Thèse soutenue

Étude de la dynamique des polluants particulaires dans un habitacle automobile

FR  |  
EN
Auteur / Autrice : Mokhtar Djeddou
Direction : Anne TanièreAmine Mehel
Type : Thèse de doctorat
Discipline(s) : Énergie et Mécanique
Date : Soutenance le 17/11/2023
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : École doctorale SIMPPé - Sciences et ingénierie des molécules, des produits, des procédés, et de l'énergie (Lorraine ; 2018-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Energies et Mécanique Théorique et Appliquée
Jury : Président / Présidente : Frédérique Larrarte
Examinateurs / Examinatrices : Anne Tanière, Amine Mehel, Rémi Manceau, Serge Simoëns, Jeanne Malet, Georges Ndongo Fokoua
Rapporteurs / Rapporteuses : Rémi Manceau, Serge Simoëns

Résumé

FR  |  
EN

La pollution de l'air, en particulier celle due aux particules fines et ultrafines, a des effets délétères considérables sur la santé humaine. Plusieurs études ont établi un lien direct entre l'exposition à la pollution particulaire et diverses maladies respiratoires et cardiovasculaires. À l'intérieur des véhicules, la menace est d'autant plus préoccupante en raison de concentrations importantes de polluants particulaires recensées. Par conséquent, l'amélioration de la qualité de l'air dans l'habitacle des véhicules est désormais une priorité majeure pour les constructeurs automobiles. Dans ce contexte, cette thèse vise à comprendre l'environnement intérieur des véhicules en caractérisant la distribution spatiale des polluants, en particulier des particules fines et ultrafines, en fonction de leur taille ainsi que de paramètres tels que la topologie de l'écoulement et le niveau de turbulence. Ces connaissances permettront notamment de cibler des solutions localisées de purification de l'air, d'optimiser l'emplacement des micro-capteurs qui équiperont de plus en plus les futurs véhicules, et de proposer des solutions pour une gestion efficace des systèmes de filtration en fonction de la répartition de ces particules et de leurs concentrations dans l'habitacle. Tout d'abord, une attention particulière a été accordée à la modélisation de l'écoulement monophasique. Deux approches de modélisation numérique ont été adoptées : l'approche RANS (Reynolds Averaged Navier-Stokes), basée sur la résolution des champs moyens des équations de Navier-Stokes, et l'approche de simulation à grande échelle LES (Large Eddy Simulation), qui consiste à résoudre les grandes structures contenant la majeure partie de l'énergie cinétique et à modéliser la contribution des plus petites échelles. Dans le cas de l'approche RANS, divers modèles de fermeture du premier et du second ordre ont été testés et comparés. En outre, une analyse de la structure de turbulence de l'écoulement dans l'habitacle a été réalisée à l'aide de la méthode du diagramme d'anisotropie de Lumely (Anisotropy Invariant Mapping). Enfin, pour valider les résultats des modèles numériques, une campagne de mesures du champ de vitesse, basée sur la technique de l'anémométrie à fil chaud, a été menée dans l'habitacle d'une voiture de type SUV. Ensuite, la dynamique des polluants particulaires dans l'habitacle de la voiture a été étudiée à l'aide du modèle DIM (Diffusion-Inertia Model). Ce modèle eulérien de diffusion inertielle des particules permet de prendre en compte différents mécanismes de transport, notamment le transport par le champ moyen, l'effet des forces volumiques (i.e. la gravité), la déviation des particules par rapport aux lignes de courant du fluide (effets centrifuges), la diffusion brownienne et turbulente, et la turbophorèse ou le transport par les gradients d'énergie cinétique turbulente. Le modèle a d'abord été validé sur des configurations standard telles que la dispersion dans des enceintes ventilées de petite échelle, le dépôt dans des coudes circulaires à 90°, ainsi que dans le cas du transport de particules dans un jet rond. Le modèle a ensuite été appliqué à la simulation du transport de particules à l'intérieur d'un véhicule à grande échelle. L'influence de la taille des particules sur les champs de concentration internes a d'abord été analysée. Ensuite, l'influence de la présence de passagers a été étudiée. Enfin, une campagne de mesures de la concentration de particules dans l'habitacle a été réalisée afin d'évaluer la pertinence du modèle diphasique. Cette étude a permis le développement d'un modèle complet de simulation de la dispersion des polluants particulaires dans un habitacle en fonction de conditions de ventilation et de caractéristiques des particules.