Thèse soutenue

Cohomologie de systèmes locaux p-adiques sur les revêtements du demi-plan de Drinfeld

FR  |  
EN
Auteur / Autrice : Arnaud Vanhaecke
Direction : Pierre Colmez
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 18/12/2023
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Sciences mathématiques de Paris centre (Paris ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Institut de mathématiques de Jussieu-Paris Rive Gauche (1997-....)
Jury : Président / Présidente : Christophe Breuil
Examinateurs / Examinatrices : Pierre Colmez, Benjamin Schraen, Matthew Emerton, Ariane Mézard, Jean-François Dat
Rapporteurs / Rapporteuses : Benjamin Schraen, Matthew Emerton

Résumé

FR  |  
EN

Cette thèse est consacrée à la poursuite du programme de géométrisation de la correspondance de Langlands locale p-adique initié par Colmez, Dospinescu et Niziol dans leur article de 2020, sur le modèle de la correspondance classique. Ils démontrent que les représentations galoisiennes de dimension 2 qui sont supercuspidales (sous-entendue de de Rham) et à poids de Hodge-Tate 0 et 1 apparaissent dans la cohomologie étale p-adique de la tour de revêtement du demi-plan de Drinfeld et que leur multiplicité est donnée par la correspondance de Langlands p-adique. Le résultat principal de cette thèse est l'analogue de ce résultat en poids quelconques, en considérant la cohomologie étale p-adique à coefficients dans les puissances symétriques du système local universel sur la tour de Drinfeld. Une différence frappante est que l'on voit aussi apparaitre les représentations spéciales dans la cohomologie de la tour à coefficients, avec les multiplicités attendues. Le point clé est que les systèmes locaux que l'on considère s'avèrent être particulièrement simples : se sont des opers isotriviaux.Ainsi, la première partie de cette thèse est consacrée à l'étude des systèmes locaux p-adiques isotriviaux et au calcul dans le cas des opers isotriviaux sur les courbes d'un diagramme reliant la cohomologie proétale du système local à la cohomologie de Hyodo-Kato et la cohomologie de de Rham de la courbe. La seconde partie de cette thèse est alors l'application de ces résultats au cas de la tour de Drinfeld qui permettent le calcul des multiplicités évoquées.