vector
vectors

deep_reinforcement

asymptotic_properties
bayesian_inference
central limit
computationally_efficient
confidence_intervals
covariance_matrix
cross_validation
density_estimation

alzheimer’s_disease
ssociation_studies
brain_activity
brain_regions
brain_tumor
breast_cancer
causal_relationships
clinical_practice

expectation_maximization clinical_trial

gaussian_process

deep_reinforcement _learning gaussian_processes

expected_reward
experience_replay
exploration_exploitation
game_playing
heuristic_search
imitation_learning
imperfect_information
infinite_horizon
intelligent_agents
inverse_reinforcement
markov_decision
markov_decision_process
motion_planning
multi_agent
multi_armed
partially_observable
policy_gradient
policy_iteration
processes-mdps
regret_bound
regret_bounds
reinforcement_learning
reinforcement_learning
reward_function
sequential_decision
temporal_difference
thompson_sampling
time_horizon
upper_confidence

action
actions
actor

agent
agent’s
arm

arms
bandit
demonstrations
exploration
horizon
learner
mdps
planner
planning
policies
policy
regret
reward
rewards

hidden_markov
hypothesis_testing
importance_sampling
Jjoint_distribution
latent_variable
latent_variables
linear_regression
loglikelihood
logistic_regression
markov_chain
markov_chains
maximum_likelihood
monte_carlo
numerical_examples
parameter_estimation
posterior_distribution
probability_density
probability_distributions
random _fields
random_variable
random_variables
rate_convergence
sample_size
simulation_studies
smoothing
squared_error
time_series
time_varying
variable_selection

asymptotic
bayesian
conditional
density
dependence
dis
estimated
estimates
estimating
estimation
estimator
estimators
gaussian
likelihood
multivariate
parametric
regression
statistics
tests
variance

ributions

clinical tri

computed_tomography error_cor:

computer_aided
computer_assisted
cross_sectional
ct_images
disease_progression
dna_sequences
electronic_health
false_negative
functional magnetic
gene_expression
genome_wide
gold_standard
heart_rate
human_brain
imaging mri
low_dose
lung_cancer
magnetic_resonance
I_diagnosis
limage
medical_images
medical_imaging
presence_absence
resonance_imaging
risk_factors

rna_seq

sensitivity _specificity
skin_lesion
white_matter

biological
brain
cancer
clinical
diagnosis
disease
gene
genes
genetic
imaging
longitudinal
medical
molecular
patient
patients
protein
screening
subjects
survival
treatment

alice_bob
base_station
brute_force
coding_scheme
cognitive_radio

benchmark_datasets
compared_art
compared_traditional
computational_efficien

communication_channels conduct_experiments
communication_protocols current_art

elliptic_curve
encoding_decoding
encryption s
ting
error_correction
fusion_center
hash_function
hash_functions
hoc_networks

demonstrate_effectiver
demonstrate_efficacy
demonstrate_superiori
effectiveness_proposed
empirical_evaluation
error.rate

error_rates
evaluation_metrics
experimental _evaluatic

homomorphic_encryption experimental results

information_leakage
information_theoretic
key_exchange
leader_election
min_entropy
multi_hop
multi_party
noise_ratio

physical layer
pseudo_random
public_key
quantum_computers
rate_distortion
ratio_snr

secret_key
secret_sharing
secure_communication
security_protocols
sensor_networks
sensor_nodes
source_destination
wireless_communication
wireless_sensor

adversary
bit

bits

channel
channels
codes
coding
communication
decoding
exchange
message
messages
protocol
protocols
quantum
routing
scheme
schemes
secure
transmission

experiments_conductes
experiments_synthetic
extensive_experimenta
extensive_experiments
f1_score
https_github.com
magnitude_faster
outperform_art
outperforms_art
outperforms_existing
pascal_voc
random_forest
significant_improveme
significant_improveme
significantly_improve
significantly_improved
significantly_improves
significantly_outperfor
simulated_real
source_code
superior_performance
synthetic_real
times_faster

accuracy
achieve
achieved
achieves
art
benchmark
compar
compared
comparison
dataset
datasets
demonstrate
evaluate
evaluated
experiments
performance
proposed
results
robustness
test

Notes: This table reports the most frequent n-grams per cluster, sorted by alphabetical order. Cluster 1 concerns deep learning. The terms excluded from the list used to retrieve data from WoS are crossed out.
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Table 1.7b: Word embedding obtained via Word2Vec [arXiv.org sample]

Cluster 12 Cluster 13 Cluster 14 Cluster 15 Cluster 16 Cluster 17 Cluster 18 Cluster 19 Cluster 20
n-grams

access_control answer_programming  algebraic_geometry computational resources cooperative_game  computer_science machine_learning autonomous_vehicles
cloud_computing association_rules binary_trees computationally_intensive decision_maker decision_makers real_world numerical_simulations
cloud_services background knowledge cayley_graphs computing_resources differential_privacy decision_support

cyber_physical boolean_function combinatorial_interpretation energy_consumption expected_utility health_care

cyber_security boolean_functions combinatorial_objects energy efficiency game_players public_health

internet_iot cellular_automata dyck_paths external_memory game_theoretic search_engine

intrusion_detection  constraint_satisfaction equivalence_classes fault_tolerance incentive_compatible search_engines

mobile_devices dempster_shafer explicit_formula fault_tolerant nash_equilibria social_media

mobile_phone
operating_system
peer_peer
privacy_concerns
privacy_preserving
quality_service
resource_constrained

expressive_power
finite_automata

fuzzy logic
knowledge_bases
kolmogorov_complexity
logic_programming
object_oriented

resource_management pattern_matching
programming_languages schur_functions

safety_critical
security_privacy
service_providers
smart_contracts
smart_grid
supply_chain
user_interface
virtual_machines
web_service
web_services

Unigrams
access
attack
attacks
cloud
devices
internet
management
mobile
platform
privacy
resources
security
service
services
sharing
software
technology
user

users

web

pspace_complete
quantum_mechanics
relational_database
relational databases
semantic_web
temporal_logic
turing_machine
turing_machines

answer
causal
definition
formal
language
languages
logic

notion
operators
probabilistic
program
programs
proof

proofs
queries
query
reasoning
relations
rules
semantics

explicit_formulas
expressed_terms
generating_function
generating_functions
hopf_algebra
infinite_family
lie_algebra
partition_function

simplicial_complex
simplicial_complexes
strongly_regular
symmetric_functions
tensor_product
tutte_polynomial
vector_spaces

algebra
algebraic
combinatorial
enumeration
families
formula

partitions
permutation
permutations
polynomials
polytope
prime
rational
symmetry
theorem
theorems

graphics_processing
hardware_software
linear_algebra
load_balancing
low_latency
massively_parallel
matrix_multiplication
memory_footprint
memory _requirements
message_passing
multi_core
power_consumption
programming_language
shared_memory

code
computation
computations
distributed
execution
hardware
implement
implementation
implementations
implemented
machines
memory
operations
parallel
processing

Tun

scalable
scheduling
speed

storage

social_sciences
software_development

nash_equilibrium
pareto_optimal

price_anarchy software_engineering
pure_nash statistically_significant
resource_allocation

social_choi

social_welfare
stable_matching

agents activities analysis activity algorithm
allocation ai applications control algorithms
costs authors approaches dynamics based
decisions collected complex energy class
demand communities data environment distributio
equilibrium community design event efficient
game individuals existing events function
games papers framework flow functions
items people information location introduce
market project knowledge locations linear
mechanism public level measurements multiple
mechanisms research methods monitoring optimal
outcome researchers process physical parametel
outcomes science provide Sensor properties
player scientific real Sensors random
players social scale signals simple
private students system simulated size
resource survey systems simulation space
strategies topics task simulations structure
utility world techniques traffic time

Notes: This table reports the most frequent n-grams per cluster, sorted by alphabetical order. Cluster 1 concerns deep learning. The terms excluded from the list used to retrieve data from Wof
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Acronyms and full names

Table 1.8: List of acronyms replaced by full name

Acronym Full name

ann artificial_neural_network

anns artificial_neural networks

blstm bidirectional _long_short_term_memory
bns bayesian_networks

bpn bidirectional_pyramid_networks

cav computer_aided_verification

cnn convolutional_neural network

cnns convolutional_neural_networks

crf conditional random_fields

cte connectionist_temporal_classification
dan deep_alignment_network

dbm deep_boltzmann_machine

dbms database_management_systems

dbn deep_belief_network

den dynamic_coattention_network

denn deep_convolutional neural _network
denns deep_convolutional_neural_networks
dl deep_learning

dek deep_embedding_kernel

dnn deep_neural_network

dnns deep_neural_networks

dgn deep_q_network

Continued on next page
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Table 1.8: List of acronyms replaced by full name — continued

dqns
drcn

drl

elm

fen

fhmms

ga
gan
gans
gens
gron
grus
gsn

gssl

knn

Imnn
Istm

Istms

mdp
ml
mlp

mtl

nn

nns

deep_q-networks
deeply_recursive_convolutional network

deep_reinforcement _learning

extreme_learning machine

fully_convolutional_network

factorial_hidden_markov_model

genetic_algorithm
generative_adversarial_network
generative_adversarial_networks
graph_convolutional _networks
general_regression_neural_network
gated_recurrent_units
generative_stochastic_network

graph_based_semi_supervised_learning

k_nearest_neighbors

large_margin_nearest_neighbor
long_short_term_memory

long_short_term_memory

markov_decision_process
machine_learning
multilayer_perceptron

multi_task_learning

neural_network
neural_networks

Continued on next page
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Table 1.8: List of acronyms replaced by full name — continued

pmvge

pnn

pso

psrons

rbf

rbin

rbms

rgp

rl

rlns

rmbs

rmn

rmns

smffnn

Snn

snns

ssrbm

svin

vae

vaes

wae

zsl

probabilistic_multi_view_graph_embedding
probabilistic_neural_network
particle_swarm_optimization

predictive_state_recurrent_neural networks

radial_basis_function
radial_basis_function_network
restricted_boltzmann_machines
recurrent_gaussian_process
reinforcement _learning
regularization_learning_networks
restricted _boltzmann_networks
recurrent_neural_network

recurrent_neural_networks

supervised_multilayers_feed _forward_neural network
spiking_neural _network
spiking_neural_networks

spike_slab_restricted _boltzmann_machine

support_vector_machine
variational_autoencoder

variational_autoencoders

wasserstein_autoencoder

zero_shot_learning
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Diffusion of deep learning in science: the sample

This Appendix complements Section 1.4 with details on the sample used for the

analysis on the diffusion of deep learning in science.

Table 1.9: Deep learning documents broken down by period and WoS research ar-
eas

Year All documents Technology Physical Sciences Life Sciences & Biomedicine Health Sciences Social Sciences Art & Humanities

(1) (2) (3) (4) (%) (6) (7)
1990 381 [0.15] 193.33 [50.74] 117.17 [30.75) 61.83 [16.23] 106 [27.82) 8.67 [2.27] 0 [0]
1991 836 [0.32]  507.52 [60.71] 193.73 [23.17) 123.58 [14.78] 188 [22.49] 11.17 [1.34] 0 [0]
1992 1,256 [0.48]  759.17 [60.44] 306.92 [24.44] 159.25 [12.68] 234 [18.63] 29.67 [2.36] 1 [0.08]
1993 1,477 [0.57]  841.05 [56.94] 365.37 [24.74] 221.42 [14.99) 315 [21.33] 49.17 [3.33] 0 [0]
1994 1,798 [0.69] 1,074.10 [59.74] 373.60 [20.78] 293.53 [16.33] 385 [21.41] 55.77 [3.10] 1 [0.06]
1995 2,220 [0.85] 1,415.85 [63.78] 436.92 [19.68] 306.23 [13.79) 412 [18.56] 60.50 [2.73] 0.50 [0.02]
1996 2,791 [1.07] 1,843.03 [66.03] 478.30 [17.14] 393.23 [14.09] 475 [17.02] 75.43 [2.70] 1 [0.04]
1997 3,090 [1.19] 2,002.12 [64.79] 530.50 [17.17] 481.38 [15.58] 613 [19.84] 74 [2.39] 2 [0.06]
1998 4,330 [1.66] 2,865.13 [66.17] 566.70 [13.09] 779.25 [18.00] 1,083 [25.01]  113.92 [2.63] 5[0.12]
1999 4,725 [1.81] 3,302.34 [69.89] 725.92 [15.36] 598.61 [12.67] 627 [13.27] 93.58 [1.98] 4.55 [0.10]
2000 6,259 [2.40] 4,661.05 [74.47] 835.07 [13.34] 621.55 [9.93] 691 [11.04]  138.33 [2.21] 3 [0.05]
2001 6,062 [2.33] 4,376.40 [72.19] 859.52 [14.18] 726.90 [11.99] 806 [13.3] 94.68 [1.56] 4.50 [0.07]
2002 6,676 [2.56] 5,191.35 [77.76] 762.67 [11.42) 614.42 [9.20] 700 [10.49]  104.37 [1.56] 3.20 [0.05]
2003 7,230 [2.78]  5,430.80 [75.11] 923.27 [12.77] 768.00 [10.62] 897 [12.41]  100.43 [1.39] 7.50 [0.10]
2004 7,765 [2.98] 5,907.90 [76.08] 921.27 [11.86] 811.58 [10.45] 879 [11.32]  119.75 [1.54] 4.50 [0.06]
2005 9,023 [3.46] 7,026.45 [77.87] 1,072.60 [11.89] 790.40 [8.76] 896 [9.93]  129.80 [1.44] 3.75 [0.04]
2006 10,654 [4.09] 8,206.27 [77.03]  1,424.57 [13.37] 885.2 [8.31] 859 [8.06]  136.60 [1.28] 1.36 [0.01]
2007 11,086 [4.26] 8,234.85 [74.28]  1,551.97 [14.00] 1,072.22 [9.67) 1,246 [11.24]  217.38 [1.96] 9.58 [0.09]
2008 11,891 [4.57] 9,053.63 [76.14]  1,562.03 [13.14] 1,015.39 [8.54] 1,067 [8.97) 256 [2.15] 3.95 [0.03]
2009 13,049 [5.01] 10,066.02 [77.14] 1,601.43 [12.27] 1,113.80 [8.54] 1,102 [8.45]  258.05 [1.98] 9.70 [0.07]
2010 10,467 [4.02] 7,702.98 [73.59]  1,399.65 [13.37] 1,117.50 [10.68] 992 [9.48]  242.87 [2.32] 4[0.04]
2011 10,872 [4.17] 8,033.20 [73.89] 1,462.38 [13.45] 1,110.13 [10.21] 943 [8.67)  261.78 [2.41] 4.50 [0.04]
2012 12,227 [4.69] 9,238.63 [75.56] 1,571.02 [12.85] 1,189.90 [9.73] 1,047 [8.56]  220.95 [1.81] 6.50 [0.05]
2013 12,691 [4.87) 9,439.40 [74.38]  1,779.75 [14.02] 1,248.40 [9.84] 1,106 [8.71]  217.78 [1.72] 5.67 [0.04]
2014 14,355 [5.51] 11,044.90 [76.94] 1,747.07 [12.17] 1,263.52 [8.80] 1,067 [7.43]  293.02 [2.04] 6.50 [0.05]
2015 16,764 [6.44] 12,934.47 [77.16] 1,978.12 [11.80] 1,476.93 [8.81] 1,267 [7.56]  367.65 [2.19] 6.83 [0.04]
2016 18,425 [7.07] 13,927.08 [75.59]  2,265.67 [12.30] 1,700.87 [9.23] 1,449 [7.86)  515.55 [2.80] 15.83 [0.09]
2017 24,046 [9.23] 18,488.38 [76.89]  2,993.48 [12.45] 2,099.37 [8.73] 2,008 [8.35]  449.93 [1.87] 14.83 [0.06]
2018 28,013 [10.76] 20,223.48 [72.19]  4,192.73 [14.97] 3,078.15 [10.99] 3,001 [10.71]  491.90 [1.76] 26.73 [0.10]

Notes: Number of deep learning documents (Column 1). Weighted count for all other columns. For ‘All Documents’ the shares [%] are
calculated on the basis of the entire DL sample. For all other columns the share refers to the period. For example, the number of documents
published in 2018 represents 10.76% of all DL documents; of the 28,013 documents, 72.19% belong to ‘Technology’, 14.97% to ‘Physical
Sciences’, and so on.

Deep learning in health sciences: data construction

and sample details

This Appendix provides additional statistics on the empirical analysis of Section 1.5.
The perimeter of the domain ‘health sciences’ has been delineated using the WoS
subject categories reported in Table 1.11. Health sciences can be viewed as a subset

of the broader WoS research area ‘Life Science & Biomedicine’.
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Table 1.10: Deep learning publication activity broken down by country and period

1990-1999 2000-2009 2010-2019
Country # Documents Country # Documents Country # Documents
[UE] 6,205 [UE] 24,047 China 39,852
USA 5,123 China 20,560 [UE] 28,358
United Kingdom 1,695 USA 13,665 USA 17,320
Japan 1,368 United Kingdom 5,151 India 10,349
Germany 991 Japan 5,076 Iran (Islamic Republic of) 7,008
Italy 851 Taiwan 3,611 United Kingdom 4,917
China 764 Ttaly 3,269 Japan 4,471
Canada 721 India 3,225 Taiwan 4,027
France 704 Canada 3,204 Korea (Republic of) 3,902
Spain 474 Spain 2,898 Turkey 3,895
Taiwan 456 Korea (Republic of) 2,872 Spain 3,438
Australia 436 Germany 2,802 Canada 3,377
Korea (Republic of) 427 Turkey 2,228 Germany 3,271
India 354 France 2,183 Italy 3,063
Netherlands 286 Iran (Islamic Republic of) 1,964 Australia 2,925
Brazil 224 Brazil 1,874 Malaysia 2,631

Notes: Top 15 countries for each period. [EU] represents EU28 as in 2018.

Meta data on the estimation sample

This Appendix provides details on the sample constructed to carry out the empirical
analysis on health sciences (Section 1.5.1). To benchmark deep learning publications,
we download all the articles for the whole observation period published in the top

100 journals where research involving deep learning has been the most prominent.

Table 1.12: Sampled papers by journal and period

Journal | Foundation date 1990-1999  2000-2009  2010-2019
ACADEMIC RADIOLOGY | 1994 1,250 2,179 2,265
ANALYTICAL AND BIOANALYTICAL CHEMISTRY 0 5,235 8,300
| 1862

ANNALS OF BIOMEDICAL ENGINEERING | 1972 684 1,624 2,389
BASIC & CLINICAL PHARMACOLOGY & TOXI- 0 1,944 8,411

COLOGY | 1945

BEHAVIORAL AND BRAIN SCIENCES | 1978 4,162 3,573 2,273
BEHAVIOURAL BRAIN RESEARCH | 1980 1,719 2,861 5,861
BIOLOGICAL PSYCHIATRY | 1959 6,477 10,589 13,323

Continued on next page
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Table 1.12: Sampled papers per journal and period — continued

Journal | Foundation date 1990-1999  2000-2009  2010-2019
BIOMED RESEARCH INTERNATIONAL | 2001 0 0 16,302
BIOMEDICAL ENGINEERING ONLINE | 2002 0 160 1,309
BIOMEDICAL SIGNAL PROCESSING AND CON- 0 150 1,398
TROL | 2006

BIORESOURCE TECHNOLOGY | 1991 1,434 4,464 15,677
BIOSYSTEMS | 1967 651 1,062 927
BMC BIOINFORMATICS | 2000 0 3,455 6,060
BMC MEDICAL INFORMATICS AND DECISION 0 171 1,350

MAKING | 2001

BRAIN | 1878 1,457 2,820 3,395
BRAIN AND LANGUAGE | 1974 1,317 1,899 914
BRAIN RESEARCH | 1966 15,725 11,563 6,503
CEREBRAL CORTEX | 1991 517 1,877 3,006
CLINICAL NEUROPHYSIOLOGY | 1949 286 3,047 3,493
COGNITIVE NEURODYNAMICS | 2007 0 94 418
COGNITIVE SCIENCE | 1977 178 411 851
COMBINATORIAL CHEMISTRY & HIGH 47 766 849

THROUGHPUT SCREENING | 1998

COMPUTATIONAL AND MATHEMATICAL METH- 0 44 1,632
ODS IN MEDICINE | 1997

COMPUTATIONAL INTELLIGENCE AND NEURO- 0 0 855
SCIENCE | 2007

COMPUTERIZED MEDICAL IMAGING AND 565 615 664
GRAPHICS | 1988

CORTEX | 1964 562 1,021 2,213
CURRENT BIOLOGY | 1991 2,744 7,273 7,714
CURRENT OPINION IN NEUROBIOLOGY | 1991 527 1,035 1,400

Continued on next page
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Table 1.12: Sampled papers per journal and period — continued

Journal | Foundation date 1990-1999  2000-2009  2010-2019
EPILEPSIA | 1909 6,736 17,762 10,780
EUROPEAN JOURNAL OF MEDICINAL CHEM- 1,164 1,990 7,632
ISTRY | 1966

EUROPEAN JOURNAL OF NEUROSCIENCE | 1989 6,282 8,968 3,260
EXPERIMENTAL BRAIN RESEARCH | 1966 3,062 4,110 3,517
FOOD CHEMISTRY | 1976 2,077 6,114 16,416
FRONTIERS IN COMPUTATIONAL NEURO- 0 38 1,136

SCIENCE | 2007

FRONTIERS IN HUMAN NEUROSCIENCE | 2008 0 91 5,451
FRONTIERS IN NEUROINFORMATICS | 2007 0 1 482
FRONTIERS IN NEUROSCIENCE | 2009 0 114 4,778
FRONTIERS IN PSYCHOLOGY | 2010 0 0 14,466
HIPPOCAMPUS | 1991 490 1,007 1,231
HUMAN BRAIN MAPPING | 1993 182 1,110 3,052
IEEE TRANSACTIONS ON BIOMEDICAL ENGI- 1,594 2,528 3,218

NEERING | 1964

IEEE TRANSACTIONS ON NEURAL SYSTEMS 0 553 1,366
AND REHABILITATION ENGINEERING | 2001

INTERNATIONAL JOURNAL OF COMPUTER AS- 0 664 1,337
SISTED RADIOLOGY AND SURGERY | 2006

INTERNATIONAL JOURNAL OF ENVIRONMEN- 0 214 11,117
TAL RESEARCH AND PUBLIC HEALTH | 2004

INTERNATIONAL JOURNAL OF MOLECULAR 0 804 18,697
SCIENCES | 2000

INVESTIGATIVE OPHTHALMOLOGY & VISUAL 17,439 2,973 2,640
SCIENCE | 1962

JOURNAL OF CHROMATOGRAPHY A | 1958 7,664 11,861 9,715
JOURNAL OF COGNITIVE NEUROSCIENCE | 1989 1,302 3,950 2,978

Continued on next page
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Table 1.12: Sampled papers per journal and period — continued

Journal | Foundation date 1990-1999  2000-2009  2010-2019
JOURNAL OF COMPUTATIONAL NEUROSCIENCE 113 415 545
| 1994

JOURNAL OF DIGITAL IMAGING | 1988 401 625 974
JOURNAL OF MECHANICS IN MEDICINE AND 0 308 1,080

BIOLOGY | 2001

JOURNAL OF MEDICAL IMAGING AND HEALTH 0 0 1,706
INFORMATICS | 2011

JOURNAL OF MEDICAL SYSTEMS | 1977 56 243 2,125
JOURNAL OF MEDICINAL CHEMISTRY | 1959 5,619 6,783 7,387
JOURNAL OF MOLECULAR BIOLOGY | 1959 7097 9691 4,251
JOURNAL OF NEURAL ENGINEERING | 2004 0 331 1456
JOURNAL OF NEUROPHYSIOLOGY | 1938 4,750 6,040 5,195
JOURNAL OF NEUROSCIENCE | 1981 6,705 13,443 13,766
JOURNAL OF NEUROSCIENCE METHODS | 1979 1,638 2,690 2,874
JOURNAL OF NUCLEAR MEDICINE | 1964 12,218 11,603 20,672
JOURNAL OF PHARMACEUTICAL AND BIOMEDI- 2,362 4,376 5,347

CAL ANALYSIS | 1983
JOURNAL OF PHYSIOLOGY-PARIS | 1992 383 476 227

JOURNAL OF THE ACOUSTICAL SOCIETY OF 7,323 6,801 7,806
AMERICA | 1929

JOURNAL OF THEORETICAL BIOLOGY | 1961 2,371 3,270 4,203
JOURNAL OF UROLOGY | 1917 12,499 29,396 39,207
JOURNAL OF VIBROENGINEERING | 2007 0 268 2,562
MEDICAL ENGINEERING & PHYSICS | 1994 537 1,153 1,699
MEDICAL IMAGING 2018: COMPUTER-AIDED 0 0 136

DIAGNOSIS | 2018
MEDICAL PHYSICS | 1997 2,268 14,402 28,629

Continued on next page

86



CHAPTER 1. AN EMERGING GENERAL METHOD OF INVENTION

Table 1.12: Sampled papers per journal and period — continued

Journal | Foundation date 1990-1999  2000-2009  2010-2019
MOLECULES | 1996 210 1,875 15,389
NATURE NEUROSCIENCE | 1998 414 2,899 2,727
NEUROIMAGE | 1993 373 7,286 9,626
NEURON | 1988 2,393 3,977 4,693
NEUROPSYCHOLOGIA | 1963 1,338 2,465 3,584
NEUROREPORT | 1990 5,112 5,152 2,125
NEUROSCIENCE | 1976 5,846 7,472 7,491
NEUROSCIENCE AND BIOBEHAVIORAL RE- 617 772 2,190
VIEWS | 1977

NEUROSCIENCE LETTERS | 1975 10,062 9,976 7,188
NEUROSCIENCE RESEARCH | 1984 1,081 7,801 4,976
NUCLEIC ACIDS RESEARCH | 1974 11,010 10,326 12,648
PERCEPTION | 1972 4,762 7,581 7,639
PHYSICS IN MEDICINE AND BIOLOGY | 1956 1,853 4,283 5,381
PHYSIOLOGICAL MEASUREMENT | 1980 367 1,167 1,620
PLOS COMPUTATIONAL BIOLOGY | 2005 0 1,149 5,187
PROTEINS-STRUCTURE FUNCTION AND BIOIN- 437 2,991 2,190

FORMATICS | 1986

PSYCHOLOGICAL REVIEW | 1894 379 493 390
RADIOLOGY | 1923 19,517 12,402 5,188
RADIOTHERAPY AND ONCOLOGY | 1983 1,623 10,706 16,163
SCHIZOPHRENIA RESEARCH | 1988 5,257 8,757 7,323
TRENDS IN COGNITIVE SCIENCES | 1997 332 1,263 1,092
VISION RESEARCH | 1961 4,295 3,164 1,890
2007 ANNUAL INTERNATIONAL CONFERENCE 0 1,703 0

OF THE IEEE ENGINEERING IN MEDICINE AND
BIOLOGY SOCIETY, VOLS 1-16 | 2007

Continued on next page
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Table 1.12: Sampled papers per journal and period — continued

Journal | Foundation date

1990-1999  2000-2009

2010-2019

2011 ANNUAL INTERNATIONAL CONFERENCE
OF THE IEEE ENGINEERING IN MEDICINE AND
BIOLOGY SOCIETY (EMBC) | 2011

2015 37TH ANNUAL INTERNATIONAL CONFER-
ENCE OF THE IEEE ENGINEERING IN MEDICINE
AND BIOLOGY SOCIETY (EMBC) | 2015

2017 39TH ANNUAL INTERNATIONAL CONFER-
ENCE OF THE IEEE ENGINEERING IN MEDICINE
AND BIOLOGY SOCIETY (EMBC) | 2017

2017 IEEE 14TH INTERNATIONAL SYMPOSIUM
ON BIOMEDICAL IMAGING (ISBI 2017) | 2017

2018 11TH INTERNATIONAL CONGRESS ON IM-
AGE AND SIGNAL PROCESSING, BIOMEDICAL
ENGINEERING AND INFORMATICS (CISP-BMEI
2018) | 2018

2018 IEEE 15TH INTERNATIONAL SYMPOSIUM
ON BIOMEDICAL IMAGING (ISBI 2018) | 2018

0

0

2,083

2,008

1,123

285

249

364
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Table 1.11: WoS subject categories defining ‘health sciences’

Category Count [Share] Category Count [Share]
Neurosciences 6,683 [2.56] Geriatrics & Gerontology 75 [0.03]
Biology 6,084 [2.33] Anatomy & Morphology 3 [0.03]
Mathematical & Computational Biology 3,386 [1.30] Orthopedics 3 [0.03]
Radiology, Nuclear Medicine & Medical Imaging 2,678 [1.03] Transplantation 3 [0.02]
Medical Informatics 2,218 [0.85] Dentistry, Oral Surgery & Medicine 2 [0.02]
Psychology 1,932 [0.74] Virology 1 [{0.02]
Microbiology 1,908 [0.73] Hematology 9 [0.02]
Biochemistry & Molecular Biology 1,852 [0.71] Nursing 50 [0.02]
Biotechnology & Applied Microbiology 1,727 [0.66] Reproductive Biology 1 [0.02]
Pharmacology & Pharmacy 1,221 [0.47] Integrative & Complementary Medicine 6 [0.01]
Biophysics 863 [0.33] Emergency Medicine 5 [0.01]
Psychiatry 733 [0.28] Rheumatology 4 [0.01]
Cell Biology 582 [0.22] Tropical Medicine 1 [0.01]
Health Care Sciences & Services 549 [0.21] Mycology [0.01]
Oncology 548 [0.21] Allergy 7 [0]
Surgery 465 [0.18] Medical Ethics 4 0]
Genetics & Heredity 443 [0.17] Psychology, Experimental 0 [0]
Physiology 431 [0.17] Psychology, Applied 0 [0]
Behavioral Sciences 419 [0.16] Psychology, Multidisciplinary 0 [0]
Toxicology 396 [0.15] Psychology, Biological 0 [0]
Public, Environmental & Occupational Health 384 [0.15] Neuroimaging 0 [0]
Endocrinology & Metabolism 283 [0.11] Engineering, Biomedical 0 [0]
Pathology 249 [0.10] Biochemical Research Methods 0 [0]
Medical Laboratory Technology 241 [0.09] Clinical Neurology 0 [0]
Ophthalmology 237 [0.09] Psychology, Developmental 0 [0]
Urology & Nephrology 235 [0.09] Cardiac & Cardiovascular Systems 0 [0]
Rehabilitation 230 [0.09] Psychology, Social 0 [0]
Gastroenterology & Hepatology 184 [0.07] Critical Care Medicine 0 [0]
Immunology 174 [0.07) Medicine, Research & Experimental 0 [0]
Obstetrics & Gynecology 161 [0.06] Psychology, Mathematical 0 [0]
Respiratory System 129 [0.05] Chemistry, Medicinal 0 [0]
Evolutionary Biology 116 [0.04] Medicine, Legal 0 [0]
Developmental Biology 112 [0.04] Medicine, General & Internal 0 [0]
Anesthesiology 111 [0.04] Peripheral Vascular Disease 0 [0]
Pediatrics 108 [0.04] Psychology, Clinical 0 [0]
Nutrition & Dietetics 99 [0.04] Health Policy & Services 0 [0]
Otorhinolaryngology 96 [0.04] Psychology, Educational 0 [0]
Infectious Diseases 82 [0.03] Social Sciences, Biomedical 0 [0]
Audiology & Speech-Language Pathology 81 [0.03] Primary Health Care 0 [0]
Gerontology 81 [0.03] Andrology 0 [0]
Dermatology 78 [0.03] Psychology, Psychoanalysis 0 [0]
76 |

Substance Abuse 0.03]

Notes: Number of deep learning papers by WoS subject category. A document can belong to several categories. Shares

in [%).
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Table 1.13: Health sciences sample and deep learning articles

Full sample health sciences

Sample for econometrics

Year # Journals # Articles # DL Articles # Articles # DL Articles
1990 44 14,317 25
1991 48 17,809 37
1992 52 21,029 87
1993 55 21,295 97
1994 57 24,458 119
1995 60 24,632 171
1996 60 25,072 155
1997 62 24,155 186
1998 65 29,891 203
1999 65 29,254 226
2000 66 30,239 222
2001 68 27,272 217 14,427 139
2002 70 31,120 235 14,580 132
2003 70 31,225 256 15,463 162
2004 72 34,686 300 16,924 182
2005 72 35,177 327 17,586 198
2006 7 41,966 412 20,762 250
2007 83 42,947 520 23,510 366
2008 84 41,931 431 23,044 292
2009 86 46,195 420 23,480 293
2010 85 47,384 485 25,103 328
2011 89 52,550 554 30,082 417
2012 89 48,763 559 29,497 426
2013 89 49,814 500 32,112 381
2014 89 57,045 586 34,341 462
2015 90 55,277 701 35,126 532
2016 89 56,232 729
2017 90 57,146 1,114
2018 91 62,342 1,646
Total 1,081,223 11,520 356,037 4,560

Notes: The articles published in the period 1990-2000 are used to build
the novelty measures for the first focal year 2001. The articles published
in the period 2016-2018 are used to check whether the new combinations
of referenced journals are reused in the following three years after the last
focal year 2015. The discrepancy between the number of articles in the
whole sample and the number in the sample used for econometric analysis
is due to the presence of missing information in the variables considered.
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Re-combinatorial novelty: indicators

This Appendix complements Section 1.5 with details on the procedure for the con-
struction of novelty measures (Section 1.5.1). It also reports some statistics on the
most frequent combinations of Web of Science subject categories, Tables 1.14-1.16.

Codes for the variable construction and analysis are fully accessible upon request.

Algorithm for the construction of novelty indicators

The novelty indicators are calculated at the year-level. Let y be the focal year, we
compute combinations of referenced journals in scientific documents belonging to

three groups:
e All papers published in the focal year y.
o All papers published before the focal year y, B,
e All papers published 3 years after the focal year y, A,

In our study the focal year, y, is moving from 2001 to 2015, while the first year
for which B, is calculated remains fixed. We choose the year 2001 as the first focal
year to guarantee a sufficiently long time window (1990-2000) over which all previous
combinations of referenced journals are assessed.

Suppose a paper P published in year y cites three different journals J;,.J5 and J3.
This gives rise to three unique combinations: (Jy, J3), (Ji, J3), and (Ja, J3).

e For each of these combinations, we check whether (J;, J;) € B,, and if not, the

pair is removed from the analysis — i.e., the combination is simply not new.

o If (J;,J;) ¢ B,, we examine whether EA {(Ji,J;) € A,} > 5. If the
Aye Yy
last statement is FALSE, we remove this pair from the analysis — i.e., the new

combination is not reused in the future.”

[ ] If (Jz’ Jj) ¢ By & PA%Ay{

Yy
is considered new and non trivial, hence we add that pair to the set of novel

(Ji, J;) € Ay} > 5, then the journal pair combination

combinations [V,,.

"As robustness checks, we also considered different thresholds for the re-use, i.e. 3 and 10.
By construction, the number of combinations considered as novel increases (decreases) significantly
when the threshold is lower (higher). However, as shown in Wang et al. [2017], the dynamics of
novelty are not much affected by these alternative specifications.
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The difficulty of making new journal combinations are not equally distributed.
Journals can share ‘common friends’ making it possible to create more or less difficult
new combinations. For example, P, is making for the first time the combination
(J1,Jo), but Jy is usually cited with J; and J is also sometimes cited with J3.
Creating this new combination is therefore less difficult compared to two journals
that do not share any ‘common friends’. To investigate the difficulty of citing J; and
Jo for the first time, we construct a co-occurrence matrix of pairs of cited journals

on the 3 years preceding the focal year y, and compute a cosine similarity:
iy

A2 |
The difficulty of making the (J;,.J;) combination is then 1 — COSy, s,). To

construct the novelty indicator for the article P, we sum up all the difficulties for

COS(Jl,Jz)

pairs € N, and apply the log(z + 1) transformation:

Novelty(P,) = | [ S (1—=COS; 1) +1
ovelty(Pyy,) = log (JZ_’Jj)ENy( (Jid;)) T
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WoS subject categories combinations

Table 1.14: Subject categories combinations (All Sciences)

Combinations [Category A | Category B # Combinations Share [%]
DL articles / 2001-2005 450

NEUROSCIENCE & BEHAVIOR | NEUROSCIENCE & BEHAVIOR 51 11
NEUROSCIENCE & BEHAVIOR | PSYCHIATRY /PSYCHOLOGY 49 11
CLINICAL MEDICINE | NEUROSCIENCE & BEHAVIOR 22 5
BIOLOGY & BIOCHEMISTRY | COMPUTER SCIENCE 17 4
COMPUTER SCIENCE | NEUROSCIENCE & BEHAVIOR 14 3
Non-DL articles / 2001-2005 39,018

NEUROSCIENCE & BEHAVIOR | NEUROSCIENCE & BEHAVIOR 2,618 7
CLINICAL MEDICINE | NEUROSCIENCE & BEHAVIOR 2,378 6
BIOLOGY & BIOCHEMISTRY | MOLECULAR BIOLOGY & GENETICS 2,369 6
CLINICAL MEDICINE | CLINICAL MEDICINE 2,036 5
MOLECULAR BIOLOGY & GENETICS | MOLECULAR BIOLOGY & GENETICS 1,927 5
DL articles / 2006-2010 2,266

NEUROSCIENCE & BEHAVIOR | NEUROSCIENCE & BEHAVIOR 167 7
NEUROSCIENCE & BEHAVIOR | PSYCHIATRY /PSYCHOLOGY 150 7
BIOLOGY & BIOCHEMISTRY | NEUROSCIENCE & BEHAVIOR 108 5
NEUROSCIENCE & BEHAVIOR | PHYSICS 86 4
BIOLOGY & BIOCHEMISTRY | CHEMISTRY 81 4
Non-DL articles / 2006-2010 118,363

CLINICAL MEDICINE | CLINICAL MEDICINE 6,164 5
NEUROSCIENCE & BEHAVIOR | NEUROSCIENCE & BEHAVIOR 5,444 5
BIOLOGY & BIOCHEMISTRY | MOLECULAR BIOLOGY & GENETICS 4,644 4
NEUROSCIENCE & BEHAVIOR | PSYCHIATRY /PSYCHOLOGY 4,547 4
CLINICAL MEDICINE | NEUROSCIENCE & BEHAVIOR 4,389 4
DL articles / 2011-2015 3,986

NEUROSCIENCE & BEHAVIOR | PSYCHIATRY /PSYCHOLOGY 302 8
COMPUTER SCIENCE | ENGINEERING 249 6
CLINICAL MEDICINE | NEUROSCIENCE & BEHAVIOR 200 5
PSYCHIATRY/PSYCHOLOGY | PSYCHIATRY /PSYCHOLOGY 188 5
ENGINEERING | ENGINEERING 181 5
Non-DL articles / 2011-2015 328,197

CLINICAL MEDICINE | CLINICAL MEDICINE 29,295 9
BIOLOGY & BIOCHEMISTRY | CLINICAL MEDICINE 17,817 5
CLINICAL MEDICINE | MOLECULAR BIOLOGY & GENETICS 15,581 5
PSYCHIATRY/PSYCHOLOGY | PSYCHIATRY /PSYCHOLOGY 13,583 4
CLINICAL MEDICINE | NEUROSCIENCE & BEHAVIOR 13,027 4

Notes: This table reports the number and share of the most frequent combinations of WoS subject categories broken
down by period and DL status.
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Table 1.15: Subject categories combinations (No CS)

Combinations [Category A | Category B| # Combinations Share [%)]
DL articles / 2001-2005 375

NEUROSCIENCE & BEHAVIOR | NEUROSCIENCE & BEHAVIOR 51 14
NEUROSCIENCE & BEHAVIOR | PSYCHIATRY/PSYCHOLOGY 49 13
CLINICAL MEDICINE | NEUROSCIENCE & BEHAVIOR 22 6
BIOLOGY & BIOCHEMISTRY | NEUROSCIENCE & BEHAVIOR 13 3
BIOLOGY & BIOCHEMISTRY | BIOLOGY & BIOCHEMISTRY 12 3
Non-DL articles / 2001-2005 37,666

NEUROSCIENCE & BEHAVIOR | NEUROSCIENCE & BEHAVIOR 2,618 7
CLINICAL MEDICINE | NEUROSCIENCE & BEHAVIOR 2,378 6
BIOLOGY & BIOCHEMISTRY | MOLECULAR BIOLOGY & GENETICS 2,369 6
CLINICAL MEDICINE | CLINICAL MEDICINE 2,036 5
MOLECULAR BIOLOGY & GENETICS | MOLECULAR BIOLOGY & GENETICS 1,927 5
DL articles / 2006-2010 1,989

NEUROSCIENCE & BEHAVIOR | NEUROSCIENCE & BEHAVIOR 167 8
NEUROSCIENCE & BEHAVIOR | PSYCHIATRY/PSYCHOLOGY 150 8
BIOLOGY & BIOCHEMISTRY | NEUROSCIENCE & BEHAVIOR 108 5
NEUROSCIENCE & BEHAVIOR | PHYSICS 86 4
BIOLOGY & BIOCHEMISTRY | CHEMISTRY 81 4
Non-DL articles / 2006-2010 114,806

CLINICAL MEDICINE | CLINICAL MEDICINE 6,164 5
NEUROSCIENCE & BEHAVIOR | NEUROSCIENCE & BEHAVIOR 5,444 5
BIOLOGY & BIOCHEMISTRY | MOLECULAR BIOLOGY & GENETICS 4,644 4
NEUROSCIENCE & BEHAVIOR | PSYCHIATRY/PSYCHOLOGY 4,547 4
CLINICAL MEDICINE | NEUROSCIENCE & BEHAVIOR 4,389 4
DL articles / 2011-2015 3,188

NEUROSCIENCE & BEHAVIOR | PSYCHIATRY/PSYCHOLOGY 302 9
CLINICAL MEDICINE | NEUROSCIENCE & BEHAVIOR 200 6
PSYCHIATRY/PSYCHOLOGY | PSYCHIATRY/PSYCHOLOGY 188 6
ENGINEERING | ENGINEERING 181 6
NEUROSCIENCE & BEHAVIOR | NEUROSCIENCE & BEHAVIOR 154 5
Non-DL articles / 2011-2015 319,990

CLINICAL MEDICINE | CLINICAL MEDICINE 29,295 9
BIOLOGY & BIOCHEMISTRY | CLINICAL MEDICINE 17,817 6
CLINICAL MEDICINE | MOLECULAR BIOLOGY & GENETICS 15,581 5
PSYCHIATRY/PSYCHOLOGY | PSYCHIATRY/PSYCHOLOGY 13,583 4
CLINICAL MEDICINE | NEUROSCIENCE & BEHAVIOR 13,027 4

Notes: This table reports the number and share of the most frequent combinations of WoS subject categories broken
down by period and DL status.
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Table 1.16: Subject categories combinations (Only HS)

Combinations [Category A | Category B| # Combinations Share [%]
DL articles / 2001-2005 251

NEUROSCIENCE & BEHAVIOR / NEUROSCIENCE & BEHAVIOR 51 20
NEUROSCIENCE & BEHAVIOR / PSYCHIATRY/PSYCHOLOGY 49 20
CLINICAL MEDICINE / NEUROSCIENCE & BEHAVIOR 22 9
BIOLOGY & BIOCHEMISTRY / NEUROSCIENCE & BEHAVIOR 13 5
BIOLOGY & BIOCHEMISTRY / BIOLOGY & BIOCHEMISTRY 12 5
Non-DL articles / 2001-2005 31,917

NEUROSCIENCE & BEHAVIOR / NEUROSCIENCE & BEHAVIOR 2,618 8
CLINICAL MEDICINE / NEUROSCIENCE & BEHAVIOR 2,378 7
BIOLOGY & BIOCHEMISTRY / MOLECULAR BIOLOGY & GENETICS 2,369 7
CLINICAL MEDICINE / CLINICAL MEDICINE 2,036 6
MOLECULAR BIOLOGY & GENETICS / MOLECULAR BIOLOGY & GENETICS 1,927 6
DL articles / 2006-2010 1,293

NEUROSCIENCE & BEHAVIOR / NEUROSCIENCE & BEHAVIOR 167 13
NEUROSCIENCE & BEHAVIOR / PSYCHIATRY/PSYCHOLOGY 150 12
BIOLOGY & BIOCHEMISTRY / NEUROSCIENCE & BEHAVIOR 108 8
BIOLOGY & BIOCHEMISTRY / CHEMISTRY 81 6
CLINICAL MEDICINE / NEUROSCIENCE & BEHAVIOR 68 5
Non-DL articles / 2006-2010 85,342

CLINICAL MEDICINE / CLINICAL MEDICINE 6,164 7
NEUROSCIENCE & BEHAVIOR / NEUROSCIENCE & BEHAVIOR 5,444 6
BIOLOGY & BIOCHEMISTRY / MOLECULAR BIOLOGY & GENETICS 4,644 5
NEUROSCIENCE & BEHAVIOR / PSYCHIATRY/PSYCHOLOGY 4,547 5
CLINICAL MEDICINE / NEUROSCIENCE & BEHAVIOR 4,389 5
DL articles / 2011-2015 1,921

NEUROSCIENCE & BEHAVIOR / PSYCHIATRY/PSYCHOLOGY 302 16
CLINICAL MEDICINE / NEUROSCIENCE & BEHAVIOR 200 10
PSYCHIATRY/PSYCHOLOGY / PSYCHIATRY/PSYCHOLOGY 188 10
NEUROSCIENCE & BEHAVIOR / NEUROSCIENCE & BEHAVIOR 154 8
BIOLOGY & BIOCHEMISTRY / NEUROSCIENCE & BEHAVIOR 109 6
Non-DL articles / 2011-2015 238,226

CLINICAL MEDICINE / CLINICAL MEDICINE 29,293 12
BIOLOGY & BIOCHEMISTRY / CLINICAL MEDICINE 17,817 7
CLINICAL MEDICINE / MOLECULAR BIOLOGY & GENETICS 15,581 7
PSYCHIATRY/PSYCHOLOGY / PSYCHIATRY/PSYCHOLOGY 13,583 6
CLINICAL MEDICINE / NEUROSCIENCE & BEHAVIOR 13,026 5

Notes: This table reports the number and share of the most frequent combinations of WoS subject categories broken
down by period and DL status.
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Robustness analysis: descriptive statistics and re-

sults

This Appendix complements our analysis with descriptive statistics and estimation
results for regressions and matching. Tables 1.17-1.19 refer to the sample of articles
that are not classified as ‘Neurosciences’. Tables 1.20-1.22 refer to the sample of
articles that do not contain the terms ‘neural_network’ and ‘neural networks’ in their
title, keywords or abstract. Table 1.23 reports the results of the matching exercises.
Table 1.24 reports the estimates for the Multinomial Logistic regression to model the

novelty /conventionality quadrant [Uzzi et al., 2013, Wagner et al., 2019]. Codes for

the variable construction and analysis are fully accessible upon request.

Neuroscience articles excluded

Table 1.17: Descriptive statistics of the variables — Neuroscience articles excluded
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DL Papers Non-DL Papers Total
Re-combinatorial Novelty
Novelty Dummy (All Sciences) 38.17 32.48 32.54
Novelty Dummy (No CS) 32.65 31.56 31.57
Novelty Dummy (Only HS) 18.77 23.69 23.64
Novelty (All Sciences) 0/0.82 (2.16) 0/0.84 (3.41) 0/0.84 (3.4)

Novelty (No CS)
Novelty (Only HS)

Scientific Impact
Top 5% Cited
Top 10% Cited

# Citations (Raw Count)
Citations (Yearly Normalized)

0/0.62 (1.82)
0/0.29 (1.17)

7.73

14.61
14/31.27 (140.01)
1.75/3.23 (8.52)

0/0.82 (3.38)
0/0.53 (2.58)

5.59
11.02
17/31.73 (83.93)
2/3.48 (8.46)

0/0.81 (3.37)
0/0.53 (2.57)

5.62
11.06
17/31.72 (84.69)
2/3.48 (8.46)

Controls

# References 32/37.84 (25.46) 30/33.24 (23.26)  30/33.28 (23.29)
# Authors 4/4.03 (2.26) 4/5.03 (3.61) 4/5.01 (3.6)
International Collab. 23.65 21.95 21.97
Private Collab. 6.37 7.56 7.55

JIF 0.86/1.33 (1.26) 1.63/1.98 (1.51) 1.62/1.98 (1.51)
Journal Age 22/29.16 (28.88) 35/41.08 (32.33)  35/40.95 (32.32)
Survey 0.89 0.98 0.98
Time Period [2001 — 2015] [2001 — 2015] [2001 — 2015]
# Scientific Fields 41 43 43

# Journals 54 54 54

# Papers 2,355(1.03%) 225,748(98.97%) 228,103(100%)

Notes: Binary indicators in [%], for continuous measures [median/mean (s.d.)]. The statis-
tics refer to the period used for the econometric analysis.
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Table 1.18: Novelty profile of deep learning publications — Neuroscience articles
excluded

Tobit: Novelty Probit: Nowvelty Dummy
All Sciences  No CS Only HS All Sciences No CS Only HS
(1) (2) (3) (4) (5) (6)
DL 0.030 -0.065 -0.225%** 0.046 -0.035 -0.181***
(0.052) (0.049)  (0.066) (0.052) (0.049)  (0.059)
# References (log) 1.100*** 1.104**  1.076*** 0.948*** 0.949***  0.894***
(0.037) (0.036)  (0.034) (0.033) (0.032)  (0.025)
# Authors (log) 0.124*** 0.129*** 0.167*** 0.131*** 0.135*** 0.166***
(0.021) (0.021)  (0.026) (0.020) (0.020)  (0.022)
International Collab.  -0.036*** -0.041***  -0.074*** -0.035*** -0.039***  -0.068***
(0.012) (0.013)  (0.013) (0.013) (0.013)  (0.013)
Private Collab. 0.017 0.017 -0.008 0.016 0.016 -0.006
(0.013) (0.014)  (0.018) (0.014) (0.014)  (0.017)
JIF 0.022 0.025 0.039 0.023 0.026 0.036
(0.07) (0.068)  (0.073) (0.067) (0.065)  (0.067)
Journal Age (log) 0.007 0.031 0.059 0.015 0.033 0.057
(0.145) (0.143)  (0.160) (0.135) (0.134)  (0.144)
Survey 0.126*** 0.119*** 0.077* 0.123*** 0.115%** 0.074*
(0.041) (0.038) (0.042) (0.045) (0.041) (0.041)
Log Likelihood -172,590 -168,967  -139,119 -115,102 -113,562  -100,187
X2 [Null Model] 74,312%*%* 73,797 59,245*** 57,591*** 57360***  49,127***
x> (gw/o DL Model] 1.30 5.30**  44.60*** 2.60 1.40 31.1%%*
# Obs 228,103 228,103 228,103 228,103 228,103 228,103

Notes: This table reports coefficients of the effect of deep learning (DL, dummy) on re-
combinatorial novelty built by considering different knowledge landscapes. Bootstrapped (500
replications) standard errors clustered at the journal-level in parentheses: *** ** and * indicate
significance at the 1%, 5% and 10% level, respectively. The effect of DL on the positive contin-
uous novelty measure is estimated using a Tobit regression (Columns 1-3). The effect on the
novelty dummy is estimated using a Probit (Columns 4-6). Each novelty measure is calculated
on three different sets of journal references: ‘All Sciences’ — All cited journals, ‘No CS’ — All
cited journals except for computer science journals, and ‘Only HS’ — Only citations to health
science journals. Constant term, scientific field (WoS subject category) and time fixed effects are
incorporated in all model specifications. Likelihood-ratio test are used to compare the goodness
of fit of two statistical models: (i) null model against complete model; (ii) model without the DL
variable against the complete model.
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Table 1.19: Impact profile of deep learning publications — Neuroscience articles ex-
cluded

NegBin: # Citations Probit: Top 5% Cited Probit: Top 10% Cited

(1) (2) (3)
Panel A: Mean DL 0.090 0.107* 0.120**
(0.060) (0.059) (0.059)
Novelty (All Sciences) 0.165*** 0.210*** 0.194***
(0.028) (0.022) (0.022)
# References (log) 0.470*** 0.367*** 0.416™**
(0.062) (0.103) (0.086)
# Authors (log) 0.211 *** 0.154+* 0.172
(0.032) (0.054) (0.050)
International Collab. 0.068*** 0.093*** 0.089***
(0.014) (0.016) (0.017)
Private Collab. -0.011 -0.009 -0.007
(0.016) (0.021) (0.016)
JIF 0.222*** 0.202*** 0.192***
(0.035) (0.062) (0.065)
Journal Age (log) 0.078* 0.025 0.045
(0.044) (0.103) (0.111)
Survey 0.551%** 0.693*** 0.630***
(0.050) (0.070) (0.060)
Panel B: Dispersion DL 0.164**
(0.075)
Novelty (All Sciences) 0.097***
(0.017)
# References (log) -0.473**
(0.040)
# Authors (log) -0.199***
(0.036)
JIF 0.107**
(0.054)
Journal Age (log) -0.123***
(0.033)
Log Likelihood -955,206 -45,382 -72,968
x? [Null Model] 193,546*** 7,890*** 12,715
X2 [w/o DL Model] 2.10 6.80** 12.60***
# Obs 228,103 928,103 998,103

Notes: This table reports coefficients of the effect of deep learning (DL, dummy) on scientific impact proxied by
the number of received citations (Column 1) and ‘big hits’ (Columns 2 and 3). Bootstrapped (500 replications)
standard errors clustered at the journal-level in parentheses: *** ** and * indicate significance at the 1%, 5% and
10% level, respectively. The effect of DL on the citation count is estimated using a Negative Binomial regression.
Estimates for the expectation and variance are reported in Panel A and B, respectively. The effects on the binary
indicators is estimated using a Probit. Constant term, scientific field (WoS subject category) and time fixed effects
are incorporated in all model specifications. Likelihood-ratio test are used to compare the goodness of fit of two
statistical models: (i) null model against complete model; (ii) model without the DL variable against the complete
model.
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Neural network(s) articles excluded

Table 1.20: Descriptive statistics of the variables — Neural network(s) articles ex-
cluded
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DL Papers Non-DL Papers Total
Re-combinatorial Novelty
Novelty Dummy (All Sciences) 37.97 30.05 30.08
Novelty Dummy (No CS) 32.64 29.22 29.23
Novelty Dummy (Only HS) 18.57 22.72 22.71

Novelty (All Sciences)
Novelty (No CS)
Novelty (Only HS)

Scientific Impact

Top 5% Cited

Top 10% Cited

# Citations (Raw Count)
Citations (Yearly Normalized)

Controls

# References

# Authors
International Collab.
Private Collab.

0/0.78 (1.92)
0/0.61 (1.67)
0/0.26 (0.87)

7.33
14.15
15/27.88 (41.87)
1.78/3.21 (4.95)

32/36.56 (22.63)
4/4.15 (2.16)
23.06
7.58

0/0.74 (3.17)
0/0.72 (3.14)
0/0.49 (2.43)

6.00
11.7
17/34.95 (84.48)
2/3.73 (8.23)

31/36.13 (25.60)
4/4.75 (3.28)
22.45
6.91

0/0.74 (3.16)
0/0.72 (3.13)
0/0.49 (2.42)

6.00
11.71
17/34.93 (84.36)
2/3.73 (8.22)

31/36.14 (25.59)
4/4.75 (3.27)
22.45
6.92

JIF 0.96/1.3 (1.27) 1.57/2.37 (2.20)  1.57/2.37 (2.20)
Journal Age 23/29.58 (28.77) 31/37.38 (29.04) 31/37.35 (29.04)
Survey 1.17 0.83 0.83
Time Period [2001 — 2015] [2001 — 2015] [2001 — 2015]
# Scientific Fields 45 48 48

# Journals 84 84 84

# Papers 1,201(0.37%) 319,755(99.63%)  320,956(100%)

Notes: Binary indicators in [%], for continuous measures [median/mean (s.d.)].

statistics refer to the period used for the econometric analysis.
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Table 1.21: Novelty profile of deep learning publications — Neural network(s) arti-
cles excluded

Tobit: Novelty Probit: Novelty Dummy
All Sciences No CS  Only HS All Sciences No CS  Only HS
(1) (2) (3) (4) (5) (6)
DL 0.083 0.003  -0.171*** 0.091* 0.014 -0.137**
(0.051)  (0.052)  (0.061)  (0.053)  (0.057)  (0.058)
# References (log) 1.046*** 1.050***  1.025*** 0.880*** 0.880***  (0.838***
(0.032)  (0.032)  (0.033)  (0.026)  (0.026)  (0.023)
# Authors (log) 0.186*** 0.194***  0.241*** 0.191*** 0.197***  0.233***

(0.023) (0.024)  (0.027) (0.022) (0.022)  (0.024)

International Collab.  -0.058*** -0.064***  -0.095*** -0.055*** -0.061***  -0.086***
(0.010) (0.010) (0.010) (0.010) (0.010) (0.009)

Private Collab. 0.001 0.001 -0.023 0.001 -0.001 -0.021
(0.012)  (0.013)  (0.015)  (0.012)  (0.012)  (0.014)
JIF -0.040** -0.037* -0.029 -0.037** -0.034* -0.026
(0.020)  (0.021)  (0.021)  (0.018)  (0.018)  (0.018)
Journal Age (log) -0.092 -0.077 -0.040 -0.069 -0.056 -0.026
(0.103)  (0.106)  (0.115)  (0.094)  (0.096)  (0.101)
Survey 0.204*** 0.195***  0.160*** 0.192%** 0.184***  0.146***
(0.042) (0.040)  (0.043) (0.045) (0.042) (0.042)
Log Likelihood -234,600  -230,021 -194,470  -160,685  -158,739 -142,454
X2 [Null Model] 90,036***  88.839"** T70.498***  T1,192***  70,357"** 58 980***
x> &W/O DL Model] 4.70* 0.02 12.80*** 5.30** 0.10 9.4
# Obs 320,956 320,956 320,956 320,956 320,956 320,956

Notes: This table reports coefficients of the effect of deep learning (DL, dummy) on re-
combinatorial novelty built by considering different knowledge landscapes. Bootstrapped (500
replications) standard errors clustered at the journal-level in parentheses: *** ** and * indicate
significance at the 1%, 5% and 10% level, respectively. The effect of DL on the positive
continuous novelty measure is estimated using a Tobit regression (Columns 1-3). The effect
on the novelty dummy is estimated using a Probit (Columns 4-6). Each novelty measure is
calculated on three different sets of journal references: ‘All Sciences’ — All cited journals, ‘No
CS’ — All cited journals except for computer science journals, and ‘Only HS’ — Only citations to
health science journals. Constant term, scientific field (WoS subject category) and time fixed
effects are incorporated in all model specifications. Likelihood-ratio test are used to compare
the goodness of fit of two statistical models: (i) null model against complete model; (ii) model
without the DL variable against the complete model.
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Table 1.22: Impact profile of deep learning publications — Neural network(s) arti-

cles excluded

NegBin: # Citations Probit: Top 5% Cited Probit: Top 10% Cited

(1) 2) ®3)
Panel A: Mean DL 0.110* 0.136* 0.153**
(0.067) (0.070) (0.064)
Novelty (All Sciences) 0.138*** 0.190*** 0.181***
(0.022) (0.017) (0.016)
# References (log) 0.517*** 0.436*** 0.485"**
(0.061) (0.075) (0.063)
# Authors (log) 0.248*** 0.179*** 0.206***
(0.031) (0.040) (0.038)
International Collab. 0.070*** 0.088* 0.090***
(0.014) (0.015) (0.014)
Private Collab. -0.034** -0.031 -0.04**
(0.017) (0.019) (0.016)
JIF 0.202%** 0.155%** 0.168***
(0.022) (0.018) (0.019)
Journal Age (log) 0.063* -0.043 -0.032
(0.038) (0.093) (0.089)
Survey 0.522*** 0.646*** 0.607***
(0.055) (0.056) (0.051)
Panel B: Dispersion DL 0.075
(0.053)
Novelty (All Sciences) 0.086***
(0.017)
# References (log) -0.488***
(0.039)
# Authors (log) -0.202***
(0.043)
JIF 0.037
(0.03)
Journal Age (log) -0.116***
(0.032)
Log Likelihood -1,360,967 -63,884 -101,311
x? [Null Model] 282,883 *** 17,961*** 29,217+
x? ([)w/o DL Model] 1.60 5.50** 10.40***
# Obs 320,956 320,956 320,956

Notes: This table reports coefficients of the effect of deep learning (DL, dummy) on scientific impact proxied by
the number of received citations (Column 1) and ‘big hits’ (Columns 2 and 3). Bootstrapped (500 replications)
standard errors clustered at the journal-level in parentheses: *** ** and * indicate significance at the 1%, 5% and
10% level, respectively. The effect of DL on the citation count is estimated using a Negative Binomial regression.
Estimates for the expectation and variance are reported in Panel A and B, respectively. The effects on the binary
indicators is estimated using a Probit. Constant term, scientific field (WoS subject category) and time fixed effects
are incorporated in all model specifications. Likelihood-ratio test are used to compare the goodness of fit of two
statistical models: (i) null model against complete model; (ii) model without the DL variable against the complete

model.
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Table 1.23: Novelty and impact profile — Matching

Exact Matching

Propensity Score Matching

(1) (2) (3) (4)
Novelty (All Sciences) 0.054*** 0.053*** 0.035*** 0.023
Novelty (No CS) 0.026** 0.026™* 0.008 -0.001
Novelty (Only HS) -0.005 -0.005 -0.025** -0.033***
# Citations 0.192*** 0.195%** 0.102*** 0.063**

Notes: This table reports Average Treatment Effect on the Treated (ATT) for novelty
and impact variables. *** ** and * indicate significance at the 1%, 5% and 10% level,
respectively. The set of variables used for each matching is composed as follows: (1) Journal
/ WoS Categories / Publication Year; (2) All dummy variables in our set of control variables
/ Journal / WoS Categories / Publication Year; (3) Number of authors (log) / Number of
References (log) / Journal / WoS Categories / Publication Year; (4) All Variables.
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Atypical combinations in deep learning publications

Table 1.24: Atypical profile of deep learning publications

Category All Sciences  No CS Only HS
(1) (2) (3)

DL HC-HN 0.008 0.208 0.308*
(0.130) (0.133) (0.136)

HC-LN -0.041 0.090 -0.049

(0.157) (0.152)  (0.154)

LC-LN -0.043 -0.086 0.021

(0.162) (0.163) (0.155)
# References (log) HC-HN  -0.198"*  -0.216***  -0.168***
(0.066) (0.065) (0.061)
HC-LN -0.687*  -0.668"*  -0.711***

(0.066) (0.064) (0.063)
LC-LN -0.460**  -0.463"*  -0.550"**

(0.063) (0.060) (0.062)
# Authors (log) HC-HN -0.392**  -0.393"*  -0.433"**
(0.060) (0.060) (0.066)
HC-LN -0.557*  -0.597*  -0.603"**

(0.078) (0.077) (0.086)
LC-LN -0.260™*  -0.254"*  -0.299***

(0.048) (0.047) (0.050)

103

Continued on next page



CHAPTER 1. AN EMERGING GENERAL METHOD OF INVENTION

Table 1.24: Atypical profile of deep learning publications — continued.

Category All Sciences  No CS Only HS
(1) (2) (3)

International Collab. HC-HN 0.103** 0.160"*  0.128***
(0.042) (0.043) (0.044)

HC-LN 0.096* 0.155**  0.141***

(0.041) (0.040) (0.043)

LC-LN -0.013 0.052 0.119"**

(0.047) (0.044) (0.044)

Private Collab. HC-HN -0.050 -0.067 0.045
(0.069) (0.071) (0.072)

HC-LN 0.010 -0.108* -0.093

(0.063) (0.060) (0.062)

LC-LN 0.052 -0.016 0.025

(0.068) (0.069) (0.071)
JIF HC-HN 0.134** 0.145**  0.146***
(0.035) (0.035) (0.038)
HC-LN 0.117* 0.105**  0.092***

(0.032) (0.033) (0.035)

LC-LN -0.087 -0.114% -0.116

(0.062) (0.062) (0.075)

Journal Age (log) HC-HN -0.068 -0.064 -0.050
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Table 1.24: Atypical profile of deep learning publications — continued.

Category All Sciences  No CS Only HS
(1) (2) (3)
(0.196) (0.189) (0.194)
HC-LN -0.207 -0.158 -0.178
(0.173) (0.168) (0.176)
LC-LN -0.055 -0.089 -0.224
(0.241) (0.24) (0.258)
Survey HC-HN -0.399 -0.294 -0.492
(0.339) (0.348) (0.328)
HC-LN 0.458** 0.096 0.472*
(0.225) (0.209)  (0.204)
LC-LN 0.892*** 0.592**  0.779***
(0.224) (0.211)  (0.211)
Log Likelihood -374,002 -374,000  -363,855
X2 [Null Model] 95,913  95,488*** 115,891***
X2 [w/o DL Model] 259 158.20*** 144%**
# Obs 320,587 320,587 320,587
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Chapter 2

Barriers and Drivers of Al

Adoption in Science

This chapter was co-authored with

Stefano BIANCHINI and Moritz MULLER

Summary of the chapter

This article explores the factors influencing the adoption and reuse of Al in scien-
tific research. We focus on the role of scientific and technical human capital (STHC)
of domain scientists, assessed through the institutional and social environment in
which they are embedded along with their individual characteristics. Using data
from OpenAlex over the period 2012-2020, we show that collaborations with early-
career researchers and past interactions with scientists with backgrounds in computer
science and Al are strongly correlated with Al adoption. The institutional environ-
ment also plays a significant role in the first part of the process (trying out AlI), but
is less influential in determining AI reuse. Also, access to computational resources
does not generally correlate with Al adoption. At the individual level, we show that
scholars with a taste for exploration are more likely to adopt new computational
technologies, but at the same time, the likelihood decreases when scientists have

acquired a dominant position in their research domain.
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2.1 Introduction

Artificial Intelligence (AI) is making its way into science. And let’s be honest, this
comes as no surprise. The number of publications on Al has witnessed an almost
five-fold increase compared to a decade ago, with more than 200,000 papers by 2022,
accounting for about 5 % of the total volume of scientific publications. Most of
this research has gradually shifted from core Al to its application, which currently
represents some 70 % of scientific activity!. This trend indicates a growing inclination
among scientists to integrate Al tools into their research methodologies. Taken
together, these figures raise two important questions: What motivates scientists to
adopt AI? And what underlying factors influence researchers to incorporate Al in
their work?

Answering the first question is relatively straightforward. Scientists adopt Al
because of its high perceived benefits. Although some may argue that the rapid
adoption of Al is merely a “fad effect”, it is undeniable that the technology has
shown tremendous potential for enhancing research in various fields, especially at a
time when new ideas are ostensibly getting harder to find [Bloom et al., 2020]. In
recent years, indeed, Al have been successfully used in such diverse areas as predicting
the 3D structure of proteins [Jumper et al., 2021], regulating nuclear fusion plasma
in the tokamak configuration [Degrave et al., 2022], predicting the formation of the
structure of the Universe [He et al., 2019], and creating a map of the brains of
small insects [Winding et al., 2023]. Take note that examples could be multiplied
ad nauseam, in virtually all scientific fields, largely exhausting the available space
for discussion. Motivated by this pervasiveness, in some recent research we have
shown that the impact of Al on research outcomes can be significant, though highly
uncertain, which has led us to conclude that Al — deep learning in particular —
qualifies as a “emerging general method of invention” [Bianchini et al., 2022].

However, the picture we have provided in our previous works, although we think
interesting, is incomplete in that we have focused exclusively on the impact of tech-
nology but not on what happens upstream, that is, what are the factors that motivate
researchers to integrate Al into their work. So, as the significance of Al in science
grows, it becomes critical to understand what factors support the adoption of Al and
can facilitate the democratization of the technology throughout the scientific system,

ensuring that no one is left behind. This study aims to provide novel insights into

!These numbers are part of a project named 'Trends on the diffusion of Al in science’ for the
European Commission (Arranz D., Bianchini S., Ravet J. and De Girolamo L.) — Forthcoming
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this issue?.

The theory of scientific and technical (S&T) human capital provides us with
a solid conceptual framework for studying the mechanisms of Al diffusion in the
sciences. The framework describes the various resources that individuals continuously
draw upon to create knowledge, which we believe are also viable explanations for why
some researchers may adopt Al for the first time, and possibly continue to use the
technology thereafter. Resources can be divided into two broad categories: those that
reside within the individual and those that are anchored in the relationships between
the individual and their working environment [Bozeman et al., 2001, Bozeman and
Corley, 2004].3

Among the resources that are “internal” to the researcher — human capital en-
dowments — we find any individual’s scientific capabilities, often classified into three
(presumably) overlapping categories, namely cognitive skills, scientific and techni-
cal knowledge, and contextual skills. Cognitive skills can be thought of as those
innate abilities, such as problem-solving and memory, that are largely independent
of context, although can interact and change with context. Scientific and technical
knowledge, on the other hand, is obtained through formal training and education
on specific theories and explanations. And, finally, contextual knowledge is the type
of craft knowledge acquired by doing research and provides heuristics for problem-
solving in particular circumstances, although these heuristics can also be transferred
to other contexts. Different individuals have different internal endowments, some of
which may be more conducive to pushing an individual to adopt an emerging tech-
nology for scientific aims — i.e., Al in the case at hand.

Yet scientists do not exist in a social vacuum. The production of scientific knowl-
edge is inherently a social enterprise, just like, as we argue in this paper, the integra-
tion of new tools into scientific practices. Scientists employ therefore a wide variety
of network-mediated resources — social capital endowments — to do their work. Two

types of “external” resources are of particular importance here. First, social network

2Two observations are worth noting. First, our study focuses exclusively on scientists who use
AT in their work, rather than those who develop it. Second, a researcher may not be directly using
AT technology, but still qualifies as an adopter because they are involved in a project that uses it in
some capacity. Therefore, we can reasonably assume that the researcher has some understanding of
the advantages and limitations of Al in their field of research, even if they are not the primary user.
Hereafter, we will use the terms adoption and integration of AI technology into scientific practice
interchangeably.

3Formally, S&T human capital is defined as the sum of scientific, technical and social knowledge,
skills and resources embodied in a particular individual — that is, “an expanded notion of human
capital when paired with a productive social capital network” [Bozeman et al., 2001, p. 6].
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ties with peers. Scientists do not have the same education and training, they belong
to disciplines with unique cultures and routines, and thus the tacit components of
their understanding of science are not the same. This is crucial because through for-
mal collaborations and informal communications, scientists can acquire and employ
complementary skills and technical resources to create and transform knowledge and
ideas in ways that would not be possible in an isolated context [Bozeman and Cor-
ley, 2004, Taylor and Greve, 2006, Lee et al., 2015]. There is broad agreement that
some degree of team diversity can actually facilitate knowledge creation [Phillips and
Malone, 2014, Leahey, 2016, Ayoubi et al., 2017]. Second, we must not forget the
institutional setting in which the research process takes place, the second type of ex-
ternal resource(s). The institutional setting encompasses several factors that shape
the practice of science within institutions and organizations, from physical infras-
tructure and funding to ethical norms of scientific conduct; and some environments
are more conducive to the production of impactful science than others [Fox, 1991,
Heinze et al., 2009, Fortunato et al., 2018].

A key implication of the S&T human capital framework is that the adoption and
benefits of Al in research are contingent upon a conjunction of multiple factors, in-
cluding equipment, material resources, organizational and institutional frameworks,
and the human capital embodied in individuals. A second implication is that while
personal knowledge and know-how are certainly important, they may not always be
necessary, as social capital can serve as a suitable substitute, and vice versa. And
a final implication is that the mere pooling of resource elements is not sufficient to
ensure success. It takes a final “ingredient”, namely, the quality of fit — or amalga-
mation — between all available resources.

In this paper, we consider three dimensions that can motivate domain scien-
tists — defined as those individuals who have never published in computer science
outlets in their lifetime — to adopt Al in their work: their pre-existing knowledge,
skills, and taste for experimentation; the knowledge and expertise of their peers;
and the institutional setting in which the researcher is embedded. To measure the
scientific knowledge and expertise of individuals, we rely on their past publication
activity in terms of thematic diversity, impact, and other dimensions. In assessing
the institutional setting, we consider the quality of the researcher’s home institution
and whether it has a computer science department. Our analysis also takes into
account the accessibility of computational resources such as high-performance com-

puting. While earlier Al research relied on a synergy of algorithms, hardware, and
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specialized software, modern Al heavily depends more and more on computational
power. Some studies have highlighted a disparity in computational resources across
AT research, with non-elite universities and small non-technological firms struggling
to produce impactful research due to limited access to these resources [Ahmed and
Wahed, 2020].

We rely on OpenAlex to follow domain scientists who started to use Al in their
research between 2012 and 2020. Focusing on three dimensions: institutional, social,
and individual factors, we found that Al specialization of institutions substantially
fosters Al adoption across various scientific fields, while the influence of access to
high-performance computing and institutional ranking may be less decisive. Social
connections, particularly with Al experts, computer scientists and early-career re-
searchers, significantly promote Al adoption. Furthermore, researchers with diverse
cognitive profiles are more likely to embrace AI. When considering the reuse of Al
in subsequent articles, our findings showed that it is considerably influenced by the
composition of the research team in the initial Al article. Working with individ-
uals with prior Al experience or early-career researchers seems crucial to facilitate
future usage of the technology. Importantly, these patterns of Al adoption exhibit
field-specific variations, reflecting the unique contexts and demands of each scientific

discipline.

2.2 Conceptual framework and hypotheses

In this section, we apply a revised version of the S&T framework to the context
of Al adoption in science and establish a set of testable hypotheses. We begin
by exploring the influence of social relations and network ties among scientists, as
well as the role of the institutional environment in which they operate, including
access to computational resources. We then discuss the role of internal resources,
such as formal education and past experience, along with other individual traits of
the researcher. In articulating our hypotheses, we provide some information on the

measurement of variables.
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2.2.1 External resources
2.2.1.1 Human capital and about-knowledge from social ties

Existing social connections may play a significant role in AI adoption through at
least two channels: becoming part of a productive team dealing with Al and the
ability to judge potential relevance of Al for one’s own research.

Social ties offer a form of social capital that can be advantageous for researchers
when adopting A, as they might directly contribute to the initial Al project. As
Bozeman (2001) emphasized, At the project ST human capital level, the focus is on
the aggregate of all project participants’ endowments and social connections, as well
as the physical and economic resources available to a project [Bozeman et al., 2001, p.
20]. For instance, an applied chemist may collaborate with computer scientists to use
AT methodologies in a joint research endeavor. In this case, collaborating computer
scientists could be either previous collaborators or discovered through an existing
social network. FEither way, having prior collaborations with computer scientists
may be helpful in establishing collaborations with them in the (future) Al project.

The second pathway entails how past interactions may influence a scientist’s
perceptions and interpretations of novel technological advancements such as Al. To
embark on a new field, what knowledge should a scientist possess? The prevailing
belief is that for a scientist who wants to venture into a new field or incorporate
methodological tools from that field into their own research, it is desirable to ‘know
more’ about what is going on in the field. While we do not dismiss that knowing
more is desirable (albeit one may wonder in what amount) we believe it is not the
only prescription for a scientist to build bridges between domains. Nor is it perhaps
the most efficient prescription. Science is simply too big and, as a result, there are
cognitive limits that prevent individuals from fully understanding disciplinary tools,
knowledge architectures, and associated ‘best practices’ across its various domains.
This is especially true for emerging technologies, whose potential and applications
in science are not yet entirely clear [Rotolo et al., 2015]. What specifically needs to
be known then? And for what purposes?

The theory of ‘about-knowledge’ offers a compelling answer. It suggests the exis-
tence of a specific type of knowledge, namely about-knowledge or connective knowl-
edge, which helps scientists recognize the potential that could be realized by merging
their own expertise with knowledge from other fields — in our case, realize the po-

tential of Al as a scientific tool in a given application domain.
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About-knowledge can be thoughts as the kind of ‘know-how’ that is necessary
to achieve an early point of connection with another field — “/A] range of fairly
simple facts and information about the sort of problem domains and approaches that
populate different fields and specialisms” [Priaulx and Weinel, 2018, p. 8]. It is not
an intimate understanding of how the scientist’s core domain expertise interacts with
another field, but rather a set of cognitive foundations into the kind of contributions
that the field can make to their own expertise, as well as a broad understanding of
the practical settings, languages, sub-cultures, expectations and reward models that
regulate that field.*

It is clear that the lack of insights into what Al scientists do and/or where Al
research is headed significantly decreases the likelihood that a scientist will recognize
the relevance of the field’s contribution to their own work. In this sense, about-
knowledge should fill the deficit by providing a wide-angled lens of the potential of
the technology, hence prompting the scientist to think “Maybe it’s worth giving it a
try!”.

One may argue that about-knowledge is not knowledge at all. Instead, it is simply
a series of decontextualized facts or accounts of popular understanding. But this is
precisely what makes the concept of about-knowledge so important to our research,
as our hypothesis is that the ‘big picture’ about Al acts as an initiating force that
motivates scientists to pursue the idea of incorporating it into their research. This

brings us to our first research hypothesis, that is:

H1: A broader about-knowledge of Al increases the likelihood that a domain scientist

incorporates Al into their research.

But H1 opens the way for a couple of other important questions. First, how do
researchers acquire about-knowledge related to AI? Second, how does this knowledge
cross disciplinary boundaries? And, third, how can we eventually operationalize the
concept of about-knowledge in practice?

In recent years numerous initiatives have encouraged the next generation of sci-
entists to pursue interdisciplinary programs with a focus on Al and data science
more generally. These efforts are rooted in the conviction that formal education

and training are necessary to close the knowledge gap in this field — which may be

4Tt is noteworthy that this type of knowledge and resulting connections, which we believe can
be immensely valuable, particularly in the initial stages of the collaborative life cycle, are often
overlooked in the literature on interdisciplinarity and transdisciplinarity.
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partially true, although discussing in depth the true benefits of interdisciplinarity
training is beyond the scope of our research. The mechanisms of knowledge trans-
mission, especially about-knowledge, however, may be much simpler. We will simply
contend that even a little insight into other fields can help the scientist understand
the role that these fields can play in their work and, as in the context of Al, help
see the potential of the technology and address misconceptions and non-conceptions
that would otherwise remain mistakenly overlooked.

And here is where the S&T framework finds a link with the theory of about-
knowledge: it is about people embedded within the collaboration networks and pop-
ulating the same institutional environment who can facilitate knowledge exchange
and mediate interactions. Social ties are simply the most critical vehicle for enhanc-
ing about-knowledge connectivity across diverse domains.

So let us start from collaboration networks. Here, we use the network of past
collaborations of domain scientists as a valuable historical record of their interactions
and collaborations with peers, particularly those with some experience in Al technol-
ogy within the same application domain or in computer science more in general. It is
reasonable to assume, in fact, that scientists who are embedded in a network where
their peers have already proven experience with Al (e.g., as evidenced by at least
one publication) have more incentives to adopt the technology in their own research,
especially if their colleagues have achieved successful outcomes. This is because, even
if a collaboration does not occur with a past collaborator, being part of a network
reinforces a scientist’s rudimentary knowledge about the potential of the technology.

More formally, we argue that:

H1la: Prior ties to scientists with Al relevant human capital increase the likelihood

that a domain scientist incorporates Al into her research.

The second channel through which knowledge and about-knowledge can reach
a domain scientist is through social interactions with their peers who work in the
same institution. Organization science has long established that the location of an
actor’s contacts in the social structure can offer advantages to the actor when it
comes to acquiring information and resources, as do attributes that are rooted in
their interactions, such as trust and trustworthiness [Tsai and Ghoshal, 1998]. This
is because communication is a complex and often an arduous process that requires

individuals to converge on a common sense and is thus facilitated by both spatial
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and cognitive proximity?®.

It is plausible to assume that individuals who work in institutions that specialize
in AI research have easier access to knowledge and about-knowledge pertaining to
Al On the one hand, members of the same institution have more opportunities to
spend time together on social occasions and hence more opportunities to exchange
ideas and resources freely.® On the other hand, members of an institution working
in close (geographical and cognitive) proximity may exhibit mimetic isomorphic be-
haviors, whereby they tend to adopt similar structures, practices, and strategies to
their peers, a concept first described to explain what makes organizations so similar
[DiMaggio and Powell, 1983, Mizruchi and Fein, 1999]. We believe that this phe-
nomenon can also be observed in scientific research, where researchers may adopt
similar research designs, methods, and theoretical frameworks to those used by their
colleagues within the same institution, particularly when facing uncertainty or am-
biguity, as we can assume in the context of Al adoption. Taken together the above

arguments lead us to the following research hypothesis:

Hi1b: A prevalence of Al research within an institution increases the likelihood that

a domain scientist incorporates Al into their research.

2.2.1.2 Mentorship and newbies

What is more important than the mentor-newbie relationship when it comes to so-
cial ties and knowledge transfer? The term ‘mentor’ typically denotes an experi-
enced individual who imparts their skills and knowledge to a younger person, often
someone identified as promising and part of the next generation (e.g., post-doctoral
researchers, PhD students, or junior untenured researcher) [Archibugi, 2021]. Under
the right circumstances, a mentorship collaboration can facilitate the transfer of var-
ious S&T human capital assets, such as craft-skills, know-how, contacts with other
peers, industry and funding agents, and more. However, in the context of new meth-

ods for scientific discovery and fresh ways to approach scientific problems through

5Tt should be noted that in this context, ‘cognitive’ refers more to the understanding of col-
lective objectives that are shared by a group of individuals or an organization (see, e.g., Coleman
[1988]), rather than the similarities of knowledge bases between individuals. The literature suggests
that reciprocity (i.e., a favor for a favor; an action for an action) and a sense of contribution to
the organization are two key factors that encourage knowledge and information sharing between
individuals within an organization [Cummings, 2004, Wang and Noe, 2010]

6 Admittedly, brilliant suggestions for our own research come more often from casual conversa-
tions and informal communications than from formalized meetings and events, don’t they?
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Al it is reasonable to assume that the flow of assets could also occur in the reverse
direction, that is from the junior to the mentor. And we have strong evidence to
support this conjecture.

The academic job market is rich in human resources specializing in Al. According
to some recent statistics, the number of AI/ML-related curricula has increased more
than any other curriculum in recent years and is unlikely to slow down in the years
to come. For instance, in 2020 alone, over 30,000 undergraduate students in the US
completed a computer science degree, and one in every five students who earned a
PhD degree in computer science specialized in AI/ML 7. We can expect similar fig-
ures in many other countries. Al-related courses are no longer limited to computer
science departments at the undergraduate level; rather, a growing number of univer-
sities offer interdisciplinary programs that combine AI/ML with other fields. The
new generation of scientists also has at their disposal a plethora of online resources
offered by universities and private companies that focus specifically on AI/ML. One
example is Massive Open Online Courses (MOOCs), which are emerging as an af-
fordable and popular option for those who want to deepen their knowledge of AT/ML,
from introductory courses to others on cutting-edge algorithms and advanced appli-
cations.®

In summary, we are confident that young researchers who are well-versed with Al
techniques and tools can bring new perspectives and insights to more experienced
colleagues who are often stuck in doing science “as usual”. Empirically, we will iden-
tify newbies as authors who have published for the first time in a given year. We

posit that:

H2: Collaboration with early-career researchers increases the likelihood that a domain

scientist incorporates Al into their research.

2.2.1.3 Computational resources

While AT is commonly perceived as an intangible technical system, it is de facto

rooted in physical infrastructure and hardware. Yet, the role of physical assets and

"See Stanford AI Index Report from 2022 here: https://aiindex.stanford.edu/report/

8The importance of Al literacy from the early stage of education has also been recognized
globally. A recent report by UNESCO (2022) highlights the commitment of several countries to
developing Al literacy and competencies in K-12 schools. Generally, these initiatives aim to prepare
new generations for a world in which AI will be ubiquitous, and thus understand the power and
versatility of this technology along with its ethical dilemmas.
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their associated computing capabilities — also known as Al compute — have been
largely overlooked in policy circles and scholarly literature.”

AT compute can be understood as “one or more stacks of hardware and software
used to support Al workloads and applications in an efficient manner” [OECD, 2023,
p. 20]. For machine learning systems, it is clear that compute can facilitate three key
steps in scientific pipeline: (i) processing and cleaning large data, (ii) training models
and calibrating them (e.g., determining the value of weights of a neural network from
the data presented to the model), and (iii) inferencing, which is using the trained
model for a specific application to determine an output. Of course, the computing
requirements can vary considerably depending on the application, ranging from large
high-performance computing (HPC) clusters to smaller laptops and workstations.

Cutting-edge research in ML has become synonymous with access to large com-
puting infrastructures and expertise to exploit them. Sevilla et al. [2022] carried out
a detailed investigation of the computational requirement of 123 milestone ML mod-
els over time and showed that since the 2010s, the amount of computation required
to accommodate modern machine learning systems has soared, with an impressive
5.7-month doubling time (see also Amodei and Hernandez [2018] for estimates with
different assumptions) — just for comparison, Moore’s law has a 2-year doubling pe-
riod. While not all researchers use state-of-the-art and computationally intensive ML
systems, having access to computing resources can still make a significant difference
and, reasonably, be a major driver of Al adoption. How then can scientists access
computing resources?

Researchers have various options for accessing Al compute, including data centers
or supercomputers located in physical facilities, public or private cloud computing
services, and decentralized access at the edge of devices, such as mobile IoT devices.
It can be difficult to empirically determine which resource(s) a researcher relies on for
their work, yet we contend that the local availability of computing resources, whether
within their institution or through collaborators, may serve as a motivating factor
for researchers to adopt Al for the first time and potentially use it again.This is not
just because researchers can handle larger and more complex datasets and get results
faster than they could with limited computing resources, but also — and particularly
— because of the institutional culture that embraces Al, as we discussed in Section

2.2.1. Scientists are well-aware that computing resources are readily available and

90me reason for that is the lack of standardized and validated data on computing resources.
National and institutional and data on the supply and demand of Al compute is not easily accessible
and, in some cases, considered sensitive proprietary information.
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can potentially support their work; they also know that they can rely on support
services to help them use these resources more efficiently and effectively.

Here, we measure the availability of Al compute by the presence of an HPC clus-
ter within the focal researcher’s organization (although it should be noted that such
compute infrastructure can also be used for non-Al workloads such as mathematical
modeling and simulations). In very general terms, HPC is a technology that uses
clusters of powerful processors, working in parallel, to process data and solve complex
problems at high speeds [OECD, 2023]. Unlike standard computing systems, HPC
systems can handle multiple tasks simultaneously across multiple computer servers
or processors with a centralized scheduler that manages the computing workload.
The high cost of HPC can put this technology out of reach for most organizations,
resulting in a significant “compute divide” within and between countries and in-
stitutions, as well as between the private sector and academia Ahmed and Wahed
[2020]. This is especially true for Al applications in some data-intensive scientific
fields such as bioinformatics or particle physics where ML training and inferencing
can be highly demanding in terms of memory and computational resources. The
existence of a computational divide can therefore impede the adoption of Al and
generate disparities in the productivity gains that AI can offer to science. In sum-

mary, our hypothesis is that:

H3: The presence of HPC' cluster within a researcher’s organization increases the

likelihood of integrating Al into research.

2.2.2 Internal resources

We now turn to the internal resources of the domain scientist, which can be broadly
classified into three, somewhat overlapping, categories: cognitive skills, scientific and

technical knowledge, and contextual skills [Bozeman et al., 2001].

2.2.2.1 Scientific background and experience

Let us start with the most straightforward, scientific and technical knowledge. This
is the type of knowledge acquired through formal scientific education. It involves a
thorough understanding of particular theories, experimental and research findings,
and the ability to anticipate where research in a particular area is heading. From a

Kuhnian perspective, scientific and technical knowledge enables the scientist to feel
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part of a specific epistemic community, to be accepted by their peers as a member
of that community, and ultimately to adopt the shared scientific paradigm [Kuhn,
1962, Ch.2 and 3|. Contextual skills can be viewed instead a subset of scientific and
technical knowledge and relate more closely to the type of knowledge gained from
practical research experience. Unlike scientific and technical knowledge, contextual
skills often involve a tacit component that can only be obtained “on-the-job”, that
is, in the process of doing research.

In our study, we use a scientist’s first field of activity (i.e., domain of the first
publication) as a proxy for formal scientific education and context skills. While we do
not advance any specific research hypotheses, we believe that this variable is essential
to account for idiosyncratic differences in the propensity to adopt Al that may arise

due to an individual’s scientific background.

2.2.2.2 Taste for exploration

The third dimension is about cognitive skills, that can be viewed as those mental
abilities and processes that allow individuals to perceive, process, and use informa-
tion in a given environment. As such, they necessarily relate to science, but not
exclusively to it; they include skills such as reasoning, learning, and others. Here, we
are particularly interested in the dispositions or traits that underlie many cognitive
skills and processes. One of these is a taste for exploration.

Exploration is intimately linked to curiosity, a personal trait that prompts indi-
viduals to explore uncharted territories. We think that curiosity is a useful construct
for understanding scientists’ behavior in terms of technology adoption. Although
psychologists have not reached a consensus on its definition, it is generally accepted
that curiosity involves an intrinsic motivated desire for new information — an “ap-
petite for knowledge”, or more formally “a form of cognitively induced deprivation
that arises from the perception of a gap in knowledge or understanding” [Loewen-
stein, 1994, p. 75] 1.

But the curiosity to explore uncharted territories creates some tensions. In the
sociology of science, this strategic tension is commonly referred to as ‘succession’

versus ‘subversion’ [Bourdieu, 1975]; in organization science and innovation as ‘ex-

10Tt could be argued that an individual may also be curious about the topics she knows best.
However, it should be noted that our definition of curiosity extends beyond the inclination of
a scientist to expand her understanding within the area she is most knowledgeable about — a
characteristic that should be common to every scientist! — but rather encompasses the search for
knowledge and information far out in the knowledge space.
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ploitation’ versus ‘exploration’ [March, 1991, Gupta et al., 2006]. Where do the
tensions come from? Science can be viewed as a competitive territory in which sci-
entists have to strategically choose what to study and what to cite. Compared to
the returns from staying within the boundaries of the discipline, the returns from
exploring other fields are systematically less certain, more distant in time, and often
negative. Hence, once a scientist occupies a dominant position in a specific field,
it is clear that deviating from the habitus can be perceived as a “risky gamble”.
Increasing returns from experience can trap individuals in exploiting old certainties,
refining and extending existing skills, whose returns are proximate and predictable
[March, 1991]. A conservative strategy allows scientists to secure publication more
likely and benefit from the S&T human capital they have accumulated. On the other
hand, transcending local search space and accessing more distant knowledge opens
up opportunities for originality, a prime requisite of academic reward and long-term
reputation [Foster et al., 2015]

How does all of this relate to the integration of Al into a scientist’s research
practice? We argue that epistemic-specific curiosity, or the desire for new knowl-
edge or a particular piece of information [Wagstaff et al., 2021], is a relevant driver
of AI adoption. In the realm of Al, curiosity can arise spontaneously when some
situational factors alert an individual to the existence of potential in that domain.
Situational factors can be of various kind, from exposure to a sequence of events
(e.g., seminars, online information) to the possession of information by someone else
— in line with our discussion in Section 2.1.1. Regardless of the specific factor, scien-
tists with a general inclination to explore ‘new stuff” will be more likely to envision
potential applications of the technology and recognize its relevance to their field of
expertise. However, as mentioned earlier, strong tensions may arise when scientists
hold dominant positions within their fields, which may lead them to resist solutions
that diverge from established practices and avoid venturing beyond their disciplinary
boundaries.

Past scientific activity is a visible consequence of research choices, including a
taste for exploration; and citations provide evidence of others’ judgment of the rele-
vance of a scientist’s work. We will use both measures to test the following hypothe-

ses:

H4a: A higher ‘taste for exploration’ increases the likelihood of integrating Al into

research.
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H4b: A higher scientific reputation and recognition decrease the likelihood of inte-

grating Al into research.

2.3 Data and Methods

2.3.1 Data

Our main interest is the adoption of Al as a research method in science. More
specifically, we investigate whether and how the STHC endowment of a non-computer
scientist is related to her decision to adopt AI methods in her research. We measure
AT adoption on scientific publications, namely i) publishing one first paper applying

Al and ii) reusing Al in at least a second paper.

Data set This question is investigated using scientific articles included in the
database OpenAlex [Priem et al., 2022]. OpenAlex is an open-source database with
more than 230 million scientific papers!!. We use this dataset because of its large cov-
erage, and because it provides relevant information to our study: Titles and abstracts
of papers are used to identify papers dealing with machine learning. Authors are dis-
ambiguated such that we are able to trace the paper trail of our focal scientists as
well as of their co-authors. This allows for measuring the evolving co-author network
and the (publication) experience of scientists in that network. Authors’ affiliations
are also cleaned and geographically localized, and openAlex provides bibliometric
measures at the organizational level that we use. We add further information on the
organisations in our sample; notably the Shanghai ranking of the university and the
availability of high performance computing in town (see below). Finally, we rely on
a system of scientific categorization of journals provided by openAlex termed con-
cept!?. In particular, we indicate the scientific field of a paper by OpenAlex’ 0-level

concept assigned to the journal of the paper.

Sample We focus on the trajectory of scientists that eventually applied Al in

their scientific domain (other than computer sciences), and we restrict the analysis

HWe work with the entire database as of August 2022.

12Concepts are automatically ascribed to a journal by a classifier, trained on the MAG corpus,
that takes as input the title and the abstract of papers published in that journal as well as the title
of the journal (see https://docs.openalex.org/api-entities/concepts).

120



CHAPTER 2. BARRIERS AND DRIVERS OF Al ADOPTION

to scientists with at least two publication records before the year of their first Al-
related paper.!3 This allows for measuring the STHC endowment of a scientist before
AT adoption. In order to judge on the persistence of Al use, we also require at least
one publication record after the year of the first Al-related paper. Thus, a focal
scientist is observed over a period of at least three years.

The development of Al as a research tool is relatively recent, with diffusion of
serious Al applications taking off in the early 2010s [Bianchini et al., 2022]. More pre-
cisely, the year 2012 may be considered the beginning of the Al revolution, with signif-
icant advancements in deep learning leading to its widespread diffusion [Krizhevsky
et al., 2017]. This prompts us to restrict attention to the first Al use in the period
from 2012 (the year when AI took off) to 2020 (end of sample period). We further
limit the analysis to researchers who started research after 1980; excluding older
scientists at the end of their careers and, hence, in general less susceptible to adopt
Al in research.!* Our sampling definition of focal scientists is concisely described in
Figure 2.3.1.

First First Al Last
Domain Bapey paper Rabeh

Scientist | | | o

t t+n t+n+i

Figure 2.1: Focal scientists 1°

The sampling proceeds as follows. In the first step, we scanned the abstracts
and titles of all papers to identify Al papers. To qualify a scientific article as an
‘Al paper’, we build on a list of keywords provided by the Baruffaldi et al. [2020].

13Note that this restriction excludes scientists with a first non-computer science paper building
on Al methods. This is a deliberate decision. Given the current development of Al it is probably
not far fetched to assume that future generations of scientists, in one way or another, will use Al in
their research as naturally as we use our computers today. Thus, the diffusion process will depend
to a large extent on i) the development of AI for various applications and, given a certain state of
development, ii) the adoption of AT methods by the generation of currently active scientists. The
latter is what we focus on.

l4Researchers who began before 1980 are approaching the end of their careers, and thus their
AT adoption dynamics may be less influenced by their scientific and technical human capital, and
more affected by impending retirement.

15A focal scientist is active in a domain other than computer science (‘domain scientist’), has a
first paper and at least a second paper after year ¢ = 1980, a first Al-related paper in the period
t +n = (2012,2020), and a subsequent last paper in the period ¢t + n + ¢ = (2013,2022), with
n,t > 1.
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After manually cleaning the keyword list to preserve only terms related to machine
learning models we obtain a list of 47 terms (provided in the appendix). If any of the
selected terms are mentioned in an abstract or a title of an article, then that article
is considered as using AI. This approach results in a total of 1.62 million papers
written by 2.83 million authors. Based on the authors’ publication history, we define
a scientist to be a non-computer scientist if she has no publication in a computer
science journal (as indicated by openAlex’ main concept assigned to each journal).
In total, we identify 1,280,857 non-computer scientists with Al-related publications
in the period from 2012 to 2022.

We subsequently limit our analysis to individuals who were active both before
and after their exposure to Al, as illustrated in Figure 2.3.1. This ensures that a
transition toward Al was made and allows us to investigate whether AI became an
integral part of a researcher’s toolbox (by reusing Al subsequently). To approximate
STHC during the year of Al exposure, it is necessary for the researchers to have
published at least two papers prior to the exposure. After computing the variables
(see below) and excluding authors with missing information, our sample reduces to
76,344 authors. These focal scientists collectively authored 2,695,096 articles, among
which 56,733 were Al-based. This is the sample we work with.

A short reflection on how we categorize scientists as computer scientists may
be appropriate at this point. To accurately label computer scientists, we consider
a researcher’s entire career rather than focusing on their early publications. This
approach accounts for the fact that computer scientists may initially publish in
domain-specific journals outside of their primary field. We do not have access to
individual degrees, and it is common for computer scientists to have publications in
non-computer science journals. To determine if a researcher is a computer scientist,
we examine whether they have at least one publication in a journal with ” Computer
Science” as the main concept in OpenAlex. This method ensures that we capture the
computer science-related skills of a researcher even if they published in non-computer
science journals during the initial years of their career. While this criterion may be
restrictive, we believe that the ability to publish in a pure computer science journal

indicates a researcher possesses specific computer science expertise.

Our econometric strategy entails a matching approach to compare focal scientists
(AT adopters) and non-focal but similar scientists that did not adopt Al. However, the

implemented matching procedure makes use of various measures (similar in what?)
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and needs to be understood in light of the econometric strategy (why matching?).
This is where we turn to now. Basic descriptives of the expanded, matched sample

follow at the end of this section.

2.3.2 Measures

This paper attempts to provide empirical insights on how AI adoption of a focal
scientist relates to her STHC endowment. The following details how we measure Al
adoption (the response variables), STHC endowment (explanatory variables), and

further measures (control variables) for the empirical analysis.

AT adoption is measured on scientific papers written by a focal scientist. Whether
or not a paper uses Al is determined through Al keywords found in the title or ab-
stract (see above, in the Data section, the definition of a focal scientist). Conceptu-
ally, we think of Al adoption as a process that consists of (at least) two steps. The
first step is to use Al methods in research for the first time (henceforth ‘first use of
AT’). Then, given that first Al experience, a scientist may or may not employ Al

methods subsequently (‘re-use of Al’).

STHC endowment of a focal scientist is measured in three dimensions, i.e. insti-
tutional capital, social capital from peers, and individual human capital. Figure 2.3.2
summarizes our modelization of Scientific & Technical Human Capital, the construc-

tion of the different metrics is detailed in the following.
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Figure 2.2: S&T Human capital 6

16Left figure: The institutional environment potentially provides information, directs attention,
and offers resources (computation facilities, human capital) related to AI; and institutions enjoy a
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Institutional capital is assessed by measuring a university’s prestige and scientific
excellence through Shanghai Ranking and citations. Institutional focus on Al is
captured through Al-related papers. Availability of relevant physical infrastructure
through the presence of high-performance computing in town. In detail, the following
measures are calculated:

Scientific excellence: Scientific excellence of an institution is captured by the average

number of citations per paper and year. In detail, we consider all papers in OpenAlex
with at least one affiliation to the institution for which we observe the number of
citations each paper received up to 2022. For each paper, we calculate the average
number of citations per year, and then average over all papers of the institution to
obtain our measure of ‘scientific excellence’.

Prestige: The university’s prestige is based on the Shanghai ranking!”. The variable
‘prestige’ indicates whether a particular institution is listed in the Shanghai ranking
in a given year®®.

Specialization: We proxy the resource in terms of competence present in a given
institution with the degree of specialization in the technology, i.e. if many members
contribute to research using Al, it is expected that the environment is relatively
supportive for conducting this type of research. The degree of specialization in Al is
assessed by the proportion of papers that are related to Al in a given institution and
a given year. From this, we construct the binary variable ‘specialized’ that is one if
the institution is among the top 10% institutions in terms of degree of specialization
and is zero else.

High-Performance computing (HPC) infrastructure: Access to massive computing

resources is sometimes necessary when using Al for research; suggesting that HPC
infrastructure at the university is potentially a relevant physical infrastructure. In
order to determine whether a university hosts HPC infrastructure we searched the
web through the platform perplexity.ai. Roughly, perplexity.ai is a sophisticated

question-answering system that utilizes large language models to provide answers to

certain level of reputation and scientific excellence. Middle figure: The prior co-author network
provides Human capital that is relevant to the focal scientists’ domain, computational analysis,
and/or Al. Right figure: The focal scientist’s human capital is described by her past research
output in terms of scientific content, quality, and internationality.

7see https://www.shanghairanking.com/rankings

8Note that our measures of ‘scientific excellence’ and ‘prestige’ are not imperative; there are
alternative measures. Neither do they exclusively proxy these concepts, as they are also correlated
with further relevant features of institutions. A university’s prestige for example helps to (and
allows for) the accumulation of various resources — as more recognition brings more resources and
vice versa.

124



CHAPTER 2. BARRIERS AND DRIVERS OF Al ADOPTION

complex queries that include the internet links relevant to the answer given.!® We
ask the following question: ’Is there a High-Performance computing infrastructure
in the university of ...” As the answers given to our question are formulated in a
very recurrent manner, it is relatively easy to code the answer text into ‘Yes’ and
‘No’ simply with regular expressions (we used 16 regular expressions). This way,
we submit queries to perplexity.ai asking for HPC availability in 12,500 cities and
obtain an explicit indication of HPC availability (*Yes’/'No’) for 12,050 cities. We
checked some of the 450 cities for which perplexity.ai gave no clear indication, found
that these are mostly small cities with probably no HPC, and coded all of these as
having no HPC.

Social capital in relation to peers is measured through the co-author network
of the focal author, classifying collaborators into domain scientists and computer
scientists. In addition, we note how many collaborators have experience with Al
(Al-experienced collaborators), and how many collaborators wrote their very first
paper with the focal scientist (collaboration with newbies).

More precisely, the overall co-author network consists of 25,348,325 authors with
joint papers published between 1990 and 2020. The prior co-author network in
year t builds on all papers (i.e. their authors and revealed co-authorship ties) from
1990 up to year t — 1. Each scientist in the prior network is classified as a domain
scientist or computer scientist based on her individual publication history over the
whole observation period. Additional co-author features taken into account are ‘Al
experienced’ and ‘newbie’ (of the past). The social (network) capital of a focal
scientist is then simply the number of prior co-authors of different types.

Domain collaborators: The number of prior co-authors without any paper in a com-

puter science journal and without any Al-related paper. More formally: The variable
‘domain collaborators’ of a focal scientist in year ¢ corresponds to the number of the
focal scientist’s co-authors in the prior co-author network that have no computer
science publication and no Al experience up to year t — 1.

Computer science collaborators: The number of prior co-authors with at least one

paper in a computer science journal up to year ¢ — 1.

Al experienced collaborators: The number of prior co-authors with at least one Al-

related paper up to year ¢t — 1.

Collaboration with newbies: The number of collaborators who had never published

9While it employs OpenAI's GPT-3 technology, it remains unclear how it determines the rele-
vance and ranking of web pages.
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before the year of the collaboration, these individuals are new to the database in

year t.

Individual human capital is assessed on the focal scientist’s prior publications.
Measures include the type of research conducted (‘scientific domain’), the propensity
to gravitate toward diverse scientific topics (‘scientific diversity’), recognition from
past publications (‘citations received’), and the propensity to engage in international
research collaboration (‘international collaboration’).

Scientific domain: The scientific domain of a domain scientist, i.e. a non-computer

scientist, is proxied by the highest level concept of her first paper.

Scientific diversity: To capture an individual’s ability to work on diverse topics, we

compute the diversity of articles preceding year t for a given researcher. For each
item, we represent its abstract in a vector space through word embedding methods
(i.e. word2vec — Mikolov et al. [2013]). Once these articles are represented in a vector
space, we can compute their cosine distance with all possible articles’ combinations.
The average distance gives us then an indication on the explorative profile of the
researcher.

Citations received: The variable ‘citations received’ proxies the number of citations

a focal scientist’s papers received up to a year t — 1. In detail, we use the citation
count from 2022 to estimate the citation count of a given article published in year
t — x up to a certain year ¢t — 1 simply by assuming that the paper received in each

year the same number of citations.

International collaboration: We measure ‘international collaboration’ by the share of

prior articles that have multiple country affiliations.

2.3.3 Econometric strategy

We model the adoption of Al in the production of research papers essentially as
a combination of AI technology and STHC. An important aspect of Al research
technology is that it is not a monolithic, single technology. Rather, it should be
considered a bundle of various technologies undergoing specific developments, and
pertaining to science specialties with differing degrees (this has been pointed out
in the Introduction and Background sections). Therefore, we allow the state of Al
technology (A) to vary not only over time ¢ but also over the science specialty of the
focal individual, denoted s(), and write Ay .

In order to usefully apply Al in research, a focal scientist ¢ may build on certain
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aspects of its STHC endowment accumulated up to time ¢ —1, H;;_;. Note that H is
a vector incorporating organizational capital, social (network) capital, and individual
human capital of the focal scientist.

A scientist does not necessarily employ all STHC he or she is endowed with, i.e.
H,; 1, to publish an individual paper. Therefore, we also consider the realized STHC
employed in a given paper p, denoted H,; ;. Realized STHC (Hp; ;) will be to a
large extent a part of the past STHC endowment (H;;_;), but some capital may be
acquired during research in year ¢, and some may be lost over time.

In order to fix ideas, we postulate a simple AI paper production function F(-)
that emphasizes the complementarity (or interaction) between AI technology and

the various aspects of capital:

_ B
F(AS(Z'),M Hp(i)ﬁt) = AZ(i),t Hp(i),t

Our main argument is that in the presence of Al certain aspects of STHC will be
more valuable compared to research not dealing with AI. One immediate implication
is that the realized STHC employed for an Al paper is likely to differ from that
realized for a non-Al paper. Descriptive statistics at the end of this section suggest
that this is indeed the case.

Our focus is a second implication, namely, that the value of Al adoption increases
with the endowment (or presence) of Al-relevant STHC. The probability that an Al
paper is produced, rather than a non-Al paper, will thus depend on the availability of
those different factors of production in combination with the specific Al technology

applied. For the estimation we rely on the log-transformation and a logit regression:

p(yi,t = 1) = f(As(i),t> Hi,tfl)
Py =1)=¢ (’Y log<A)s(i),t + Blog(H; 1) + Vi,t)
= & (Vs + i1 + viy)

where p(y;; = 1) is the probability that a paper produced applies Al (rather than
not) conditional on a paper produced at all, ¢ denotes the logit-function. h;;; is the

log-transform of our measurements H;;_;. In principle, some relevant capital and/or
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individual specific tendencies may be also unobserved l/i,t.m With this estimation
equation, the dynamics of Al technologies is effectively dealt with by introducing
intercepts 7, that vary over time and science specialty.

Our estimation strategy is based on a matching approach where we match scien-
tists belonging to the same science field and same cohort, but with different adop-
tion behavior. Conditional logit regressions on the matched pairs removes all their
common factors from the estimation regression. One common factor is the Al tech-
nology, another are cohort specific (unobserved) human capital and preferences. As
outlined above, it seems likely that scientists in the same field and belonging to the
same cohort face similar (exogenous) dynamic Al technology Ay .. Furthermore,
scientists of same field and cohort may share some similarities in unobserved prefer-
ences and skills, vy;) . This leads us to write individual unobserved components as
the sum of average cohort effects ;) and individual deviations from that average
Uity 1.6, Viy = Usy)y + Viyp. By matching same cohort scientists ¢ and j, we obtain
Asgiye = Asiye and Vs g = Vs -

These common factors can be removed in a conditional logits approach. First note
that matching is on the outcome such that in all matches one individual ¢ adopts
AT and the other scientist j does not adopt Al (y,;, = 1,y;, = 0), or vice versa.
The conditional logit model, takes into account that only two possible outcomes are

possible, and we estimate the probability of one of them:

exp(Vsy + Bhiz—1 + Us@ay e + Vi)

PWir =1y, =0) = - . - -
(b = 0) exp(Vst + Bhig—1 + Usiy e + Vig) + €xp(Vsp + Bhjs—1 + Vs + Uje)

_ exp(Bhit—1 + Uiy)
exp(Bhit—1 + Uiy) + exp(Bhji—1 + ;1)

where common factors have been pulled out of the second equation.

In case individual unobserved components 7; , are correlated with observed factors
in h, coefficient estimates are biased. Imagine for example that an individual has
an unobserved 'taste’ (or unobserved capacity) for data-intensive research, which led

him in the past to collaborate with computer scientists that we measure as a specific

20For convenience, the coefficients associated with AI research technology and STHC have the
same names in the paper production function and the adoption function, but they are of course not
the same.
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kind of social capital. Not including the unobserved component in a simple regression
would in that case over-estimate the effect of such social capital on the probability of
applying Al in research.?! That must be taken into account in the interpretation of
the estimation results, where we speak of correlations rather than of causal effects.
Note that in the estimation equation above the variation of AI technology is
dealt with as a simple scaling factor of the valuation of STHC. A more flexible and
probably more realistic formulation would be to allow for variation of the exponents
(6’s) of STHC with the dynamics of Al technologies. For example computer scientists
may be indeed needed in the early stages of Al development, whereas in, say, two
generations domain scientists may well be capable of autonomously using Al (because
of both different human capital formed during training and different Al technology).
We investigate the variation of STHC coefficients across scientific fields and time by

estimating additional regressions.

2.3.4 Matching strategy

Technology available at a time ¢, age of the researcher, initial training and research
trajectory influence the opportunity to use AI. When matching individuals with
similar potential to use Al, we consider only the technology’s advancement and ap-
plicability in a given field. To answer our two questions on adoption and reuse we
have performed two different matchings on the basis of the same criteria.

As shown in Figure 2.3, we construct two matched samples. The first matching is
used to investigate first-time Al use. Each focal scientist is matched with a non-focal
scientist who never published an Al-related paper, but published a first paper in the
same year and same scientific field as did the focal scientist, published a paper in the
same scientific field and same year as the focal scientists’ first Al paper, and published
at least one paper subsequently (as the focal scientist). Note that individuals with
computer science papers are excluded (focal and matched scientist).

The second matching is used to investigate re-use of Al. Here we compare two

focal scientists where both had a first-time Al paper in the same scientific field and

21The econometric literature discusses various ways to deal with the potential bias due to unob-
served effects. One possible avenue would be conditional logit, where one conditions on all outcomes
of an individual in order to extract an unobserved fixed effect. This however would be reasonable
only if one neglects the rapid technological development that is currently undergoing as time vary-
ing coefficients (7,,) can not be introduced and other factors (e.g. Al relevant social capital) are
strongly trending (and detrending is never ’perfect’). Another possibility would be to instrument
h, for example by effects of (unexpected) job switches. A proper causal identification is left for
future research.
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Figure 2.3: Matched samples to investigate Al adoption, i.e. first-time Al research
and re-using Al

year, but one scientist re-uses Al in a subsequent year and the other does not. As in
the first matching, we also require that both published their first paper in the same
field and year.

In both cases we realized an exact matching, for the adoption part, we used all
Openalex to get a correct tween. We manage to match 23,918 Al adopters with
non-adopters after cleaning our data. Concerning the second matching exercise we
were able to connect 13,211 adopting pairs, in each pair only one researcher produced

another Al-based document.

2.3.5 Descriptive statistics

This section provides in a first step aggregate statistics on the adoption of Al in
research by our focal scientists (i.e. scientists of scientific domains other than com-
puter sciences). In a nutshell, Figure 2.4a shows that the number of scientists with

first-time AI use is strongly increasing in particular since 2017, with a stable share
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of around one third re-using Al subsequently. There is also a strong cohort effect
such that in particular early career scientists adopt Al (Fig. 2.4b).

Turning to the factors affecting Al adoption, we see that i) focal scientists co-
author more frequently with computer scientists and Al experienced scientists in
Al-related papers than in non-Al papers (Table 2.1), and that ii) Al adopters, be
it first-time AI use or re-use of Al, tend to have a larger endowment of Al relevant
STHC than those that do not adopt Al (Table 2.2).

The last two tables, Tables 2.3 and 2.4, provide correlations among all the vari-
ables on the matched samples used to estimate the effect of STHC endowment on

first-time AI use and re-use of Al respectively.
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A growing body of scientists adopting AI: The number of scientists integrating

AT for the first time is increasing massively, with over 20,000 people are integrating
AT for the first time in 2020 (see solid line in Figure 2.4a with scale on the right
vertical axis). Interestingly, and this was one of the reasons that encouraged us to
further invest in the reuse dimension, the share of those first-time users who will one
day re-use Al technology again is rather stable at around 35% (see bars in Figure 2.4a
with scale on the left vertical axis). Despite the advancement of technology and the
increasing availability of resources to facilitate Al utilization, the probability to re-
use Al conditional on having a first-time Al experience remains rather stable over
time.

Due to our sample construction, we cope with a population with a fairly mature
academic career. The first year of publication is on average 2006, and focal scientists
have on average an academic age of 11.05 years during their first exposure to Al (the

median is 9 years). The mode of the first year of publication for our focal scientists in
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the sample is 2012 with 4,000 scientists (see solid line in Figure 2.4b with scale on the
right vertical axis). Thus, the sample is comprised mostly by early- and mid-career
scientists, suggesting that older generations are less engaged in Al-related research.??
As shown by the bars in Figure 2.4b with scale on the left vertical axis, the share
of individuals reusing Al remains stable around 35% regardless of the seniority of
the individual. This suggests that persistent adoption of Al is indeed feasible across
generations.

Requirement of a different team: A basic tenet underlying this study is that Al
research is realized with specific STHC that differs from STHC used in non-Al re-

search. Ideally, one would like to observe the extent to which a focal scientist with

given STHC endowment leverages each dimension of her STHC for her different re-
search projects. This would allow to see which aspects of STHC are particularly
relevant when it comes to Al. Our publication data at hand does in general not
provide such information. The exception is the social capital dimension of STHC in
form of co-authors with their individual scientific background.

Table 2.1 compares therefore co-authors of non-Al papers with co-authors of
AT papers. The underlying sample includes for each focal scientist one (randomly
chosen) non-Al paper and one (randomly chosen) Al paper that both appeared in
the year of the focal scientist’s first-time AI use. On average, focal scientists work
with one more co-author in Al papers (11.65 authors in total) compared to non-
AT papers (10.73 authors in total). This ‘additional co-author’ tends to have a
computer science background. Besides, the research team is more likely to include
AT experienced scientists. On the other hand, the number of domain (non-computer)
scientists is on average the same in Al as in non-Al papers. Finally, newbies without
any prior publication contribute somewhat more often to Al papers than to non-Al
papers. The t-test strongly rejects the null hypothesis of no difference between Al
papers and non-Al papers for all co-author types except for the number of domain
scientists.

STHC endowment and Al adoption: Table 2.2 presents descriptive statistics for

both samples employed in the regression analysis of first-time AI use (left part) and
re-use of Al (right part). The upper part of the table highlights the disparities in
STHC endowment between those who engage with Al and those who do not. The

lower part shows differences in co-authors and citations received of the focal scientist’s

22 A thorough comparison of academic age of focal scientists and non-focal, other scientists in
the overall population is not given here due to our sample restrictions.
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Table 2.1: Co-authors of first-time AI users in non-Al papers and Al papers

non-Al papers Al papers t-test
# authors 10.73 (10.31) 11.65 (12.51) 14.32%*
# CS aut. 2.19 (4.09) 3.12 (4.82) 36.66***
# Al exp. aut. 1.71 (3.48) 2.84 (4.54) 49.34*
# Domain aut. 8.53 (7.65) 8.53 (9.62) 0.04
# Newbies aut. 1.19 (1.7) 1.41 (2.82) 16.13*
Observations 62712 62712

Notes: This table presents the descriptive statistics for Realized STHC for AI adopters. It compares
an Al paper with a non-Al paper published in the first year of Al exposure. The table provides averages
and standard deviations (in parentheses) of the number of different types of co-authors. T-tests determine
whether the mean differences between the groups are statistically significant. Significance levels are denoted
by *** ** and * for the 1%, 5%, and 10% levels, respectively. Note that for this table focal scientists
without a non-Al paper in the year of their first-time AI paper are excluded.

first Al paper and the matched scientist’s paper (on the left side the matched paper
is non-Al of a non-adopter, on the right side the matched paper is the first AI paper
of a scientist trying out once Al but not re-using AI).

Consider first the upper part, STHC endowment. The t-tests indicate that nearly
all variables representing STHC endowment show significant mean differences be-
tween individuals who explore Al and those who abstain. At the institutional level,
the percentage of individuals in specialized institutions is elevated (Al inst. spec.),
and the citation impact of these institutions appears to be positively correlated with
AT adoption (Inst. cit.). This is true for first-time Al use and, to a lesser extent, for
re-using Al. Whether or not the university is listed in the Shanghai ranking seems to
make no difference.?? External resources associated with social networks seem more
crucial for individuals who embrace Al technology (be it first-time AT use or re-use of
AT). On average, the scope of these individuals’ networks is more extensive across all
categories of collaborators. In the case of first-time Al use, the strongest difference
(as indicated by the t-statistic) is in the number of computer science collaborators
and the number of collaborators with Al experience. In the case of re-using Al, the
t-statistic is similarly strong across all co-author types. One may note however that
focal scientists re-using Al are particularly inclined to collaborate with early-career
researchers, as their average experience working with such researchers is higher. Fi-
nally, at the individual level, the ability to navigate the knowledge space (exploratory

profile) and prior accomplishments (citation stock) also appear to be linked to Al

230ne potential explanation is that our measure indicating whether the university is among the
top 1000 universities is too rough to capture existing ‘elite-effects’.
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Table 2.2: Descriptives statistics for both matching strategies

First-time AI Re-use Al

Variable Matched scientists Focal scientists T-test |Matched scientists Focal scientists T-test

(without AI) (with AI) (not re-using AI) (re-using AI)
STHC endowment
AT inst. spec. 0.05 (0.22) 0.1 (0.29) 19.07*** 0.08 (0.27) 0.09 (0.29)  2.73***
Inst. cit. 2.86 (3.88) 3.04 (1.98) 6.57*** 3.09 (2.09) 3.14 (2.03) 2.06**
Shanghai ranked 0.03 (0.17) 0.03 (0. 17) -0.09 0.03 (0.17) 0.03 (0.17) -0.47
HPC 0.71 (0.45) 0.74 (0.44) 6.16*** 0.73 (0.44) 0.74 (0.43)  2.58***
# Domain col. 146.84 (181.62)  155.58 (220.97) 4.73*** | 134.27 (190.6) 167.48 (245.87) 12.27***
# CS col. 21.08 (33.88) 27.83 (44.68)  18.6*** 23.86 (40.68) 31.46 (49.54) 13.62***
# Al col. 9.3 (18.43) 14.56 (25.80) 25.62°| 12.36 (24.12)  17.18 (20.74) 14.46***
# Newbies col. 51.95 (68.31) 55 (81.34) 4.45%** 46.83 (69.11) 59.05 (89.77) 12.41***
Exploratory profile 0.18 (0.06) 0.18 (0.06) 2.29** 0.18 (0.06) 0.18 (0.06)  3.01***
Citation stock 918.2 (2040.94) 1031.02 (2441.89) 5.48*** | 826.93 (1959.27) 1088.13 (2625.3) 9.16***
% International pub. 0.3 (0.25) 0.3 (0.25) -1.73* 0.3 (0.26) 0.29 (0.25) -0.95
Co-authors and citations of (matched) paper
# Domain aut. 10.88 (9.99) 4 (8.9) -28.68*** 8.38 (8.96) 7.67 (7.26) -7.04***
# Al exp. aut. 1.31 (2.68) 2. 77 (4.25) 44.9%** 2.67 (4.38) 2.87 (4.39) 3.7
# CS aut. 1.78 (3.46) 3 (4.45) 33.42%** 2.99 (4.73) 3.07 (4.55) 1.36
# Newbies aut. 1.28 (2.86) 1.24 (2.12) -1.63 1.23 (2.21) 1.21 (2.17)  -0.66
# Citations 4.15 (13.49) 4.75 (10.82)  5.37*** |  4.54 (10.48) 543 (12.2)  6.37**
Total 23918 23918 ‘ 13211 13211

Notes: This table presents the descriptive statistics for various variables, including their mean values and standard deviations (in
parentheses) for different matching strategies: those who didn’t use AI and those who did, as well as those who didn’t reuse AI and
those who did. The table also provides results from t-tests to determine if the mean differences between the groups are statistically
significant. Significance levels are denoted by ***, ** and * for the 1%, 5%, and 10% levels, respectively. In the Al re-use section, the
matched individuals who do not reuse Al are also part of the focal scientists using Al for the first time in the first analysis.

adoption.

Now turn to the lower part of Table 2.2. Al papers authored by first-time Al
users (see left part of table) exhibit a composition of co-authors that is different to
papers of matched individuals who do not use Al. Specifically, the number of domain
scientists tends to be smaller for first-time Al users, while the presence of individuals
with computer science specialization and Al experience nearly doubles. Furthermore,
AT articles tend to have a higher average impact.

A similar pattern is observed when examining the co-authors in papers of re-users
and non-re-users (see right part of table). The citation count of the initial AT article
is higher among those who persist in using Al technology. Moreover, individuals
who incorporate Al into their subsequent research already possess a more specialized
STHC endowment in computer science and Al compared to other researchers who will
not continue using the technology. They are also more likely to be affiliated with
highly specialized Al institutions and have increased access to computing centers.
Ultimately, individuals who maintain the use of Al in their research exhibit a more
exploratory profile and demonstrate stronger past success than their counterparts

who do not continue.

134



CHAPTER 2. BARRIERS AND DRIVERS OF Al ADOPTION

Tables 2.3 and 2.4 display basic descriptive statistics for our two estimation sam-
ples. We can immediately observe that the measures derived from collaboration net-
works are highly correlated among each other. In particular, the number of newbie
collaborators and the number of domain scientist collaborators are strongly corre-
lated with a Pearson correlation coefficient of above 0.9 in both estimation samples.
This is however expected because many newbies are likely to count as domain scien-
tists. Similarly, the number of collaborators with Al experience is strongly related
to the number of collaborators in computer science; in both samples the correlation
coefficient is above 0.8. Additionally, a clear positive correlation is visible between
the number of collaborations and the stock of citations. For completeness, the last
variable included in each table is the outcome variable, i.e. first-time Al use and
re-use of Al respectively. Note however that Table 2.2 is more appropriate to shed

light on the relation between our (binary) left-hand-side variable and right-hand-side

variables.
Table 2.3: Descriptive Statistics - first-time Al regression
Variables Mean Std(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)(12)
(1) AT inst. spe. 0.070.26 1
(2) Inst. cit. 1.370.34-0.01 1
(3) Shanghai ranked 0.050.210 0 1
(4) HPC 0.730.44-0.030.22 0 1
(5) # Domain col. 4.291.14-0.110.06 -0.030.04 1
(6) # CS col. 2.471.16-0.050.22 -0.040.11 0.77 1
(7) # AT col. 1.611.11-0.040.24 -0.050.12 0.64 0.821
(8) # Newbies col. 3.241.21-0.07-0.010 0 0.93 0.670.53 1
(9) Exploratory profile 0.180.06-0.08-0.1 0  -0.030.25 0.120.090.26 1
(10) Citation stock 5.451.77-0.040.21 -0.020.09 0.73 0.680.540.69 0.06 1
(11) % International pub.  0.290.250 0.1 -0.030 0.18 0.270.250.09 -0.150.12 1
(12) First-time AT (yes/no) 0.500.500.11 0.07 0 0.03 -0.080.090.18-0.060 -0.030 1

Notes: This table presents the descriptive statistics for the whole sample on Al adoption.

Massive adoption by researchers in life science: The majority of researchers in

our sample published in journals related to life sciences. Publications in medicine,
biology and chemistry account for 80% of first-time AI papers. The six fields pre-
sented in our regression (namely, Medicine, Biology, Chemistry, Physics, Psychology
and Materials science) represent 95% of our sample of Al papers. Researchers adopt-
ing Al tend to apply this technology in a field they are familiar with, i.e. the one
where their first research was published. In detail, 62% of researchers publish their
first Al article in the journal of the same scientific field as their first publication. We
provide estimation results on individual scientific fields after the main results on the

pooled sample in the next section.
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Table 2.4: Descriptive Statistics - re-using Al regression

Variables Mean Std (1) (2) (3) (4) () 6) (7)) (8 (9 (10) (11) (12) (13) (14) (15) (16) (17)
(1) AT inst. spe. 0.10 0.29 1

(2) Inst. cit. 1.40 0.34 -0.04 1

(3) thghal ranked 0.05 0.21 -0.03 -0.01 1

(4) H 0.74 0.44 -0.06 0.22 -0.01 1

(5) # Domnn col. 4.14 131 -0.14 0.09 -0.03 0.04 1

(6) # CS col. 256 1.23 -0.1 023 -0.04 0.11 08 1

(7) # Al col. 1.84 1.16 -0.1 0.24 -0.06 0.11 0.68 0.84 1

(8) # Newbies col. 3.10 1.34 -0.1 0.01 -0.01 0 094 0.71 0.58 1

(9) Exploratory profile 0.17 0.06 -0.11 -0.05 0 -0.01 0.34 0.2 0.15 033 1

(10) Citation stock 529 1.89 -0.09 0.2 -0.03 0.08 0.77 0.72 0.59 0.73 0.16 1

(11) % International pub. 0.29 0.26 0.01 0.09 -0.03 -0.01 0.17 0.26 0.24 0.1 -0.11 0.12 1

(12) # Domain aut. 1.91 0.61 -0.07 0.03 -0.02 0 0.34 0.19 022 029 013 0.13 0.15 1

(13) # AI exp. aut. 0.90 0.73 -0.03 0.14 -0.03 0.07 0.1 024 0.38 0.04 -0.01 0.06 0.14 0.26 1

(14) # CS aut. 1.07 0.73 -0.02 0.17 -0.03 0.08 0.14 0.35 0.31 0.08 0.02 0.09 0.19 0.2 0.65 1

(15) # Newbies aut. 0.49 0.57 0.02 -0.01 0.02 -0.03 0.07 -0.02 -0.02 0.1 0.05 -0.02 0.03 0.45 0.01 0.05 1

(16) # Citations 1.37 0.87 0.01 0.18 -0.01 0.02 0.01 0.08 0.08 -0.02 -0.04 0.11 0.1 0.09 0.19 0.23 0.02 1

(17) Re-use AI (yes/no) 0.50 0.50 0.02 0.04 0 0.01 0.08 0.13 0.16 0.08 0.02 0.07 0.01 -0.02 0.04 0.04 0.01 0.06 1

Notes: This table presents the descriptive statistics for the whole sample on re-using AI

2.4 Results

2.4.1 Main results
2.4.1.1 Conditional Logit with matching: Adopting Al

Table 2.5 presents the results of the conditional logit regression of first-time Al use
on three dimensions of STHC, i.e. institutional, social, and individual factors. Recall
that in the estimation sample the outcome, first-time Al use, is one for focal scientists
and zero for matched scientists; and that STHC is measured up to the year before
first-time AT use (see also previous section).

Table 2.5 provides coefficient estimates of four models — one column for each
dimension of STHC separately and the fourth column for estimating all coefficients
jointly. The Loglikelihood ratio tests (LR Test) at the bottom of the table confirm
that all models improve significantly over the intercept-only-model. Considering the
log likelihood in increasing order, we see that the social dimension (Column 2) is the
most informative dimension for first-time Al use, followed by institutional factors
(Column 1), and individual factors (Column 3). This is consistent with the idea
that Al relevant STHC does not solely reside in the individual scientist, but is also

a result of the granularity with which we measure the various factors.

Institutional Factors: The positive and significant coefficients of Al institution

specialization (Al inst. spe.) and institutional citation impact (Inst. cit.) in models
(1) and (4) suggest that researchers affiliated with institutions specialized in Al and
with higher citation impact are more likely to adopt Al in their work, validating

Hypothesis H1b. One explanation could be that researchers are heavily influenced
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Table 2.5: Conditional Logit with matching (first-time AI use)

Dependent variable: First-time Al use

Institutional Social Individual Full Model
(1) (2) (3) (4)
Al inst. spe. 0.719*** 0.585***
(0.039) (0.043)
Inst. cit. 0.418"* 0.241**
(0.029) (0.033)
Shanghai ranked -0.019 -0.016
(0.058) (0.065)
HPC 0.053* -0.006
(0.021) (0.024)
# Domain col. -1.503*** -1.422%*
(0.034) (0.036)
# CS col. 0.139*** 0.173**
(0.020) (0.021)
# Al col. 0.793*** 0.783**
(0.019) (0.019)
# Newbies col. 0.575** 0.549***
(0.025) (0.026)
Exploratory profile 0.331* 1.699**
(0.165) (0.193)
Citation stock -0.044** -0.083***
(0.007) (0.011)
% International pub. -0.015 -0.191%
(0.038) (0.046)
Observations 47,836 47,836 47,836 47,836
Log Likelihood -16,260.790 -14,171.280 -16,555.990 -13,969.870
LR Test 635.801*** (df = 4) 4,814.822** (df = 4) 45.419*** (df = 3) 5,217.655*** (df = 11)

Notes: This table reports coefficients of the effect STHC on Al adoption on all fields. *** ** and * indicate significance
at the 1%, 5% and 10% level, respectively. The effect of STCH on Al adoption is estimated using a conditional logit with
matching.

by their institutional environment, including shared norms, directives, and funding
focused on specific subjects. Thus, an institution with a strong Al specialization and
recognized research output can more easily leverage the financial means to facilitate
AT adoption. However, being affiliated with a Shanghai-ranked institution does not
significantly affect first-time Al use. Additionally, we partially reject Hypothesis H3
since access to high-performance computing (HPC) resources is significantly associ-
ated with AT adoption in model (1) but not in the full model (4). This suggests that
HPC may not be crucial. One reason could be that many AI models are available
pretrained and hence using them does not necessarily require elevated computational

resources. On the other hand, steep learning curves for using an HPC may create a
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barrier — that may be overcome with the help of skilled co-authors as the second
model suggests.

Social Factors: Model (2) and the full model (4) show that number of domain
collaborators (#Domain col.) has a negative and significant effect on Al adoption,
suggesting that a more extensive network of domain collaborators may actually re-
duce the likelihood of Al adoption. On the other hand, the number of computer
science collaborators (#CS col.) and Al collaborators (#AI col.) both have positive
and significant effects on Al adoption. This implies that having collaborators expe-
rienced in computer science and Al increases the likelihood of Al adoption, thereby
confirming Hypothesis Hla.

The relevance of having prior contacts to computer scientists and/or Al experi-
enced scientists may stem from two different effects. For one, such prior contacts
can facilitate subsequent collaboration in Al research through repeating ties, refer-
rals and other social processes. Moreover, individuals within a researcher’s network
help acquire about-knowledge, enabling the researcher to integrate more easily into
teams using AI. These individuals may have a greater capacity to interact with
experienced individuals, increasing their likelihood of becoming users themselves.
Researchers with too many domain-specific collaborators may be less exposed to
‘Al-related thinking’ or be part of niches where Al is still not widely used. Addition-
ally, The positive influence of early-career (#Newbies col.) research collaborators on
AT adoption confirms Hypothesis H2. Researchers can expand their research subjects
through the fresh perspectives of young researchers, and have an advantage in trying
out Al, as newer generations are better trained in modern statistical and compu-
tational approaches. Many universities, even in the social sciences, now offer data
science courses; thus, working with younger researchers may increase the probability
of using AI due to the growing proportion of individuals with the necessary skills
among the next generation.

Individual Factors: As shown in Models (3) and (4), we verify Hypothesis H4a
as having an exploratory profile positively impacts Al adoption. This suggests that

individuals with a more diverse cognitive profile are more used to exploring subjects
distant from their prior knowledge. These individuals could have an advantage in
integrating into teams using methods they have not previously used or re-orienting
their research focus to seize opportunities opened by Al methods.

Citation stock has a negative and significant effect on Al adoption, suggesting

that a higher number of past citations may reduce the likelihood of adopting Al.
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This may indicate that individuals who have already demonstrated success in their
past publications have fewer incentives to transition to AI. The negative impact
of citation stock on Al adoption validates Hypothesis H4b, indicating that scientists
with a higher scientific reputation and recognition are actually less likely to integrate
Al into their research.

Lastly, the percentage of international publications (% International pub.) does
not have a significant effect in model (3) but demonstrates a negative and significant
effect in the full model (4). Taken at face value, this could imply that researchers
who tend to work more with local colleagues have stronger connections that facili-
tate better knowledge transfer, thereby contributing more effectively to developing
a reasonably understanding of AI. Any interpretation must be cautiously however,
because the coefficient becomes significant with the introduction of (correlated) vari-

ables which hints to identification issues.

2.4.1.2 Conditional logit with matching: Re-using Al

Table 2.6 analyzes the effect of realized scientific and technical human capital (STHC)
employed in the first Al paper and STHC endowment on the re-use of Al in sub-
sequent studies. The models are similar to those in the regression of first-time Al,
but now the sample includes only focal scientists with Al experience; with scientists
re-using Al matched to those not re-using Al.

Again, log-likelihood tests indicate that all models improve significantly over the
intercept-only model. The order of model fit indicated by the log-likelihood slightly
changes: Prior co-authors (Column 2) still provide the best fit, but now individual
factors follow (Column 3), with institutional factors ranked third (Column 1). Note
that each model takes into account the experience of the first-use of Al (variables ‘#
Domain author’ to ‘# Citations’).

First-use of Al experience: The team composition of the first Al article seems to

be crucial for understanding how this technology will be integrated into the future
research of scientists. The stronger presence of individuals with prior Al experience
in a team indicates the team’s specialization in Al. It is this specialized social envi-
ronment that allows the researcher to increase his chances of reusing Al later on.
Consistently across all models (1-4), we observe that the number of domain ex-
perts (# Domain aut.) negatively effects the re-use of AI. The number of computer
science authors (# CS aut.) also has a negative effect throughout. In contrast, the

number of Al experts (# Al exp. aut.) shows positive and significant effects. It
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Table 2.6: Conditional logit with matching (re-using AI)

Dependent variable: re-using Al

Institutional Social Individual Full Model
1) (2) 3) (4)
# Domain aut. -0.303*** -0.330™** -0.324* -0.315"*
(0.026) (0.028) (0.026) (0.028)
# Al exp. aut. 0.173* 0.063** 0.176* 0.061*
(0.024) (0.027) (0.024) (0.027)
# CS aut. -0.055** -0.113** -0.061* -0.108***
(0.024) (0.026) (0.024) (0.026)
# Newbies aut. 0.155"* 0.184*** 0.177+ 0.183***
(0.024) (0.025) (0.024) (0.025)
# Citations 0.151* 0.165"** 0.133* 0.166***
(0.016) (0.016) (0.016) (0.016)
Al inst. spe. 0.102* 0.114*
(0.046) (0.047)
Inst. cit. 0.116** -0.021
(0.039) (0.041)
Shanghai ranked -0.020 -0.052
(0.078) (0.080)
HPC 0.042 0.033
(0.029) (0.030)
# Domain col. -0.258** -0.251%*
(0.038) (0.040)
# CS col. 0.079*** 0.101**
(0.027) (0.028)
# AT col. 0.274** 0.280***
(0.025) (0.025)
# Newbies col. 0.245** 0.230***
(0.030) (0.030)
Exploratory profile 0.957** 0.779**
(0.232) (0.242)
Citation stock 0.132%* 0.004
(0.010) (0.014)
% International pub. -0.137* -0.337**
(0.052) (0.055)
Observations 26,422 26,422 26,422 26,422
Log Likelihood -9,008.229 -8,717.901 -8,923.676 -8,687.683
LR Test 207.877* (df =9) 878.533** (df =9) 466.984** (df =8) 938.969** (df = 16)

Notes: This table reports coefficients of the effect of STHC endowment and realized STHC on re-using Al in all fields. ***,
** and * indicate significance at the 1%, 5% and 10% level, respectively. The effect of STCH on re-using Al is estimated using a
conditional logit with matching.

seems that the team shouldn’t be composed of too many computer scientists and do-
main scientists, i.e., the team should not be too large (since the sum of the two gives

the number of authors). Also, we see that the presence of early-career researchers (#
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Newbies aut.) is crucial, as they are more likely to bring new skills and may remain
connected to the team. For example, the re-use of Al could be induced by doctoral
students who publish several Al papers with their supervisors.

Interpretation of these findings is possible in light of an additional regression of
re-using Al based on a sample with focal scientists having a first Al paper earlier, up
to 2018 instead of 2020 (see appendix, Table 2.16). In that regression, the number
of collaborators in the first Al paper with prior experience in Al do not play a
significant role. Instead, it is the presence of newcomers in the first Al paper that
is crucial. This highlights the extent to which the new generation is initiating this
paradigm shift and transmitting it to researchers that are more advanced in their
careers. Indeed, in the larger sample that extends up to 2020, which is the basis
for our main regression results provided here, many of these newcomers have become
individuals with AT experience. This is why their contribution has become significant
in re-using Al.

Finally, the reward associated with the first Al publication in terms of citations
positively influences re-using Al. This shows the incentives that exist when peers
validate the article with which a researcher has transitioned to Al.

STHC Endowment: The results of this section are very similar to those of first-

use of Al for all dimensions of the measured STHC. However, there is one exception:
the citation stock of researchers and their institutions no longer seem to play a role
in encouraging continuing Al-based research.

Institutional Factors: In Model 1, Al institutional specialization (Al inst. spe.)
and institutional citation impact (Inst. cit.) have positive and significant effects on
re-using Al. However, the significance of the institutional citation impact disappears
in the full model (4). The Shanghai ranking and HPC variables are not significant
in any model. This suggests that, what sets apart scientists persistently applying Al
from those trying out once Al is not primarily their institutional resources.

Social Factors: Model 2 reveals findings similar to the regressions on the first use
of AL. Our analysis shows a negative effect of the number of domain collaborators
(# Domain col.) on re-using Al, while the number of computer science collaborators
(# CS col.) and the number of Al collaborators (# Al col.) exhibit positive effects.
Furthermore, the number of new collaborators (# Newbies col.) positively influences
re-using Al All this is consistent with the full model (4).

Individual Factors: In Model 3, we see a strong positive and significant effect of

an exploratory profile on re-using Al. The citation stock exhibits a positive influence,
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but this effect disappears in the full model (4). Lastly, the percentage of interna-
tional publications (% International pub.) has a negative and significant impact on
re-using Al in both Model 3 and Model 4. This finding is consistent with the idea
that collaborating with geographically proximate researchers is essential for build-
ing long-term relationships to work on Al-related topics. Such proximity facilitates

communication and learning from colleagues [van der Wouden and Youn, 2023].

2.4.2 Extension: AI adoption across scientific fields and time

Table 2.7 delves into a field-level analysis, confirming that our results are generally

stable across fields but that there are also some relevant differences.

Table 2.7: Conditional Logit with matching across fields (first-use of Al)

Dependent variable: first-use of Al

Medicine Biology Chemistry Physics Psychology ~ Materials science
(1) (2) (3) (4) (5) (6)
AT inst. spe. 0.650*** 0.653*** 0.271** 0.607*** 0.700** 0.716***
(0.082) (0.069) (0.123) (0.144) (0.295) (0.182)
Inst. cit. 0.303*** 0.260*** -0.198 0.253* 0.212 0.796***
(0.051) (0.053) (0.131) (0.142) (0.243) (0.293)
Shanghai ranked 0.012 0.029 -0.094 -0.544 -0.393 -0.239
(0.110) (0.099) (0.223) (0.360) (0.392) (0.430)
HPC -0.032 -0.001 0.237+ 0.114 0.026 -0.184
(0.037) (0.038) (0.087) (0.104) (0.175) (0.184)
# Domain col. -1.290* -1.450** -1.684* -1.620™ -1.417 -1.285"
(0.058) (0.057) (0.141) (0.145) (0.215) (0.265)
# CS col. 0.154** 0.243** 0.153** 0.054 -0.176 0.528***
(0.033) (0.033) (0.074) (0.093) (0.155) (0.149)
# Al col. 0.799*** 0.668"*** 0.701*** 1.100%+* 1.290*** 0.579***
(0.030) (0.030) (0.070) (0.083) (0.132) (0.130)
# Newbies col. 0.605"** 0.560*** 0.537** 0.332* 0.311* 0.136
(0.041) (0.041) (0.095) (0.103) (0.163) (0.175)
Exploratory profile 2271 1.197** 1.866™* 2.585** 2.303** -1.361
(0.288) (0.308) (0.867) (1.131) (1.108) (1.925)
Citation stock -0.088*** -0.095*** -0.023 -0.050 -0.105 -0.201*
(0.016) (0.018) (0.043) (0.041) (0.074) (0.084)
% International pub. -0.338"** -0.060 -0.124 -0.452* 0.594** 0.055
(0.073) (0.072) (0.174) (0.206) (0.295) (0.338)
Observations 19,684 18,484 3,400 2,758 1,374 1,022
Log Likelihood -5,818.122 -5,437.961 -966.666 -687.362 -333.878 -277.148
LR Test (df = 11) 2,007.665**  1,936.211"*  423.369"**  536.977"*  284.627"* 154.101***

Notes: This table reports coefficients of the effect STHC on AI adoption across fields. *** ** and * indicate significance at the
1%, 5% and 10% level, respectively. The effect of STCH on Al adoption is estimated using a conditional logit with matching.

Institutional factors: Our analysis shows that Al institution specificity (Al inst.
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spe.) impacts is consistent across all fields. Institutional citations (Inst. cit.) are
also significantly positively related to first-use of Al in most fields, except in Chem-
istry, where the effect is insignificant. The Shanghai ranking is insignificant in any of
the fields. Our results indicate that HPC may be particularly relevant in Chemistry,
where it is significantly positively related with first-use of AI. One possible expla-
nation for this finding is that Chemistry often involves computationally intensive
tasks, such as molecular simulations, which require substantial computational power
provided by HPC resources. This may lead to a stronger dependence on HPC in
Chemistry compared to other fields, thus making it a more influential factor in Al
adoption.

Social factors: The number of domain collaborations (# Domain col.) is nega-
tively related to Al adoption across all fields. In contrast, the number of computer
science collaborators (# CS col.) positively relates to Al adoption in Medicine, Bi-
ology, Chemistry, and Materials Science. At the same time, it is not significant in
Physics and Psychology. This may reflect different Al integration levels but also dif-
ferences in prevalence of Al relevant skill sets across domains. Moreover, the number
of AT collaborations (# Al col.) relates consistently and significantly to Al adoption
in all fields.

Individual factors: The exploratory profile has a significant positive relation to

first-time Al use in Medicine, Biology, Chemistry, Physics, and Psychology, but not
in Materials Science. The citation stock has a significant negative effect on first-time
AT use in Medicine, Biology, and Materials Science, while it is not significant in the
other fields. The percentage of international publications (% International pub.) has
a significant negative effect on first-time Al use in Medicine and Physics, a significant
positive impact in Psychology, and is not significant in the other fields. Why that is

the case is not clear at the current state of research.

Table 2.8 shows results on Al re-use at the field level. Considering the realized
STHC in the first Al paper, we find that the number of domain authors (# Domain
aut.) is negatively and significantly associated with AI re-use across all fields, except
for Psychology, where the association is insignificant. This observation is consistent
with the pooled regression analysis. In contrast, the number of Al expert authors
(# AI exp. aut.) exhibits mixed results. It is positively and significantly related to
AT re-use in Medicine, yet negatively related in Chemistry and Psychology, and not
significant in other fields. This may indicate that the effectiveness of Al expertise in

promoting Al re-use varies between fields, depending on the particularities of each

143



CHAPTER 2. BARRIERS AND DRIVERS OF Al ADOPTION

Table 2.8: Conditional Logit with matching across fields (Reusing AI)

Dependent variable: Reusing Al

Medicine Biology Chemistry Physics Psychology =~ Materials science
(1) (2) (3) (4) (5) (6)
# Domain aut. -0.278** -0.297** -0.646** -0.393** 0.221 -0.469*
(0.041) (0.050) (0.127) (0.102) (0.180) (0.268)
# Al exp. aut. 0.137** 0.065 -0.246** -0.136 -0.579** 0.001
(0.039) (0.047) (0.103) (0.112) (0.194) (0.232)
# CS aut. -0.095** -0.138*** -0.037 -0.028 0.307* -0.155
(0.040) (0.045) (0.102) (0.104) (0.180) (0.231)
# Newbies aut. 0.229** 0.100** 0.270** 0.333** -0.410** 0.629**
(0.036) (0.044) (0.102) (0.105) (0.179) (0.244)
# Citations 0.118** 0.199** 0.388*** 0.139** 0.269** 0.4917*
(0.023) (0.029) (0.073) (0.068) (0.110) (0.134)
Al inst. spe. 0.040 0.093 0.220* 0.013 0.537* 0.175
(0.089) (0.082) (0.132) (0.129) (0.293) (0.222)
Inst. cit. 0.058 -0.141** -0.076 0.160 0.237 -0.311
(0.063) (0.069) (0.166) (0.153) (0.289) (0.372)
Shanghai ranked 0.029 -0.067 -0.408 0.191 -0.055 0.080
(0.132) (0.126) (0.262) (0.329) (0.458) (0.618)
HPC 0.139** -0.078 0.178* -0.099 0.007 0.022
(0.047) (0.051) (0.104) (0.116) (0.195) (0.230)
# Domain col. -0.246*** -0.329*** -0.229* -0.107 -0.140 -0.313
(0.066) (0.068) (0.134) (0.128) (0.220) (0.274)
# CS col. 0.104** 0.199** 0.123 -0.103 -0.110 -0.229
(0.045) (0.049) (0.092) (0.105) (0.179) (0.198)
# Al col. 0.293** 0.194** 0.311%* 0.375** 0.649*** 0.425**
(0.039) (0.042) (0.090) (0.092) (0.169) (0.178)
# Newbies col. 0.265** 0.307** 0.131 -0.002 0.144 0.172
(0.049) (0.052) (0.102) (0.097) (0.175) (0.213)
Exploratory profile 1.386*** 0.425 -1.002 0.790 2.039 -2.230
(0.355) (0.413) (0.956) (1.163) (1.289) (2.513)
Citation stock 0.015 -0.031 -0.076 0.048 0.066 0.091
(0.020) (0.025) (0.053) (0.048) (0.084) (0.117)
% International pub. -0.331** -0.334*** -0.228 -0.170 -0.460 -0.689*
(0.087) (0.095) (0.211) (0.195) (0.317) (0.418)
Observations 11,982 8,752 2,042 1,808 886 520
Log Likelihood -3,862.273  -2,881.568 -656.582 -596.359 -270.364 -159.776
LR Test (df = 16) 580.743**  303.288*** 102.243*  60.493*** 73.400%** 40.884***

Notes: This table reports coefficients of the effect STHC on re-using Al across fields. *** ** and * indicate significance at the
1%, 5% and 10% level, respectively. The effect of STHC on re-using Al is estimated using a conditional logit with matching.

discipline. The number of computer science authors (# CS aut.) is negatively and

significantly related to Al re-use in Medicine and Biology. Conversely, it is positively

related in Psychology and not significant in other fields. These contrasting effects

in different fields may be due to the varying roles of computer science expertise in

144



CHAPTER 2. BARRIERS AND DRIVERS OF Al ADOPTION

driving Al adoption, contingent on the subject matter. Further research however is
needed to pinpoint the strong variation of coefficient estimates across scientific fields.

The number of new authors (# Newbies aut.) and the number of citations (#
Citations) are consistent with our findings at the aggregated level. An exception is
found in Psychology, where new authors do not appear to foster the re-use of the
technology. This might be because training in data science for psychologists is not
well-developed yet, or applications of Al in this field require skills beyond the scope
of individuals trained in this area.

Regarding STHC endowments, Al institutional specialization (Al inst. spe.) is
positively related to Al re-use in Chemistry and Psychology, while not significant in
other fields. This suggests that institutional support for AI may be more critical in
some fields than others and that these two fields primarily drive the positive effect
seen in the pooled regression. Although not significant in the pooled regression,
institutional citation impact (Inst. cit.) is negatively associated with Al re-use in
Biology. This could mean that higher institutional research quality reduces Al re-
use in Biology, possibly due to a reliance on expertise in more traditional methods.
High-performance computing (HPC) is positively related to Al re-use in Medicine
and Chemistry and not significant in other fields, emphasizing the importance of
computational resources in these domains for persistent integration of Al into re-
search.

Medicine and Biology drive the majority of the social factors observed in the
pooled sample, such as the number of domain collaborators (# Domain col.), com-
puter science collaborators (# CS col.), and new collaborators (# Newbies col.),
which are only significant in these fields. Also, the number of Al collaborators (# Al
col.) is consistent across all fields, highlighting that the availability of Al knowledge
through colleagues’ expertise is crucial in every field.

Regarding individual factors, the exploratory profile and citation stock variables
do not display a consistent pattern across fields. The effect of exploratory profiles
is only visible in Medicine. The percentage of international publications (% Interna-
tional pub.) is negatively related to Al re-use in Medicine, Biology, and Materials

Science.
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2.5 Conclusion

In this study, we examined factors influencing the adoption and reuse of Al in scien-
tific research, focusing on institutional, social, and individual factors.

First, we highlighted the importance of Al specialization within institutions:
when Al ‘is in the air’, the likelihood of adoption increases, which is not all that
surprising. Second, and contrary to our expectations, access to high-performance
computing resources and affiliation with top-tier universities may not be decisive
factors, at least in most fields of application (except, for example, medicine). Third,
regarding social factors, we showed that network position matters, particularly when
scientists are closely connected to peers who have already used Al in their research.
Also, collaborations with early-career researchers — i.e., newbies — seem to contribute
significantly to the adoption process, presumably because of their up-to-date training
and expertise. Finally, we found that some individual characteristics are important
when it comes to integrating Al into scientific practices. A taste for exploration, for
instance, seems to enhance the ability of individuals to recognize the potential of Al
in their application domains and prompt them to ‘give it a try’; conversely, having
a dominant position and high reputation within a field tends to hinder this propen-
sity. Taken together, our findings offer some insights for policymakers and science
administrators aiming to enhance the diffusion of Al tools in the sciences, providing
them with a broader understanding of the complex interplay between these factors.
Some critical reflections are therefore in order.

Let us begin with how one might rethink the institutional context in which re-
search takes place. An organizational climate that emphasizes individual competition
over cooperation may pose a barrier to knowledge sharing and circulation. Indeed,
given the relative ease with which funding for AI research can be obtained (at least
at present), scientists may be reticent to share their Al-related knowledge with their
colleagues to avoid intensifying competition. Incentives can be put in place to create
a supportive culture and foster knowledge circulation within institutions as well as
among epistemic communities. Such incentives can be intrinsic, such as recognition
and praise, and further supplemented with extrinsic rewards, such as bonuses and
higher salaries.

While incentives are valuable, facilitating knowledge sharing can also be achieved
by establishing a work environment that promotes interactions among scientists and
communication across departments. This can be accomplished, for instance, through

informal Al-focused events rather than (often futile) interdisciplinary ambitions. In
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this regard, organizations should be able to identify ‘boundary-spanning’ individuals
who are eager to share their (tacit) Al knowledge and expertise with their peers,
while also possessing effective communication skills to engage non-Al experts and
pique their interest. Lastly, we think that organizations could set some research
priorities around Al, thus creating a sense of group identity and personal respon-
sibility [Cabrera and Cabrera, 2002]. A relevant theory for this purpose is that of
‘organization-based self-esteem’ (OBSE), which refers to the degree to which an in-
dividual considers him/herself capable, significant, and worthy as a member of the
organization (Wang and Noe, 2010). As such, scientists may be more likely to share
their knowledge with others if they feel their competencies align with the organiza-
tion’s goals.

Our results seem to suggest that computational resources are not a major de-
terminant of Al adoption, except for some areas. Thus, if the policy ambition is
to democratize Al in as many application domains as possible, one may wonder
whether large investments in computational facilities such as HPC — which come
with substantial overheads and the need for specialized human resources — are the
most effective strategy. Alternatively, a more modest but widespread investment in
data science/ML laptops and workstations can be a powerful vehicle for Al adoption
in the sciences and, why not, a mechanism to broaden access to technology and close
computing divides.

We do not rule out, however, that computational resources are a significant asset
when it comes to cutting-edge Al research, as evidence suggests (Sevilla et al., 2022).
According to a recent study by the OECD [2023], when asked about the main barriers
or challenges to accessing Al computation, about 50 % of respondents cited the cost
of Al compute. Thus, the lack of financial resources for most public and private
organizations can give a group of big players an unfair advantage that results in a
concentration of power. More in general, we believe that further research is needed
to understand better the demand for Al compute, particularly in domain-specific
applications, and not solely for core Al research.

Finally, we refrain from making recommendations on how to nudge individual
choices toward exploration while maintaining some degree of exploitation, which is
nonetheless essential for scientific progress. Yet we can state with some confidence
that current trends in science policy and scientific communities, from impact assess-
ments to targeted research funding (see, e.g., Franzoni et al., 2022), are unlikely to

favor exploratory research paths. Perhaps it is time to rethink these habits as well.
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2.6 Appendix

Data
This section details some aspects of the data set and how it was treated.

Table 2.9: Number of authors per concept for first Al publication and first publica-
tion in the sample

Concept AT pub. first concept First pub. first concept
Medicine 29762 31823
Biology 29469 23200
Physics 5727 5995
Chemistry 5691 7525
Psychology 2549 2489
Materials science 1763 1856
Geology 1213 1085
Economics 1080 414
Engineering 856 905
Geography 357 297
Mathematics 180 243
Political science 103 187
Philosophy 54 114
Environmental science 41 53
Business 32 49
Sociology 17 34
Art 10 57
History 3 18
Total 78907 76344

Notes: This table reports the number of authors per concept for their first Al publication and their first
publication in the sample
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Table 2.10: Number of authors per first publication concept on all OpenAlex

concept  share (all)  ai_concept  share (AI)

NaN 133883095 0.55 1621837 0.57
Art 2992083 0.01 2843 0.00
Biology 22657217 0.09 288427 0.10
Business 1123248 0.00 9979 0.00
Chemistry 12103929 0.05 98775 0.03
Computer science 8907260 0.04 837505 0.30
Economics 2590735 0.01 44780 0.02
Engineering 4904995 0.02 149083 0.05
Environmental science 150569 0.00 1206 0.00
Geography 789458 0.00 22084 0.01
Geology 1919726 0.01 34395 0.01
History 1351900 0.01 782 0.00
Materials science 4353568 0.02 48982 0.02
Mathematics 2000396 0.01 51949 0.02
Medicine 47610267 0.20 395575 0.14
Philosophy 2531771 0.01 7312 0.00
Physics 10253095 0.04 221476 0.08
Political science 4234858 0.02 13403 0.00
Psychology 3947498 0.02 38739 0.01
Sociology 681340 0.00 1722 0.00
Nb unique author 242118813 1.00 2837138 1.00

Notes: This table reports the number of authors per concept of first publication on all Ope-
nAlex, and for Al articles.
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Table 2.11: Al terms used to label articles

Terms

adversarial network
generative adversarial network
artificial intelligence
autoencoder
backpropagation

Bayesian learning

bayesian network

deep belief network

deep learning

ensemble learning

hebbian learning
instance-based learning
Kernel learning

K-means

latent dirichlet allocation
latent semantic analysis
long short term memory
machine learning

extreme machine learning
Markovian

hidden Markov model
multi-layer perceptron
naive Bayes classifier
natural language generation
natural language processing
natural language understanding
nearest neighbour algorithm
neural network

artificial neural network
convolutional neural network
deep convolutional neural network
deep neural network
recurrent neural network
neural turing

neural turing machine
Q-learning

random forest

regression tree
reinforcement learning
semi-supervised learning
stochastic gradient
supervised learning

support vector regression
transfer learning
unsupervised learning
variational inference

vector machine

support vector machine

Notes: This table reports the list of Al
terms used to identify AI articles.
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Table 2.12: Regular expression used to label HPC availability

Label Regular Expressions

Yes

/yes7 )

'the .{0,50} has a high( —-)performance computing’

"the .{0,50} does have a high( —)performance computing’

"the university of .{0,50} has an infrastructure for high( —-)performance computing’
‘there is a high( —-)performance computing’

"the university of .{0,50} has a computational infrastructure’

it also has a high( —)performance computing’

No

7ﬁ07 )

"there is no information available’

"the university of .{0,50} is not mentioned’

’there is no evidence’

’there is no mention of’

‘there is no evidence that the university .{0,50} has a high(-— )performance computing infrastructure’
it is unclear (whether—if) the’

it is not clear if the university of .{0,50} has a high( —)performance computing’
’does not appear’

"the university of .{0,50} does not have a high’

"there is no clear information’

’i could not find .{0,4}information’

"does not have its high performance’

it appears that the university of .{0,50} does not have’

"there is no information in the provided search’

Notes: This table reports the regular expressions used to label HPC availability in a given institution based on the answer
received from Perplexity.ai after asking ...’
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Robustness check

As a robustness check, the same analysis has been reported on focal scientists with
a first Al paper in the years 2012 to 2018 (instead of 2020), and re-using AI up to
2022. This is of interest because it provides insights on earlier first-time Al papers,
and it increases the observation period after the first Al paper, which provides more

time to observe re-using Al.

Table 2.13: Descriptives statistics for both matching strategies (2012-2018)

First-time Al Re-use Al

Variable Matched scientists Focal scientists T-test | Matched scientists Focal scientists T-test

(without AT) (with AT) (not re-using AI)  (re-using Al)
STHC endowment
Al inst. spe. 0.04 (0.21) 0.1 (0.3) 17.03*** 0.09 (0.29) 0.1 (0.3) 1.99**
Inst. cit. 3.11 (5.34) 3.27 (1.86) 2.9%** 3.26 (2) 3.34 (2) 2.41**
Shanghai ranked 0.05 (0.21) 0.05 (0.21) 0.26 0.05 (0.21) 0.05 (0.21) -0.09
HPC 0.72 (0.45) 0.75 (0.43) 477 0.74 (0.44) 0.75 (0.43) 1.65*
# Domain col. 131.26 (161.92)  137.2 (202.37) 2.45** 117.15 (170.04)  156.82 (231.27) 11.57**
# CS col. 18.72 (31.15) 25.28 (42.07) 13.39* 21.17 (36.41) 30.11 (46.68) 12.64**
# Al col. 6.58 (14.07) 11.14 (20.46) 19.63** 9.14 (17.65) 14.35 (24.3)  14.51**
# Newbies col. 47.65 (62.73) 49.82 (75.89)  2.36** 41.94 (64.41) 56.24 (85.36)  11.2*
Exploratory profile 0.18 (0.06) 0.18 (0.06) -0.42 0.17 (0.06) 0.18 (0.06) 2.38**
Citation stock 814.59 (1800.97) 883.4 (1893.5) 2.81** | 723.18 (1642.2) 994.24 (2111.29) 8.49™**
% International pub. 0.29 (0.25) 0.29 (0.25) 0.74 0.29 (0.26) 0.29 (0.25) 0.79
Realized STHC
# Domain aut. 10.26 (9.67) 7.5 (7.78)  -23.75%* 7.49 (7.61) 7.22 (6.88) -2.2%
# Al exp. aut. 0.94 (2.28) 2.25 (3.29)  34.97 2.16 (3.22) 2.41 (3.62) 4.35%*
# CS aut. 1.75 (3.47) 2.9 (44) 21.98** 2.86 (4.7) 2.95 (4.21) 1.21
# Newbies aut. 1.17 (2.55) 0.98 (1.58)  -6.88"** 0.97 (1.71) 0.99 (1.62) 0.59
# Citations 4.55 (13.59) 5.28 (13.14)  4.13*** 4.96 (12.49) 5.91 (14.38) 4.16**
Total 11415 11415 7013 7013

Notes: This table presents the descriptive statistics for various variables for the period 2012-2018, including their mean values
and standard deviations (in parentheses) for different matching strategies: those who didn’t use AI and those who did, as well as
those who didn’t reuse AI and those who did. The table also provides results from t-tests to determine if the mean differences
between the groups are statistically significant. Significance levels are denoted by *** ** and * for the 1%, 5%, and 10% levels,
respectively. In the AI re-use section, the matched individuals who do not reuse Al are also part of the focal scientists using Al for
the first time in the first analysis.
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Table 2.14: Conditional logit with matching (first-use of Al) (2012-2018)

Dependent variable: first-use of Al

Institutional Social Individual Full Model
(1) 2) (3) (4)
AT inst. spe. 0.969*** 0.826***
(0.058) (0.065)
Inst. cit. 0.420*** 0.179***
(0.042) (0.050)
Shanghai ranked 0.001 0.025
(0.069) (0.079)
HPC 0.078"* -0.008
(0.032) (0.036)
# Domain col. -1.613* -1.520"**
(0.051) (0.053)
# CS col. 0.208*** 0.233***
(0.029) (0.030)
# Al col. 0.846*** 0.838***
(0.027) (0.027)
# Newbies col. 0.602*** 0.570***
(0.038) (0.039)
Exploratory profile -0.176 1.307
(0.230) (0.276)
Citation stock -0.059*** -0.084***
(0.010) (0.016)
% International pub. 0.096* -0.046
(0.056) (0.068)
Observations 22,832 22,832 22,832 22,832
R? 0.019 0.118 0.001 0.127
Max. Possible R? 0.500 0.500 0.500 0.500
Log Likelihood -7,695.999 -6,483.322 -7,896.683 -6,366.616
Wald Test 388.390** (df = 4) 1,999.590** (df = 4) 32.420** (df = 3) 2,105.850*** (df = 11)
LR Test 433.939" (df = 4) 2,859.293"** (df = 4) 32.570*** (df = 3) 3,092.704** (df = 11)

Score (Logrank) Test 418.019* (df = 4) 2,502.995" (df = 4) 32.518"* (df = 3) 2,683.228" (df = 11)

Notes: This table reports coefficients of the effect STHC on AI adoption on all fields for the period 2012-2018. *** **
and * indicate significance at the 1%, 5% and 10% level, respectively. The effect of STCH on Al adoption is estimated using
a conditional logit with matching.
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Table 2.15: Conditional logit with matching (first-use of Al; 2012 — 2018)

Dependent variable: first-use of Al

Medicine Biology = Chemistry Physics Psychology Materials science
(1) 2) (3) (4) () (6)
AT inst. spe. 1.080*** 0.812*** 0.557**  0.556** 0.999* 0.744**
(0.135) (0.098) (0.194) (0.229) (0.408) (0.331)
Inst. cit. 0.103 0.310** -0.314 0.195 0.332 1.395**
(0.085) (0.076) (0.204) (0.202) (0.327) (0.540)
Shanghai ranked 0.208 -0.003 -0.127 -0.312 -0.621 0.628
(0.137) (0.118) (0.279) (0.424) (0.401) (0.695)
HPC 0.017 -0.012 0.157 -0.057 0.005 -0.344
(0.062) (0.054) (0.136) (0.156) (0.224) (0.344)
# Domain col. -1.409*** -1.536™*  -1.781** -1.872**  -1.270™** -1.942***
(0.094) (0.079) (0.214) (0.224) (0.253) (0.491)
# CS col. 0.257** 0.297** 0.292** -0.027 -0.031 0.392
(0.053) (0.046) (0.109) (0.129) (0.204) (0.266)
# Al col. 0.850*** 0.706*** 0.796**  1.274**  1.345" 0.792**
(0.047) (0.041) (0.105) (0.124) (0.176) (0.231)
# Newbies col. 0.684*** 0.532*** 0.636**  0.570™* 0.137 0.101
(0.068) (0.058) (0.149) (0.163) (0.201) (0.350)
Exploratory profile 1.434 1.241% 1.718 2.511 2917 -2.420
(0.448) (0.417) (1.254) (1.718) (1.331) (3.703)
Citation stock -0.083*** -0.093*** -0.096 -0.038 -0.142 -0.078
(0.026) (0.025) (0.062) (0.061) (0.097) (0.155)
% International pub. -0.209* 0.114 0.206 -0.372 0.049 0.532
(0.116) (0.104) (0.262) (0.298) (0.390) (0.674)
Observations 8,182 9,814 1,632 1,350 902 378
R? 0.121 0.122 0.142 0.198 0.204 0.222
Max. Possible R? 0.500 0.500 0.500 0.500 0.500 0.500
Log Likelihood -2,309.781  -2,761.502 -440.586 -318.644  -209.607 -83.588
Wald Test (df = 11) 734.490**  885.070*** 160.130*** 160.190*** 109.460*** 48.710***
LR Test (df = 11) 1,051.769*** 1,279.543*** 250.045** 298.460*** 206.005*** 04.834***
Score (Logrank) Test (df = 11) 924.707** 1,115.180** 210.264*** 237.112*** 165.562*** 75.269***

Notes: This table reports coefficients of the effect STHC on AI adoption across fields for the period 2012-2018. *** ** and *
indicate significance at the 1%, 5% and 10% level, respectively. The effect of STCH on Al adoption is estimated using a conditional

logit with matching.
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Table 2.16: Conditional logit with matching (re-using Al; 2012 — 2018)

Dependent variable: re-using Al

Institutional Social Individual Full Model
(1) (2) (3) (4)
# Domain aut. -0.175% -0.211% -0.198** -0.189**
(0.034) (0.038) (0.035) (0.039)
# Al exp. aut. 0.125%* -0.025 0.132%** -0.027
(0.032) (0.037) (0.033) (0.037)
# CS aut. -0.003 -0.082* -0.015 -0.073**
(0.032) (0.036) (0.032) (0.036)
# Newbies aut. 0.122%* 0.149** 0.141* 0.143*
(0.035) (0.036) (0.035) (0.037)
# Citations 0.125** 0.142*** 0.098*** 0.145*
(0.021) (0.022) (0.021) (0.022)
Al inst. spe. 0.116* 0.133*
(0.059) (0.062)
Inst. cit. 0.147* -0.062
(0.053) (0.058)
Shanghai ranked 0.009 -0.023
(0.088) (0.092)
HPC 0.031 0.026
(0.041) (0.042)
# Domain col. -0.335"* -0.330"*
(0.052) (0.055)
# CS col. 0.115** 0.140**
(0.037) (0.039)
# Al col. 0.358*** 0.364***
(0.033) (0.033)
# Newbies col. 0.321** 0.299**
(0.042) (0.043)
Exploratory profile 1.058*** 0.952%*
(0.314) (0.331)
Citation stock 0.166*** 0.014
(0.014) (0.019)
% International pub. -0.101 -0.356***
(0.072) (0.077)
Observations 14,026 14,026 14,026 14,026
R? 0.008 0.044 0.018 0.046
Max. Possible R? 0.500 0.500 0.500 0.500
Log Likelihood -4,807.279 -4,547.324 -4,736.299 -4,528.260
Wald Test 104.830*** (df = 9) 551.500™** (df ) 235.850** (df = 8) 581.250*** (df = 16)

LR Test 107.525** (df = 9) 627.435™* (df
Score (Logrank) Test 106.605** (df = 9) 599.997** (df

9
9) 249.483* (df = 8) 665.563*** (df = 16)
9) 244.735* (df = 8) 634.974*** (df = 16)

Notes: This table reports coefficients of the effect STHC on re-using Al in all fields for the period 2012-2018. ***,
** and * indicate significance at the 1%, 5% and 10% level, respectively. The effect of STCH on re-using Al is estimated
using a conditional logit with matching.
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Table 2.17: Conditional logit with matching (re-using Al; 2012 — 2018)

Dependent variable: re-using Al
Medicine Biology Chemistry Physics Psychology Materials science

(1) (2) (3) (4) (5) (6)
# Domain aut. -0.058  -0.200"*  -0.559"** -0.567*** 0.155 -0.321
(0.062) (0.065) (0.191)  (0.145) (0.208) (0.564)
# Al exp. aut. 0.024 0.001 -0.385"**  0.003 -0.673*** 0.379
(0.057) (0.061) (0.146)  (0.160) (0.227) (0.514)
# CS aut. -0.014 -0.104* -0.073 -0.015 0.305 -0.086
(0.059) (0.058) (0.149)  (0.143) (0.209) (0.526)
# Newbies aut. 0.152%*  0.122** -0.029  0.663*** -0.261 1.073*
(0.058) (0.059) (0.150)  (0.154) (0.215) (0.573)
# Citations 0.038 0.236***  0.352*** 0.096 0.331*** 1.102%*
(0.034) (0.037) (0.107)  (0.095) (0.128) (0.326)
Al inst. spe. -0.003 0.129 0.292* 0.103 0.580* 0.183
(0.122) (0.104) (0.177)  (0.181) (0.337) (0.521)
Inst. cit. 0.039 -0.206** 0.093 0.092 -0.171 -1.010
(0.100) (0.090) (0.230)  (0.203) (0.383) (0.858)
Shanghai ranked 0.098 -0.119 -0.448 0.383 0.121 -0.472
(0.159) (0.140) (0.307)  (0.409) (0.484) (1.025)
HPC 0.157** -0.058 0.041 -0.104 0.256 -0.423
(0.071) (0.068) (0.149)  (0.163) (0.240) (0.547)
# Domain col. -0.3207*  -0.474**  -0.522"**  -0.098 -0.176 0.289
(0.099) (0.089) (0.1838)  (0.186) (0.267) (0.561)
# CS col. 0.244**  0.209*** 0.103 -0.289* -0.230 0.181
(0.067) (0.061) (0.122)  (0.153) (0.211) (0.412)
# Al col. 0.340**  0.287**  0.409**  0.465"**  0.809*** 0.261
(0.056) (0.053) (0.127)  (0.130) (0.206) (0.432)
# Newbies col. 0.314**  0.422**  0.488**  -0.073 0.261 0.272
(0.075) (0.071) (0.150)  (0.148) (0.202) (0.455)
Exploratory profile 1.548** 0.456 -0.268 3.018* 3.045% -3.208
(0.529) (0.533) (1.231)  (1.680) (1.590) (6.220)
Citation stock 0.042 -0.040 -0.122*  0.233*** 0.037 -0.722%**
(0.029) (0.032) (0.073)  (0.070) (0.097) (0.275)
% International pub. -0.464**  -0.148 -0.277 -0.015 -0.721* -1.094
(0.130) (0.126) (0.292)  (0.283) (0.399) (1.058)
Observations 5,724 5,272 1,046 984 644 160
R? 0.073 0.045 0.058 0.062 0.086 0.167
Max. Possible R? 0.500 0.500 0.500 0.500 0.500 0.500
Log Likelihood -1,766.548 -1,705.258 -331.409 -309.618 -194.274 -40.847
Wald Test (df = 16) 352.880*** 213.340*** 51.710"** 52.600*** 44.570*** 17.220
LR Test (df = 16) 434478 243. 757 62.215™* 62.821** 57.838*** 29.210™*
Score (Logrank) Test (df = 16) 404.309*** 232.733** 58.259*** 59.133** 52.944*** 24.419*

Notes: This table reports coefficients of the effect STHC on re-using Al across fields for the period 2012-2018. *** **
and * indicate significance at the 1%, 5% and 10% level, respectively. The effect of STCH on re-using Al is estimated using
a conditional logit with matching.
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Chapter 3

Nowvelpy: A Python Package to
Measure Novelty and
Disruptiveness of Bibliometric and
Patent Data

This chapter was co-authored with

Kevin WIRTZ

Summary of the chapter

Novelpy (v1.2) is an open-source Python package designed to compute bibliometric indica-
tors. The package aims to provide a tool for the scientometrics community that centralizes
various measures of novelty and disruptiveness, enables their comparison, and fosters repro-
ducibility. This paper offers a comprehensive review of the different indicators available in
Novelpy by formally describing these measures (both mathematically and graphically) and
presenting their advantages and limitations. We then compare the different measures on a
random sample of 1.5M articles drawn from the Pubmed Knowledge Graph to demonstrate
the module’s capabilities. We encourage anyone interested to participate in the develop-

ment of future versions.
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3.1 Introduction

Identifying and tracking relevant pieces of knowledge remains a core issue in the Sci-
ence of Science research. A better understanding of knowledge flow dynamics, mech-
anisms behind the emergence of new ideas, and identification of novel or impactful
documents are crucial for fostering effective science, which will, in turn, help address
future societal challenges [Fortunato et al., 2018, Foster et al., 2021, OECD, 2021].
This article proposes integrating various bibliometric indicators within a Python
package. It assembles within a single module novelty or, more broadly, creativity
measurements through combinatorial novelty indicators [Uzzi et al., 2013, Foster
et al., 2015, Lee et al., 2015, Wang et al., 2017, Shibayama et al., 2021}, as well as
several impact measures, including disruptiveness metrics [Wu et al., 2019, Wu and
Yan, 2019, Wu and Wu, 2019, Bu et al., 2019, Bornmann et al., 2019a].

This module is intended for researchers in the emerging and multidisciplinary
field of Science of Science. There is an increasing tendency to create new scientomet-
ric indicators, but there are fewer initiatives to design reproducible experiments. For
novelty indicators, there is minimal reference to prior approaches when creating a
new indicator; thus, the flexibility in the choice of measures raises the temptation to
choose the measure that produces the intended outcome [Foster et al., 2021]. Only
a few studies attempt to establish a conceptual background of creativity and the
formalization of the indicators [Foster et al., 2021]. This article provides a mathe-
matical and graphical description of these indicators. To the best of our knowledge,
it is the first tool that enables the computation of these metrics.

Two macro types of analysis can describe Scientometrics: performance analysis
and Science Mapping Analysis (SMA) [Moral Mufioz et al., 2020]. Performance
analysis aims to assess the activities of scientific actors and their impact. Its purpose
is to assign a value to the productivity and pervasiveness of research conducted by a
unit (article, author, institution). SMA "is mostly directed at monitoring a scientific
field to determine its (cognitive) structure, its evolution, and main actors within”
[Noyons et al., 1999]. It captures a snapshot of a part of the scientific system at
a given moment to analyze its structure. The present package allows performing
analysis through disruptiveness measures; it also assesses the creative potential of
papers using novelty indicators. Both metrics require science mapping analysis to be
measured since they are generated through maps of the structure of science. Inputs,

outputs, and impacts of these scientific activities are the three perspectives used
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in bibliometric analysis [Sugimoto and Lariviere, 2018]'. Entities involved in most
combinatorial novelty indicators use only the output part of documents to compute
their measures [Uzzi et al., 2013, Foster et al., 2015, Lee et al., 2015, Shibayama
et al., 2021}, except for Wang et al. [2017], which uses references from future articles
to control for re-utilization. Disruptiveness indicators [Wu et al., 2019, Bu et al.,
2019, Bornmann et al., 2020] take the outputs and impacts of a given document to
construct their metrics. They are based on both the references and citations of a given
document. This module focuses on metrics using outputs (references/keywords) and
impact features (citations/references and keywords from future articles).

While citation is an invaluable source of information, several limitations exist
when using the sheer number of citations to evaluate impact. Inter-field (and even
intra-field) comparisons can be challenging, as the sheer number of scientists and
the way science is performed vary significantly depending on the research domain
(methodology, solo author vs. team publication, citation habits). The gap in the
number of citations is mainly due to the field’s structure and does not necessarily
represent the documents’ quality. This phenomenon becomes an issue when raw
numbers are used to measure the importance of research [Purkayastha et al., 2019].
The same problem arises with self-citation, comparing national and international
journals, or document languages [Van Leeuwen et al., 2001].

Network effects have been observed in citation dynamics. Wallace et al. [2012]
showed that scholars tend to cite researchers with whom they have a deeper social
connection. They also found that researchers are more likely to cite collaborators
of collaborators, thereby creating a citation continuum. Articles with international
collaborations are more cited due to network effects [Wagner et al., 2019]. Other neg-
ative citation behaviors arise in Bornmann and Daniel [2008]; scholars tend to cite
papers to satisfy editors and reviewers, showing an apparent disconnection between
citation and actual importance during the creation process. Field-specific issues can
be addressed using normalization methods or different counting methods of citations
(see Waltman [2016] for a comprehensive review). One family of normalized indica-
tors is disruptiveness [Wu et al., 2019, Wu and Yan, 2019, Wu and Wu, 2019, Bu

et al.,, 2019, Bornmann et al., 2019a]. These measures analyze how a focal article

Input refers to human and financial resources and captures the different interactions of agents
in the system at various levels (authors/institutional/country levels). Output results from the
research process, the different entities that characterize a document. Finally, impact measures
knowledge dissemination generated by an article through citations, attention by the general public,
or re-utilization of a document’s components.
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acts as a bottleneck between future papers and the references of the focal papers.
They capture whether a document consolidates a domain (i.e., future papers rely
on the same pieces of knowledge as the focal paper) or constitutes a starting point
for documents from various areas (i.e., future papers only use information from the
document).

Scientific advancement is the result of individuals’ creativity, where creativity is
defined as ”held to involve the production of high-quality, original, and elegant so-
lutions to complex, novel, ill-defined, or poorly structured problems” [Hemlin et al.,
2013]. Scholars have proposed measurements to complement these impact indicators
with creativity indicators, usually called “atypicality”, originality”, or “novelty” in-
dicators. The need for quantifying novelty comes from its position as an essential
component of the structure of the scientific and economic system. Novelty is at the
origin of peer recognition, which acts as a "reward system” for individuals. The
"priority rule” grants recognition to the first person making the discovery [Merton,
1957, Carayol et al., 2019]. Novelty is also at the core of the theory developed in
evolutionary economics, in which technological progress and creativity influence the
cyclical nature of the economy [Schumpeter et al., 1939, Nelson, 1985, Amendola
et al., 2014]. Scientific progress remains elusive, and novelty indicators are intended
to approach creativity, as making relevant novel combinations is perceived as inno-
vative [Burt, 2004, Rodriguez-Navarro, 2016, Bornmann et al., 2019b]. The earliest
novelty indicators focused mainly on past information (i.e., using an entity created
the same year) or the distance between articles from a given year, based on their
references’ overlapping [Dahlin and Behrens, 2005].

More recently, scholars have integrated the conceptual framework of knowledge
recombination (a combination of pre-existing ideas that leads to invention) into nov-
elty indicators. This concept was already developed by Poincaré [1910]. Although he
refers to the specific case of science, it can be extended to any type of non-scientific
creative process where combinations can be both material and conceptual [Winter
and Nelson, 1982]. Weitzman [1998] discussed how knowledge could be generated
through a combinatorial process of past ideas and how this can generate economic
growth as long as potential new ideas are exploitable. At the same time, an invention
does not necessarily arise from combining two components together for the first time.
Indeed, it can also arise from creating a new relationship between two already linked
components [Schumpeter et al., 1939, Henderson and Clark, 1990]. This deepens the
idea brought by Jacob [1977] that scientific advancement emerges from looking at
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something from a new angle rather than incorporating a new instrument. Scientists
have proposed a more probability-based approach to capture this combinatorial pro-
cess. Instead of focusing solely on the degree of novelty of a combination, they look
at how unlikely this combination is to happen. The more distant the items in the
combination, the more complex and unlikely it is to make this combination. There-
fore, the combination is more novel. To solve mathematical problems, Poincaré used
the knowledge he found in another field [Poincaré, 1910]. The more distant the fields
were, the more insight he gained. However, novel documents exhibit higher variance
in citation performance. Academics adopting an exploration strategy face a higher
risk of failure [Fleming, 2001, Foster et al., 2015, Wang et al., 2017, OECD, 2021].
Indeed, scientific documents that have a fair mix of novel and conventional ideas
are more likely to be “sleeping beauties” than other documents (see Ke et al. [2015]
and Wang et al. [2017]). The idea of March [1991] that organizations which explore
and consolidate existing processes/technologies are more likely to survive can also
be applied in the scientific realm?. Novelty indicators can be applied to different en-
tities (patents, papers, webpages, etc.) using various units of knowledge (references,
keywords, MeSH terms, text, and others).

Most of the packages available in R and Python deal with performance or SMA.
Moral Munoz et al. [2020] carried out a detailed and up-to-date review of the differ-
ent tools and libraries that help researchers in their daily work. Although much work
has been done to study citation, co-authorship, or any coupling, novelty and disrup-
tiveness indicators are still unavailable, and researchers have to code these metrics
themselves. Concerning the reproducibility of novelty studies, only Shibayama et al.
[2021] shared their code on Github to calculate their new novelty indicator, but this
is still an isolated event. This tool, therefore, ensures that indicators of novelty and
disruption used in future studies will be replicable.

The rationale for incorporating novelty and disruptiveness indicators in a single
package comes from the fact that they both capture different aspects of the docu-
ments: the former aims at quantifying the risky profile of research, looking at the
balance between exploitation and exploration [March, 1991] of the knowledge space.
At the same time, the latter analyzes how impactful an article is for science. The link
between novelty and citation count has been of interest in previous research [Uzzi
et al., 2013, Wang et al., 2017], and more recently, Lin [2021] studied the relation-

ship between novelty and disruptiveness indicators. The different studies only look

2Here, survival can be expressed as a high citation count.
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at specific novelty indicators, and a complete benchmark is still missing. This paper
contributes to an ongoing effort to systematically benchmark and compare multiple
indicators of impact and novelty by proposing an open-source tool to the community.

This article contributes to the Science of Science literature by providing an open-
source Python package, Nowvelpy, to compute Novelty and Disruptiveness measure-
ments. It unifies the existing indicators in a common framework using a formaliza-
tion based on graph theory and provides some hands-on experience. We hope that
Novelpy will contribute to homogenizing our practice in the science of science and
support researchers in their work. The package will be available in Python, one of
the most popular open-source programming languages (hence with the most promi-
nent community support), and will be maintained long-term. The package currently
works with a specific and documented data structure, but tools to easily use well-
known data sources are under development. The package will be hosted on PyPIl
and also on Github, which allows the creation of bug reporting and/or proposition of
development®. The rest of the paper is structured in the following way. In Section
3.2 contains the formalization of the indicators that are implemented in Nowvelpy.
Section 3.3.2 demonstrates the package’s capabilities on a random sample drawn
from PubMed. We close the paper with a discussion on the remaining limitations of

novelty indicators’ usages and the purpose of the package.

3.2 Supported indicators

This section details the content of Nowvelpy, describes the computation for each indi-
cator, and the data required. The Novelpy Python package provides a set of functions
to perform quantitative analysis in scientometrics. The structure of the module is
divided between novelty and disruptiveness indicators. Novelty indicators are also
separated between indicators based on co-occurrence matrices and ones based on
text embedding techniques, as represented in figure 3.1.

Practically, disruptiveness indicators are all calculated through the same function,
while novelty indicators have a function for each measure. All functions are explained
in the module’s documentation (https://novelpy.readthedocs.io/).

Different data types can be employed depending on the indicator, as shown in
3.1. All indicators working with a co-occurrence matrix can use references, journals,

or keywords, and disruption indices rely on the citation network. Shibayama et al.

3Documentation is available here https://novelpy.readthedocs.io/en/latest/usage.html
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Novelpy
Novelty Disruptiveness
Indicators Indicators

Cooccurrence Text
Matrix Embedding

Y

Disruptiveness

(Wu et al.)

Breadth/Depth
(Buetal.)

Commonness
(Lee etal.)

Bridging
(Foster et al.)

Disruptiveness
(Bornmann et al.)

Novelty

‘ Atypicality ‘
(Wang et al.)

(Uzzi et al.)

Novelt
(Shibayama et al.)

Figure 3.1: Nowelpy’s module structure

[2021]’s indicators use the citation network and title or abstract to represent the
article’s semantics in a vector space. Various tools to preprocess bibliometric data are
also included within the package to simplify the computation of proposed measures*
(e.g., co-occurrence matrix construction, text embedding, citation and co-authorship
network creation). Table 3.1 summarizes the indicators available in the module, their
strengths and weaknesses, and the possible variables to compute them.

The module supports a wide range of data sources as long as they are in the proper
format; note that transforming data to the expected structure is relatively simple.
Helper functions are available to directly transform PubMed Knowledge Graph data
into the desired structure®. For other databases, further backend to OpenAlex, Web
of Science, Scopus, and PATSTAT are under construction. The package currently
works with documents in JSON or MongoDB format. Mongo will be preferred for

large databases to avoid overflowing the RAM.

3.2.1 Novelty Indicators

We focus on novelty indicators in the package based on the combinatorial idea. As
discussed in section 3.1, novelty indicators can be differentiated into two groups
regarding how they compute the distance between items. The first group uses a
combination of items, such as keywords and journals, to create a co-occurrence ma-

trix. Algorithms make use of this matrix to compute the distance. The more distant,

4see https://novelpy.readthedocs.io/en/latest/utils.html
SExpected structure is presented here: https://novelpy.readthedocs.io/en/latest/
usage.html#format-supported
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Type Indicator Pros Cons ‘ Variables used
2 .
2 o)
IS g .
§5 55
x & O &
. Conserve dynamical Computationally
Novelty Uzzi et al. [2013] citation structure intensive X|X
Computationally lightweight — Conceptually
Lee et al. [2015] Data-saving loss advanced X | X

Consider undirect link

Foster et al. [2015] Computationally lightweight Discret distances X | X
Wang et al. [2017] Computationally lightweight — Data-Intensive X | X
Shibayama et al. [2021]  High granularity gggﬁﬁ@&?&:ﬂy and (OING)

Data-intensive

Disruptiveness Wu et al. [2019] Normalized Issue with term Kpp X

Bornmann et al. [2019a] Normalized Data-intensive X

Bu et al. [2019] Normalized Data-intensive X

Table 3.1: Nowelpy’s available indicators. X means that you can run the indicator on either variable. O Means you
need both variables to run it

the more unexpected and, therefore, novel the combination. The second type of indi-
cator maps items in a Euclidean space with text embedding techniques like word2vec
[Mikolov et al., 2013b]. The distance is then computed in this semantic space. As
shown in Figure 3.1, novelty indicators are split between those using co-occurrence
of entities such as journals or keywords and those using word embedding techniques.
For the first group of indicators, we first need to create a co-occurrence matrix for
each year of the given dataset. While some indicators only use the focal year to com-
pute the score for each combination [Uzzi et al., 2013, Lee et al., 2015, Carayol et al.,
2019], others take into account past combinations in the score calculation [Foster
et al., 2015] and future re-utilization [Wang et al., 2017].

Atypicality [Uzzi et al., 2013], Commonness [Lee et al., 2015], and Novelty [Wang
et al., 2017] are all indicators that use references of an article at a journal level.
Previous studies usually focused on one type of knowledge unit, but as long as one
can create a co-occurrence matrix between items, it becomes trivial to generalize.
Carayol et al. [2019] reformulate Lee et al. [2015] and apply it to keywords and con-

struct the indicator accounting for inter-field heterogeneity by splitting the analysis.
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Fleming [2001] computes a combination of patent subclasses, a prevalent practice
in patentometrics. Dahlin and Behrens [2005] propose a novelty measure based on
the overlapping between documents’ references that was reused by Trapido [2015].
Based on this work Matsumoto et al. [2021] propose an extension that computes
the average share of references that are shared between a focal paper and all other
documents in the same field. These indicators are not present in Novelpy (v1.2) but
will be added in future versions.

Although the co-occurrence matrix can be considered an adjacency matrix, only
a handful of indicators use graph theory to compute the distance between items. In-
deed, indicators a la Uzzi et al. [2013], or Lee et al. [2015] take into account only the
direct neighborhood during distance calculation. If items A and B are close, items B
and C are close, and D is unrelated to any of them, then the combination of A and C
is more likely to happen than A and D. This logic is completely ignored if one con-
siders the direct neighbors. Wang et al. [2017] integrated this into their indicator by
considering the cosine similarity between nodes’ neighbors, which considers common
friends (A and C in the example above). Using community detection as in Foster
et al. [2015], one can better represent the distance between two units by using the
global structure of the network. However, the discrete nature of the novelty score can
be argued. Using text embedding, one can have a continuous representation of the
distance between items. This distance is related to the text’s structure since word
similarity depends on their neighborhood. Some initiatives used these techniques
with different purposes but could be used to create a novelty score. Hain et al.
[2020] create a similarity measure between patents using word2vec [Mikolov et al.,
2013b]. Shibayama et al. [2021] was the first to apply word embedding techniques
in a novelty context. They embed references in a Euclidean space using spaCy and
then compute a distribution of cosine distances between documents present in the

references for a given document.

We propose a mathematical formalization of these indicators. Setting up this
framework offers a basis for defining future new indicators. These indicators are
formulated based on graph theory, where the network’s nodes are units of knowledge
(journals, keywords, or references), and edges represent the co-occurrence of these

units in entities (documents or patents).
e Co-occurrence matrix can be written as a graph G = (V, E, w).

e Set of nodes V of dimension v represent here the entities (e.g. keywords,
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journals), a given entity is defined as V;.
e Set of edges is noted E.

e Number of combinations between V; and V; is the weight for the edge (V;,V})

and is written w(V;, V;).

e Degree of a node V; is written k;. N is the sum of the weighted edges in G
without self-loops, N = S/2/ %Y w(V;, V).

D define our set of documents of dimension n. Each focal paper, F'P, has
its network, which can be defined as Gpp, Erp is the subset of edges present in
document FP. Gpp uses the same set of nodes V' as G and can be express as
Grp = (V,Epp,wrp). In some cases, Gpp is an unweighted network and will
be written then Gpp = (V,Epp). The number of links, w(V;,V}), is then de-
fined as the sum of all combinations of two given entities overall document in D,
w(V;,V;) = Ei_jwq(V;, V;) where wy(V;, V;) is binary if the graph is unweighted at
the document level. G(V, E,w) can be split at a year level. For example, in year ¢,
and the associated network will be noted G;(V, Ey, w;). Uzzi et al. [2013], Lee et al.
[2015], use only the subgraph G, for calculation. Foster et al. [2015] use the accu-
mulation of past networks. For Wang et al. [2017], several subgraphs are involved in
computing the indicator. The novelty indicators a la Wang et al. [2017] deal with
four subgraphs of G. One needs to consider two different past sets of documents
(noted P and B) and a set of future documents (noted F)).

3.2.1.1 Uzzi et al. [2013]: Atypicality

The goal of the measure proposed by Uzzi et al. [2013], called “Atypicality”, is to
compare an observed network with a random network. The network is shuffled,
preserving the temporal distribution of references at the paper level. As shown in
Figure 3.2, a document citing two articles from, for example, 1985 and one from
1987 will still cite articles published the same year, but the journal can change.
The frequency of the combination (V;,V;) at time ¢ is defined as w,(V;,V;), and
we extract the adjacency matrix of observed frequencies. The idea is basically to
compute the frequency Z-score for each journal combination. The Z-score is defined
as z = (obs — exp)/o; an observed frequency is compared with a theoretical one.
The theoretical frequency is generated through Markov chain Monte Carlo sim-

ulation, preserving the dynamical structure of citations. In the case of Atypicality,

166



CHAPTER 3. NOVELPY

Before resampling After resampling
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(a) Resampling strategy (b) Score calculation

Z-score

Figure 3.2: Uzzi et al. [2013] ©

we are dealing with s + 1 different networks for the year t, the existing network and
s resampled ones. The existing network is Gy, as defined above. The others are
generated by preserving an article’s temporal distribution of references. For each
document F'P, we want to keep the number of references published in year t — y
stable for all y to ensure that the global age distribution of the pieces of knowledge
used at time ¢ remains stable.

One needs to generate s random networks GG;. After re-sampling, the publishing
year of references is no longer taken into account. Edges’ weights are then aggregated
to fit with G, edge structure F; by summing over all combinations. The observed
frequency for each sample is computed for each edge (V;,V;). We write the set of
frequencies for the combination of V; and Vj in the s samples wj (V;, V;). One can then
compute the mean and standard deviation for each edge’s frequency and compute a

Z-Score.

wi(Vi, Vi) — mean(w; (Vi, Vj)
std(w; (Vi, V;))

Z — scoregj, =

For each paper, taking all combinations made (Erp), a distribution of z-score
written Zpp is computed, and the 10th percentile (Pyp) of this distribution (the
novelty) and the median (Psp) (the conventionality). The novelty and conventionality

for document F'P are then written:

6(a): P and P’ are two distinct papers, P cites journals A, B, and D. P’ cites journals B, C, and
E. The goal is to shuffle the network by conserving the dynamic structure of citations at the paper
level. P is no longer citing A from ¢ — y but cites B from year ¢t — y. (b): Comparing the observed
and resampled networks, we can compute a z-score for each journal combination.
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Noveltypp = Pio(Zrp)
Conventionalityrp = Pso(Zrp)

While this indicator only requires data from a specific year, it is still computa-
tionally greedy. Indeed, generating the s samples and the computation of the average
and the standard deviation for each possible combination is expensive. On the con-
trary, this indicator allows for keeping the temporal structure stable, which is more

in line with the reality of the availability of the knowledge pieces.

3.2.1.2 Lee et al. [2015]: Commonness

Lee et al. [2015] compares an observed network with a theoretical network (Observed
vs Expected frequency of edges) at a year level. The observed number of combina-

tions (V;,V;) at time y; is the number of edges w;(V;, V), the theoretical number of
N
by the total number of combinations made in year ¢.

combinations is , the degree for entity 7 and 7 multiplied together and divided

7

Observed/Expected
Frequency

Figure 3.3: Lee et al. [2015]

wt(%,Vj) * IV

Commonness;j, =

For each paper, taking all combinations made in document F'P (Erp), a distribu-
tion of commonness-score written C'rp is computed. The commonness for document
FP is the 10th percentile (Pyp) of this distribution and is written as:

Commonnesspp = —log(P1o(Crp))

The main advantage of the commonness indicator is its speed of calculation; it

is the least demanding indicator in terms of the execution time of the package. The
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indicator only requires data from a specific year. Note that this indicator is very
close to Uzzi et al. [2013]’s one. Both would be equal if Uzzi et al. [2013] resampling

method would not consider the references’ publishing year.

3.2.1.3 Foster et al. [2015]: Bridging

Foster et al. [2015] propose a novelty indicator based on community detection algo-
rithms. It captures the distance between two entities taking into account undirected
edges. The goal of the measure is to identify the network’s community studied and
capture proximity through the community in which the combined entities are clus-
tered.

Any community algorithm can be applied to this indicator. We rely on the
Louvain algorithm in Novelpy following Foster et al. [2021], but we intend to add
further options. After applying the community algorithm on G(V, E, w), we are left

with multiple clusters of entities. C; is the community to which the entity 7 belongs.

FP

N
GG

Figure 3.4: Foster et al. [2015] 7

2. 1-46(G;,C)

(’L:])EEFP

Noveltypp = T
FP

Where 6(C;,C;) = 1 if C; = C; (i.e., both entities, i and j, are in the same
community), 6(C;, C;) = 0 otherwise. The novelty score of an entity is the proportion
of pairwise combinations that are not in the same community.

This indicator brings into the field algorithms that capture the global network

structure and only require data from a specific year. At the same time, this indicator

"FP cites different journals which belong to different communities. The novelty is the number
of journal combinations from two different communities. Communities of journals are computed
through a community detection algorithm.
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does not allow measuring distances between communities and proposes only a binary

distinction.

3.2.1.4 Wang et al. [2017]: Novelty

Wang et al. [2017] propose a measure of difficulty for pairs of references that have
never been made before. These new pairs need to be reused after the given publica-
tion’s year (scholars do not have to cite directly the paper that creates the combina-
tion, but only the combination itself). The idea is to compute the cosine similarity
for each journal combination based on their co-citation profile b years before ¢. The

cosine similarity between W,” and W/ is defined:

WE WE
COSWE WB) = 1 I __
’ IWEINWE

where W represent all links of entity i, B years before year t.

Novelty a la Wang et al. [2017] relies on four subgraphs of G constructed using two
different past sets of documents, a set of future documents, and the set of documents
for the focal year. These different subgraphs are defined as follows (note the first
year of the dataset yo and the last as y,):

o G = (V, E,w;) is a subgraph of G from year ¢ (documents published year t)

e Gp = (V,Ep,wp) is a subgraph of G from year t, to t —1 (documents published
before year t)

e Gp = (V, Ep,wp) is a subgraph of G from year t —b to t — 1 is used to measure
the cosine similarity between nodes. This set is a subgraph of Gp (documents

are published in a given window before year t)

o Gy = (V,Ep,wp) is a subgraph of G from year ¢t + 1 to t + f (documents

published in a given window after year t)

This indicator focuses on new combinations reused afterwards and not achieved
before the given year y;. One needs to keep all elements of E; ¢ Ep and E; € EF.
More precisely, edges belonging to the following subset (that we call Ey) are the
only edges used to compute this indicator Ey = (E, N Er) N Ep

Cosine similarities are calculated using G'g. For each document, we compute
an undirected and unweighted network. The novelty is the sum of all edges from
Erp € Ey, that is:
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Noveltypp = Z 1—COS(WP, W)

(i.j)ebN

Combination reused
New combination

| | | | -
[to;tl— 1] [t—b;lt— 1] ; [t+1;|t+f]

Figure 3.5: Wang et al. [2017] &

The main issue with this indicator is the amount of data needed to compute the
measure. One needs as much data as possible before the focal year to ensure that
the combination has never been made. At the same time, some hyperparameters
involved in this measurement can drastically modify the results. For example, the
time window to capture the re-utilization of a combination or the number of times

reused needed to be novel is very arbitrary.

3.2.1.5 Shibayama et al. [2021]: Novelty

Shibayama et al. [2021] propose to incorporate semantic distances to capture diversity
in the set of references from a given article following Hain et al. [2020] and their
similarity measure between patents. Document centroids are computed by summing
all word representations for each document.

Consider a directed unweighted graph G(V, E) containing the citation network.
For a given document F'P, a referenced document is denoted by r, and the set of

nodes that are cited by F'P is then Ingp = r: (FP,r) € E. Shibayama et al. [2021]

2

Tnpp| combinations).

compute all distances between each document’s centroids (C|

8For a given article at time ¢, we check if the journal combined were already combined in the
past (Gp). We then check if the combination is reused in the future (Gp). If the combination is
new and reused, the difficulty of making such a combination is calculated on the recent past (Gp)
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All documents have a vectorial representation in a semantic space of length 200.
Distances between two references i, j € Inpp are calculated through cosine similarity:
n;; = 1=COS(T;,T;), where T; is the dense vector text representation for a document
i. A distribution of novelty scores Npp = ny; : 4,7 € Outpp is then computed, and

for each document, the final score is a percentile of Npp.

Text Text Text
1 2 3

A S——

Cosine similarity

Figure 3.6: Shibayama et al. [2021] ?

Shibayama et al. [2021]’s indicator is both data-intensive and computationally
intensive. One needs to obtain all references’ titles/abstracts for a given set of arti-
cles. The package currently works with a pre-trained Word2Vec model, en_core_sci_lg
from spacy, to compute the dense representation of a document. Future versions will

incorporate a back-end to use any pre-trained model.

3.2.2 Disruptiveness Indicators

Disruptiveness indicators offer alternative measures of impact to the number of cita-
tions. They allow understanding if a given article behaves as a bottleneck between
the knowledge mobilized in a given article and the articles that will cite it. Dis-
ruptiveness was introduced in scientometrics by Wu et al. [2019] and was previously
proposed for patents by Funk and Owen-Smith [2017]. Following Azoulay [2019]’s
definition, a paper can either consolidate existing knowledge or disrupt it. If future
papers that cite a focal paper and its references do not use fundamental new pieces
of knowledge created in it (i.e., the focal paper consolidates the existing knowledge
space but does not disrupt the playing field). On the other hand, if future papers

cite only the focal paper and not its references, then the focal paper is considered

9For a given article, each reference’s abstract (or title) is represented in a semantic space through
text embedding techniques. The distance between two references is then computed through cosine
similarity.
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disruptive. Quoting Bornmann et al. [2019a], “|...] many citing documents not refer-
ring to the FP’s cited references indicate disruptiveness. In this case, the FP is the
basis for new work which does not depend on the context of the FP, i.e., the FP gives
rise to new research.” All presented measures normalize citation and give a relative
perspective on a publication’s impact [Bu et al., 2019]. Disruptiveness indicators
consider the importance of pieces of knowledge (references) in a given article for
other articles, whereas Depth and Breadth, as proposed in Bu et al. [2019], capture
how the knowledge generated by that given item is reused and whether it allows for
the consolidation of a domain or is instead used in a disparate manner.

Consider a directed unweighted graph G(V, E') containing the citation network.

e For a given document F'P we note a document cited by F P, r. The set of
nodes that are cited by F'P is then Ingpp = {r € V|(FP,r) € E}

e For a given document F'P we note a document citing F'P, ¢. The set of nodes
that are citing F'P is then Outpp = {c € V |(¢, FP) € E}

e The number of citations for F'P is then deg™ (FP) = |Outgp| and number of

references deg™ (FP) = |Ingp|

e The set of references for an article citing F'P is then noted In,.

3.2.2.1 Wau et al. [2019]: Disruptiveness

By adapting Wu et al. [2019] notation, we called Ipp the set of nodes with FP as
a parent that does not have F'P’s parents as parents. More formally Ipp = {c €
Outpp|In. ¢ Inpp}. The set of J%p is the set of nodes with F'/P as a parent that
share at least [ parents with F/P. We note J&p = {c € Outpp||{In. € Inpp}| > 1}.
Finally, Kpp is the set of nodes that share parents with F'P but that do not have
FP as aparent: Kpp ={v e Vv e Ingp}.

The disruptiveness @ la Wu et al. [2019] is then noted :

[Ipp| — |Tppl

el 4+ |JEp| + | KFp]

DL

Some variants that consider only paper sharing at least [ references have been

proposed:
[rp| — |JEp|

DI: =
* " ep| + [J3p| + | Krpl
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Figure 3.7: Wu et al. [2019], Bornmann et al. [2019a] *°

3.2.2.2 Bornmann et al. [2019a]: Disruptiveness

A variant that removes the term |Krp| has been proposed by Wu and Yan [2019]
because the number of documents that cite references from the focal documents with-
out citing the focal documents is often too large compared to the paper from other
sets. Wu and Wu [2019] show how considering the set Kpp can lead to a decrease in
disruptiveness when the term |Irp| — |J1p| is negative. In that configuration, more
papers that do not cite F'P (|Kpp|) lead to higher disruptiveness, which is different
from how the indicators conceptually work. Defined as DI** by Bornmann et al.

[2019a], we note:
D]nok: ‘IFP|_|’]§7P|
: [ Irp| + [ JEpl

3.2.2.3 Bu et al. [2019]: Breadth and Depth

Bu et al. [2019] propose an alternative to the above disruptiveness indicators. It
calculates the proportion of articles citing the focal paper that also cites other articles
citing it. The indicator allows us to understand whether the document contributes to
a restricted research domain; the documents citing the focal paper are interdependent
and cite each other. On the contrary, the documents using the focal paper’s research
may also be unconnected and belong to more extensive research space.

Let F'P be the focal paper, the articles citing it the set Outpp. We are interested
in the articles cited by the documents of the set Outrp. For each element ¢ of OQutpp,
we observe a set of associated references named In.. The proportion of documents

citing document F'P and also citing documents that are citing F'P is then written

0For a given article FP, we retrieve: (a): Articles citing FP and references from FP (named J).
(b): Articles citing FP but no references from FP (named I). (c¢): Articles citing references from
FP but do not cite FP (named K).

HFor all articles citing FP, we check if they also cite papers citing FP.
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FP

Figure 3.8: Bu et al. [2019] 1

as:

HC € Outpp : |Inc < OutFp| > 0}’

Depthpp = ‘OutFP’

On the contrary, the breadth, the proportion of papers citing F'P that do not
cite other publications also citing F'P, is written:
o HC € Outpp : \Inc < OUtFp| = 0}‘ o

Breadthpp = Outrr] 1 — Depthrp
FP

Bu et al. [2019] also propose a measure of dependence. It captures the average
number of references shared between the focal paper F'P and documents citing it.
Inpp is the set of references of F'P. For all document ¢ that cite F'P (Outpp), we
want to know the number of references shared:|{In. € Inpp : ¢ € Outpp}|. The
average number of references shared between document F'P and all documents citing
it (¢ € Outpp) is then:

Z |Inc€Ian]

ceQutpp
‘O’U,tFp|

Dependencerpp =

Two other indicators from Bu et al. [2019] are not computed in our function: In-
dependence and Dependence. However, they represent the proportion of publications
citing a focal paper that also cites references from the focal paper. Using notation

from 3.2.2.1: % one can easily derive this value from disruptiveness indica-
FP

7l

tors DI7°*. Indeed from DIk = % we can compute the independence, the
3 FP

proportion of articles citing the focal paper that do not cite articles cited by the focal
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paper
|Irp| B DIk + 1

= if |Out >0
Tl 10— 2 [Outerl

All these measures are quite demanding in terms of data requirements. Indeed,
for each given article, we need to access the references, the articles citing the focal

paper, and the articles citing the references of the focal paper.

3.3 Sample analysis

3.3.1 Descriptive statistics

This section provides examples of applications that could be performed with Novelpy.
We use the Pubmed Knowledge Graph (PKG) sample [Xu et al., 2020], which stores
research articles published on Pubmed and offers metadata for all papers. This anal-
ysis is proposed as an example to demonstrate our module features after computing
the indicators!?. All figures and tables can be found in the appendix. The sample is
restricted from 1995 to 2015; the focal period is 2000-2010. The sample is composed
of 1,469,352 papers and 2,959,650 distinct authors. Authors are disambiguated in
PKG using advanced heuristics and algorithms. The sample was selected so that
every article has the attributes needed to run the indicators. Each paper lists refer-
ences, mesh terms, authors, titles, and abstracts. Table 3.2 and Figure 3.9 summarize
the statistics of the sample. On average, the number of references used in a paper is
23, consistent with typical citation behavior [Abt and Garfield, 2002]. The number
of papers almost doubled in 10 years, which is in line with the literature [Fortunato
et al., 2018].

3.3.2 Results

As discussed in previous sections, research on novelty indicators still needs to be
conducted across multiple dimensions. Novelpy will facilitate computing different
indicators on various entities. Researchers can then use the novelty scores provided
by the package to perform their analyses. Individual-level analysis can be conducted
by examining the distribution of novelty scores, as shown in Figure 3.10. Comparing

indicators and studying the evolution of novelty over the years are the primary mo-

2Interested readers will find code and resources to create tables, plots, and indicators here
https://novelpy.readthedocs.io/en/latest/usage.html#id5
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tivations for this package. Only a few studies examine the dynamics of novelty over
time. Nevertheless, understanding the evolution of creativity in papers, patents, or
other entities can offer insights into the trade-off between exploration and exploita-
tion of the research space in a given field. Figure 3.11 displays the evolution of the
mean novelty score for each indicator, given the variable (references, mesh terms).
We cannot draw conclusions since the sample is random and aggregated across all
fields within Pubmed. The pattern of trends varies significantly depending on the
indicator and variable. This heterogeneity might be evidence that further investiga-
tion is required to understand precisely what these indicators capture and in which
cases they best predict novelty. This question is even more relevant, considering the

lack of correlation between indicators in Figure 3.12.

3.4 Discussion

This paper aims to demonstrate the capabilities of the new Python package Novelpy.
We presented a sample analysis using the functions within this package to showcase
how it can assist interested readers in computing and analyzing existing indicators
or addressing current challenges related to novelty measurement. Several critiques
can be made on current novelty measurements, and addressing these points is crucial
for solidifying our understanding and usage of these indicators.

The diversity and convergence in how novelty indicators are created raise ques-
tions about what they measure. As observed in our sample analysis, the results
are highly dependent on the indicator used, which confirms previous concerns about
cherry-picking the indicator [Shibayama et al., 2021, Foster et al., 2021]. Simulta-
neously, indicators often focus on the same entity (keywords or reference journals).
Recent measures like Shibayama et al. [2021] and Arts et al. [2021] broaden this
domain by utilizing text information from references. Novelty indicators are rarely
conceptualized and often require a qualitative background. Qualitative studies like
Tahamtan and Bornmann [2018] question the significance of literature in authors’
creative processes. The link between references and creativity is debated, and fur-
ther investigation is needed to determine if references can be reliably used as a proxy
variable for creativity.

Research evaluation was once performed solely by experts in the scientometric
field and specialists working for public institutions. Open access data has recently

led to entrusting this evaluation to a broader range of researchers and public workers.
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These new actors need the necessary tools to compute scientometric indicators and
some understanding of their relevance. Using software creates a gap between the user
and the actual data, which may lead to issues if the assumptions necessary for the
indicators’ relevance are overlooked. Data-driven decisions can become inefficient if
the algorithm used is a black box and is misused. A solid background in how and
why these indicators are created is necessary to limit bias in selecting indicators when
used in research. As seen in Section 3, every indicator has its pros and cons, different
hyperparameters (time window, re-utilization, number of samples, and others), and
is highly dependent on the database used. The coverage varies greatly depending
on the database (language, fields, nationality, and others) [Sugimoto and Lariviere,
2018]. These aspects and the increasing number of novelty indicators create arbi-
trary decision-making when using them. Sugimoto and Lariviere [2018] suggests that
indexing and classification of documents differ between databases, making it chal-
lenging to reproduce studies on other databases. Constructing a general indicator
applicable to all scientific disciplines is difficult, as citation habits are heterogeneous,
making comparisons between fields risky [Carayol et al., 2019] (proposing to compute
scores by field, but this is not the norm). Depending on the country, methods and
standards may differ within a discipline, and the historical practice of a field may
change the representations.

Improving novelty measurement is essential for supporting innovative research.
Highly novel documents are less likely to be cited in the short run and are less likely to
be published in high-impact factor journals [Wang et al., 2017, Mairesse et al., 2021].
Due to the pressure from citation count evaluation, the exploration of science is less
likely to occur. Researchers may tend to conform to conventional references within
their field, which is already accentuated during the submission process. Documents
that are already highly cited, considered stepping stones in the field, will thus receive
even more citations, creating a vicious circle. This vicious circle has the consequence
of narrowing research, where only those who agree with the existing paradigm are
rewarded with citations.

This phenomenon is already observed in Al research, where topics become in-
creasingly less diverse [Klinger et al., 2020]. The goal of science is not to persist with
merely satisfactory solutions but to explore a range of possibilities, even those that
may prove fruitless. Citation indicators typically do not emphasize researchers who
take risks by attempting novel approaches. Various funding methods exist to sup-
port high-risk, high-reward (i.e., highly novel) research [OECD, 2021]. Experts are
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not free from bias when evaluating novelty, funding processes are not uniform, and
many decisions remain arbitrary. Currently, none of them uses novelty indicators
to evaluate proposals. Novelty measurement might be relevant in providing reliable
information when awarding grants to research proposals.

We conclude this discussion with a roadmap and our aspirations for Novelpy. The
primary feature we aim to develop in future versions is automatic execution using
well-known databases (PATSTAT, Microsoft Academic Knowledge Graph, Arxiv,
etc.). At present, users must pre-process data to match our format. Although we
provide a comprehensive example and make the sample available here https://
novelpy.readthedocs.io/en/latest/usage.html#id5, we believe that expanding
the accepted inputs will aid researchers in working on improving novelty indicators.
The second feature we plan to add is a time complexity analysis. To conduct a
proper benchmark between indicators, we need to compare their computing speeds.
Users can currently perform this manually, but we intend to streamline the process
and add plots to address this gap. Finally, we will selectively add new and past
indicators. Anyone interested in contributing to the module can visit GitHub https:

//github.com/Kwirtz/novelpy and create a pull request.
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3.5 Appendix

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
n papers 49,872 52,046 54,721 58439 62,241 67,361 70,501 75,717 81,228 84,496 89,168
mean of cited paper 27.3871 27.3672 27.9704 28.5654 28.8562 29.3572 30.0423 30.3297 31.0576 31.5393 32.3128
var of cited paper 707.008 708.596 742.314 709.619 807.733 758.342 809.695 795216 845.84  944.337 896.461
mean of meshterms per paper 13.3097 13.4067 13.2431 13.3788 13.2862 13.1364 12.8499 12.8425 12.8575 12.9128 12.8867
var of meshterms per paper 26.5811 27.6517 26.0774 26.9045 27.2265 26.4599 22.9795 23.3933 23.3725 24.6855 24.9734

Table 3.2: Sample Statistics

Density of co-authored papers for a given author

Density of meshterms for a given paper
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Figure 3.9: (a) Density of contribution of authors. On average an author has 2.6
publications (solo or co-authored) in 10 years.
(b) Density of the number of mesh terms between 2000-2010. On average, a paper
is labelled with 13 mesh terms.
(c) Density of references between 2000-2010. On average, a paper has 23 references
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Figure 3.10: Each combination has a novelty score. A single plot represents the
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first row were computed using a combination of cited journals. The scores for the
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et al. [2021]: Novelty, Author proximity) on the title of the paper or abstract.
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Chapter 4

Unpacking Scientific Creativity: A

Team Composition Perspective

This chapter was co-authored with

Kevin WIRTZ

Summary of the chapter

This paper investigates the relationship between cognitive diversity within scientific teams
and their ability to generate innovative ideas and gain scientific recognition. We pro-
pose a novel author-level metric based on the semantic representation of researchers’ past
publications to measure cognitive diversity at individual and team levels. Using PubMed
Knowledge Graph (PKG), we analyze the impact of cognitive diversity on novelty, as mea-
sured by combinatorial novelty indicators and peer labels on Faculty Opinion. We assessed
scientific impact through citations and disruption indicators. Cognitive diversity between
team members appears to be always beneficial to combine more distant knowledge. We
show that while the effect is positive, it is marginally decreasing. Our findings reveal
also that within-team average exploratory profiles follow an inverse U-shaped relationship
with combinatorial novelty and citation impact. We show that the presence of highly ex-
ploratory individuals is profitable to generate distant knowledge combinations only when
balanced by a significant proportion of highly exploitative individuals. Also, teams with
a high share of exploitative profiles consolidate science, while those with a high share of
both profiles disrupt it. These results emphasise the implication of team composition in
scientific creativity, suggesting that combining these two types of individuals leads to the

most disruptive and distant knowledge combinations.
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4.1 Introduction

Creativity is a crucial driving force in fostering the production of new knowledge in
an ever-growing landscape of scientific research and technological innovation [Geuna,
1999, Amendola et al., 2014, Witt, 2016]. A broadly accepted definition of creativity
assumes a bipartite composition involving a combination of novelty and effectiveness
[Runco and Jaeger, 2012]. As science moves towards a team-based model [Wuchty
et al., 2007], the creativity of scientific publications should be studied from a social
perspective. The cognitive dimension (i.e. differences in thinking, problem-solving
approaches, and perspectives among individuals) plays a crucial role in enabling ex-
change of information and creation of new knowledge [Nooteboom, 2000, Nooteboom
et al., 2007]. It is induced by individuals’ characteristics and the trade-off carried out
between exploration and exploitation [March, 1991] of the knowledge space during
their career. In the context of science, exploration involves actively pursuing the ex-
pansion of one’s understanding and curiosity across various areas of knowledge. On
the other hand, exploitation refers to individuals specializing in a specific field and
continuously building upon their expertise in that area. The presence of individuals
with exploratory profiles appears to facilitate communication among team members
who are cognitively distant and foster creativity as the intersection of different per-
spectives is commonly required to solve complex scientific problems [Page, 2008].

This paper aims to study the extent to which the exploratory nature of scholars
and the cognitive diversity of scientific teams shape their ability to generate innova-
tive ideas and obtain scientific recognition. We propose a new author-level measure
of cognitive diversity based on the semantic representation of their past papers; this
metric allows us to proxy both intra-individual and inter-individual cognitive dimen-
sions and their impacts on creativity in science.

In scientific creativity, originality and success emerge as two essential components
[Runco and Jaeger, 2012]. However, the focus has predominantly shifted towards suc-
cess. The excessive emphasis on success through measures such as citation counts for
articles or authors has been found to constrain novelty and originality by providing
limited incentives for researchers, ultimately leading to suboptimal research choices.
The reliance on an impact metric to reward and evaluate researchers created a harm-
ful behavior whereby scientists maximize the metric to become more appealing to
funding agencies or institutions. As Goodhart’s law states, “when a measure becomes
a target, it ceases to be a good measure” [Goodhart, 1984]. The h-index, although

heavily criticized, became a central evaluation instrument of researchers [Costas and

184



CHAPTER 4. UNPACKING SCIENTIFIC CREATIVITY

Franssen, 2018]. And this negatively impacts novelty as innovative research tends
to be less cited in the short run [Wang et al., 2017]. Researchers are discouraged
from opting for a more exploratory approach when developing a research question,
as work that is too innovative tends to be rejected when it deviates too much from
the established paradigm [Carayol and Dalle, 2007, Trapido, 2015].

Career choices are directly affected by this phenomenon. Given the heterogeneity
in terms of the impact of novel research, researchers have less incentive to produce
too innovative work because of the uncertainty linked with novel research. In the
short term, individuals might turn to more conventional research questions to max-
imise their h-index while minimizing the risk associated with novel research.The bias
toward maximizing the h-index already has a tangible impact on limiting novelty in
various research fields. The imbalance between growth in the scientific workforce and
research funding has led to "hyper-competition’ in the medical sciences; the scien-
tific system favors individuals who can ensure outcomes over those with potentially
groundbreaking ideas that might disrupt the field [Alberts et al., 2014]. Such a focus
of the researcher on his or her impact is done at the expense of his or her novelty,
showing a clear disconnection between the goal of science and its operationalization.

One of the goals of science is to advance the boundary of the knowledge space
[Shi et al., 2015, Witt, 2016, Veugelers and Wang, 2019]. The novelty (also referred
to as originality or invention) lies at the cornerstone of innovative research, bridging
existing knowledge and unexplored scientific territories. Effectiveness, on the other
hand, refers to the recognition attributed to this novelty. Novelty is at the foundation
of peer recognition and acts as a “reward system” wherein the individual credited
with the initial discovery garners recognition. [Merton, 1957, Stephan, 1996, Carayol
et al., 2019]. Novelty is crucial for scientists to develop new solutions to the grand
challenges of the century (climate change, poverty, global pandemics, and others)
[Petersen et al., 2021]. Highly innovative research is frequently referred to as “High-
Risk High-Reward” (HRHR) to reflect its high volatility of outcomes (i.e., novelty
does not imply effectiveness). In particular, highly novel research receives more
citations on average, but the uncertainty is also more considerable [Wang et al.,
2017]. Funding opportunities are limited for innovative research due to its risky
nature [Ayoubi et al., 2021, OECD, 2021, Franzoni et al., 2022]. Multiple grant
initiatives try to support HRHR research, and funding decisions are all based on
expert judgment [OECD, 2021]. But there is a direct bias towards novelty when
scholars evaluate a peer’s work [Wang et al., 2017, Ayoubi et al., 2021] and the effect
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is accentuated by the intellectual distance with the examiner [Boudreau et al., 2016].
Measures such as novelty indicators attempt to estimate the originality of a document
and might guide experts to support innovative research. Yet, these novelty indicators
are still relatively recent and understudied as it is mostly intended to explain success.
As a result, it is essential to explore and validate new methods to understand better
how to detect potential innovative and impactful research based on different criteria
than past novelty or previous success.

Not all idea combinations are worth exploring, hence the challenge of distin-
guishing between novel and impactful ones. [March, 1991] distinguishes two different
strategies for invention in organizations: “Exploration and exploitation”. Exploita-
tion focuses on a combination of ideas that are closely related to each other, thus
representing a low-risk strategy. On the other hand, exploration represents the nav-
igation through the knowledge space to combine more distant ideas, inducing more
volatile results. March [1991] supports the idea that a mix of exploitation and ex-
ploration is the key to organization’s survival. Put differently, producing a valuable
invention would require a proper mix of typical and atypical combinations of knowl-
edge, as seen in Uzzi et al. [2013]. This dichotomy has been studied in different
domains, as mentioned in Foster et al. [2015] (e.g., ”conformity” versus ”dissent” in
the philosophy of science), and can also be applied to research. As the body of knowl-
edge in science expands, researchers increasingly specialize their competencies [Jones
et al., 2008, Jones, 2009] and thus are better able to recombine information locally in
the knowledge space, facing incentives to collaborate [Fleming, 2001, Boudreau et al.,
2016]. Science is seen as a social phenomenon [Fleck, 2012]. Indeed, agents that re-
combine knowledge are individuals embedded in a social context, and cognitive and
social phenomena strongly influence the invention process [Fleming, 2001]. Team
size has been shown to impact creativity [Paulus and Nijstad, 2003, Shin and Zhou,
2007, Wuchty et al., 2007, Falk-Krzesinski et al., 2011, Erren et al., 2017, Mueller,
2019]; however, the authors’ characteristics have not been adequately considered in
the process as current novelty indicators primarily focus on the information within a
document!. We contend here that the cognitive distance between co-authors and the
team composition of a research paper may be among the most critical factors influ-
encing knowledge creation. So, based on the concept of exploration and exploitation,

we propose an indicator that serves as a proxy for exploratory vs. exploitative trade-

IE.g. references, text, keywords. A detailed review of classical re-combinatory novelty indicators
can be found in Pelletier and Wirtz [2022].
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off at both the individual and team levels through past publications. In a nutshell,
our indicator measures the cognitive distance between team members as well as the
individual propensity to work on various subjects.

We are unaware of previous studies that have used individuals’ past research
experiences to investigate how the cognitive dimension influences the novelty and
recognition of the resulting articles. Note that we do not consider our indicator as
a replacement for current novelty indicators but rather as a tool that could enhance
our understanding of the mechanisms behind creativity. In fact, by incorporating the
cognitive dimension into novelty studies, we can develop a more comprehensive un-
derstanding of the complex relationship between cognitive aspects, interdisciplinary
efforts, and the nature of scientific innovation. Furthermore, examining these ques-
tions enables us to provide valuable insights and guidance for researchers and insti-
tutions striving to enhance scientific progress while avoiding potentially misleading
interpretations of research performance measurement.

Using PubMed Knowledge Graph (PKG), we empirically investigate the role of
these cognitive diversities in the production of novel research outcomes and the ability
to obtain scientific recognition. We performed the analysis on novelty on five com-
binatorial novelty indicators [Uzzi et al., 2013, Lee et al., 2015, Foster et al., 2015,
Wang et al., 2017, Shibayama et al., 2021], both on references and MeSH terms, as
well as on perceived novelty, using labels submitted by researchers to qualify the
contribution of an article (Faculty Opinion)?. For scientific recognition, we rely on
the traditional number of citations and six indicators of disruption and consolidation
[Wu et al., 2019, Bu et al., 2019, Bornmann et al., 2019a).

Our findings emphasize the crucial role of cognitive dimensions in creativity, sig-
nificantly impacting originality and success. We show that cognitive diversity always
seems beneficial to combine more distant knowledge. In contrast, the within-team
average exploratory profile follows an inverse U-shaped relation with combinatorial
novelty (i.e. there is a turning point where it is no longer beneficial). The same re-
lation can be found with citation counts, but we show that the cognitive dimension
also strongly influences the nature of citations. Teams with more exploitative profiles
consolidate science, while those with high exploratory profiles disrupt it only if they
are associated with exploitative researchers. The union of those two types of individ-
uals leads to the most disruptive and distant knowledge combinations. To maximize

the relevance of these combinations, maintaining a limited number of highly ex-

2More information can be found here: https://facultyopinions.com/
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ploratory individuals is essential, as highly specialized individuals must question and
debate their novel perspectives. These specialized individuals are the most qualified
to extract the full potential from novel ideas and situate them within the existing
scientific paradigm.

The remainder of the paper is organized as follows. In section 4.2 we review the
existing literature. Section 4.3 details the creation of our metrics and the method-
ology for addressing our research questions. Section 4.4 presents the results of our
analysis. Section 4.5 concludes the paper and outlines future directions for develop-

ing novelty indicators.

4.2 Background and literature review

This section highlights the team’s relevance in fostering creativity in science and
emphasises how team size can influence this process. We also underscore the impor-
tance of identifying the social dimensions of the team, a crucial factor in generating
new knowledge. Finally, we propose a new approach based on the semantic repre-
sentation of authors’ past publications that allows studying the role of the cognitive

dimension in a team’s ability to produce new and impactful knowledge.

4.2.1 Team science as an engine of creativity

Over the past two decades, there has been a significant increase in interest surround-
ing the Science of Team Science (SciTS) [Falk-Krzesinski et al., 2011]%. Since the
1950s, the average number of authors per paper has risen across all scientific disci-
plines [Wuchty et al., 2007]. Research collaborations have also become more diverse,
inter-institutional collaborations in science and engineering and social science grew
by 32.8% and 34.4%, respectively, between 1975 and 2005 [Jones et al., 2008]. In
addition, international collaboration has also expanded, with one in five research
projects now involving multiple countries [Xie and Killewald, 2012].

Teamwork has proven to be a practical approach to producing impactful scien-
tific results. Articles written by teams tend to have a higher impact, receiving more
citations on average and are more likely to become influential than articles authored
solely [Wuchty et al., 2007, Whitfield, 2008]. Researchers benefit from collabora-

tion in various ways. Collaborative efforts can enhance rigour through co-authors’

3For an up-to-date and comprehensive review, see Wang and Barabasi [2021].
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verification [Leahey, 2016] and facilitate the dissemination of their work beyond
their immediate networks [Leahey, 2016]; this effect is further amplified when col-
laborations are international or inter-institutional [Adams, 2013, Jones et al., 2008].
Additionally, teams have better access to resources, as projects executed by groups
are more likely to apply for funding and succeed in obtaining it [Rawlings and Mc-
Farland, 2011]. Teams are more likely to produce novel articles than solo-authored
publications [Carayol et al., 2019, Uzzi et al., 2013, Wagner et al., 2019]. As highly
cited work is often associated with a combination of novel and conventional ideas
[Uzzi et al., 2013], teams of researchers may be more adept at generating novel ideas
or striking a balance between novel and traditional concepts than individual authors.

Successful team performances put individuals and their interactions at the heart
of the creative process. Over recent decades, the perception of teamwork has under-
gone significant changes. In the early 1990s, the prevailing belief was that groups
should not be used for creativity because of inherent process loss in the creative
process. This perspective has shifted dramatically, and team collaboration is now
considered a critical factor in promoting creativity [Paulus and Nijstad, 2003]. Cre-
ativity relies on individual’s existing knowledge base: “Creative thinking cannot hap-
pen unless the thinker already possesses knowledge of a rich and/or well-structured
kind” [Boden, 2001]. Knowledge exists on a continuum, ranging from explicit to
tacit [Nonaka, 1994]. The generation of new knowledge occurs through interactions
between explicit and tacit knowledge via a process known as the socialization, exter-
nalization, combination, and internalization (SECI) spiral. Tahamtan and Bornmann
[2018] highlighted various approaches reported by researchers for fostering creativity.
Engaging in conversations with colleagues seems to remain central to problem-solving
and generating new, practical ideas. Hence, new ideas are becoming more challeng-
ing to discover as the idea space expands linearly while scientific publications grow
exponentially [Bloom et al., 2020, Milojevi¢, 2015]. As scientific knowledge increases,
team sizes grow, and agents increasingly specialize their competencies [Jones et al.,
2008, Jones, 2009).

The burst of possible combinations in the knowledge space suggests that agents
can more effectively recombine information locally [Fleming, 2001]. “Local search”
for an inventor involves exploiting existing combinations or using standard techno-
logical components. Agents tend to direct their research towards familiar subjects,
focusing on topics related to their expertise or that of their co-authors (local search/-

exploitation) [Fleming, 2001, Nelson, 1985, March, 1991]. Conversely, exploration (or

189



CHAPTER 4. UNPACKING SCIENTIFIC CREATIVITY

"distant search”) is characterized by using new components or testing novel combi-
nations [Fleming, 2001, March, 1991]. The nature of the new combinations realized
depends on agents’ trade-offs between exploiting and exploring the knowledge land-
scape. Exploitation reduces the risk of failure, as researchers draw from experience
with combinations and architectures that have previously failed [Vincenti, 1990].
Researchers must then collaborate with others to explore the knowledge space more
efficiently, and the team’s composition might determine this balance between explo-

ration and exploitation.

4.2.2 Team characteristics in the creative process

We review here some dimensions of the team composition that affect the scientific
process.

Size dimension: The importance of co-authors during the process of creativity

has been debated in the literature, and the effect of team size and composition on
creativity has been the focus of multiple studies [Paulus and Nijstad, 2003, Shin
and Zhou, 2007, Wuchty et al., 2007, Falk-Krzesinski et al., 2011, Erren et al., 2017,
Mueller, 2019]. Team size shapes and is shaped by the nature of the work carried
out. Large teams tend to be more risk-averse and consolidate a field rather than in-
troducing new opportunities [Christensen and Christensen, 2003, Paulus et al., 2013,
Lakhani et al., 2013, Wu et al., 2019]. Larger teams use more up-to-date and influ-
ential research in their work, consequently fostering greater engagement within their
scientific community and further increasing their impact [Wu et al., 2019]. However,
large teams are more prone to coordination and communication failures as the entire
team must have faith in the project to succeed, as agreement and communication
between team members can be challenging and time-consuming [Bikard et al., 2015].
In fact, the number of people involved in a project can have heterogeneous effects
on creativity, and no optimal team size fits every project. A small team may be
more useful in the conceptualization phase, while a larger team might be beneficial
in the implementation and testing phase of the project [Wang and Barabdasi, 2021].
Shin and Zhou [2007] highlight the organization’s importance for creativity. Using
evidence from Cambridge and AT&T’s Bell Laboratories (home to numerous Nobel
Prize winners), they discuss researchers’ ideal context for fostering creativity and
conclude that the presence of a healthy environment for a small group of people
(up to seven) promotes creativity. These results are further confirmed by Lee et al.

[2015] and Carayol et al. [2019], indicating that the relationship between team size
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and novelty appears U-shaped and is highly heterogeneous across disciplines.

Structural and relational social capital: Nahapiet and Ghoshal [1998] conceptu-

alize three dimensions of social capital that impact intellectual capital development:
structural, relational and cognitive. Though primarily used to understand intellec-
tual capital development in organizations and firms, the dimensions of social capital
presented in Nahapiet and Ghoshal [1998] can be applied to the context of knowledge
production in science due to their intrinsic relevance to relationship and network dy-
namics [Liao, 2011]. Structural capital examines the links between individuals, and
structural distances have been widely studied through collaboration networks (see
Kumar [2015] for an extensive review on network collaborations). Relational capital
represents the nature and intensity of the connections between team members. A
critical factor in intellectual development is the ability to communicate with each
other, and the actors’ experience reinforces the phenomena [Taylor and Greve, 2006,
Liao, 2011, Kelchtermans et al., 2020]. For instance, McFadyen and Cannella Jr
[2004] emphasize the role of the intensity of past relationships between scientists in
fostering new knowledge. Indeed, members with strong relationships, norms, obli-
gations, and mutual trust tend to communicate more easily [Liao, 2011]. Other
relational aspects, such as hierarchical or geographical dimensions, also impact the
knowledge space exploration. For example, supervising doctoral students is not only
associated with entering new areas but also extending towards more distant fields
[Kelchtermans et al., 2020] — See also Chapter 2 of this thesis.

Cognitive social capital: The cognitive capital remains challenging to measure as

it is linked to the shared background between coauthors and their common language.
Cognitive diversity is often encouraged through interdisciplinary projects as the in-
tersection of different perspectives is commonly required to solve complex scientific
problems [Page, 2008]. Indeed, people from outside a domain may have some ad-
vantage to offer fresh ideas through their distinct knowledge [Jeppesen and Lakhani,
2010, Kuhn, 1962]. The effectiveness of generating new knowledge is impacted by
factors such as variations in background, belief and reasoning styles among scien-
tists, all of which contribute to cognitive diversity. The cognitive distance between
team members is expected to display an inverted U-shaped correlation with both
learning and innovation [Nooteboom et al., 2007], as people being too distant will

face difficulty in communicating, and those being cognitively too similar benefit less
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from distinct perspectives in the knowledge creation process.

Cognitive distances between individuals can be studied through various metrics.
Kumar et al. [2017] used, for example, citations networks and citations context in
full text. Boudreau et al. [2016] represented the cognitive distance between funding
evaluators and the proposal through MeSH terms similarity. Similarly, Ayoubi et al.
[2017] represent the distance between the focal scientist and her team by comparing
cosine similarities of referenced journals from scientists’ past publications. Other
measurements, without being explicit, may relate to cognitive dimensions, Wagner
et al. [2019] discovered that international collaborations negatively affect novelty and
produce more conventional knowledge combinations, highlighting barriers and trans-
action costs that influence the production of creative work. Finally, measures of cog-
nitive distance strongly relate to interdisciplinarity. Petersen et al. [2021] represent
author diversity using the discipline of the institution. Using authors’ disciplinary
diversity, Abramo et al. [2018] show that more distant coauthors produce articles

with more diverse references.

Ezxploratory profile: Individual characteristics and the ability to interact with in-

dividuals from different fields are essential to efficiently managing cognitive diversity
in a team. When the distance between disciplines is too high, a “Renaissance” in-
dividual [Jones, 2009] can ease their connection [Wu et al., 2022]. The presence of
a scientist with a multifaceted profile bridges the gap between the different back-
grounds of other team members. This is crucial as a shared knowledge base between
researchers streamlines the socialization process and facilitates knowledge recombina-
tion, fostering creativity. Shin and Zhou [2007] focused on the relationship between
diversity (interdisciplinarity) and creative ideas in groups. Shin and Zhou [2007]’s
idea is that the presence of a ”transformational leader”, whose role is to mediate
between individuals, each specialized in a different field, leads to greater team cre-
ativity. Xu et al. [2022] provided a first answer to this hypothesis by examining
the share of team members engaged in the conceptual work, the L-ratio, which was
deduced from the analysis of author contribution reports. The findings suggest that
hierarchical teams generate less novelty than egalitarian teams and tend to develop

existing ideas more frequently.* We argue that the notion of transformational leader

“Interestingly, their method was expanded in an article with no contribution reports. Through
Louvain algorithms, they identified clusters of co-occurring research activities in their first dataset.
They then built a neural network to infer author roles based on their characteristics and predicted
it for 16 million articles on Microsoft Academic Graph (MAG).

192



CHAPTER 4. UNPACKING SCIENTIFIC CREATIVITY

or renaissance individual is connected to exploratory profile a la March [1991], indi-
viduals enabled to link others in the knowledge space due to their ability to navigate

in different spaces.

4.2.3 Exploring the cognitive dimension

We investigate scientific impact through citation networks and recent indicators of
disruption and breath and depth Wu et al. [2019], Wu and Wu [2019], Bu et al.
[2019], Bornmann et al. [2019a]. These indicators determine whether a document
consolidates a domain or constitutes a founding step. To explore its influence on
novelty, we use two approaches, one based on combinatorial novelty indicators [Uzzi
et al., 2013, Lee et al., 2015, Foster et al., 2015, Wang et al., 2017, Shibayama et al.,
2021] and one based on external validation via Faculty Opinion (previously called
F1000) following Bornmann et al. [2019b]. Faculty Opinion is a website hosting re-
views of papers tagged as presenting “New Results”, “Novel Drug target”, “Technical
advancement”, “Interesting hypothesis”, and “Controversial results”, among other
categorizations labelled by experts in the field. It allows us to empirically assess the
capacity of novelty indicators and our indicators to predict the novelty as perceived
by other researchers in the community.

Novelty indicators have been compared and evaluated based on citation count
[Uzzi et al., 2013, Lee et al., 2015, Foster et al., 2015, Wang et al., 2017]. Fontana
et al. [2020] compared Wang et al. [2017] and Uzzi et al. [2013], Lee et al. [2015] using
randomized citation networks and demonstrated the ability of the Uzzi et al. [2013],
Lee et al. [2015] indicators to better track novelty. Their findings are supported by
using some Nobel Prize winners’ articles and a list of APS milestone articles. Other
studies have evaluated these indicators based on surveys, such as Shibayama et al.
[2021] and Matsumoto et al. [2021], whereas Bornmann et al. [2019b] have evaluated
them based on labels collected on Faculty Opinion and found similar results as in
Fontana et al. [2020]. However, only a few indicators have been compared and tested
simultaneously. This study intends to validate the effect of the cognitive dimension
on a large variety of metrics.

Our indicator is not a substitute for other novelty indicators. It does not repre-
sent the novelty of an article as it is based upon previous information and would be
similar even without the focal article. Instead, it provides an understanding of team
composition that would benefit creativity in science. We can think of our measure

as a measure of potential novelty, i.e. opportunities for new knowledge recombina-
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tion available through the diversity of background in the team and the capacity of
individuals to bridge the gap between other team members. In comparison, combi-
natorial novelty indicators would capture then the realized novelty, i.e. the output of
the research conducted by this team in terms of pieces of knowledge used. Finally,
Faculty Opinion labelling and other external validation methods can describe the
perceived novelty, i.e. the peers’ perception of this study. Hence, in these terms,
we ask whether potential novelty contributes to realized and perceived novelty and
its scientific recognition. T'wo research questions can be drawn regarding the effect
of the cognitive dimension on creativity. Do teams with higher cognitive diversity
are more likely to approach a subject creatively, demonstrating originality (perceived
and realized) and recognition? Does the presence of ezplorative individuals within
a team enhance communication among members and facilitate their exploration of
the knowledge space to develop new and relevant solutions to research problems?
Studying the cognitive dimension of creativity in science is of great interest, espe-
cially as it can help identify how to improve collaboration and communication among
researchers with diverse cognitive profiles. Through our metric, we also offer a differ-
ent approach to resource allocation decisions, giving another picture of teams with

a high potential for creative output.

4.3 Data and methods

4.3.1 Measuring cognitive diversity and exploratory profile

The proposed metric examines the semantic heterogeneity of researchers’ work as a
proxy for their cognitive diversity. It thus offers an alternative to using categories,
keywords, or citation networks, more complex to be monitored directly by the re-
searchers themselves. Following Hain et al. [2020] and [Shibayama et al., 2021], we
can embed this list of documents in a vectorial space to apply a distance measure
such as cosine similarity [Mikolov et al., 2013b]. We assume that an author of a
paper in a specific position within the semantic space possesses knowledge embed-
ded around that position. Our indicator has two properties: it offers a measure
of researchers’ profiles at the individual level and a measure of distances between
them. Consequently, we can proxy the trade-off between exploitation and explo-
ration that a researcher undergoes throughout their career (intra-individual) and the

trade-off materializing during the formation of a team (inter-individual) within the
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same mathematical space.
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Figure 4.1: Construction of the indicator

As explained in Figure 4.1, we track authors to create a list of authors’ past
publications. Then, we can create a cognitive profile for each author at a given time
t; each publication is embedded in the semantic space and represents the cognitive
landscape of the author. We restrict to publications up to b years before ¢ to account
for researchers’ current topics of interest and difficulty retaining information [Argote
et al., 1990]. We can finally define a researcher’s exploratory profile at time ¢ by
calculating pairs of cosine distances between past papers published. This will create
a density of cosine distances which, using the taxonomy of March [1991], can be
interpreted the following way: the fatter the right (left) tail is, the more exploratory
(exploitative) the researcher. The same holds for the team. A sizeable right tail in-
dicates a cognitively distant researchers team. This provides us with information on
how distant their knowledge base is from others. The greater the distance, the less
likely their respective knowledge space can be combined, thus affecting the probabil-
ity of combining novel ideas. An intra-author and inter-author distribution enables

a wide exploration of the relationship between novelty, creativity, and teams.
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Figure 4.2: Exploratory profile and cognitive diversity

We model our measures on two different perspectives as represented in Figure
4.2: intra-author distances, which asses exploratory profile, and inter-authors dis-
tances, to capture cognitive diversity. A given focal paper (FP) is written by two
authors named 'A’. We retrieve each author’s past production, named 'P’. On the
one hand, we can then calculate the distance between all publications from a given
author (intra-author distances). On the other hand, we can also compare past pub-
lications from two authors (inter-author distances). We can build our framework
using directed bipartite networks, defined as G(U, V, E'). U represents the set nodes
for authors, V' is the set for articles, and E is the set of links between authors and
articles.

We only consider collaborations between authors when looking at a given article;
collaboration is implicit since the set of parents of a given document F'P € V corre-
sponds to the set of authors that collaborate. For a given document F'P, an author
that has contributed to F'P is noted a, and the set of nodes that contributes to F'P
is then Inpp ={a € U : (a, FP) € E}.

We want to retrieve all past publications for all authors in Ingp. The global set of
publications before F'P is noted V}}b, the set of articles published b years before the
document F'P. The set of past publications for author a € Ingp is noted Out!=™> =

{v e VY : (a,v) € E}. For a document F'P and an author a € Ingp, we retrieve
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the set of past publications Out!=0. All Out'~? elements vectorial representations are
compared, from which distribution of cosine distances are calculated. The distance
between two documents i, j € Outt = is d;; = 1 — COS(T;,T;) where T; is the dense

vector text representation for document i.

Intra-author semantic_distances: A distribution of semantic distance score D, is

computed through cosine similarity using all document 7, j € Out'~", the process is
repeated for each authors a € Ingp. The intra-author distance for a given author a

is the g-th percentile (F,) of this distribution and is written as:

Intra, = Py(D,)

A general distribution of the intra-authors publication distances is constructed
using the set of distances for all authors App = {D, : @ € Inpp}, the individual
trade-off between exploitation/exploration is then captured through the average of

the exploratory profiles in a given team.

2.0(Fy(Da))

Intrapp = T
FP

Inter-authors semantic distances: A distribution of semantic distance score be-

tween authors’ previous work is constructed by comparing different authors’ pub-
lications. For two given authors a,e € Inpp, |Out!™®| x |Out!™?| distances are
used to construct the distribution of distances D, . between a and e. The final
distribution then groups together all distances between authors’ previous works
Bpp ={D,. : a,e € Inpp}, the trade-off between exploitation/exploration in team

composition is captured through the percentile of Bpp:

]nteTFp = Pq(BFp)

Current techniques for large-scale author disambiguation allow the investigation
of individual trajectories in science. However, the use of this information comes with
a computational cost. This indicator pushes towards a massive use of data because
one needs all authors’ past publications for a given set of documents. Structur-
ing the data to compute the measure is time-consuming and data-intensive. One
needs indeed all papers’ text from all authors in a given database. However, using

pre-trained embedding models allows direct computing indicators without the re-
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quirement of complete database access. Therefore, measures are not dependent on
the study sample as indicators of novelty based on cooccurrence matrices but rather
on the sample used to train the model. Also, by processing titles and abstracts
through embedding techniques, the authors’ background is represented with greater
granularity than through the keywords or the journals where the authors have been

published.

4.3.2 Data

Our analysis relies on two databases. The first, PubMed Knowledge Graph (PKG),
allows us to test the effect of the cognitive dimension on scientific impact and realized
novelty of articles, while the second, Faculty Opinion verifies whether the cognitive
dimension affects the perceived novelty by peers.

We use Pubmed Knowledge Graph (PKG), a collection of 35 million scientific
papers and books from life science and biomedical journals provided by the National
Library of Medicine (NLM) at the National Institutes of Health (NIH). Authors are
disambiguated by leveraging Natural Language Processing (NLP) and online data,
as outlined by Xu et al. [2020]. We based our analysis on all the 3.5M articles writ-
ten by 3,276,250 authors and published in 9,348 journals between 2000 and 2005.
We selected fairly old data due to the nature of the process studied. Indeed, novel
articles are more likely to become ”sleeping beauties” and accumulate citations in
the long run [Lin et al., 2021]. Also to compute novelty indicators, we require in-
formation about references. We rely both on abstracts of references to embed their
semantics and calculate the distance as in Shibayama et al. [2021]. Also, we use past
publication references’ journals to build past cooccurrence matrices used to capture
combination existence and difficulty for other novelty indicators. For this purpose,
we used the database between 1980 and 2005 to get all information needed, repre-
senting 11,261,955 documents.

To test if our indicators affect the novelty perceived by peers, we used Faculty
Opinion following Bornmann et al. [2019b]. Faculty Opinion is a database featuring
papers tagged as presenting 'New Results’, 'Novel Drug target’, "Technical advance-
ment’, 'Interesting hypothesis’, and ’Controversial results’, among other categoriza-
tions determined by the platform users. The platform hosts reviews of the most
significant research in Biology and Medicine. This makes it easy to match the arti-
cles in the database with PKG. Indeed, from the 190k articles in Faculty Opinion,
we found 27,122 in our sample (2000-2005).
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4.3.3 Empirical strategy

To explore the relationship between the team’s cognitive dimension and its ability to
recombine pieces of knowledge in novel ways and achieve recognition, we start with
a basic exploratory data analysis followed by three econometric analyses to test our
hypotheses.

The first two analyses aim to understand how a team’s cognitive diversity and
the exploratory profiles of its members impact perceived novelty (i.e., peer labelling
on Faculty Opinion) and realized novelty (i.e., indicators of combinatorial novelty).
Then our analysis seeks to comprehend the effect of the cognitive dimension on
scientific recognition using citation and disruption measures.

Realized novelty and scientific impact connections with cognitive dimension are
both investigated through PKG, the normalization performed at the field and year
levels of this measure provides a measure ranging between 0 and 1, which we model
using linear models with cluster robust standard errors at the journal level. Lastly,
we examine how the presence of highly exploratory and exploitative individuals in-
fluences the team’s creativity. This analysis will help determine if cognitive diversity
and the presence of exploratory profiles are explicitly visible in an article’s knowledge
composition.

For the analysis of perceived novelty, we employ the Faculty Opinion database
and model, through Logit and Poisson regressions, the likelihood of an article be-
ing labelled with “novel” categories (“Technical Advance”, “Interesting Hypothesis”,
“Novel Drug Target”). In our sample, 80% of the observations are labelled as 'New
Findings’, and 95% of the total sample would be considered new using the top 4 most
represented categories (22,216 novel articles versus 1,750 not-novel). The fact that
most articles are labelled as new findings makes this category less informative; there-
fore, we decided to exclude it and remove articles solely labelled with this category.
As a result, our prediction is based on a more balanced sample (8,950 novel articles
versus 3,605 not-novel). This will enable us to understand whether the cognitive
dimension is associated with perceived novelty. We do not expect a direct effect but
rather hypothesize that cognitive diversity influences a latent variable representing
the article’s actual contribution. This actual contribution of the paper may or may
not be visible in the realized novelty measured by novelty indicators but might be

then reflected in labelling made by peers.
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4.3.4 Variables

Variables used in our empirical analysis can be separated into four categories: novelty
indicators, scientific impact, cognitive, and control variables. For control variables,
aside from data from PKG, we use journals listed in Scimago to control for scientific
domains and measure of the impact associated with the journal. Each of our vari-
ables is at the paper level. For the empirical strategy, novelty, impact and cognitive
measures will be field weighted by year using the percentile rank procedure — noted
(FW). We use the first category of the journal from Scimago to approximate the
field.

Novelty indicators

The indicators used in our analysis are Uzzi et al. [2013], Lee et al. [2015], Foster
et al. [2015], Wang et al. [2017], Shibayama et al. [2021]. A formal mathematical
description of them can be found in Chapter 3 of this thesis. Note that we have
inversed the sign of the measures related to Uzzi et al. [2013] for simplicity and

comparison with other indicators. The computation is done with Novelpy®.

Scientific impact variables

For impact measures, we use citation counts and disruptiveness indicators, also de-
scribed in Chapter 3. We used all available indicators in Novelpy, namely: Wu et al.
[2019], Bu et al. [2019] and Bornmann et al. [2019a].

Cognitive variables

Team cognitive diversity: The mean of the inter-authors semantic distance as defined

in Section 4.3.1 with q=90 for a given paper. It measures to what extent a team is
composed of highly cognitively distant authors (i.e. Author 1 background is vastly
dissimilar to Author 2 background). Furthermore, we suppose the relation between
the team’s cognitive diversity and other measures is not linear. We take the square

of the team’s cognitive diversity to test this.

Average exploratory profile: The mean of the intra-authors semantic distance as de-

fined in Section 4.3.1 with q=90 for a given paper. It captures to what extent a team

5 Nowelpy is a python package that allows computing novelty and disruptiveness indicators.
More details can be found here: https://novelpy.readthedocs.io/
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comprises authors with distant past publications (i.e. Author 1 worked on diverse

subjects). As for team cognitive diversity, we add a square term in the regressions.

Number of highly exploratory authors: To have more information on the team struc-

ture, we decided to define a threshold to identify highly exploratory authors. Looking
at the intra- author’s semantic distance as defined in Section 4.3.1. An author is con-
sidered highly exploratory if its 90'h percentile is in the top 10% of all Intrarp in

our sample.

Number of highly exploitative authors: We expect highly exploratory authors to work

best with highly exploitative authors (i.e. Novelty is probably most successful with
a combination of typical and atypical individuals). We construct this measure fol-
lowing the same procedure as exploratory authors. Looking at the intra- author’s
semantic distance as defined in Section 4.3.1. An author is considered highly ex-

ploitative if its 90'h percentile is below our sample’s median of all Intrarp.

Interaction term between highly exploratory and highly exploitative authors: We added

an interaction term between the two types of profiles as both competencies might

complement each other.

Control variables

We included as control variables the number of authors, references and MeSH terms.

We also controlled for the year and information related to the journal of publication.

Scimago Journal Ranking (SJR): An indicator of a journal’s prestige based on weighted

citation and eigenvector centrality derived from Scopus’ citation networks by Scimago
[Gonzélez-Pereira et al., 2009].

Scimago Journal Category: Scimago provides a classification of journals based on

various fields. We used the first category linked to a journal; our database contains

journals from 271 categories.
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4.3.5 Descriptive statistics and preliminary evidence

We further clean our database and restrict it to papers with at least 2 references/
MeSHterms,/ authors and with a journal ISSN. Our final dataset represents approx-
imately 2.1M articles.

Table 4.1 presents the descriptive statistics for the variables in our sample. Exam-
ining their distribution, it is worth noting that some indicators concentrate novelty
around a small number of articles, as in Foster et al. [2015] or in Wang et al. [2017],
merely 21% of the articles possess non-zero values (measured on references). Also,
indicators such as citation count or Uzzi et al. [2013] among others, display rela-
tively extreme values. Specifically for Uzzi et al. [2013], it is highly dependent on the
z-score computation, when the variance of the journal combination is minimal, the
z-score can rapidly become substantial. These disparities in distribution prompted

us to apply a percentile rank procedure by field and year, as explained in the previous

subsection.
Table 4.1: Descriptive statistics

Statistic Min.  Pctl(25) Median Mean Pctl(75) Max St. Dev. N

# References 2 12 22 2737 36 2690 25.76 2108280
# Meshterms 2 9 13 13.25 16 51 519 2108280
# Authors 2 3 4 ) 6 282 2.94 2108280
# Citations 0 9 22 46.99 50 81577  129.47 2108280
SJR 0.1 0.627 1.130 1.787 2.035  39.946 2.22 2094669
Disruption; -1 -0.007 -0.001 0.003 05179 1 0.06 2108280
Disruptiony,ex -1 -0.588 -0.269 -0.192 0.111 1 0.51 2108280
Disruptions -1 0 0.001 0.018 0.009 1 0.07 2108280
Disruptionpery, 0 0.79  1.662 2.067 2.875 92.5 1.81 2108280
Breadth 0 0.307 0.5 0517 0.714 1 0.26 2108280
Depth 0 0.258 0.5 0458 0.672 1 0.26 2108280
Share Exploratory 0 0 0 0.063 0 1.0 0.14 2108280
Share Exploitative 0 0 0.333 0.365 0.6 1 0.32 2108280
Author intra 4, 0 0.22 029 029 0.36 1.02 0.09 1837749
Author inter s 0 0.26 0.33 0.33 0.40 1.02 0.09 1837748
Shibayama g, 0 0.222  0.274 0.275 0.327  0.991 0.07 2081854
Uzzige s -62396.32 -7.34 3.66 -18.03 14.02 199.49 206.82 1891079
Leepes -17.581 0.145 0.840 0.567 1.466  6.006 1.45 2092283
Fosterpes 0 0.117 04 0.366 0.583 1 0.25 2092283
Wangp. s 0 0 0 0.583 0 2872.106 4.79 2092283
Uzzinsesn -287.0 -1.1 0.9 2.7 4.5 189.1 8.19 765751
Leensesh -7.996  0.4562 0.807 0.794 1.174  4.717 0.60 2105186
Foster yresn 0 0.274 0.476 0.424 0.591 1 0.22 2105186
Wangaresn 0 0 0 0.299 0.307  28.668 0.76 2105186
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The correlogram in Figure 4.3 illustrates the various indicators’ interconnection.
A hierarchical clustering algorithm is applied to the correlation matrix and several
clusters emerge. It includes citation and consolidation indicators, novelty indicators,
cognitive dimension indicators, and disruption indicators. Regardless of whether
MeSH terms or references are used to derive the indicators, the novelty indicators
group remains consistent, suggesting that combinatorial novelty indicators capture
a shared underlying dimension of innovation in scientific research. The correlation
between Lee et al. [2015] and Uzzi et al. [2013] is particularly robust since both mea-
sures are nearly identical except for the incorporation of the reference’s publication
year in Uzzi et al. [2013]’s resampling process. It should be noted that a negative
correlation is expected since low values signify atypicality in Uzzi et al. [2013], while
high values represent novelty in Lee et al. [2015], this is why we inverse the sign of
Uzzi et al. [2013] to get positive correlation between indicators. A strong correlation
is observed between Shibayama et al. [2021] and our indicators, as it employs the
same measurement on references, and some elements may overlap. Specifically, self-
citation increases the correlations between Shibayama et al. [2021] and our indicator
since the same combinations are calculated in the author and reference parts. More-
over, the clustering differentiates between citation count, consolidation indicators
(Depth, DeIN), and disruption indicators (DI1, DI5, DI1nok, and Breadth). These
distinctions emphasize how consolidation indicators are more closely related to cita-
tion count and demonstrate how disruption indicators capture other dimensions of
scientific impact.

The development of an author-level indicator necessitates examining its relation-
ship with team size. Figure 4.4 illustrates how intra- and inter-individual cognitive
indicators are strongly associated with team size. Although it is unclear whether
cognitive diversity generates a specific team size or if team size produces this diver-
sity, it is visible that as the cognitive diversity within a team increases, the average
exploratory profile must also rise to maintain a comparable team size. The hump-
shape relationship on both sides is easily observable, suggesting that the more diverse
the team and/or the more exploratory the individuals, the smaller the team. Con-
versely, highly homogeneous teams typically imply smaller average team sizes, even
if the average exploratory profile is high. This pattern is partially attributable to
the construction of our indicator, which averages distance. In larger teams high
distance between members might be compensated by other members that are close

to each other. This counterbalancing is less pronounced in smaller teams, resulting

203



CHAPTER 4. UNPACKING SCIENTIFIC CREATIVITY

inter_abstract_fw

inter_title_fw
a_abstract_fw

a_title_fw

uzzi_mesh_fw

lee_mesh_fw

intra_abstract_fw

intra_title_fw

h_fw
Deln_fw
ref_fw

uzzi_ref_fw
lee_ref_fw

[

o ©
£ £
= =
=S =
© ©

=

fost_er aesh fw

Depth_fw
wang_mesh_fw

autho

autho
DI1_fw
Dllnok_fw
nb_cit_fw
wang_|
shibayam
shibayam
foster_ref_fw

author_intra_abstract_fw
author_inter_abstract_fw (@ @
author_intra_title_fw [ ] 075
author_inter_title_fw
Breadth_fw

DIS_fw

DI1_fw

Dllnok_fw

Deln_fw

nb_cit_fw

Depth_fw

wang_ref_fw
shibayama_abstract_fw
shibayama_title_fw
wang_mesh_fw
foster_ref_fw
uzzi_ref_fw

lee_ref_fw
foster_mesh_fw
uzzi_mesh_fw
lee_mesh_fw

0.5

0.25

-0.5

Figure 4.3: Correlogram with hierarchical clustering

in more extreme values. However, several explanations for this phenomenon can be
offered. For instance, substantial cognitive diversity might create communication
barriers among team members, particularly when individuals are less explorative.
Consequently, smaller teams are formed due to potential coordination and knowl-
edge exchange difficulties. In cases with a high average exploratory profile combined
with high cognitive diversity, forming smaller teams may be more convenient, as re-
searchers might explore the knowledge space too broadly. Smaller teams could help
prevent efforts from dispersing in various directions. As for teams with low cognitive
diversity, the absence of cognitive diversity and exploratory profiles could relate to
niches where individuals possess similar knowledge and expertise. As a result, many
team members might not be necessary, as they can efficiently navigate the local
knowledge space. The same argument can be made for individuals with comparable
skills and exploratory profiles, as they may represent teams that regularly collabo-
rate on diverse topics. The distinct skill requirements for these teams may be lower,
leading to smaller team sizes.

Interestingly, when comparing the analysis of team size with disruption, we con-
firm the findings of Wu and Wu [2019]. As illustrated in Figure 4.6 in the Appendix,
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peripheral observations are more disruptive (represented with DI1nok), correspond-
ing to the location of our smaller teams in Figure 4.4 right panel. Teams consolidating
science, as indicated by the Depth variable, are also, on average, the most prominent
teams. Small teams that disrupt science tend to have exploratory profiles and/or
diverse team compositions. Science disruption seems to occur through small teams
with either highly distinct skills or very exploratory profiles. What seems essential
is the ability to access a broader knowledge space, regardless of whether this space is
reached through the team’s highly explorative profiles or the team’s diversity. Teams
composed of individuals who are, on average, highly exploratory but with low team
cognitive diversity represent teams with similar skills that cover the knowledge space
effectively. In contrast, highly diverse teams with specialized individuals also span
the knowledge space to propose disruptive ideas, although they may face communi-
cation challenges. The combination of these two factors also appears to contribute
to disruption, albeit less prominently, suggesting the detrimental effect of excessive
diversity. Another inverted U-shaped relationship exists between a team’s average
exploratory profile and novelty indicators. When balanced by a relatively explorative
average profile, cognitive diversity appears beneficial without showing a saturation

point.

Team size

5

37is WeaL
Average exploratory profile in the team

0 0 0 0
0.2 04 06 0.8
Team's cognitive diversty measured on abstracts (Field Weighted)

Team's cognitive diversty on ab

(Field Wei
Figure 4.4: Team size, exploratory profiles and cognitive diversity

The relationship differs when we adopt an alternative perspective and consider

the proportion of highly exploratory and exploitative individuals within scientific

teams. A dome is visible in each indicator, signifying successful trade-offs between

exploitation and exploration. Figure 4.5 offers insight into the relationship between
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these two aspects and scientific recognition and combinatorial novelty. Teams with
fewer highly exploratory individuals and a higher proportion of highly exploitative
individuals typically contribute to consolidating the field (Depth metric). Conversely,
groups with a higher proportion of highly exploratory individuals and a smaller pro-
portion of highly exploitative individuals are more likely to initiate disruptions in
their fields (DIlnok metric). These observations complement the findings of Uzzi
et al. [2013], which suggest that a balance between conventional and atypical knowl-
edge combinations produces the most impactful research. Moreover, this analysis
enables us to examine how the balance between exploratory and exploitative indi-

viduals affects knowledge creation itself.
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Figure 4.5: Relation between the share of highly exploitative and highly ex-
ploratory profile in a team with and Novelty/ Scientific Impact

Teams featuring a fair proportion of exploratory individuals and a more sustained
level of exploitative individuals seem to be most likely to generate compelling new
combinations of knowledge. Figure 4.5 suggests that an optimal team composition
would consist of approximately 50% highly exploitative and 20% highly exploratory
individuals to increase the likelihood of combining distant knowledge. The situation
is less clear for Shibayama et al. [2021], where a high proportion of highly exploratory

individuals appears to be beneficial®. Exploratory individuals contribute to the team

6This might be connected with the relationship between our measure and the measure of
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by introducing fresh and innovative ideas from their extensive knowledge. These in-
dividuals can challenge conventional thinking and steer the team in new directions.
Simultaneously, they might foster communication among group members with dis-
tant knowledge. In contrast, highly exploitative individuals are crucial for refining
and optimizing these novel ideas. Their specialized expertise allows the team to iden-
tify feasible and effective solutions, ensuring the creative potential of the exploratory
individuals is appropriately channelled into tangible outputs. Additionally, their
deep understanding of a specific field facilitates effective communication. The highly
exploratory profile complements the specialized knowledge and proficiency of the
highly exploitative team members. This dynamic enables the team to capitalize on
the full potential of their diverse cognitive abilities, optimizing the innovation pro-

cess and yielding scientific advancements.

4.4 Results

4.4.1 Cognitive dimension and novelty
4.4.1.1 Realized novelty

This subsection examines the relationship between the team’s cognitive dimension
and novelty indicators. To this end, we report the results of an OLS to identify the
joint impact of authors’ intra-diversity and inter-diversity on the indicators. The
outcomes of these models are presented in Table 4.2.

First, we confirm that cognitive diversity in a scientific team fosters realized
novelty. Team cognitive diversity (Row 1-2) reveals a significant positive effect on
combinatorial novelty. This suggests distant individuals can ease the combination
of distant journals in the references. The squared term has negative coefficients.
However, the turning point is higher than 1, meaning the relationship is strictly in-
creasing (See Table 4.13 in Appendix). However, it means that the marginal benefit
of cognitive distance is decreasing. When interpreting the coefficients, it is impor-
tant to remember that the independent and dependent variables are expressed in
percentile rank within a given field and year. A one percentage point increase in
the independent variable’s percentile rank implies a § percentage point increase in

the dependent variable. In our case, the marginal effect of a quadratic term depends

Shibayama et al. [2021] as it is measured in a similar manner. Self-citation also directly impacts
the relationship between these two metrics as the same combination of articles will be calculated
in both metrics.
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Table 4.2: Combinatorial Novelty: cognitive diversity and average exploratory pro-
file (Field-Weighted,/ References)

Dependent variable:

Uzzi Lee Foster Wang Shibayama
(1) (2) (3) (4) (5)
Author inter 445 (FW) 0.169*** 0.166*** 0.116*** 0.098*** 0.284***
(0.008) (0.007) (0.010) (0.006) (0.007)
Author inter 455"2 (FW) -0.031***  -0.034***  -0.023** -0.028*** -0.118***
(0.007) (0.007) (0.009) (0.006) (0.007)
Author intra 45 (FW) 0.056*** 0.043*** 0.041** -0.002 0.188***
(0.014) (0.013) (0.019) (0.008) (0.009)
Author intra 4p5"2 (FW) -0.088***  -0.094***  -0.084*** -0.026*** -0.047***
(0.011) (0.010) (0.015) (0.006) (0.010)
# References 0.002*** 0.002*** 0.001*** 0.005*** 0.002***
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
# Meshterms 0.004*** 0.006*** 0.005*** -0.001%*** 0.004***
(0.0004) (0.0004) (0.0004) (0.0002) (0.0004)
# Authors 0.008*** 0.007*** 0.007*** 0.001*** 0.007***
(0.0004) (0.0004) (0.0005) (0.0003) (0.0003)
SJR -0.012***  -0.011*** -0.014*** -0.008*** -0.0171%**
(0.002) (0.002) (0.002) (0.001) (0.001)
Year Yes Yes Yes Yes Yes
Journal Cat. Yes Yes Yes Yes Yes
Observations 1,647,430 1,815,603 1,815,603 1,815,603 1,809,155
R?2 0.055 0.062 0.039 0.122 0.130
Adjusted R? 0.055 0.062 0.039 0.122 0.130
Residual Std. Error 0.281 0.278 0.310 0.345 0.267
F Statistic 406.544*** 512.283*** 315.079*** 1,065.575*** 1,143.840***

Notes: This table reports coefficients of the effect of cognitive diversity and average
exploratory profile on combinatorial novelty using PKG. Standard errors are cluster
robust at the journal level: *** ** and * indicate significance at the 1%, 5% and 10%
levels, respectively. The effects are estimated with an OLS. Variables are field-weighted
and constant term, scientific field (Scimago Journal Category), and time-fixed effects are
incorporated in all model specifications.

on the value of the independent variable. We can calculate marginal effects at the
mean values of the independent variable. For example, in Uzzi et al. [2013] (model
1), the marginal effect of Author intery,s (FW) at the mean value is calculated this
way: % = 0.169 — 2 % (—0.031) * Mean(Inter). Since variables are expressed in
percentile rank, the mean and the median are 0.5. The marginal effect can be then

calculated easily, —~%— = 0.169 — %(—0.031) = 0.2. This means that by increasing

(inter)
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one percentage point on the ranking of team diversity in a given field and year, one
can increase by 0.2 percentage points in the ranking of the most novel articles in the
field and year.

On the contrary, the average exploratory profile must remain reasonable to max-
imize novelty. As visible in Table 4.13, the turning points are around 30% for all
indicators except Shibayama et al. [2021], for which it is upper than one. This can
mean two things, and this is what we will examine in the second part of this re-
sults section, either the researchers have a rather moderate explorative profile, or
there is a balance between exploratory and exploitative individuals. A set of profiles
that are too exploratory seems detrimental, as does a set of too exploitative profiles.
As shown in Table 4.2, this holds for all indicators on references, except for Wang
et al. [2017], for which the individual effect is negative, one explanation can be the
fact that Wang et al. [2017] control for future reutilization of the novel combination.
Indeed this gives a ’scientific impact’ dimension to the metrics and the presence of
more specialized individuals may impact the relevance of the combination for the
community, making it more likely to be reused.

On MeSH terms, as visible in Table 4.11 in the Appendix, individual exploratory
aspects appear to have a direct negative impact. Indexers assign the MeSH terms
and may be subject to bias or misinterpretation. In contrast, the references directly
relate to the researchers’ choices and reflect their interests and preferences. There
are two possibilities, indexers may be unable to capture all the nuances and sub-
tleties of research conducted by individuals with high-average exploratory profiles.
Alternatively, the novelty of references could be induced by an author bias in citing
previous works irrelevant to the contribution. Researchers’ past publications do not
directly impact indexers, so she might not need to qualify the article with distant
MeSH terms because the novelty is not sufficiently explicit. This suggests that MeSH
terms do not reflect the diversity of knowledge and ideas present in individual past
work but rather the diversity of competencies between team members.

These relations remain consistent when regressions are not performed using per-
centage rank information, and indicator behavior with MeSH terms and references
seems to be much more corroborated, as visible in Table 4.14 and 4.15 in the Ap-
pendix. The fact that the effect is nearly the same on most of the indicators of novelty
demonstrates the robustness of this analysis - our measure captures something simi-

lar regardless of the construction of the novelty indicator and the information used.
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The potential for novelty seems more apparent when looking at the exact compo-
sition in terms of exploratory profiles, i.e., the share of explorative individuals and
the share of highly exploitative individuals. In Table 4.3, we replace the average
exploratory profile variables with the exploitative and exploratory individual shares

and the interaction of these two variables.

Table 4.3: Combinatorial Novelty: Cognitive diversity, highly exploratory and ex-
ploitative profile (Field-Weighted/ References)

Dependent variable:

Uzzi Lee Foster Wang Shibayama,
1) (2) 3) (4) (5)
Author inter 45 (FW) 0.168***  0.163***  0.107*** 0.066*** 0.400***
(0.014) (0.012) (0.020) (0.008) (0.012)
Author inter 45"2 (FW) -0.007 -0.006 0.028 0.001 -0.160***
(0.012) (0.011) (0.018) (0.007) (0.012)
Share exploratory -0.166***  -0.173***  -0.214***  -0.084*** -0.022***
(0.007) (0.007) (0.010) (0.004) (0.006)
Share exploitative 0.027***  0.053***  0.057*** 0.002 -0.092***
(0.003) (0.003) (0.005) (0.002) (0.004)
Share exploratory * Share exploitative 0.298***  (0.273***  (.390*** 0.080*** -0.112%**
(0.016) (0.016) (0.020) (0.011) (0.018)
# References 0.002***  0.002***  0.001*** 0.005*** 0.002***
(0.0001)  (0.0001)  (0.0001) (0.0001) (0.0001)
# Meshterms 0.004***  0.006***  0.005*** -0.001*** 0.004***
(0.0004)  (0.0003)  (0.0003) (0.0002) (0.0004)
# Authors 0.008***  0.007***  0.007*** 0.001*** 0.006***
(0.0004)  (0.0004)  (0.0005) (0.0002) (0.0003)
SJR -0.012***  -0.011*** -0.014™**  -0.008*** -0.011***
(0.002) (0.001) (0.002) (0.001) (0.001)
Year Yes Yes Yes Yes Yes
Journal Cat. Yes Yes Yes Yes Yes
Observations 1,647,430 1,815,603 1,815,603 1,815,603 1,809,155
R? 0.059 0.068 0.046 0.122 0.129
Adjusted R? 0.059 0.068 0.046 0.122 0.129
Residual Std. Error 0.280 0.277 0.308 0.345 0.267
F Statistic 436.681*** 556.617*** 372.829*** 1,065.763*** 1,132.467***

Notes: This table reports coefficients of the effect of cognitive diversity and highly exploratory and
exploitative profiles on combinatorial novelty using PKG. Standard errors are cluster robust at the
journal level: ***_ ** and * indicate significance at the 1%, 5% and 10% levels, respectively. The
effects are estimated with an OLS. Variables are field-weighted and constant term, scientific field
(Scimago Journal Category), and time-fixed effects are incorporated in all model specifications.

While cognitive diversity appears to be always beneficial to combine new knowl-
edge, the presence of too many explorative individuals is harmful. Indeed, its pres-

ence only becomes beneficial when counterbalanced by a higher share of exploitative
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individuals. We can clearly see how this trade-off is necessary to create novelty in the
regressions. In the same way as before, the coefficients can be interpreted directly, a
percentage point increase in the share of highly explorative individuals increases by
[ percentage point in the ranking of the most novel articles in the field and year.

Exploratory individuals will develop new perspectives that specialized individuals
will capitalize on to make them succeed. A larger share of specialized individuals
facilitates communication among members if they are in the same field; otherwise,
scientists with diverse backgrounds appear to facilitate communication among team
members who are cognitively distant [Page, 2008]. This mirrors the ”Renaissance”
individual of [Jones, 2009] or the ”transformational leader” of Shin and Zhou [2007]
who can ease connections between distant members and foster the team’s creativity.

Too many such individuals would make the exploration less efficient, and the
emerging ideas would potentially not be successfully implemented because the em-
bedding of the conducted research in a scientific paradigm would not be sufficient.
The results are similar across novelty indicators, except for Shibayama et al. [2021],
in which the best team composition is made from non-exploitative, non-highly ex-
ploratory researchers. Table 4.12 in the Appendix shows that the results also hold
for indicators based on MeSH terms.

The two sets of results on the impact of cognitive distance and researcher profile
show that combining specialized and exploratory profiles is a good proxy for potential
novelty as it enhances the realized novelty in the team?”. While Uzzi et al. [2013] show
that this trade-off between conventional and atypical combinations of knowledge is
the most impactful, we demonstrate that this idea holds at the team level as well

and that these configurations are most likely to achieve atypical combinations.

4.4.1.2 Perceived novelty

In this subsection, we examine the relationship between the cognitive dimension and
novelty as assessed by experts. Specifically, we employ a Logit model to identify the
impact of authors’ intra-diversity and inter-diversity on the likelihood of being classi-
fied in at least one novel category. The results of these models are presented in Table
4.4. The effect of team cognitive diversity plays a positive role in perceived novelty,
as seen in the first and second specifications. This effect is less clear when considering

individual characteristics. The average exploratory profile has a negative impact. In

"Table 4.17 provided in the Appendix shows that the results are similar when considering un-
normalized indicators
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model 3, we can see that our previous results on realized novelty (Table 4.2) only
holds for the cognitive distance between individuals when tested on perceived novelty.
In contrast, when examining the specifications with the share of highly exploratory
and exploitative individuals, the results corroborate the regressions performed on re-
alized novelty. The proportion of highly exploratory individuals has a negative effect.
Instead, typical individuals play a positive role, and the intersection of both types of
researchers is indeed positive for predicting novelty. Note that in this specification,

cognitive diversity between members is no longer significant.

Table 4.4: Faculty Opinions: cognitive diversity and average exploratory profile,
highly exploratory and exploitative profile (Field-Weighted)

Dependent variable:
Novelty Perceived

(1) 2) 3) 4) ()

Author inter 455 (FW) 0.306** 0.715* 0.330
(0.126)  (0.388) (0.302)
Author intra s (FW) -0.532***  -0.196
(0.155)  (0.419)
Author inter 4552 (FW) -0.438 -0.270
(0.376) (0.325)
Author intra 452 (FW) -0.364
(0.379)
Share exploratory -0.675*F  -1.233***  -1.238***
(0.275)  (0.371)  (0.384)
Share exploitative 0.339***  0.317***  0.337"**
(0.117)  (0.118)  (0.115)
Share exploratory * Share exploitative 2.360**  2.289**
(1.052)  (1.062)
Control variables YES YES YES YES YES
Observations 12,555 12,555 12,555 12,555 12,555
Log Likelihood -7,076.944 -7,073.965 -7,072.608 -7,070.408 -7,069.551
AIC 14,423.890 14,421.930 14,415.220 14,412.820 14,415.100

Notes: This table reports coefficients of the effect of cognitive diversity, average exploratory profile,
highly exploratory and exploitative profiles on perceived novelty from Faculty Opinions. Standard errors
are cluster robust at the journal level in parentheses: *** ** and * indicate significance at the 1%, 5%
and 10% level, respectively. The effects is estimated using a Logit model. Variables are field-weighted
and constant term, scientific field (Scimago Journal Category) and time fixed effects are incorporated
in all model specifications.

However, when examining Table 4.7 in the Appendix, we can see that the effects

are quite heterogeneous across labels. We chose the four labels for which more than
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1000 papers had been classified to perform the regressions. The effect of cognitive
distance between team members is visible in the “Technical Advance” category but
not significant for the remaining labels. Conversely, in Table 4.9, we can see that
the results in terms of exploratory profiles are mainly driven by the 'Interesting Hy-
pothesis’ label. Results here are a bit different since we observe a U shape, meaning
that highly specialized or highly diverse teams most often publish articles labelled
as “Interesting hypotheses”. Results are quite similar when using Poisson regression
and modelling the number of times a paper is labelled in a given category as visible
in Table 4.8 and Table 4.10 in the Appendix.

4.4.2 Cognitive dimension and impact

This subsection examines the relationship between the team’s cognitive dimension
and impact measures. To this end, we report the results of an OLS to identify the
joint impact of authors’ intra-diversity and inter-diversity on the indicators. The
outcomes of these models are presented in 4.5 and 4.6.

Our analysis emphasises the need to differentiate the forms of impact to under-
stand better how the cognitive aspect influences scientific recognition. Indeed, we
use the traditional indicator of the number of citations and indicators of disruption
and consolidation. The composition of the teams has a significant influence on the
type of impact of the studies conducted.

The Table 4.5 regression tables indicate a double inverse U-shaped relationship
between the cognitive dimension and the number of citations. Table 4.13 shows
that both turning points are around 45%. Following Uzzi, a too-conventional work
might not be as impactful as the contribution is more marginal. Conversely, peers
may not sufficiently consider a too-novel study. This phenomenon is reflected in the
composition of the teams as we can see in the differences between consolidation and
disruption indicators. Indeed, to consolidate, it is necessary to have a team with a
low average exploratory profile and low average cognitive distance between members.
The relationship is negative for consolidation indicators (Deln and Depth) for both
intra and inter-individual levels; the effect is sometimes captured via quadratic terms.
This means that cognitive diversity is negatively related to the fact that papers citing
the focal paper also cite each other or cite many of the references from the focal
article. Specialized teams are the ones who consolidate the science.

For disruptive indicators, the picture is rather different (DI1, DI5, DIlnok and

Breadth). Cognitive distance still seems to be globally favorable for disruption.
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Table 4.5: Scientific recognition: cognitive diversity and average exploratory profile
(Field-Weighted)

Dependent variable:
# cit. DI1 DI5 DIlnok Deln Breadth Depth
1) 2) ©)) 4) () (6) (7)
Author inter 45 (FW) 0.031*** 0.021%**  0.034***  0.047*** -0.067*** -0.010* 0.002
(0.007) (0.006) (0.007) (0.007) (0.007) (0.006) (0.007)

Author inter "2 (FW)  -0.036**  0.012**  0.005 0.002 0.008 0.015**  -0.012**
(0.007) (0.006)  (0.006)  (0.006) (0.006) (0.005)  (0.006)

Author intra g (FW)  0.070**  -0.057°*  0.026***  -0.008 0.009 0.014**  -0.004
(0.008) (0.007)  (0.008)  (0.008) (0.009) (0.006)  (0.008)

Author intra gs°2 (FW)  -0.072°**  0.038***  0.009  0.024***  -0.030**  0.021*** -0.038***
(0.008) (0.007)  (0.007)  (0.007) (0.007) (0.006)  (0.007)

# References 0.003*** -0.001***  -0.003***  -0.002*** 0.004*** -0.0001*  0.001***
(0.0001) (0.0001)  (0.0001)  (0.0001) (0.0001) (0.00005)  (0.0001)
# Meshterms 0.008*** -0.002***  -0.003***  -0.003*** 0.005*** -0.003***  0.006***
(0.0004) (0.0002)  (0.0003)  (0.0003) (0.0003) (0.0002)  (0.0004)
# Authors 0.012*** -0.006***  -0.002***  -0.005*** 0.006*** -0.009***  0.012***
(0.0004) (0.0003)  (0.0003)  (0.0003) (0.0004) (0.0003)  (0.0004)
SJR 0.039*** -0.019*** 0.002 -0.006*** 0.008*** -0.026***  0.030***
(0.005) (0.002) (0.002) (0.001) (0.002) (0.003) (0.004)
Year Yes Yes Yes Yes Yes Yes
Journal Cat. Yes Yes Yes Yes Yes Yes
Observations 1,826,207 1,826,207 1,826,207 1,826,207 1,826,207 1,826,207 1,826,207
R? 0.173 0.029 0.069 0.034 0.137 0.051 0.075
Adjusted R? 0.173 0.029 0.069 0.034 0.137 0.051 0.075
Residual Std. Error 0.266 0.281 0.281 0.280 0.270 0.270 0.291
F Statistic 1,621.946*** 233.770*** 575.115*** 269.625*** 1,227.699*** 413.321*** 629.396***

Notes: This table reports coefficients of the effect of cognitive diversity and average exploratory profile on
scientific recognition using PKG. Standard errors are cluster robust at the journal level: *** ** and * indicate
significance at the 1%, 5% and 10% levels, respectively. The effects are estimated with an OLS. Variables
are field-weighted and constant term, scientific field (Scimago Journal Category), and time-fixed effects are
incorporated in all model specifications.

Then, the Breadth disruption indicator, which examines how often articles citing
the focal paper also cite each other, seems to indicate a U-shaped relationship with
a turning point at 0.33, i.e. if the individuals are very distant or if they are very
close, this produces the most disruptive articles in the sense that the citations will
be concentrated towards the focal paper.

Although not always significant, the intra-individual effect is more mixed; teams
with higher average explorative profiles globally appear to have a higher disruption
potential, but this does not hold for DI1. The DIINOK index follows the same
pattern as DI5, with the exception that it is the quadratic term that takes over.

The articles that are consolidating science are articles with low team diversity and

low average exploratory profiles. Here we can observe the notion of highly specialized

214



CHAPTER 4. UNPACKING SCIENTIFIC CREATIVITY

individuals who conduct more confirmatory and therefore consolidating research.
The opposite is true for disruption. The teams’ diversity always seems beneficial for
proposing disruptive ideas. Articles receiving the most citation are again a matter
of a trade-off between a cognitively not-too-distant team and a somewhat reasonable
average level of exploration®.

In Table 4.6, we specify the team’s composition in terms of exploratory /exploita-
tive profile and found that the relationship of the cognitive distance with the impact
measures remains almost similar. For consolidation metrics and citation counts, the
share of exploitative individuals is clearly beneficial. The exploitative profile reduces
the risk of failure as researchers learn from experience and combinations that have
failed [Vincenti, 1990]. Whereas too exploratory profiles seem to affect the expected
number of citations negatively, the effect appears mixed for consolidation since it is
positive Deln and insignificant for Depth. In both cases, combining the two types of
profiles is harmful. At the same time, the share of exploitative individuals is positive,
suggesting that combining these two types of profiles is not optimal for consolidating
research. To achieve disruption, it is better to minimize the number of individuals
who are too exploratory or too specialized, but combining both types of profiles
seems once again essential. We can see how the impact of highly explorative profiles
is always negative, and the impact of exploitative profiles is also negative. Still, the
interaction between the two is always positive for all disruptiveness measures.

In conclusion, the analysis shows how teams with a high share of specialized
individuals or low average exploratory profiles are teams that consolidate science. In
contrast, teams that get the most recognition in terms of disruption combine highly
exploitative and highly exploratory individuals and have cognitively more distant

members?.

4.5 Conclusion

This paper examines the effect of exploratory scholars and, in a broader way, team

composition on creativity. Our findings suggest that the cognitive dimension plays

8For regressions without field-year normalization as presented in Table 4.16, the results are
more mixed and less clear. The cognitive aspect seems to follow a U-shaped pattern, with teams
that are very close or distant being the most disruptive. The results are more robust for breadth,
with diversity consistently appearing to be beneficial.

9For regressions without field-year normalization (see Table 4.19), the results are less homo-
geneous for the cognitive distance aspect, but the combination of explorative and exploitative is
robust. The interaction of the two consistently leads to disruption.
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Table 4.6: Scientific recognition: cognitive diversity, highly exploratory and ex-
ploitative profile (Field-Weighted)

Dependent variable:

# cit. DI1 DI5 DIlnok Deln Breadth Depth
1 2 () €) (%) (6) (7
Author inter 45 (FW) 0.088***  -0.058*** 0.020* 0.004 -0.019 -0.004 0.003
(0.010) (0.009) (0.011) (0.010) (0.012) (0.007) (0.009)
Author inter 445"2 (FW) -0.073***  0.067***  0.026***  0.042***  -0.037***  0.025"**  -0.028***
(0.010) (0.009) (0.009) (0.008) (0.009) (0.007) (0.008)
Share exploratory -0.023***  -0.055***  -0.041*** -0.056***  0.058*** -0.006 -0.003
(0.006) (0.005) (0.006) (0.005) (0.006) (0.004) (0.005)
Share exploitative 0.029***  -0.033***  -0.056™** -0.049***  0.058***  -0.024***  0.032***

(0.003)  (0.003)  (0.003)  (0.002)  (0.003)  (0.002)  (0.003)

Share exploratory * Share exploitative  -0.023** 0.132***  0.047**  0.096*** -0.087*** 0.059***  -0.034***
(0.012) (0.010) (0.011) (0.010) (0.011) (0.011) (0.012)

# References 0.003*** -0.001***  -0.003***  -0.002*** 0.004*** -0.0001*  0.001***
(0.0001) (0.0001)  (0.0001)  (0.0001) (0.0001) (0.00005)  (0.0001)
# Meshterms 0.008*** -0.002***  -0.003***  -0.003*** 0.005*** -0.003***  0.006***
(0.0004) (0.0002)  (0.0003)  (0.0003) (0.0003) (0.0002)  (0.0004)
# Authors 0.012%** -0.007***  -0.003***  -0.005*** 0.006*** -0.010***  0.013***
(0.0004) (0.0003)  (0.0003)  (0.0003) (0.0004) (0.0003)  (0.0004)
SJR 0.038*** -0.018*** 0.003 -0.006*** 0.007*** -0.026***  0.030***
(0.005) (0.002) (0.002) (0.001) (0.002) (0.003) (0.004)
Year Yes Yes Yes Yes Yes Yes Yes
Journal Cat. Yes Yes Yes Yes Yes Yes Yes
Observations 1,826,207 1,826,207 1,826,207 1,826,207 1,826,207 1,826,207 1,826,207
R? 0.174 0.030 0.071 0.035 0.139 0.051 0.075
Adjusted R? 0.174 0.030 0.071 0.035 0.139 0.050 0.075
Residual Std. Error 0.266 0.281 0.280 0.280 0.270 0.270 0.291
F Statistic 1,619.636™** 239.244*** 586.510*** 281.922*** 1,243.711*** 410.608*** 626.296***

Notes: This table reports coefficients of the effect of cognitive diversity and highly exploratory and exploitative profiles on
scientific recognition using PKG. Standard errors are cluster robust at the journal level: *** ** and * indicate significance
at the 1%, 5% and 10% levels, respectively. The effects are estimated with an OLS. Variables are field-weighted and constant
term, scientific field (Scimago Journal Category), and time-fixed effects are incorporated in all model specifications.

a crucial role in the creative process, and significantly influences the two pillars of
creativity: originality and success. We first show that the team’s cognitive diver-
sity strongly influences novelty (realized and perceived) of the research conducted.
We also show that a double-inversed U-shaped relationship exists between cognitive
dimensions (intra and inter) and the impact in terms of citations. Our study also
highlights the strong connection between the cognitive dimension and the nature of
these citations. Teams with more exploitative profiles tend to consolidate science,
while those with more exploratory individuals disrupt it and propose more distant
knowledge combinations, only when associated with exploitative ones. Our research
underscores how team composition in terms of profiles lies at the heart of scientific
creativity.

Multiple limitations arise in our study. First, concerning data used, PKG is based
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on advanced heuristics and algorithms to disambiguate authors using affiliation and
additional metadata Xu et al. [2020]. While there is a considerable amount of research
on addressing noise in Knowledge Graphs [Fasoulis et al., 2020] and improvements in
these methods may increase their reliability in the future, we cannot guarantee that
errors or inconsistencies will not occur when dealing with author-level information
in PKG.

Other shortcomings are directly related to the creation of our indicator. First,
many methods and hyper-parameters were chosen for the simplicity of computation.
The embedding is a pre-trained model from SpaCy and is not state-of-the-art. One
should compare the behavior of different embedding techniques but also on what kind
of text they are applied and the distance measure used. We suspect that the two
papers might be close given a specific embedding and distance measure but highly
distant given other parameters. In addition, the distance between the two papers
would vary depending on whether the distance metric is applied to the paper’s title,
abstract, or full text. The semantic distances between researchers can be influenced
by biases inherent in the fields and journal practices. For example, if researchers
publish in different journals, the structure and format of their abstracts may be
affected even if their research topic or area of expertise remains unchanged. Another
hyper-parameter we used is the time window for an author’s past publication. We
considered a time window of 5 years. This suggests that any paper published by the
author before this point would not be captured. One could argue that past behavior
influences current behavior, and a highly diverse background can be proxied by
recent publications. Yet no evidence supports this hypothesis. Another issue is how
we define authors’ cognitive aspect by considering only past publications. Although
we do not try to approximate the skills of a researcher but only their disposition to do
diverse research, we are not sure how working on a topic is enough to understand then
and manage this new knowledge. This raises the question of the exact competencies
of a transformational leader and if the past paper is sufficient to proxy it. Also, a
specialized author could have previously worked on distant papers but only on his
topic/methodology. Our measure defines it as diverse, yet is it true? Although solo
publications can be used to construct an author’s profile, the increasing significance
of teamwork in scientific research makes it uncertain whether a complete and precise
profile can be established solely on this basis. Another option could be to incorporate
external information, such as educational background, and assign greater weight to

papers that align with the author’s education. However, obtaining this information
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can be challenging as it often requires web scraping, which is not easily scalable. The
last issue in our mind about using past publications is ghost and honorary authorship
as it is common that some authors contributed very little to the production of the
article. [Sugimoto and Lariviere, 2018, Pruschak and Hopp, 2022]. Both are problems
to consider while defining a coauthored paper as part of your knowledge space.

In our analysis, we solely focused on the cognitive diversity of researchers, but di-
versity encompasses various aspects as highlighted by prior research studies [Medin
and Lee, 2012, Hofstra et al., 2020]. According to Koopmann et al. [2021], there
are four proximity dimensions among researchers, namely cognitive, institutional,
social, and geographical. Relying solely on PKG to approximate all of these di-
mensions could be challenging. Still, alternative sources such as OpenAlex could
provide more comprehensive information on a researcher’s institutions, past insti-
tutions, and authors’ characteristics. For instance, relying on PKG to construct a
researcher’s seniority could be biased because of the restriction on health sciences
papers. Exploring these additional channels could lead to developing supplementary
measures that complement cognitive diversity.

Another area worth exploring is the temporal dynamic between exploring new
ideas and exploiting existing ones. As we discussed earlier, discovering new con-
cepts is essential for addressing major challenges. However, there is often a pattern
of moving through cycles of exploration and exploitation within a particular field.
Similarly, authors may initially focus on a particular subject and then switch to a
different area to gain a fresh perspective on the first one once they have developed
sufficient expertise.

To increase the efficiency of the scientific system, it is necessary to conduct further
research on the composition of research teams and their impact on creativity. Our
preliminary results indicate that policymakers and grant evaluators should consider
both individual and team-level characteristics and not only citations when making
decisions about research funding and support. We have explored some research av-
enues to deepen our understanding of this phenomenon, and we encourage other
researchers to build upon our work in this area. By continuing to investigate these
factors, we can develop more effective strategies for supporting and fostering cre-
ativity within research teams, ultimately leading to more impactful and innovative

scientific outcomes.

218



CHAPTER 4. UNPACKING SCIENTIFIC CREATIVITY

4.6 Appendix
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Figure 4.6: Relation between cognitive diversity, average exploratory profile and
Novelty/ Scientific Impact
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Regressions
Novelty indicators and Faculty Opinion

Table 4.7: Faculty Opinions: Cognitive diversity and average exploratory profile
(Field-Weighted)

Dependent variable:
Logit Model
Interesting Hyp. Technical Adv. Confirmation Controversial

Author inter 45 (FW) -0.625 1.485*** -0.427 -0.757
(0.387) (0.338) (0.386) (0.491)
Author inter 4,52 (FW) 0.414 -1.101%** 0.310 0.543
(0.382) (0.328) (0.381) (0.516)
Author intra 455 (FW) -0.191 0.209 0.001 0.278
(0.388) (0.336) (0.384) (0.580)
Author intra 45"2 (FW) -0.016 -0.465 0.199 0.016
(0.383) (0.324) (0.365) (0.602)
# References 0.006*** -0.012%** -0.0002 -0.001
(0.001) (0.002) (0.001) (0.002)
# Meshterms 0.019*** -0.040*** 0.011%** 0.004
(0.004) (0.006) (0.004) (0.005)
# Authors -0.026*** 0.018*** 0.005 -0.017*
(0.006) (0.005) (0.004) (0.009)
SJR 0.065*** -0.019** -0.008 0.006
(0.011) (0.010) (0.005) (0.008)
Year Yes Yes Yes Yes
Journal Cat. Yes Yes Yes Yes
Observations 12,555 12,555 12,555 12,555
Log Likelihood -7,919.383 -7,202.326 -7,657.496 -3,866.333
Akaike Inf. Crit. 16,112.770 14,678.650 15,588.990 8,006.667

Notes: This table reports coefficients of the effect of cognitive diversity and average
exploratory profile on perceived novelty from Faculty Opinions. Standard errors are
cluster robust at the journal-level: *** ** and * indicate significance at the 1%, 5% and
10% level, respectively. The effects are estimated with a Logit model. Variables are field-
weighted and constant term, scientific field (Scimago Journal Category) and time fixed
effects are incorporated in all model specifications.
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Table 4.8: Faculty Opinions: Cognitive diversity and average exploratory profile
(Field-Weighted)

Dependent variable:
Poisson Model
Interesting Hyp. Technical Adv. Confirmation Controversial

Author inter 45 (FW) -0.410* 1.225%** -0.330 -0.828**
(0.209) (0.204) (0.287) (0.413)
Author inter 44572 (FW) 0.291 -0.918*** 0.259 0.689
(0.210) (0.192) (0.285) (0.440)
Author intra 455 (FW) -0.009 0.320 0.129 0.271
(0.184) (0.217) (0.248) (0.495)
Author intra 45"2 (FW) -0.119 -0.492** -0.041 -0.108
(0.181) (0.219) (0.223) (0.521)
# References 0.003*** -0.006*** -0.0001 0.0005
(0.001) (0.002) (0.001) (0.001)
# Meshterms 0.013*** -0.024*** 0.007* 0.002
(0.002) (0.005) (0.003) (0.005)
# Authors -0.017*** 0.009*** 0.003 -0.012
(0.004) (0.003) (0.003) (0.009)
SJR 0.039*** -0.0004 0.002 0.014*
(0.007) (0.007) (0.004) (0.007)
Year Yes Yes Yes Yes
Journal Cat. Yes Yes Yes Yes
Observations 12,555 12,555 12,555 12,555
Log Likelihood -10,420.250 -9,880.221 -8,978.963 -4,358.803
Akaike Inf. Crit. 21,114.510 20,034.440 18,231.920 8,991.606

Notes: This table reports coefficients of the effect of cognitive diversity and average
exploratory profile on perceived novelty from Faculty Opinions. Standard errors are
cluster robust at the journal level: *** ** and * indicate significance at the 1%, 5% and
10% level, respectively. The effects are estimated with a Poisson model. Variables are
field-weighted and constant term, scientific field (Scimago Journal Category) and time
fixed effects are incorporated in all model specifications.
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Table 4.9: Faculty Opinions: Cognitive diversity, highly exploratory and exploita-

tive profile (Field-Weighted)

Dependent variable:

Logit Model

Interesting Hyp. Technical Adv. Confirmation Controversial

Author inter 45 (FW) -0.859*** 1.500*** -0.289 -0.476
(0.277) (0.317) (0.309) (0.377)
Author inter 45"2 (FW) 0.590* -1.244*** 0.228 0.421
(0.308) (0.338) (0.333) (0.371)
Share exploratory -0.754* -0.644 0.868** -0.193
(0.450) (0.443) (0.441) (0.607)
Share exploitative 0.304*** -0.014 -0.070 -0.097
(0.083) (0.118) (0.097) (0.160)
Share exploratory * Share exploitative 2.911%** 0.015 -1.069 1.822
(1.073) (1.132) (1.048) (1.650)
# References 0.006*** -0.012*** -0.0001 -0.001
(0.001) (0.002) (0.001) (0.002)
# Meshterms 0.019*** -0.041*** 0.012%** 0.004
(0.004) (0.006) (0.004) (0.005)
# Authors -0.024*** 0.018*** 0.005 -0.018*
(0.006) (0.005) (0.004) (0.009)
SJR 0.065*** -0.019* -0.008 0.005
(0.010) (0.010) (0.005) (0.008)
Year Yes Yes Yes Yes
Journal Cat. Yes Yes Yes Yes
Observations 12,555 12,555 12,555 12,555
Log Likelihood -7,910.400 -7,202.819 -7,655.698 -3,866.431
Akaike Inf. Crit. 16,096.800 14,681.640 15,587.400 8,008.863

Notes: This table reports coefficients of the effect of cognitive diversity and highly exploratory and
exploitative profiles on perceived novelty from Faculty Opinions. Standard errors are cluster robust at
the journal-level: *** ** and * indicate significance at the 1%, 5% and 10% level, respectively. The
effects are estimated with a Logit model. Variables are field-weighted and constant term, scientific field
(Scimago Journal Category) and time fixed effects are incorporated in all model specifications.
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Table 4.10: Faculty Opinions: Cognitive diversity, highly exploratory and exploita-
tive profile (Field-Weighted)

Dependent variable:
Poisson Model
Interesting Hyp. Technical Adv. Confirmation Controversial

Author inter 45 (FW) -0.485*** 1.336*** -0.171 -0.560*
(0.157) (0.224) (0.248) (0.322)
Author inter 45"2 (FW) 0.318* -1.106*** 0.121 0.472
(0.163) (0.224) (0.261) (0.332)
Share exploratory -0.718** -0.550* 0.478* -0.083
(0.334) (0.312) (0.246) (0.513)
Share exploitative 0.135*** -0.026 -0.020 -0.084
(0.049) (0.077) (0.066) (0.171)
Share exploratory * Share exploitative 2.112%** -0.106 -0.564 1.674
(0.662) (0.762) (0.640) (1.504)
# References 0.003*** -0.006*** -0.0001 0.0005
(0.001) (0.002) (0.001) (0.001)
# Meshterms 0.013*** -0.024*** 0.007** 0.002
(0.002) (0.005) (0.003) (0.005)
# Authors -0.016*** 0.009*** 0.003 -0.013
(0.004) (0.003) (0.003) (0.009)
SJR 0.039*** 0.00003 0.002 0.014*
(0.007) (0.007) (0.004) (0.007)
Year Yes Yes Yes Yes
Journal Cat. Yes Yes Yes Yes
Observations 12,555 12,555 12,555 12,555
Log Likelihood -10,415.010 -9,880.661 -8,977.912 -4,358.090
Akaike Inf. Crit. 21,106.010 20,037.320 18,231.830 8,992.180

Notes: This table reports coefficients of the effect of cognitive diversity and highly exploratory and
exploitative profiles on perceived novelty from Faculty Opinions. Standard errors are cluster robust at
the journal level: *** ** and * indicate significance at the 1%, 5% and 10% level, respectively. The
effects are estimated with a Poisson model. Variables are field-weighted and constant term, scientific
field (Scimago Journal Category) and time fixed effects are incorporated in all model specifications.
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Novelty indicators with Mesh Terms

Cognitive diversity and average exploratory profile effect on Novelty

Table 4.11: Combinatorial Novelty: cognitive diversity and average exploratory

profile (Field-Weighted/ Meshterms)

Dependent variable:

Uzzi Lee Foster Wang
(1) (2) (3) (4)
Author inter 45 (FW) 0.067*** 0.114*** 0.056*** 0.062***
(0.009) (0.007) (0.008) (0.006)
Author inter 4452 (FW) -0.016** -0.050*** -0.025*** -0.008
(0.008) (0.006) (0.008) (0.006)
Author intra 455 (FW) -0.020* 0.025*** -0.029** -0.055***
(0.012) (0.009) (0.013) (0.009)
Author intra 4p5"2 (FW) -0.047*** -0.062*** -0.042*** -0.010
(0.010) (0.008) (0.011) (0.007)
# References 0.001*** 0.001*** 0.001*** 0.0002***
(0.0001) (0.00005) (0.0001) (0.00003)
# Meshterms 0.007*** 0.014*** 0.0004 0.029***
(0.001) (0.001) (0.0004) (0.0004)
# Authors 0.002*** 0.008*** 0.005*** 0.001***
(0.0004) (0.0004) (0.0004) (0.0003)
SJR -0.004*** -0.006*** -0.005*** 0.003***
(0.001) (0.001) (0.001) (0.001)
Year Yes Yes Yes Yes
Journal Cat. Yes Yes Yes Yes
Observations 661,821 1,823,859 1,823,859 1,823,859
R? 0.029 0.083 0.015 0.153
Adjusted R? 0.029 0.083 0.015 0.152
Residual Std. Error 0.285 0.276 0.300 0.360
F Statistic 86.982*** 699.050*** 121.183*** 1,390.452***

Notes: This table reports coefficients of the effect of cognitive diversity and average exploratory
profile on combinatorial novelty using PKG. Standard errors are cluster robust at the journal level:
ik and * indicate significance at the 1%, 5% and 10% levels, respectively. The effects are
estimated with an OLS. Variables are field-weighted and constant term, scientific field (Scimago
Journal Category), and time-fixed effects are incorporated in all model specifications.
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Share of Highly Exploratory Profile

Table 4.12: Combinatorial Novelty: Cognitive diversity, highly exploratory and
exploitative profile (Field-Weighted/ Meshterms)

Dependent variable:

Uzzi Lee Foster Wang
(1) (2) 3) 4)
Author inter 45 (FW) 0.045%** 0.115%** 0.007 0.002
(0.011) (0.010) (0.013) (0.008)
Author inter 452 (FW) 0.013 -0.032%** 0.030** 0.027***
(0.010) (0.010) (0.012) (0.007)
Share exploratory -0.107*** -0.113*** -0.150%** -0.063***
(0.006) (0.006) (0.007) (0.005)
Share exploitative 0.068*** 0.045*** 0.056*** 0.026***
(0.003) (0.003) (0.004) (0.002)
Share exploratory * Share exploitative 0.185*** 0.189*** 0.254*** 0.106***
(0.016) (0.013) (0.016) (0.012)
# References 0.001%** 0.001*** 0.001*** 0.0002***
(0.00005) (0.00005) (0.0001) (0.00003)
# Meshterms 0.007*** 0.014*** 0.0004 0.029***
(0.001) (0.001) (0.0004) (0.0004)
# Authors 0.003*** 0.008*** 0.005*** 0.001***
(0.0004) (0.0004) (0.0004) (0.0003)
SJR -0.004*** -0.006*** -0.004*** 0.003***
(0.001) (0.001) (0.001) (0.001)
Year Yes Yes Yes Yes
Journal Cat. Yes Yes Yes Yes
Observations 661,821 1,823,859 1,823,859 1,823,859
R? 0.033 0.086 0.019 0.152
Adjusted R? 0.032 0.086 0.019 0.152
Residual Std. Error 0.284 0.275 0.299 0.360
F Statistic 97.014**  721.442***  149.772***  1,383.049***

Notes: This table reports coefficients of the effect of cognitive diversity and highly exploratory and
exploitative profiles on combinatorial novelty using PKG. Standard errors are cluster robust at the
journal level: *** ** and * indicate significance at the 1%, 5% and 10% levels, respectively. The
effects are estimated with an OLS. Variables are field-weighted and constant term, scientific field
(Scimago Journal Category), and time-fixed effects are incorporated in all model specifications.
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Turning points

Table 4.13: Turning Points for Combinatorial Novelty and Scientific Impact

Regression Author intra abs (FW) Author inter abs (FW)
Uzzi 0.318 2.725
Lee 0.229 2.441
Foster 0.244 2.521
Wang 0.038 1.75
Shibayama| 2 1.203
# Cit. 0.486 0.43
DI1 0.75 0.875
DI5 -1.44 -3.4
DIlnok 0.166 -11.75
Deln 0.15 -4.187
Breadth -0.33 0.33
Depth -0.052 0.083

Notes: This table reports the turning points of the effect of cognitive diversity and
average exploratory profiles on combinatorial novelty and scientific recognition in
Table 4.2 and 4.5.
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Regression without field-year weighting

Table 4.14: Combinatorial Novelty: cognitive diversity and average exploratory
profile (References)

Dependent variable:

Uzzi Lee Foster Wang Shibayama
1) (2) (3) (4) (5)
Author inter 4 183.520*** 4.377*** 0.940*** 3.061*** 0.268***
(23.173) (0.204) (0.033) (0.252) (0.008)
Author inter ,,s"2  -176.966***  -3.915*** -1.005*** -1.936*** -0.195***
(31.732) (0.270) (0.043) (0.335) (0.012)
Author intra s 198.281*** 3.825%** 1.052*** 0.095 0.226***
(22.235) (0.222) (0.074) (0.365) (0.011)
Author intra 4,2  -403.151***  -8.090*** -2.057** 0.130 -0.153***
(38.759) (0.381) (0.107) (0.619) (0.018)
# References 0.518*** 0.009*** 0.001*** 0.076*** 0.0004***
(0.072) (0.0004) (0.00004) (0.007) (0.00002)
# Meshterms 1.287*** 0.025*** 0.003*** -0.043*** 0.001***
(0.119) (0.002) (0.0003) (0.003) (0.0001)
# Authors 1.371*** 0.025*** 0.004*** 0.005 0.002***
(0.113) (0.001) (0.0004) (0.004) (0.0001)
SJR -1.151%** -0.020*** -0.011*** -0.093*** -0.002***
(0.264) (0.004) (0.002) (0.021) (0.0003)
Year Yes Yes Yes Yes Yes
Journal Cat. Yes Yes Yes Yes Yes
Observations 1,647,446 1,815,631 1,815,631 1,815,631 1,809,185
R? 0.020 0.168 0.151 0.158 0.253
Adjusted R? 0.020 0.168 0.151 0.158 0.253
Residual Std. Error 192.756 1.258 0.235 4.341 0.066
I Statistic 139.319***  1,504.472*** 1,328.955"** 1,399.846*** 2,523.818"**

Notes: This table reports coefficients of the effect of cognitive diversity and average ex-
ploratory profile on combinatorial novelty using PKG. Standard errors are cluster robust at
the journal level: *** ** and * indicate significance at the 1%, 5% and 10% levels, respec-
tively. The effects are estimated with an OLS. The constant term, scientific field (Scimago
Journal Category), and time-fixed effects are incorporated in all model specifications.
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Table 4.15: Combinatorial Novelty:
profile (Meshterms)

228

cognitive diversity and average exploratory

Dependent variable:

Uzzi Lee Foster Wang
1) (2) 3) (4)
Author inter 4 14.010*** 1.829*** 0.399*** 0.951***
(1.109) (0.067) (0.023) (0.070)
Author inter 4552 -16.049*** -2.002*** -0.495*** -0.915%**
(1.477) (0.087) (0.034) (0.086)
Author intra 4 11.644*** 1.408*** 0.405*** -0.177*
(1.403) (0.095) (0.041) (0.105)
Author intra 4,52 -28.595%** -2.603*** -1.066*** -0.578***
(2.138) (0.140) (0.063) (0.154)
# References 0.038*** 0.002*** 0.001*** 0.001***
(0.002) (0.0001) (0.00004) (0.0001)
# Meshterms -0.022* 0.028*** 0.001*** 0.058***
(0.013) (0.001) (0.0003) (0.001)
# Authors 0.012 0.011*** 0.002*** -0.0001
(0.008) (0.001) (0.0003) (0.001)
SJR -0.052 -0.011%** -0.002*** 0.015***
(0.032) (0.002) (0.001) (0.003)
Year Yes Yes Yes Yes
Journal Cat. Yes Yes Yes Yes
Observations 661,832 1,823,889 1,823,889 1,823,889
R? 0.064 0.179 0.120 0.174
Adjusted R? 0.063 0.179 0.120 0.174
Residual Std. Error 7.929 0.536 0.206 0.716
F Statistic 193.801*** 1,638.907*** 1,020.027*** 1,586.294***

Notes: This table reports coefficients of the effect of cognitive diversity and average ex-
ploratory profile on combinatorial novelty using PKG. Standard errors are cluster robust at
the journal level: *** ** and * indicate significance at the 1%, 5% and 10% levels, respec-
tively. The effects are estimated with an OLS. The constant term, scientific field (Scimago
Journal Category), and time-fixed effects are incorporated in all model specifications.



CHAPTER 4. UNPACKING SCIENTIFIC CREATIVITY

Table 4.16: Scientific recognition: cognitive diversity and average exploratory pro-

file

Dependent variable:

# cit. DIl DI5 DIlnok Deln Breadth Depth
(1) (2) (3) (4) (5) (6) (7)
Author inter 4 39.622***  -0.019***  -0.043*** 0.640*** -3.961*** 0.044* -0.080***
(12.175) (0.006) (0.008) (0.050) (0.306) (0.023) (0.024)
Author inter 4,5"2  -55.784***  0.034***  0.068*** -0.485*** 3.848*** -0.023 0.057*
(15.267) (0.008) (0.010) (0.066) (0.379) (0.032) (0.033)
Author intra g 99.833***  -0.064™** -0.067*** -0.090 -2.059*** 0.111*** -0.033
(12.635) (0.007) (0.008) (0.073) (0.385) (0.032) (0.033)
Author intra "2  -130.168***  0.069***  0.094*** 0.138 2.499*** -0.021 -0.141%**
(16.543) (0.010) (0.012) (0.105) (0.541) (0.047) (0.049)
# References 0.681***  -0.0002*** -0.0004***  -0.003*** 0.023***  -0.0002***  0.001***
(0.027) (0.00001) (0.00002) (0.0001) (0.001) (0.00004) (0.0001)
# Meshterms 0.338***  -0.0004*** -0.001***  -0.006*** 0.019*** -0.003*** 0.005***
(0.080) (0.00004)  (0.0001) (0.0005) (0.002) (0.0002) (0.0003)
# Authors 3.405***  -0.0004*** -0.0002***  -0.009*** 0.023*** -0.008*** 0.010***
(0.365) (0.00003)  (0.00005) (0.0005) (0.002) (0.0003) (0.0004)
SJR 16.482***  -0.001***  0.001*** -0.013*** 0.025*** -0.023*** 0.025***
(1.269) (0.0001)  (0.0002) (0.002) (0.009) (0.003) (0.003)
Year Yes Yes Yes Yes Yes Yes
Journal Cat. Yes Yes Yes Yes Yes Yes
Observations 1,826,237 1,826,237 1,826,237 1,826,237 1,826,237 1,826,237 1,826,237
R? 0.116 0.042 0.077 0.133 0.238 0.107 0.159
Adjusted R? 0.116 0.042 0.077 0.133 0.238 0.107 0.158
Residual Std. Error  126.203 0.056 0.061 0.467 1.591 0.250 0.241
F Statistic 984.300*** 328.932*** 626.917*** 1,151.082*** 2,343.227*** 904.045*** 1,416.198"**

Notes: This table reports coefficients of the effect of cognitive diversity and average exploratory profile
on scientific recognition using PKG. Standard errors are cluster robust at the journal level: *** ** and *
indicate significance at the 1%, 5% and 10% levels, respectively. The effects are estimated with an OLS.
The constant term, scientific field (Scimago Journal Category), and time-fixed effects are incorporated in all
model specifications.
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Table 4.17: Combinatorial Novelty: Cognitive diversity, highly exploratory and
exploitative profile (References)

Dependent variable:

Uzzi Lee Foster Wang Shibayama
(1) (2) (3) (4) (5)
Author inter 4 280.445***  6.383*** 1.533%** 1.696*** 0.430***
(30.366) (0.225) (0.066) (0.347) (0.011)
Author inter gp5°2 -311.743***  -6.771*** -1.834*** -0.650 -0.350***
(39.387) (0.298) (0.082) (0.493) (0.015)
Share exploratory -22.978***  -0.416*** -0.087*** -0.328*** 0.009***
(3.028) (0.029) (0.005) (0.034) (0.001)
Share exploitative 8.714*** 0.234*** 0.048*** -0.468*** -0.021***
(1.809) (0.015) (0.004) (0.082) (0.001)
Share exploratory * Share exploitative 29.023*** 0.541*** 0.186*** 0.208 -0.052***
(8.047) (0.084) (0.013) (0.129) (0.004)
# References 0.514*** 0.009*** 0.001*** 0.076*** 0.0004***
(0.073) (0.0004) (0.00004) (0.007) (0.00002)
# Meshterms 1.292%** 0.025*** 0.004*** -0.042*** 0.001***
(0.119) (0.002) (0.0003) (0.003) (0.0001)
# Authors 1.472%%* 0.027*** 0.005*** 0.002 0.001***
(0.118) (0.001) (0.0004) (0.003) (0.0001)
SJR -1.206*** -0.022*** -0.011%*** -0.090*** -0.002***
(0.260) (0.004) (0.002) (0.020) (0.0003)
Year Yes Yes Yes Yes Yes
Journal Cat. Yes Yes Yes Yes Yes
Observations 1,647,446 1,815,631 1,815,631 1,815,631 1,809,185
R? 0.020 0.167 0.150 0.158 0.252
Adjusted R? 0.020 0.167 0.150 0.158 0.252
Residual Std. Error 192.763 1.258 0.235 4.340 0.067
F Statistic 138.223*** 1,493.115*** 1,310.908*** 1,399.600*** 2,503.790***

Notes: This table reports coefficients of the effect of cognitive diversity and highly exploratory and ex-
ploitative profiles on combinatorial novelty using PKG. Standard errors are cluster robust at the journal
level: *** ** and * indicate significance at the 1%, 5% and 10% levels, respectively. The effects are esti-
mated with an OLS. The constant term, scientific field (Scimago Journal Category), and time-fixed effects
are incorporated in all model specifications.
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Table 4.18: Combinatorial Novelty: Cognitive diversity, highly exploratory and

exploitative profile (Meshterms)

Dependent variable:

Uzzi Lee Foster Wang
1) (2) (3) (4)
Author inter 44 23.097** 2.721%%* 0.573*** 0.687***
(1.222) (0.095) (0.036) (0.103)
Author inter 4552 -28.625***  -3.128*** -0.798*** -0.852%**
(1.611) (0.118) (0.047) (0.125)
Share exploratory -0.852%** -0.091%** -0.068*** -0.073***
(0.100) (0.007) (0.004) (0.007)
Share exploitative 1.977** 0.078*** 0.045*** 0.057***
(0.092) (0.007) (0.003) (0.006)
Share exploratory * Share exploitative — 1.251*** 0.083*** 0.130*** 0.135***
(0.393) (0.023) (0.010) (0.025)
# References 0.038*** 0.002*** 0.001*** 0.001%**
(0.001) (0.0001) (0.00004) (0.0001)
# Meshterms -0.022* 0.028*** 0.001*** 0.058***
(0.013) (0.001) (0.0003) (0.001)
# Authors 0.028*** 0.012%** 0.003*** 0.001
(0.008) (0.001) (0.0003) (0.001)
SJR -0.064** -0.012%** -0.003*** 0.015%**
(0.031) (0.002) (0.001) (0.003)
Year Yes Yes Yes Yes
Journal Cat. Yes Yes Yes Yes
Observations 661,832 1,823,889 1,823,889 1,823,889
R? 0.065 0.179 0.119 0.174
Adjusted R? 0.065 0.179 0.119 0.174
Residual Std. Error 7.923 0.537 0.206 0.716
F Statistic 197.576*** 1,631.871*** 1,014.063*** 1,574.819***

Notes: This table reports coefficients of the effect of cognitive diversity and highly exploratory
and exploitative profiles on combinatorial novelty using PKG. Standard errors are cluster robust
at the journal level: *** ** and * indicate significance at the 1%, 5% and 10% levels, respectively.
The effects are estimated with an OLS. The constant term, scientific field (Scimago Journal
Category), and time-fixed effects are incorporated in all model specifications.

231



CHAPTER 4. UNPACKING SCIENTIFIC CREATIVITY

Table 4.19: Scientific recognition: cognitive diversity, highly exploratory and ex-
ploitative profile

Dependent variable:

# cit. DI1 DI5 DIlnok Deln Breadth Depth
1) 2 (3) (4) ©) (6) (7)
Author inter ,ps 114.316*** -0.088*** -0.115***  0.313*** -4.628***  0.114***  -0.095***

(13.961)  (0.009)  (0.011)  (0.084) (0.556)  (0.030)  (0.033)

Author inter qps"2 -122.966* 0.101***  0.143"*  -0.193*  4.793*  -0.093*  0.041
(16.903)  (0.011)  (0.013)  (0.103) (0.669)  (0.039)  (0.043)

Share exploratory 22597 -0.006*** -0.005***  -0.057***  0.176***  0.007**  -0.009***
(1.100)  (0.001)  (0.001)  (0.005) (0.018)  (0.003)  (0.003)

Share exploitative 375977 -0.005*  -0.008"*  -0.085***  0.2847*  -0.021***  0.027**
(1.085)  (0.0005)  (0.001)  (0.004) (0.015)  (0.002)  (0.002)

Share exploratory * Share exploitative -23.770***  0.019***  0.014*** 0.115*** -0.181***  0.031*** -0.017*
(3.529) (0.002) (0.002) (0.017) (0.064) (0.010) (0.010)

# References 0.679***  -0.0002*** -0.0004***  -0.003*** 0.023***  -0.0002***  0.001***
(0.027)  (0.00001) (0.00002)  (0.0001) (0.001) (0.00004)  (0.0001)
# Meshterms 0.337***  -0.0004*** -0.001***  -0.006*** 0.019***  -0.003***  0.005***
(0.080)  (0.00004) (0.0001) (0.0005) (0.002) (0.0002) (0.0003)
# Authors 3.430"**  -0.0004*** -0.0003*** -0.010*** 0.025***  -0.009***  0.011***
(0.364)  (0.00003) (0.00005)  (0.0005) (0.002) (0.0003) (0.0004)
SJR 16.427**  -0.001***  0.001***  -0.012*** 0.024** -0.023***  0.025***
(1.268) (0.0001)  (0.0002) (0.002) (0.009) (0.003) (0.003)
Year Yes Yes Yes Yes Yes Yes Yes
Journal Cat. Yes Yes Yes Yes Yes Yes Yes
Observations 1,826,237 1,826,237 1,826,237 1,826,237 1,826,237 1,826,237 1,826,237
R? 0.116 0.042 0.078 0.134 0.239 0.107 0.159
Adjusted R? 0.116 0.042 0.078 0.134 0.239 0.107 0.159
Residual Std. Error 126.204 0.056 0.061 0.467 1.590 0.250 0.241
F Statistic 980.132*** 328.824*** 630.089*** 1,160.693*** 2,346.784*** 901.029*** 1,411.683***

Notes: This table reports coefficients of the effect of cognitive diversity and highly exploratory and exploitative profiles on
scientific recognition using PKG. Standard errors are cluster robust at the journal level: *** ** and * indicate significance at
the 1%, 5% and 10% levels, respectively. The effects are estimated with an OLS. The constant term, scientific field (Scimago
Journal Category), and time-fixed effects are incorporated in all model specifications.
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General Conclusion

This thesis provides several insights concerning Al implications in science. It is
organized into four chapters: the first two chapters focus on AI’s impact on scientific
discovery and the drivers of Al adoption for domain scientists. The last two chapters
emphasize the relationship between team composition and scientific discovery. This
conclusion briefly summarizes the chapters and proposes an extension of this work
in light of recent changes in the landscape of artificial intelligence.

Chapter 1 examines the dissemination and impact of artificial intelligence, specif-
ically neural networks, in science. We show that while neural network methods do
not serve as an autopilot for knowledge navigation, they represent a powerful and
versatile research tool that impacts knowledge creation in tangible ways. The chap-
ter proposes that Al be considered an emerging general method of invention and
provides a comprehensive perspective on Al’s role in fostering knowledge creation.

Chapter 2 explores the drivers of Al adoption for domain scientists. It uses Scien-
tific & Technical Human Capital (STHC) as a valuable framework for understanding
these incentives, revealing that institutional factors and social environment compo-
sition are strongly related to Al adoption. Furthermore, we show the importance of
collaborating with early-career researchers and that individuals with diverse back-
grounds adopt Al easily. This perspective shifts the focus from aggregate trends in
AT adoption to individual researchers’ characteristics and their social and institu-
tional environments, enabling a more nuanced understanding of how Al is integrated
into research practices.

Chapter 3 introduces Novelpy, an open-source Python package designed to com-
pute novelty and disruption indicators for scientific documents or patents. This tool
offers the scientometrics community a centralized module to analyze and compare
various measures of novelty and disruptiveness. The creation of this tool addresses a
gap in the scientometrics community and sets the groundwork for future studies to

explore the relationship between these indicators systematically.
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Chapter 4 develops an indicator at the author level. It explores the relationship
between the team’s composition, the article’s novelty and its scientific recognition.
We highlight the essential role of the cognitive dimension in the creative process, as it
significantly affects originality and success. The chapter emphasizes the importance
of team composition in terms of cognitive profiles for scientific creativity, showing
that teams that combine both highly exploratory and exploitative individuals are
more able to disrupt science and propose more novel knowledge combinations.

However, this work can be further expanded, particularly in how AI involvement
in research can be considered. This thesis views Al as a tool explicitly mentioned
in scientific articles. As this technology spreads, its use will be less explicit, and it
will become increasingly difficult to see the submerged part of the iceberg, i.e., the
implicit use of AI. When we began this work, Al was still extremely task-specific, and
our analyses showed that AI could be considered a new super microscope with the
flexibility to analyze any content. Now, generative textual AI completely changes the
game. GPT-like models are also trained on specific tasks, predicting word sequences
in a text. However, to make this prediction, it is necessary to understand all the
entities present in a text and be able to combine them. GPT-4 does not answer 2 to
141 only because it read it but because it understood the concept of counting and
addition. This subtle difference is significant because it implies that the exploration
of the entire knowledge space can be achieved within the same entity.

With the centralization of almost all information from the internet in a single
model, capable of understanding its meaning and relation with other information,
we witness a potential second shift in how AI will impact science. Today, discus-
sions mainly revolve around considering Al as a potential author (see recent debates
on Nature). Still, this method allows for much more than simply transcription of
ideas into academic language. It truly enables a “Human + Machine” experience
for researchers, as they can use this chatbot during the conceptualization and data-
processing phases, but also to suggest articles suitable for a research question, and
point out inconsistencies and shortcomings in a text. It opens the door to a more
systematic exploration of the knowledge space in an informal manner for users since
it takes place through interposed messages. In fact, GPT-4 is the Al entity the closer
to the competent colleague you meet at the coffee machine, with whom a quick in-
formal exchange on a given problem can quickly solve it. These interactions with
these hypothetical colleagues will mostly be mentioned in the acknowledgements of

an article; their contribution to the knowledge-creation process remains almost in-
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visible. The same goes for generative Al. Today, individuals using generative Al in
their research do not explicitly mention it, which makes it increasingly difficult to
understand how it can modify research. Therefore it would seem necessary to con-
sider a qualitative approach to this phenomenon. While quantitative methods offer
large-scale results, the lack of detailed personal narratives or experiences deprives us
of an in-depth understanding of the use of AI, the actors involved, and its precise

role in the knowledge-creation process.
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Conclusion Générale

Cette these fournit plusieurs enseignement sur les implications de I'utilisation de I'TA
dans la science. Elle est organisée en quatre chapitres : les deux premiers se concen-
trent sur I'impact de I'TA sur la découverte scientifique et les moteurs de ’adoption
de I'TA pour les scientifiques de domaine d’application. Les deux derniers chapitres
de la these met en avant la relation entre la composition de 1’équipe et la découverte
scientifique. Cette conclusion résume brievement les chapitres et propose une ex-
tension de ce travail au vu des changements récents dans le secteur de 'intelligence
artificielle.

Le chapitre 1 donne un apercu de la diffusion et de 'impact de I'intelligence ar-
tificielle, en particulier des réseaux neuronaux, dans la science. Nous montrons que
si les réseaux neuronaux ne constituent pas des systemes capable naviguer automa-
tiquement dans un espace de connaissances, ils représentent néanmoins un outil de
recherche puissant et polyvalent qui a un impact tangible sur la création de con-
naissances. Le chapitre suggere que I'TA doit étre considérée comme une méthode
générale d’invention émergente et fournit une perspective globale sur le role de I'TA
dans la stimulation de la création de connaissances.

Le chapitre 2 explore les moteurs de I'adoption de I'IA par les scientifiques de
domaine d’application. Il fait appel au capital humain scientifique et technique
(STHC) comme cadre de référence pour comprendre ces incitations, et révele que les
facteurs institutionnels et la composition de I’environnement social sont étroitement
liés a 'adoption de I'TA. Nous montrons 'importance des chercheurs en début de
carriere et des personnes ayant des expériences diverses pour favoriser 'adoption et
la réutilisation de I'TA. Cette perspective met I’accent non plus sur les tendances glob-
ales de I'adoption de I'TA, mais sur les caractéristiques individuelles des chercheurs
et sur leur environnement social et institutionnel. Cela permet une compréhension
plus nuancée de la maniere dont I'TA est intégrée dans les pratiques scientifiques.

Le chapitre 3 présente Nowelpy, un module Python open-source conc¢u pour cal-
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culer des indicateurs de nouveauté et de disruption sur des documents scientifiques
ou des brevets. Cet outil offre a la communauté scientométrique un moyen centralisé
d’analyser et de comparer systématiquement ces mesures. La création de cet outil
comble une lacune dans la communauté scientométrique et jette les bases de futures
études visant a explorer la relation entre ces indicateurs de maniere systématique.

Le chapitre 4 développe un indicateur au niveau auteur. Il explore la relation entre
la composition de I’équipe, la nouveauté d’un article et sa reconnaissance scientifique.
Nous montrons le role essentiel de la dimension cognitive dans le processus créatif,
dans la mesure ou elle influe considérablement sur 1'originalité et la réussite. Le
chapitre souligne I'importance de la composition de 1’équipe en termes de profils
cognitifs pour la créativité scientifique, en montrant que les équipes qui combinent
des individus hautement exploratifs et exploitatifs sont plus a méme de bouleverser
la science et de proposer des combinaisons de connaissances plus nouvelles.

Toutefois, ce travail peut étre développé davantage, en particulier en ce qui con-
cerne la maniere dont 'implication de I'IA dans la recherche est envisagée. Cette
these considere I'IA comme un outil nécessairement mentionné explicitement dans
un article scientifique. Au fur et & mesure que cette technologie se répandra, son util-
isation sera moins explicite et il deviendra de plus en plus difficile de voir la partie
immergée de l'iceberg, c¢’est-a-dire 'utilisation implicite de I'IA. Lorsque nous avons
commencé ce travail, I'TA restait extrémement ciblée, et nos analyses ont montré que
I'TA pouvait étre considérée comme un nouveau super microscope ayant la flexibilité
d’analyser n’importe quel contenu. Aujourd’hui, I'TA textuelle générative change
completement la donne. Les modeles de type GPT sont également formés a des taches
spécifiques, en prédisant les mots suivants dans un texte. Cependant, pour faire cette
prédiction, il est nécessaire de comprendre toutes les entités présentes dans un texte et
d’étre capable de les combiner. GPT-4 ne répond pas 2 a 141 uniquement parce qu’il
I’a lu, mais parce qu’il a compris le concept de dénombrement et d’addition. Cette
différence subtile est considérable car elle implique que 'exploration de ’ensemble
de 'espace de connaissances peut étre réalisée au sein d’'une méme entité.

Avec la centralisation de la quasi-totalité des informations provenant d’Internet
dans un modele unique, capable de comprendre leur signification et leur relation
avec d’autres informations, nous assistons a un second changement potentiel dans
la maniere dont I'TA influencera la science. Aujourd’hui, les discussions tournent
principalement autour du fait de considérer 'TA comme un auteur potentiel (voir les

récents débats sur Nature). Pourtant, cette méthode permet bien plus qu'une simple
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retranscription d’idées dans un langage académique. En effet, les chercheurs peu-
vent utiliser ce chatbot pendant les phases de conceptualisation et de traitement des
données, se faire suggérer des articles adaptés a une question de recherche et signaler
les incohérences et les lacunes dans un texte. Cela ouvre la porte a une exploration
plus systématique de ’espace de connaissances de maniere informelle, puisque cela
se fait par messages interposés. En fait, GPT-4 est I'entité IA la plus proche du
collegue compétent que 'on rencontre a la machine a café, avec lequel un échange
informel rapide sur un probleme donné permet de le résoudre rapidement. Ces inter-
actions avec ces collegues hypothétiques seront le plus souvent mentionnées dans les
remerciements d’un article ; leur contribution au processus de création de connais-
sances reste presque invisible. Il en va de méme pour I'TA générative. Aujourd’hui,
les personnes qui utilisent I'TA générative dans leur recherche ne la mentionnent pas
explicitement, ce qui rend de plus en plus difficile la compréhension de la maniere
dont elle peut modifier la recherche. Il semble donc nécessaire d’envisager une ap-
proche qualitative de ce phénomene. Bien que les méthodes quantitatives offrent des
résultats a grande échelle, I’absence de récits ou d’expériences personnelles détaillés
nous prive d’'une compréhension approfondie de 'utilisation de I'TA, des acteurs im-

pliqués et de son role précis dans le processus de création de connaissances.
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