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(1, θs, φs) Spherical coordinates of the sun in ground reference frame

(hshade, wshade) Height and width the shadow in the shading profile creator

(Ox⃗′y⃗′z⃗′) Spherical coordinates of the sun in ground reference frame

(Ox⃗ay⃗az⃗a) Reference frame used by AstroPy

(Ox⃗cy⃗cz⃗c) Spherical coordinates of the sun in ground reference frame

(Ox⃗wy⃗wz⃗w) Arbitrary reference frame of an object in real world

(Ox⃗y⃗z⃗) Reference frame connected to ground

(x′
s, y

′
s, z

′
s) Spherical coordinates of the sun in ground reference frame

(xs, ys, zs) Spherical coordinates of the sun in ground reference frame

(xshade, yshade) x and y coordinates of the shadow in the shading profile creator

(θas, φas) Azimuth and zenith of the sun in the AstroPy coordinate

(xcs, ycs, zcs) Spherical coordinates of the sun in ground reference frame

ηbattin Charge efficiency of the battery

ηbattout Discharge efficiency of the battery

ηconversion Efficiency of converter

ηsolar Efficiency of solar panel

ω Inclination of the smartphone used to take the sky photo

ψ Orientation of the smartphone used to take the sky photo

θ Azimuth of an arbitrary object

θshade Movement direction of the shadow in the shading profile creator

φ Zenith of an arbitrary object

A Equivalent diode ideality factor of a PV module

Abyp Ideality factor of the bypass diode used in Shockley equation

Acell Diode ideality factor of a PV cell

C Arbitrary constant used to evaluate whether a projection is equal area

Cbatt Capacity of baterry

cter Counter of iterations in HC phase in fast GMPPT
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cterlimit Maximum limit of cter

Dk Duty cycle sent at iteration k

di
x Duty cycle of candidate solution i at search iteration x

di
est Duty cycle estimate to get to target voltage i in fast GMPPT

G Irradiance received by a PV cell or module

Gglobal Global irradiance in the shading profile creator

Gref Reference irradiance at 1000Wm−2

Iblock = f(Vpv) Shortened representation of equation 2.5 where the input is voltage
and output is current of the PV block

Iblock Current of a PV block

Ibyp Reverse saturation current of the bypass diode used in Shockley equation

Idb Current through the bypass diode

Ipv = fm(Vpv) Shortened representation of equation 2.4 where the input is voltage
and output is current of the PV module

Isc Short circult current of a PV cell or module

inv Number of duty cycle inversions

invlimit Maximum limit of inv

k1 Constant to transform the zenith of an object to a vertical position on an
image

k2 Constant to transform the azimuth of an object to a horizontal position on
an image

kB Boltzman constant

l Unit based on the length of a square solar panel in the shading profile creator

Ns Number of PV cells in series in a PV module

ninv The length of the streak of duty cycle updates without inversions

ninvlimit Maximum limit of ninv

pi
x Power measured by candidate solution i at search iteration x

Pgmpp Power at global maximum power point of a PV string with bypass diodes

Pmpp Power at maximum power point of a PV module

P k
pv PV string power measured at iteration k

q Elemental charge
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r Distance from a point to origin of reference frame

Rdon On resistance of a bypass diode used in piecewise modelling

Rk
solar Solar irradiation at timestamp k

Rs Equivalent series resistance in the PV module model

S Size of solar panel

SOCk State of charge of battery at timestamp k

SOCmax Maximum state of charge of the battery

SOCmin Minimum state of charge of the battery

T Temperature of a PV cell or module

Ts Sampling time

Tglobal Global temperature in the shading profile creator

Tref Reference temperature at 25◦C

u Horizontal position of a pixel on an image

v Vertical position of a pixel on an image

Vf Forward voltage of a bypass diode used in piecewise modelling

Vbattnom Nominal voltage of battery

Vgmpp Voltage at global maximum power point of a PV string with bypass diodes

vi
low Lower target voltage bound i in fast GMPPT

Vmpp Voltage at maximum power point of a PV module

Voc Open circuit voltage of a PV cell or module

Vpv = g(Iblock) Shortened representation of equation 2.5 where the input is current
and output is voltage of the PV block

Vpv = gm(Ipv) Shortened representation of equation 2.4 where the input is current
and output is voltage of the PV module

V k
pv PV string voltage measured at iteration k

vshade Velocity of the shadow in the shading profile creator

Vstring Voltage of a PV string with bypass diodes

vi
target Target voltage i in fast GMPPT

vi
up Upper target voltage bound i in fast GMPPT

Ebatt
k Energy flow to the battery at iteration k
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Econv
k Energy generated by converter at timestamp k

Eload
k Energy consumed by the load at timestamp k

I0 Equivalent reverse saturation current of the diode in a PV module

I0cell Reverse saturation current of the diode in a PV cell

Id Equivalent current through the diode of a PV module

Idcell Current through the diode of a PV cell

IL Equivalent photocurrent of a PV module

ILcell Photocurrent of a PV cell

Ipv Current of a PV module

Ipvcell Current of a PV cell

Iscn Nominal short circuit current of a PV module

Iscncell Nominal short circuit current of a PV cell

Ki Current temperature coefficient of a PV module

Kicell Current temperature coefficient of a PV cell

Kv Voltage temperature coefficient of a PV module

Kvcell Voltage temperature coefficient of a PV cell

Rp Equivalent parallel resistance in the PV module model

Rpcell Parallel resistance in the PV cell model

Rscell Series resistance in the PV cell model

Vocn Nominal open circuit of a PV module

Vocncell Nominal open circuit of a PV cell

Vpv Number of PV string in parallel in a PV module

Vpv Voltage of a PV module

Vpvcell Voltage of a PV cell

AC Alternating Current

ADC Analogue-to-Digital Converter

CAD Computer-Assisted Design

CB Characteristics-based

D Duty cycle

DC Direct Current
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DSM Digital Surface Model

ECONECT Ecosystème connecté Sentinelles de l’Environnement or Connected En-
vironmental Sentinels Ecosystem

FOV Field-of-view

fVoc Fractional open circuit voltage

G-T Irradiance and temperature

GMPP Global Maximum Power Point

GMPPT Global Maximum Power Point Tracking

HC Hill Climbing

I-V Current-Voltage

InC Incremental Conductance

IntelC Intelligent Control

ISAE Institut Supérieur de l’Aéronautique et de l’Espace

LiDAR Light Detection And Ranging

LUT Look-up Table

MPC Multiple Peak Capable

MPP Maximum Power Point

MPPT Maximum Power Point Tracking

MT/s Megatransfers per second

NVME SSD Non-Volatile Memory Express Solid State Drive

nVoc GMPPT schema based on performing MPPT on different zones of the volt-
ages.

OptA Optimisation Algorithms

P-V Power-Voltage

P&O Perturb and Observe

PD Parameter-Dependant

PSC Partial Shading Conditions

PV Photovoltaic
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Introduction
In this thesis, we discuss solar harvesting and optimisation for autonomous
low to medium power supplies between 10W and 100W. In situations where
the load does not consume a significant amount of energy, a battery could suffice.
However, there are many use cases where this is not possible or simply not practical
for the entire life cycle of the system. Therefore, there is a need to harvest energy
from the environment. Most of the time, the only practical energy source would be
the sun. It is everywhere and relatively predictable, and solar panels are becoming
more affordable by day thanks to the renewable energy boom.

Figure 1: Illustration of the ECONECT project as shown on its website econect.cnrs.fr

There are several examples of autonomous power supplies to better understand the
challenges they present. Note that none of the application examples provided is
the centre point of this thesis work because we aim to address the general prob-
lem of solar autonomous power supplies operating under non-optimal situations as
a whole. The examples only serve to address how the findings presented in this
manuscript could be used and where we gathered our inspirations to conduct the
work. One such use case is the project ECONECT (Ecosystème connecté Sen-
tinelles de l’Environnement) whose objective is to study and survey the ecosystem’s
response to climate change with remote sensors placed in the wild [1]. An overview
of the project can be found in Figure 1. Although very low-power sensors can get
by with a sufficiently large battery capacity, a video camera and wireless transfers
of substantial data do not last long on battery power. The frequent and tedious
battery change trips to keep the ECONECT infrastructure running highlight this
fact very well, where Maxime Cauchoix, a researcher involved in the project, had
to make a two-hour trip every two days to change the battery.
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2 INTRODUCTION

Figure 2: The two problems that we face: how do we estimate the solar energy generated
by the solar panels and what could be done to mitigate the effect of unexpected shadows.

This project presents us with two problems. Before deploying the measurement
system, we need a good solar energy estimate so that a proper sizing of solar
panels and batteries could be made. If solar panels are placed in open, clear spaces
or we could control the environment optimally similar to large industrial photo-
voltaic plants, there is not much of a challenge. However, it is likely that they will
be deployed in the forest among trees and wildlife activities (i.e. prairie, hedges,
forest edge, middle of the forest, in a pond, etc.), which can reduce actual solar
availability to the solar panel and complicates the estimation process significantly
(Figure 2).

Figure 3: Some example of unexpected shadows. A is mostly a design oversight, while B
is unexpected build-ups.

After the system is installed, we must consider the unexpected shadows. This is
not limited to low-power solar harvesting and could range from design oversight to
static shadows cast by dust and leaves, as shown in Figure 3. We have also shown
a funny example of a frog sitting on the solar panel in Figure 2. These shadows are
very significant because even a small shadow on a solar panel could cause a
significant power loss, which we will explore later. However, these are just static
shadows, which is not the only problem we have.

There are some more contexts for low-power solar harvesting in which moving shad-
ows could be present. Figure 4A highlights an autonomous solar boat from the
Iboat project by Baptiste Genet in collaboration with ISAE [2] where we have a
solar powered sailing boat and the sails cast shadows on the solar panels. This
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Figure 4: Illustration of some other low-power solar harvesting applications that face
moving shadows: a solar powered sailing boat (A) and solar-aided bicycles (B)

alone was already troublesome; they have seen that only two covered solar cells
could shutdown the production of the entire array of 32 solar cells. Even if that was
rectified, the fact is that the boat is operating in the sea, rocking back and forth,
side-to-side, we are still left with the problem of shadows moving in hard-to-predict
patterns. In Figure 4B, solar-aided bicycles are shown where we could imagine
that mobile shadows from trees and buildings constantly cast shadows, hindering
its performance. These examples are intended to highlight the context in which we
situate our work. This is important because these partial shading conditions have
received significant attention in the literature, but most of the work seems to focus
on larger installations where they do not occur constantly nor change continuously.

Most autonomous power supplies would be excessively dimensioned to continuously
power the load, but it is impractical to actually deploy an excessive amount of solar
harvesting surface and battery capacity. Therefore, designing them just enough
could be a major advantage in terms of logistics and financial gain. However,
unexpected shadows could then cause power drops leading to intermittent blackouts.
Seeing these problems, there is a need to implement a shading management
technique to ensure that the system is still harvesting the maximum amount of
energy possible even under these unexpected shadowing events.

To summarise several problems studied in this thesis, we composed it into three
questions as follows:

• How could we estimate the solar availability of the PV system under these
challenging situations with relative accuracy?

• What is the impact of the partial shading conditions on the available power
of the PV system?

• How could we extract the maximum energy from the system under these
unstable irradiance conditions caused by unexpected shadowing events?
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Figure 5: Illustrating the themes of the three chapters of this thesis.

In these frameworks, we propose three chapters dedicated to different problems, as
shown in Figure 5. Because this work is intended to solve some problems with the
ECONECT project, there will be an overarching theme of trying to keep the end
solution as simple and inexpensive as possible for the user, and it is important to
keep this lens when considering the various decisions made.

Chapter 1 will be dedicated to answering how we could obtain a good solar energy
estimate and use this information to preliminary size the solar panels and batteries
for a given consumption profile. We start with an evaluation of the existing tools
at our disposal and propose a solution that is inexpensive, easy to use, and highly
maintainable. We then apply the tool to assess the evolution of the state of charge
of a battery in an autonomous power supply, which is a good indicator of whether
there is intermittent blackout during operation.

Chapter 2 will be dedicated to analysing the effect of partial shading conditions,
where we mathematically model and simulate a photovoltaic (PV) system under
partial shading conditions (PSC). The study was carried out on a string of four
small PV modules with bypass diodes, and each module consists of six solar cells
in series. From this we gain important information about the maximum power
point (MPP) and global maximum power point (GMPP) of the system such
as how these GMPPs are distributed, the various different operating regimes of the
PV array, how the shading patterns impact the power characteristics of the PV
array, etc.

Chapter 3 discusses maximum power point tracking (MPPT) and global
maximum power point tracking (GMPPT) based on the strong foundation
of Chapter 2 where we eventually optimise photovoltaic generation under fluidly
changing partial shadows. This chapter involves a deep dive into the literature of
MPPT and GMPPT, and many critiques of the existing techniques, testing method-
ology, result presentation, etc. We then propose our own very simple and lightweight
GMPPT algorithm based on the knowledge gained from Chapter 2, and test our
method against three others that are equally light and easy to implement on low-cost
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microcontrollers. We also discuss a novel testing methodology to better match the
research context, which are unexpected shadows with no clear movement patterns.

Finally, we will provide a general conclusion to the various contributions of this work
in relation to the contexts we have identified in this introductory chapter. Further-
more, we discuss how the various results are not simply limited to autonomous low-
to medium-power supplies, but also to larger systems.





Chapter 1

Shading forecast for
autonomous photovoltaic

systems

In renewable energy applications such as solar energy, an omnipresent problem is
the discrepancy between when the energy is generated and when it is consumed.
For example, our system has to operate 24/7 while the sun is clearly not high in
the sky 24/7. It manifests itself in all situations from the electrical reliability of
self-consumption solar households [3] where most people work during daylight hours
and go home at night to use electricity to solar buses [4]. Without reliable solar
energy estimation, we could always put an excessive solar harvesting surface, which
is not ecologically friendly [5], or an excessive energy storage capacity, which is
also a disaster to the environment [6]. Furthermore, this also comes with logistical
and maintenance inconveniences, not to mention a higher cost. All of this justifies
the need for a precise and timely estimate of solar energy, and specifically for our
application, we need a good daily solar energy estimation.

Figure 1.1: Elements impacting solar energy available for autonomous PV systems

Let us take a look at what a solar engineer would do to perform a solar estimation.
The different elements to consider are summarised in Figure 1.1. First up on the
list is the solar position which we can reliably predict in relation to any location
on Earth thanks to the countless measurements and observations made throughout

7



8 CHAPTER 1. SHADING FORECAST FOR AUTONOMOUS PV SYSTEMS

history. We then have the weather which is constantly monitored by numerous
weather stations and remains relatively stable throughout different years as long
as the window of observation is not as limited as hourly. Descending lower to
the ground, we have terrain shadings such as mountains and hills, information
that is well documented in geographical databases. Zooming into our deployment
location, the impact of nearby obstructions like trees and buildings becomes
apparent, which changes from place to place and is relatively difficult to assess.
We now arrive at design choices to satisfy the system’s needs, like determining the
solar panel’s peak wattage to satisfy the system’s need, battery capacity to
cover periods of low solar availability, choosing the right converter for the job, and
optimising the consumption profile to prioritise critical tasks. These elements are
valid for all types of solar installations, from large photovoltaic fields to residential
self-consumption to our remote autonomous sensor system.

Among the elements shown in Figure 1.1, nearby obstructions will be the focus
of this chapter. Specifically, we provide a low-cost, simple, and highly maintainable
method for acquiring and integrating the shading data with other information, such
as solar position, weather data, etc., to generate a good daily solar energy estimate.
We start out with a literature review to see the different tools at our disposal for
the job, their advantages and inconveniences, and from there select the toolboxes
that could help us achieve our goal. We then describe our proposal for easy shading
forecast, how we interpret the data, and how we generate a solar estimate with the
shadings considered. We proceed with a presentation of preliminary test results to
validate our method. An application case was presented in which we determined
the minimum state of charge of the battery using the irradiance compensated with
shading and highlighted the importance of accurately estimating the hourly solar
irradiation. Finally, we conclude with an overview of how our proposed shading
estimation could be used, its merits, and its limitations.
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1.1 Literature review

As discussed in the preceding section, local obstruction estimation is key to ensuring
the proper function of our autonomous application. We first discuss the three main
techniques that are referenced regularly in the literature for solar estimation: 3D
Computer-Assisted Design (CAD) programs, Digital Surface Models (DSM) based,
and sky imaging techniques. We then proceed with a short discussion on why we
should and how we could build our own solar estimation toolbox.

1.1.1 Computer Assisted Design Software

3D CAD techniques have been developed since the mid-1990s, with software like
SOMBRERO [7] paving the way for the sophisticated tools that we have today like
PVGIS [8], PVSyst [9], PVWatts [10], SolarGIS [11], RETScreen [12], BlueSol [13],
HelioScope [14], PVSOL [15] and its free alternative [16], Solarius PV [17], Solar
Pro [18], PV F-chart [19], PolySun [20], SAM [21], Homer Grid [22], Archelios [23],
and AutoCalSol [24]. They are the backbone of solar design companies, providing
a suite of utilities that greatly improve the quality of life for solar engineers to
evaluate all of the elements found in Figure 1.1. Nevertheless, while these CAD
software allow for high-precision solar engineering, the incurred complexity presents
itself as an important inconvenience for those who simply seek to perform a quick
estimate. Furthermore, all of them require licencing cost. For a rough estimate, the
free online tool provided by the EU Science Hub PVGIS could be a viable option.
Milosavljevic et al. [25] published in 2022 an excellent overview and evaluation of
14 solar design solutions including PVGIS even though the latter is not technically
a 3D CAD software. Overall, they concluded that most of them are reasonably
accurate in estimating the total annual solar energy.

Now, we test two of these tools, PVGIS and PVSyst, to see how nearby shading
estimation could be done using them.

1.1.1.1 Complex shading forecast in PVSyst

This software suite is very complete with solar position calculator, weather database
integration, commercial solar panels, energy storage solution selector, etc. But we
are interested in the complex shading evaluation tool that it provides. There is a
simple option to import these data if they are available. If not, the user can build a
3D scene of the area and choose a location to put the solar panels (Figure 1.2). The
program then calculates the solar position relative to the solar panel throughout the
year, considers the shadows that might be cast, and generates an energy estimate.
While the result is accurate, the procedure is complex and does not align well with
our goal of a simple shading forecast method.
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Figure 1.2: PVSyst scene builder utility. The eight solar panels are located on top of the
building to the left and the solar position in this example is at 09h45 on 01 January 2023.
The blue solar panel is not shaded while those in yellow are partially shaded with the grey
area being the shadows.

1.1.1.2 Complex shading forecast in PVGIS

Figure 1.3: Illustration to understand the horizon diagram in PVGIS (Figure from PVGIS
documentation [8])

Before going into a complex shading situation, it is important to first understand
how PVGIS handles terrain obstruction in general. An illustration can be found in
Figure 1.3. Let us first start with the right photo, which is a 180◦ field of view
(FOV) of the surrounding area above our deployment location. For example, we
could see a small mountain to the east (right side of the photo) and a small town on
elevated terrain toward the north and north-east (top and top right of the photo,
respectively). We then have the diagram on the left that represents these terrain
obstructions in dark grey and the unobstructed sky in light grey. Overlaid on that
diagram is also the portion of the sky that the sun traverses throughout the year,
delimited by the June solar solstice in dashed lines and December solar solstice in
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dotted lines. In the northern hemisphere, the solar trajectory will always be toward
the south side of the sky.

This horizon diagram could be modified with custom horizon data to take into
account nearby shading. To describe a particular terrain obstacle, PVGIS needs
two information: in which direction this object is in (its azimuth) and how high
this object is (its elevation). The user could simply upload a list of elevation points
and PVGIS will assume equal azimuth difference between these points and that
they are given in the order north, east, south, and west (clockwise on the horizon
diagram). The elevation will be capped at 90◦. To better understand its mechanism,
we provide here a simple example in Figure 1.4. In it, we provide eight elevation
points to PVGIS. This means that PVGIS assumes that the azimuth difference
between them is 45◦ (because 360◦/8 = 45◦). The first elevation point is 0◦ so we
see in the horizon diagram that the elevation of the terrain towards the north is
0◦. The next elevation point is 15◦ at the 45◦ azimuth clockwise, resulting in the
horizon diagram with an elevation of 15◦ terrain toward the northeast. Continuing
to the third point, we have 30◦ elevation at the 90◦ azimuth going clockwise, and
this is what the horizon diagram shows.

Figure 1.4: Illustration of how PVGIS interprets custom horizon data.

The above description tells us that the custom data will struggle with a situation like
that shown in Figure 1.5. Given that only one single elevation point from the horizon
is allowed per azimuth direction, the horizon diagram could not represent this tree.
Therefore, this custom-horizon tool is not particularly useful to us. However, PVGIS
does provide a free and accurate solar irradiance estimation that is very useful.
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Figure 1.5: A simple example of a horizon that is impossible to describe using PVGIS
horizon tool.

1.1.2 Digital Surface Models

Figure 1.6: Illustration of LiDar technology [26]

If one wishes to avoid scouting the physical location altogether, it is possible to turn
to DSM databases. They include several layers with crucial geographic information
such as terrain, elevation, vegetation, infrastructure, buildings, etc. [27]. This
is done using LiDAR technology (Figure 1.6) which, in a nutshell, means using
laser that bounces off the surface to get the terrain details [26]. The authors of
[28] used DSM data for remote horizon measurement along with an on-site camera
to model their urban environment PV system, resulting in an impressive annual
yield precision. Another research work that evaluated the use of DSM in urban
environments has found that with available high resolution data, the estimation can
be comparable to other methods such as sky imaging, while the result with lower
resolution data may be hit or miss [29]. Therefore, the DSM-based strategy should
work well in urban environments where high population concentration drives the
demand for LiDAR data, not only for photovoltaic installations but also for urban
planning. For remote deployments, we are simply out of luck most of the time.
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Furthermore, DSM does not yet include the necessary data to evaluate complex
shadings such as those cast by vegetation.

Figure 1.7: Example of high resolution LiDARHD data including complex objects like
vegetation and architectural details [30]

Although the evaluations of DSM-based strategies are accurate as of the writing
of this thesis, there are advances on the horizon that may drastically change the
perspective above. For example, LiDARHD (Figure 1.7) is an open source database
that GéoService is updating and should include all complex terrain details in France
[30]. If open-access high-resolution LiDAR data would become the norm, it could
be the ultimate simple and low-cost shading forecast strategy. With a program that
incorporates these terrain data and an irradiance database, a user would only need
to click several buttons from the comfort of his office and immediately get a good
solar energy estimate.

1.1.3 Sky imaging

This method involves capturing the entire opening above the deployment location
using a fisheye lens or a reflective sphere (Figure 1.8) and seeing where there are
obstructions. There are several commercial solutions based on this technique, as
well as a lot of discussion in the literature, thanks to its ability to determine a
complex horizon with relative ease.

Figure 1.8: Reflective dome technique (1) [31] and fisheye camera imaging (2) [32]

Let us first consider some enterprise solutions for shading estimation which can be
separated into two main categories: those that have integration with solar design
software or weather database and those that stop at a sun path overlay on the



1.1. LITERATURE REVIEW 15

sky image. For those seeking the former category, we have tools like Panorama
Master from The Solar Design Company to be used with their proprietary software
HorizON [33], Horicatcher to be used with Meteonorm database [34], the all-in-
one portable Solmetric SunEye 210 capable of capturing sky images with sun path
overlay as well as generating immediate solar energy estimation output [35], and the
Solar PathFinder Kit to be used with their proprietary PV Studio 2 [36]. If sun path
estimation on sky image suffices, one can consider tools like Pacific Gas and Electric
Company’s Sunpath Sofware, which works with some specific fisheye camera models
[37], or smartphone-based applications like Sun Seeker [38] and SunnyTrack [39].
A 2021 report by Duluk et al. [40] evaluated several of these commercial solutions
and provided a fair comparison between them, albeit through an architectural lens
rather than a photovoltaic lens. Based on this report and our own research on these
solutions, there does not seem to be a solution that is both inexpensive and simple.

Therefore, we turn to academia for potential solutions. Orioli et al. [41] presented a
method to accurately plot the sun’s position onto an image, but they use a regular
camera lens without a wide FOV, leading to the end user needing to take multiple
sky photos to capture the entire surroundings. Sanchez-Segura et al. [31] proposed a
low-cost sky imaging solution with promising results, but a large reflective metallic
dome with a camera pointing toward it is not the most user-friendly tool. The
use of inexpensive, hobby-grade fisheye lenses on a smartphone was explored by
Oliveira Panao et al. [42] with success, but the steps to determine the camera
characteristics are still on the more tedious side. Also using a smartphone, an
Android application called Solar Survey proposed by Ranalli et al. [43] was closest
to being the best portable shading evaluation tool that integrates imaging with
weather data for complete solar estimation, but now it has a lot of bugs and is
practically unusable on modern Android devices. In addition to capturing local
obstructions, sky imaging also proved its usefulness in real-time irradiance forecast,
being used to predict cloud movements overhead as shown in [44], [45], [46] and
[47].

1.1.4 Solar estimation under forest canopies

Before proceeding, we should discuss some previous works on solar availability under
forest canopies. In general, it is intuitive that estimation is hard due to complex
shadings, and this was proven by Hardy et al. [48]. The good news is that even
under such complex situations, the solar spectrum is still suitable for Si-based solar
cells as shown by Wang et al. [49], and Gunasagaran et al. [50] carried out a
detailed measurement of solar availability under forest canopies with promising
results. Therefore, our goal to have a good hourly solar estimate for systems under
complex shadings such as those found in ECONECT is, in theory, possible.

Another constraint inspired by the ecological project is the user-friendliness of the
shading forecast procedure, both in terms of the work to obtain the shading in-
formation and in terms of how the program generates the solar estimate, since not
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Figure 1.9: Illustration of using the sky image to determine sunlight obstruction. The
example shows solar positions typical of March.

everyone working in the project is familiar with the ins and outs of solar engineering.
It sums up to three criteria: low budget, low complexity, and ease of main-
tenance. From the above discussion, there is currently none that ticks all these
boxes. Among the three estimation paradigms to choose from, sky imaging is the
clear choice for a non-expert audience since no professional-grade tool is required.
This is furthermore justified by the fact that inexpensive clip-on fisheye lenses for
smartphones have been proven to be a viable option to take a photo in which we
can reliably map the solar position onto the image [42]. From these photos, we
are going to map the sun onto the image at every moment in time and
determine whether the sun is obstructed or not. This gives us the shading
factor the solar panel at every moment in time. It tells us how much irradiance
is lost because of shadows. This information could then be incorporated into
irradiance data requested from various databases. For example, if the shading
factor at a particular moment in time is 80%, the effective irradiance left is only
20% of what the raw irradiance data would suggest. This should result in a solar
energy estimation closer to reality compared to when no shadow was considered.

Two critical pieces of information are required: the solar position relative to
our camera and how the camera maps 3D points onto a 2D image. The
next sections discusses these two problems, which are eventually implemented using
Python and open-source libraries to avoid licencing costs and to ensure long-term
maintainability. Afterwards, we present our experimental setup and results to vali-
date the work. To provide an overview of the process, we then describe the complete
procedure that an end user needs to follow for their own shading estimation. Finally,
we conclude with the merits, drawbacks, and perspective of the work.
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1.2 Solar position relative to our camera

1.2.1 Clarification on geometry terms

To avoid confusion, we start with a summary of the useful geometric concepts
for later discussions. A 3D coordinate reference is a set of three orientated
coordinate lines (x-axis, y-axis, z-axis) and an origin O where the positive
direction is represented by an arrow (Figure 1.10). The 2D representation of vectors
is also shown in the figure. This reference formed by three coordinate lines O⃗x (x-
axis), O⃗y (y-axis), and O⃗z (z-axis) is described as (Ox⃗y⃗z⃗). To distinguish different
references, we add subscripts or superscripts to x, y, and z (e.g., (Ox⃗1y⃗1z⃗1) is not the
same reference as (Ox⃗2y⃗2z⃗2)). Since we only perform rotations and no translation,
the origin O will remain unchanged throughout the discussion. A coordinate system
is said to be orthonormal when the positive direction of O⃗x, O⃗y, and O⃗z respects
the right-hand rule as shown in Figure 1.10.

Figure 1.10: Illustration of a (Oxyz) coordinate reference in 3D as well as how it could
be represented in 2D.

A point in a 3D coordinate reference could be described using the 3D Cartesian
coordinate system. In this representation, a tuple of three numbers represents
its distance from the origin relative to O⃗x, O⃗y, and O⃗z respectively. The generic
representation of the coordinates of point A relative to a reference (Ox⃗y⃗z⃗) would be
(xA, yA, zA) (Figure 1.11). When dealing with extraterrestrial objects, the spher-
ical coordinate system is used more frequently. The coordinates of a point in
the reference (Ox⃗y⃗z⃗) are still a tuple of three numbers, but this time they represent
its distance to the origin (r), its azimuth (θ), and its zenith (φ) respectively. The
generic representation of the spherical coordinates of point A in reference (Ox⃗y⃗z⃗)
would be (rA, θA, φA) (Figure 1.11). The distance to the origin is self-explaining; it
is the length of the OA segment. The azimuth of point A in the (Ox⃗y⃗z⃗) reference
is the angle formed between O⃗x and the projection of the line OA in the (Ox⃗y⃗)
plane. The zenith of point A in (Ox⃗y⃗z⃗) is the angle formed between the OA line
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and O⃗z. The positive direction of the azimuth and zenith angles can be found in
Figure 1.11.

Figure 1.11: Illustration of the 3D Cartesian and spherical coordinates of point A in the
reference frame (Oxyz).

1.2.2 Solar coordinates in our camera’s frame of reference

The Sun’s distance from Earth makes it essentially a point in the sky, which we
denote as point S. The objective is to find the coordinates of point S (xcs, ycs, zcs)
in the reference (Ox⃗cy⃗cz⃗c) connected to our camera sensor, as shown in Figure 1.12.
This orientation was chosen because it is the de-facto norm used by the majority of
camera calibration toolboxes as we will see in the next section. Furthermore, the
choice of 3D Cartesian coordinates instead of spherical coordinates is dictated by a
software library used in the later section on camera calibration.

Figure 1.12: Visualization of how the camera coordinate reference is oriented relative to
the phone’s camera.

We used a software library that generates a set of solar azimuths and zeniths
(θas, φas) in reference to (Ox⃗ay⃗az⃗a) at each provided timestamp (Figure 1.13 sec-
tion AstroPy coordinate). Note that the r component is not present because the
Sun is so far away that its distance is not relevant for practical purposes. An in-
teresting property arises due to our camera’s sensor small size: any point having
the same azimuth (θ component) and zenith (φ component) will map to the same
pixel on the image. Therefore, an arbitrary r component for S could be chosen
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without affecting the final result and it was defaulted to unity. This is the principle
behind projective coordinates or homogeneous coordinates, but we proceed
in 3D coordinates to keep the mathematical formulas familiar. Therefore, the solar
coordinates in (Ox⃗ay⃗az⃗a) are represented as (1, θas, φas).

Figure 1.13: The transformations needed to get the solar position in camera’s frame of
reference.

The first step is to consider a basic photo taking setup with our phone flat to the
ground and the South toward the bottom of the image. We call this the ground coor-
dinate reference (Ox⃗y⃗z⃗) with the y-axis pointing south (Figure 1.13 section Ground
coordinate). The solar spherical coordinates in this reference are (1, θs, φs) and its
3D Cartesian coordinates in this reference are (xs, ys, zs). Between (1, θas, φas) and
(1, θs, φs) is a simple coordinate transform shown in equation 1.1. We then convert
the spherical coordinates to Cartesian coordinates in equation 1.2.

θs = 3π
2 − θas

φs = φas

(1.1)

xs = sin(φs)cos(θs)
ys = sin(φs)sin(θs)
zs = cos(φs)

(1.2)

Next, we account for the phone’s orientation of an angle ψ where the positive angular
direction is from South to East. This is essentially a rotation around the z-axis by
ψ and the new reference is denoted (Ox⃗′y⃗′z⃗′) with the new solar 3D coordinates
being (x′

s, y
′
s, z

′
s) (Figure 1.13 section Orientation). The rotation from (xs, ys, zs) in

(Ox⃗y⃗z⃗) to (x′
s, y

′
s, z

′
s) in (Ox⃗′y⃗′z⃗′) is found in equation 1.3.
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x′
s = cos(ψ)xs + sin(ψ)ys

y′
s = −sin(ψ)xs + cos(ψ)ys

z′
s = zs

(1.3)

The final rotation transforming (Ox⃗′y⃗′z⃗′) to (Ox⃗cy⃗cz⃗c) represents the phone’s in-
clination of angle ω and we reach the desired solar coordinates (xcs, ycs, zcs) in
(Ox⃗cy⃗cz⃗c) (Figure 1.13 section Inclination).

xcs = x′
s

ycs = cos(ω)y′
s − sin(ω)z′

s

zcs = sin(ω)y′
s + cos(ω)z′

s

(1.4)

As we shall see in the following section, getting the solar spherical coordinates in
(Ox⃗cy⃗cz⃗c) would seem more intuitive for the task at hand, but we used Cartesian
because this is what the software toolbox we chose requires.

1.3 How the camera maps 3D points onto a 2D image

1.3.1 The principle of camera calibration

Figure 1.14: Illustration of extrinsic and intrinsic function of a camera model.

Mathematically speaking, a camera is a function that transforms a point in our
3D world into a 2D pixel in our image. We can distinguish two separate steps: an
extrinsic function R3 → R3 that maps the coordinates of a 3D world point in
the world coordinate reference (Ox⃗wy⃗wz⃗w) into a set of coordinates in the camera
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coordinate reference (Ox⃗cy⃗cz⃗c) and an intrinsic function R3 → Z2 that maps the
latter coordinates into a set of 2D pixel coordinates on an image plane (Figure 1.14).
Note that the output of the intrinsic function is in Z2 because the pixel coordinates
must be integers. For us specifically, we need the intrinsic function since we knew
the solar coordinates in the camera’s frame of reference (the extrinsic function for
solar position). Obtaining the intrinsic function is called camera calibration.

Figure 1.15: Example to show how the intrinsic function works.

We take an example to better understand the mechanism of the intrinsic function.
Imagine taking a photo of two points, A and B, on a grey wall as shown in Figure
1.15. The intrinsic function is dependant on the virtual principal point of the
image which is where the optical axis lands on the image plane. We call it point
P in our example. It is important to distinguish the image center O (intersec-
tion of the photo’s diagonals) and this principal point because they do not always
overlap. The spherical coordinates of A and B in the camera reference (Ox⃗cy⃗cz⃗c)
are (5, 90◦, 45◦) and (8, 225◦, 45◦) respectively and their image on our photo are
A′ and B′ respectively. As discussed previously, the r component does not affect
the image of the object so the intrinsic function is independent from rA = 5 and
rB = 8. Next, the azimuth of a point dictates which direction around the principal
point P its image is situated. In our example, point A has an azimuth of θA = 90◦

and based on how the camera coordinate reference is seen from the camera, we
can expect A′ to land somewhere directly below the principal point P in the photo
which is the case here. Finally, the zenith of a point dictates the distance of its
image from the principal point P. In our imaginary context, the point A and B both
have the same φA = φB = 45◦ zenith, meaning that their distance from point P
is the same PA′ = PB′. Most camera models consider that the distortion around
the principal point is negligible (i.e. no significant distortion to the azimuth of
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the object in the photo), therefore the bulk of the calibration is about determining
the distortion from the principal point (i.e. distortion to the zenith angle). This
also shows the importance of getting the highest precision possible on the principal
point, otherwise the correction on zenith distortion would not work properly.

The authors of [42] took a photo of an object with known length at a controlled
distance and counted the pixels in the image to determine the focal length of the
camera. However, this process is tedious and hard to get consistently correct.
Therefore, we explored autocalibration techniques that are frequently used in
machine vision applications. The idea is similar to curve-fitting data where we have
a known function with unknown parameters that maps a set of input data to a set of
output data. Figure 1.16 illustrates how to obtain the list of 3D world input points
and 2D image output points. The input world points are the evenly spaced vertices
of a checkerboard and the world coordinates reference is linked to the pattern’s
surface itself, and the output is their pixel coordinate in the image. To ensure an
optimal calibration, it is necessary to take multiple photos to have our set of output
image points cover every part of the image’s FOV. But this also means that the
extrinsic function’s parameters will change from photo to photo. The solution used
by calibration toolboxes is to iterate between guessing the intrinsic parameters and
optimising the extrinsic parameters until the desired remapping precision is reached.

Figure 1.16: Illustration of the input 3D world points (orange) and the output 2D world
points (green), with the relevant coordinate systems.

1.3.2 Choosing software toolbox for fisheye calibration

We evaluate three different calibration toolboxes to pick out the best for the job:
OpenCV fisheye module [51], OpenCV Contrib Omnidir module [52], and a Python
port of a MATLAB toolbox by Scaramuzza [53]. OpenCV is the most widely used
library for imaging applications, which guarantees a long-term future. As for the
Python port of the MATLAB toolbox, we had started the project out in MATLAB
with promising results and wanted to see if there is an equivalent library in Python.
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Although these are based on different camera models, their core mechanism is es-
sentially the same. The difference in their results consequently lies in whether the
intrinsic function is compatible with the camera’s specification used, which in this
case is a fisheye camera with an approximate 170◦ FOV. To compare their calibra-
tion accuracy, we first need a photo containing the 2D image of 3D reference points
with known zenith angles. We then input this same set of zenith angles into our
camera model and "ask" it to draw where it "thinks" the 2D image of these reference
points should land in the photo.

The 3D reference points here are the clear angle marks from 0◦ to 90◦ at 5◦ steps of
an acrylic protractor (Figure 1.17). The test starts by first taking a good calibration
image set and letting the program determine the camera’s intrinsic function. We
then setup the smartphone vertically to take photos of the protractor. Horizontal
alignment is done by levelling the base of the protractor with the fisheye lens. For
vertical alignment, we first start with an estimation and then refine the phone’s
position until the principal point matches the 0◦ point via subsequent photos. To
increase the visibility of the protractor in the evaluation photo, we added red dots
to highlight the angle markings.

Figure 1.17: Remapping evaluation setup with an acrylic protractor with clear angle
markings and the photo of the protractor as taken from the phone. The red dots here are
excessively highlighted for higher visibility.

We gave the camera model generated by each module, OpenCV fisheye module,
OpenCV Contrib omnidir module, and Scaramuzza’s toolbox Python port, our set
of known zenith angles which are the set of zenith angles from 0◦ to 90◦ at 5◦

steps. We then drew the camera model’s estimation of where 3D objects having
the same zeniths in the camera’s reference should map onto the image, resulting in
equi-zenith circles. The photos of the protractor with the angle estimate overlaid
from the three toolboxes can be found in Figure 1.18. We resume the remapping
error of each calibration method in Figure 1.19.
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Using the fisheye module in OpenCV, the result is relatively precise up to around
45◦ but the deviation increases to an unusable level beyond that. This is consistent
with a lot of discussion in online forums about the limited FOV where it is reliable.
As for the OpenCV Contrib Omnidir, the result is wildly out of mark, and we
conclude that this is most likely the wrong camera model to use with a fisheye lens.
Finally, the Python port of the Scaramuzza OcamlCalib toolbox shows excellent
results with a perfectly accurate remapping up to 75◦ which is the highest zenith
visible in the photo. This toolbox will be chosen for our post-processing.

Figure 1.18: Protractor’s photo with remapped angles overlaid to evaluate the precision
of three calibration libraries tested.

Figure 1.19: Remapping error of the three calibration toolboxes. Notice that the actual
zenith angles only goes up to 75◦ because that is the highest reference zenith angle we could
see in the photo.
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1.4 Process shading data and generate solar estimate

1.4.1 Selecting the software environment and irradiance data

The language of choice will be Python because it is open-source with a strong
community and having a multitude of open-source libraries will ensure the free
access to our program, the ease of extension to adapt to different projects, and the
long-term maintenance. Furthermore, it is well-known and relatively simple with
online courses that could get a user up to speed in less than 20 hours.

Although being free and providing high-quality data as shown by Milosavljevic et
al. in [25] was the reason we used PVGIS, this choice was arbitrary because other
open-access and high-quality irradiance databases, such as the NASA Power Project
[54], are available. Although PVGIS allows one to customise a horizon for solar
estimation, it has some limitations, as shown in Section 1.1.1.2. For this reason,
we opted to calculate the effective irradiance after shading ourselves. There are
three components of irradiance provided by PVGIS: direct, diffuse, and reflected
(Figure 1.20). Since most of the time the reflected component’s contribution is
inconsequential, our Python script only requests the other two. We used the hourly
irradiance where each data point represents the average solar irradiance of each hour
of the day. Now, we discuss concretely how to obtain the direct shading factor
and diffuse shading factor and use them to compensate the raw direct and diffuse
irradiance data, respectively. Note that we assume that the sky photo that the user
input has already been transformed to black and white, where white represents the
unobstructed sky and black represents the nearby obstructions. Nevertheless, for
clarity, we are proceeding with examples using the original sky photo.

Figure 1.20: Illustration of the solar direct, diffuse, and reflected components.
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1.4.2 Calculating the direct shading factor

Figure 1.21: Zooming into the solar path traced onto an image to better understand the
direct shading factor calculation. In this simplified example, among the 46 pixels that are
determined to be representing the solar path throughout a one hour period, we counted 22
black pixels, which means that the average direct shading throughout that period is around
22
46 = 47.8%

Iterating through the hourly time-stamped irradiance data, we determine the solar
position on the image and adjust the estimation with any detected shading. This is
done by tracing the solar path in the corresponding hour timeframe onto our image
and count the total pixels in the said solar path, as well as the number of
black pixels (obstruction) (illustrated in Figure 1.21). Dividing the number of
black pixels by the total number of pixels, we get the direct shading factor for
that hourly irradiance value. A shading factor of zero means no obstruction to direct
sunlight and one means complete obstruction. Then it is used to proportionally
compensate the irradiance. For example, for an estimated irradiance of 1000Wm−2

and a shading factor of 0.3, we get an effective direct irradiance of 700Wm−2.

1.4.3 Calculating the diffuse shading factor

Regarding the diffuse component, we use the isotropic sky diffuse model by Hottel
and Whillier [55] which assumes that the diffuse irradiance comes from the whole
sky. This means that the diffuse shading factor could be obtained by dividing
the obstruction area over the entire area of the sky. However, this area is
not on a flat surface but on the hemisphere of the sky, as illustrated in Figure
1.22.
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Figure 1.22: Illustration of how the diffuse shading factor should be calculated properly.
We need to consider the area of shading over the total area of the sky on the surface of a
sphere, not on a flat image. This image was taken by determining the equivalent azimuth
and zenith of each pixel and it is then mapped onto a unit sphere.

As the original photo has optical distortions, the shaded area in the fisheye
photo over the sky area in the fisheye photo may not be the same as the
shaded area on the sky hemisphere over the sky hemisphere’s area, so
proceeding directly with the fisheye image is not possible. But we do know how to
map any point in the fisheye onto the sky hemisphere given that the extrinsic and
intrinsic functions of the camera are known. So what we now need is the equal
area projection (also called the conformal projection) of the hemisphere of the
sky onto a flat image so that the shaded area of the projected image over
the total area of the projected image is the same as the shaded area on the
hemisphere of the sky over the area of the hemisphere of the sky (Figure
1.23).

Figure 1.23: Illustration of the transformation from fisheye photo to an equal-area pro-
jection of the demi-sphere.
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Using this flat image makes determining the diffuse shading factor easier to under-
stand in the software because a matrix form to represent the hemisphere would be
bloated. Based on this document by the United States Geological Survey (USGS)
on map projections [27], the criterion in equation 1.5 could be used to verify whether
a projection of a sphere onto a flat surface is equal area, where u is the vertical po-
sition of the object in the projected image, v is the horizontal position of the object
in the projected image, φ is the zenith of the projected object on the sphere, θ is
the azimuth of the projected object on the sphere, and C is an arbitrary constant.
Note that the top left corner of our flat rectangular in Figure 1.23 corresponds to
u = 0 and v = 0 with the positive direction represented by the arrows.

∂v

∂θ

∂u

∂φ
− ∂v

∂φ

∂u

∂θ
= Csin(φ) (1.5)

In Figure 1.23, we used equation 1.6 to project any pair of zenith and azimuth on
the sky hemisphere onto our equal area image where k1 and k2 are constants.

v = k1(1 − cos(φ))
u = k2θ

(1.6)

To verify, we calculated all the partial derivatives of equation 1.6 as found in equa-
tion 1.5, resulting in the set of equations 1.7.

∂u

∂θ
= k2

∂v

∂φ
= 0 + k1sin(φ)

∂u

∂φ
= 0

∂v

∂θ
= 0

(1.7)

Finally, we apply the terms from the set of equations 1.7 to equation 1.5 resulting
in equation 1.8 which confirms that our projection is indeed equal area.

∂u

∂θ

∂v

∂φ
− ∂u

∂φ

∂v

∂θ
= k2k1sin(φ) − 0 = k2k1sin(φ) (1.8)

With the help of this projection, by dividing the total number of black pixels in the
projected image (the obstructed sky area) over the total number of pixels in the
projected image (the total sky area), we obtain the diffuse shading factor. Since
the isotropic sky diffuse model does not take into account the solar position, this
factor is applied to all diffuse irradiance values regardless of their timestamp.
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1.5 Preliminary solar estimation evaluation

1.5.1 Validating the solar position on an image

We present two photos of the sun above our experimental setup to compare with
our estimation as shown in Figure 1.24. Throughout the process of taking sky
images at different sites, we noticed that it is a bit tricky to get the exact solar
position in our image due to measurement error on the phone’s orientation. Most
azimuth measurements have to be slightly corrected, up to ±3◦, to have a perfect
overlap. To account for this in our shading forecast, we increased the size of the
circle estimating the solar position in the photo when performing the irradiance
compensation.

Figure 1.24: Example of two solar position evaluation photos. The yellow circle marks
where our program estimates the sun to be in our image.

1.5.2 Experimental measurement using a solar panel

We chose a location with moderate shading toward the southern section of the
sky (original sky image in Figure 1.9) and measured the short-circuit current of
a solar panel, which is directly proportional to the irradiance it receives. Our
20W monocrystalline silicon ET-M53620 solar module [56] is slightly inclined at 8◦

and orientated 138◦ towards the South-East. It is worth remarking on the trees
toward the southern part of the sky. The geographical coordinates of the test are
43◦34′47”N, 1◦27′47”E. The test window was from 24 February 2023 to 19 April
2023 and the sampling rate is 10s. We then reconvert this short-circuit current back
to equivalent irradiation received using the PV model shown in equation 2.4 which
will be properly explained in the next chapter. As a reminder, irradiance is the
solar power per unit area in Wm−2 and irradiation is the solar energy per
unit area in Whm−2.

The reason why we chose a solar panel over a pyranometer reading is because the
solar panel is a large harvesting surface and a point measurement is not necessarily
representative of the effective irradiance the panel receives when shadows could be
present. This is also true for the difference between the small sensor of
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a smartphone’s camera and the solar panel, which should be taken into
account. We provide a result snippet to highlight this problem in Figure 1.25. On
the left, we provide a top-down simplified view of the system where we have two
pyranometer readings at the two corners of the solar panel and on the right is the
reading data from all three measurements. We see that the irradiance received by
the solar panel is not exactly consistent with the pyranometer readings.

Figure 1.25: Result snippet to highlight the difference between the effective received by
a solar panel and pyranometer reading due to the presence of shadows.

Data calibration was performed because the current sense slightly deviates over
time. This caused us to sometimes have irradiation values below 0Whm−2 which
does not make sense. For each measurement day, we take the average irradiation
between 20h UTC and 04h UTC, which should be 0Whm−2, and then calibrate
the data for that day with this average value. All irradiations below 0Whm2 are
forced to 0Whm2. We provide in Figure 1.26 a snippet of the hourly data from our
measurement, raw data from SoDa and data from SoDa after shading compensation.

Figure 1.26: Snippet of hourly irradiance data from our measurement, raw data from
SoDa and data from SoDa after shading compensation for the period from 01 March 2023
to 07 March 2023. The result is given in irradiance but hourly irradiance is the same as
hourly irradiation.
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To evaluate the accuracy improvement to solar estimate brought about by the
shading estimate, we propose two separate comparisons. First, we need to know
whether our solar measurement is consistent with the irradiation satellite
data in the same period to confirm that our test setup accurately measured the
irradiation received. For this, we contacted SoDa [57] and acquired their satellite
data for the period from 24 February 2023 to 19 April 2023, which were sampled
every 15 minutes. Originally, we wanted to use NASA open access irradiation
database that usually has a very short delay on data availability, but this year’s data
were heavily delayed by more than six months due to technical issues. However,
given that any reliable source of irradiation for the same period in 2023 should
satisfy our needs, we gladly accepted SoDa’s free-of-charge offer. Second, we must
evaluate how an end-user might benefit from our shading compensation
tool, so we compared our measurement with the hourly PVGIS irradiation data
taken from the same period from 24 February to 19 April but from 2008 to 2016.
PVGIS data was selected because it it was the irradiation database enquired by the
current version of the programme.

Figure 1.27: Difference between SoDa daily averaged irradiance data, raw and compen-
sated, and our daily averaged measured irradiance.
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Figure 1.28: Difference between PVGIS daily averaged irradiance data, raw and compen-
sated, and our daily averaged measured irradiance.

Figure 1.27 shows the difference between the SoDa daily irradiation, raw and com-
pensated, and our measurement. We also plotted a rolling weekly average differ-
ence to observe the evolution of these two quantities over a longer period of time.
Overall, the compensated data seems to better match our measurement, and this
is further confirmed by the boxplots the daily deviation. Without compensation
(SODA/Mes(NoShade) in Figure 1.29), the daily irradiation from SoDa is on aver-
age 62% higher than the daily averaged measured irradiation with a maximum of
151% and a minimum of 24%. After shading was considered (SODA/Mes(+Shade)
in Figure 1.29), the median dropped down to -2% with a maximum of 50% and a
minimum of -23%. This proves that our shading forecast is relatively precise. The
rolling weekly average tells us that the tree mostly covers our solar panels between
February and March and the sun path starts to move out of its shadows toward
April.

However, this improvement might not be what the user could expect, so we should
examine how the PVGIS data compare with our measurement, as shown in Figure
1.28 which plots the difference between daily PVGIS irradiation, raw and compen-
sated, and our measurement. The good news is that the plot shows a significant
improvement to the solar estimate accuracy and this is confirmed by visualising
the boxplot of this daily deviation. With the raw data (PVGIS/Mes(NoShade) in
Figure 1.29), the daily PVGIS irradiation is on average 69% higher than the daily
measured irradiation with a maximum of 462% and a minimum of -17%. After
shading was considered (PVGIS/Mes(+Shade) in Figure 1.29), the median fell to
8% with a maximum of 197% and a minimum of -35%.
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Figure 1.29: Boxplots of the daily averaged irradiance differences.

An overview of Figure 1.29 makes it clear that the shading forecast works as in-
tended with both PVGIS’s and SoDa’s irradiation estimation converging towards
our measurement after the shading information was taken into account. However,
we could also see that the deviation between PVGIS data and our measurement has
a wider dispersion than the deviation between the SoDa data and our measurement.
This is most likely due to the effect of varying weather being more significant in
short time windows.

1.6 Summary of user procedure

This section is dedicated to explaining the procedures that a user needs to follow
if they wish to use the program. There are only two simple steps to acquire all the
information required by the program as shown in Figure 1.30. There is a small final
step to run the program that generates the solar energy estimation.

Figure 1.30: Taking sky photo above the potential deployment and take calibration im-
ages.
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1.6.1 Taking the sky photo

The first step is to capture the sky image at the desired location using the smart-
phone’s camera with a clip-on fisheye lens. It is important to choose a smartphone
that can capture the entirety of the fisheye FOV in the image for best result. Fur-
thermore, avoid camera lens with optical image stabilization because its movement
compensation perturbs the optical axis and makes correct calibration impossible. It
is important to change the setting so that the capture photo is a square because this
is required by the program. Finally, the user needs to perform a post-processing
with the photo where they have to draw the sky as white and everything else black.
This could be done using any paint tool available on their computer like Paint on
Windows.

Figure 1.31: Positive angular direction convention for orientation and inclination angles.

Good precision on the phone’s orientation and inclination is a must to properly
evaluate the solar position in the photo. The positive angular direction convention
for these quantities can be found in Figure 1.31. For the orientation of the photo,
most smartphones should have a relatively reliable built-in magnetometer that we
could use. We need to record which way the bottom of the phone is pointing. When
using the compass application, it is important to use true heading instead of
magnetic heading because our chosen library gives solar position in true heading.
However, as we have seen in the previous section, getting a correct orientation
measurement could be a bit tricky. Since there is a step to calibrate the phone’s
magnetometer, the user should perform multiple calibrations and measurements to
be on the safe side. Then, the inclination of the phone could be determined using
the phone’s accelerometer. Most likely, there is no built-in app equivalent to a
bubble level, but it is easy to acquire a free one via the phone’s app store. The
photo could be taken at arbitrary orientation and inclination, depending on the
need and convenience, but this information has to be recorded to be later used in
our solar position calculation procedure. If the fisheye camera is of good quality
with an FOV above 140◦, it is likely that one photo of the sky above the panel’s
potential placement will suffice.
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Figure 1.32: Example of a calibration pattern with six by nine vertices.

1.6.2 Taking the calibration images

After taking a photo of the site, we proceed to capture the checkerboard pattern to
be later used for camera calibration. We used a pattern having six by nine vertices,
but it can have any number of vertices as long as the overall calibration pattern is
not a square. An example of patterns is found in Figure 1.32. For best result, the
photo set must have our pattern covering every visible sector of the image. The
number of images is not important as long as the previous requirement is met, but
it is further recommended to take several photos of slightly different orientations for
a specific pattern orientation so that in case the automatic checkerboard detection
fails, the program still has some other samples to try without compromising the
complete calibration data coverage. An example of a good and insufficient image
set can be found in Figure 1.33.

As for each individual calibration photo, there are some recommendations for opti-
mal result:

• Ensure good lighting on the pattern without flares from harsh light sources
or deep shadows.

• Orient the pattern so that all vertices are clearly visible on the image.
• For photos that cover the edge of the image, move the checkerboard so that its

outer squares go slightly beyond the FOV while keeping the vertices clearly
visible in the image.

• Consider capturing these photos on a clean background like a white wall.
• Verify that the orientation of the photo does not change when preparing the

image. This is because most smartphones have the auto-rotate feature, where
it detects whether the user is taking the photo in landscape or portrait mode.
However, we need to keep the potential lens misalignment the same through-
out the data set for an optimal calibration result.
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(a) Example of a good calibration image set. All images are properly taken and we have the
pattern covers the entire camera’s FOV.

(b) Example of an insufficient calibration image set. While each individual image is up to standard,
the upper right portion of the FOV does not have pattern coverage. Furthermore, this set contains
some photos in landscape and some photos in portrait, making the accurate estimation of the
principal point impossible.

Figure 1.33: Example to help taking a good calibration photo set.
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1.7 Python script for system energy forecast

Figure 1.34: A simplified energy flow description of an autonomous solar harvesting
energy.

The program outputs an hourly irradiance profile that could be used as is or ex-
tended to suit a user need. Here, we provide an example that was implemented
in our Python script to generate the estimated hourly state of charge profile of a
battery in an autonomous solar harvesting system. Note that there is yet an ex-
perimental validation to verify the accuracy of the results generated by this script.
Furthermore, the efficiencies such as the solar harvesting efficiency, the converter
efficiency, the battery’s charge and discharge efficiencies are all assumed to be con-
stant and not dependant on environment parameters like temperature, dust build-
up, ageing, etc. The simplified energy flow and the description of the system can be
found in Figure 1.34. At each timestamp k (note that this timestamp is, in fact, a
duration), the solar panel of size Sm2 receives a solar irradiation of Rk

solarWhm−2

and has an efficiency of ηsolar. This energy is converted by a converter with an effi-
ciency of ηconversion. We could then deduce the energy generated by the converter
Econv

k in Wh at every timestamp using equation 1.9.

Econv
k = ηconversion ×Rk

solar × S × ηsolar (1.9)

Looking at output node A of the converter found in Figure 1.34, we could see that
the energy flows in from the converter Econv

k in Wh, the energy Eload
k in Wh flows

out to the load, the energy Ebatt
k in Wh that is positive when it is charging and

negative then it is discharging. The battery discharges with efficiency ηbattout and
charges with efficiency ηbattin. The formula for when the converter the energy going
toward the battery

Ebatt
k =

ηbattin × (Econv
k − Eload

k) if Ek
conv ≥ Eload

k

ηbattout × (Econv
k − Eload

k) if Ek
conv < Eload

k
(1.10)
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To estimate the state of charge of the battery SOCk at each timestamp k, we need
the battery capacity Cbatt in Ah, the nominal voltage of the battery Vbattnom, and the
state of charge of the previous time stamp SOCk−1. The battery has a configurable
maximum state of charge SOCmax and minimum state of charge SOCmin. This
was done in equation 1.11.

SOCk =


Ebatt

k

Cbatt×Vbattnom
+ SOCk−1 if SOCmax ≥ SOCk ≥ SOCmin

SOCmax if SOCmax < SOCk

SOCmin if SOCk < SOCmin

(1.11)

To show this in action, we provide the result in Figure 1.35. The example is the state
of charge of the system battery from 01 February 2015 to 07 February 2015. The
irradiation data were taken from PVGIS. The solar panel has a size of S = 0.2m2

and an efficiency of ηsolar = 18%. The converter has an efficiency of ηconv = 95%.
The load consumes 0.5Wh before 18h every day and 1Wh after 18h every day. The
battery has a capacity of Cbatt = 8Ah, a nominal voltage of Vbattnom = 3.7V , a dis-
charge efficiency of ηbattout = 95%, a charge efficiency of ηbattin = 98%, a maximum
state of charge SOCmax = 90% and a minimum state of charge SOCmin = 10%.

Figure 1.35: The evolution of the state of charge of the battery and the hourly irradiation
received by the solar panels for an example from 01 February 2015 to 09 February 2015.
The irradiation is the shading compensated irradiance data from PVGIS.

We then graph the daily minimum state of charge for two years 2014 and 2015, with
the raw irradiance data from PVGIS and with the data from PVGIS after shading
compensation in Figure 1.36. To highlight how shading inclusion impacted daily
solar energy availability, we also plotted daily solar irradiation in Wh throughout
the period. We notice that the irradiance during winter is much lower after shading
compensation, which is consistent with the fact that the trees are toward the south
side of the sky. We could also see several dips in the minimum state of charge
profile during the period around December 2014 and January 2015 when shading
was considered, highlighting the importance of considering the shadows. In this
context, the dip is not significant and does not impact the continuous operation, but
we could imagine a case where a tighter tolerance (lower solar harvesting surface or
lower battery capacity) could lead to a good result when shading is not considered,
but a bad result when shading is considered.
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Figure 1.36: The daily minimum state of charge of the battery and daily solar energy
available from 2014 to 2015.

Seeing this in action, we could potentially extend the program to provide a hardware
recommendation to the user for the appropriate solar panel to use or the correct
sizing of their energy storage solution. This could be done by iterating through
parameters such as Cbatt, Vbattnom, Sm2, ηsolar, and assessing the state of charge
profile to detect whether it reaches minimum. Of course, the user could also con-
figure a charge and discharge limit to increase the life span of the battery if they
wish, or add a list of components with pricing and a price limit so that the program
could pick out the optimal solution. This is the strength of a highly maintainable
and open-source script that should be fully utilised.
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1.8 Conclusion and perspective of Chapter 1

In this section, we looked at three paradigms of solar estimation, chosen a set
of existing tools, and proposed a solar estimation method. By providing an ex-
ample of a system energy forecast, we highlight the importance of accurate
hourly solar irradiation. We have also shown through preliminary testing that
our method is very effective with an improvement in accuracy of more
than 50% (Figure 1.29) and provided a concrete example of how these bet-
ter solar estimates could be used to evaluate the energy flow of the autonomous
power supply. The project could be found open access in this GitHub repository:
"github.com/ckbk123/ShadingCompensation". The code source, a packaged exe-
cutable for Windows, as well as a detailed user guide can all be found in this link.
While continued maintenance of the repository could not be guaranteed (update,
bug fixes, etc.), we will provide support if possible when contacted via GitHub.
This was achieved while satisfying all the constraints set out at the beginning of
the chapter as follows:

• Inexpensive: the only tools required are an inexpensive clip-on fisheye for
smartphone photography and an A4 printed calibration pattern. We assumed
that a smartphone and a computer capable of running Python are accessible
to everyone.

• Easy to use: the user procedure is to take the photo of the sky while record-
ing the phone’s orientation and inclination, paint the sky white and the ob-
structions black in the fisheye photo, take a set of calibration photo, and
request the software for the solar estimation within any time frame they wish.

• Highly maintainable: the script is in Python, a very intuitive and basic
programming language. All libraries and enquired databases are open source.

However, there are still several critiques that could be made about our solar esti-
mation method. Below is a full list of drawbacks and potential improvements that
we found throughout the work.

• We had some difficulty in obtaining a reliable measurement of the orientation
of the phone using the internal magnetometer. So far, our solution to this is to
enlarge the circle that estimates the solar position on the image. But a better
and potentially more accurate way would be to introduce an error margin to
the orientation where we perform multiple passes of the estimation, but with
different orientations. The result is then presented as a solar estimate with a
confidence interval.

• The fisheye does not have a perfect 180◦, but this is a limitation of the low-
cost criteria. A solution would be to spend more on a better fisheye lens.
Furthermore, the camera sensor size is tiny compared to the area of a solar
panel, so we may need to know before hand where the solar panel would be
placed and then take multiple photos to better assess the shading pattern.
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• There is an inconvenient step where the user has to paint the sky white and
the obstruction black on the acquired fisheye photo. This could be remedied
by introducing a function that automatically processes the fisheye photo in
Python using machine learning techniques.

• The use of PVGIS irradiance data was an arbitrary choice until we found that
the data ended in 2016 if requested via the Python API. In the future, it is
better to switch to another up-to-date service, such as the NASA POWER
project database.

• We have neglected the reflected component, whose contribution is dependient
on the scenery around the solar panel.

• For areas with trees, it works best with evergreen trees, because they do not
shed leaves during winter. Furthermore, the script also does not account for
risks such as bird droppings, dust build-ups, solar panel’s temperature, etc.,
all of which have a non-zero impact on their power generation. If a statistical
analysis of these unforseen circumstances is available, it could be integrated
into the script for a more reliable estimation.





Chapter 2

PV simulation for studying
GMPPT

This chapter will be the first of two dedicated to discussing the impact of shadows
on solar panels, often called partial shading conditions (PSCs) in the literature.
But before answering why this is necessary, we first need to discuss the basics of
solar panels and clarify some nomenclatures.

Monocrystalline silicon cells are by far the most widely used as of 2023, both for
industrial and commercial applications, accounting for around 95% of the global
production of solar cells [58]. First developed in the 1950s, they are made from
single crystal silicon wafers, which, although being more expensive to manufacture
than polycrystalline silicon solar cells, make up for this with their superior efficiency
[59]. For example, the cells by Maxeon Solar (formerly Sunpower) that we used
have an efficiency of around 23%, better than the average 18-20% of polycrystalline
silicon cells. The quest for more efficient solar harvesting material has led us to
numerous new technologies which are summarised in Figure 2.1.

Figure 2.1: NREL’s compilation of best research-cells throughout the years [60].

Each solar panel manufacturer provides the set of specifications for their prod-
uct and to ensure a fair comparison, the industry have a standard test condition
(STC) for all measurements which is at Gref = 1000W.m−2 of solar irradiance

43
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on the AM1.5 solar spectrum at Tref = 298.15K (25◦C). The two most basic
specifications are the nominal open-circuit voltage of the solar panel, Vocn,
and its nominal short-circuit voltage, Iscn. The term nominal clarifies that
the values are taken at STC. The next set of characteristics are the temperature
coefficients, which tell us how the open circuit voltage Voc and short circuit
current Isc deviates from nominal values when the temperature is not 298.15K,
given as Kv in mV.K−1 and Ki in mA.K−1, respectively. Finally, we have the volt-
age and power at the MPP, Vmpp and Pmpp, respectively, which provide the solar
panel’s voltage for optimal power generation and its peak power output. Sometimes,
a temperature coefficient for power at MPP in %.K−1 is also provided, which al-
lows for a rough estimation of peak power under non-STC conditions. The electrical
characteristics of a PV module are usually visualised with a current over voltage
graph (I-V graph) or a power over voltage graph (P-V graph) (Figure 2.2). In the
current profile, we could roughly see three different regions being the large current
plateau at voltages below 80%Voc, the current roll-off around 80%Voc, and the steep
current slope toward Voc. With the power plot, we could see the module’s Vmpp and
Pmpp, which occur when the current rolls off around 80%Voc. It is important not
to confuse "P-V", which is an acronym of "Power over Voltage graph" and "PV"
which is an abbreviation of "photovoltaic" throughout the discussion in this thesis.

Figure 2.2: I-V and P-V graph of a PV module.

We now discuss the important PV nomenclatures and symbols used in this thesis,
summarised in Figure 2.3. The most basic component, a PV cell, is a single
photovoltaic junction. Next, when multiple cells are connected and encapsulated
to isolate them from the weather, we have a PV module. When the modules are
exclusively connected in series, it is called a PV string. Connecting m strings of
n PV modules in parallel produces a PV array often described as a nSmP array.
This prevalent cabling method is known as the series-parallel (SP) configuration.
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Figure 2.3: A summary of PV terminologies and architectures.

With the basics out of the way, we could now discuss the impact of PSC. When a
PV module is shaded, it essentially behaves like a reversed biased diode with high
parasitic parallel resistance. If one panel in a string behaves like this, the current
generated by the others would lead to hotspots that could destroy the shaded one
prematurely [61]. The bypass diode provides a path around the shaded cells and
mitigates this problem. We would specifically call any group of PV cells protected
by one bypass diode a PV block.

Figure 2.4: Behaviour of solar array, with and without bypass diodes, under even solar
irradiance.
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Having bypass diodes also added some benefits to power harvesting which we would
see by studying the P-V characteristics of two PV arrays: one of four PV modules
and one of four PV blocks. Figure 2.4 shows their similar behaviour under even
solar irradiance where one MPP is present. But when one module is partially
shaded as in Figure 2.5, the array without bypass diodes has a significantly lower
maximum power output than its counterpart with bypass diodes. However, the
former’s P-V curve now has two local maximum power peaks (LMPP), with one
being the global maximum power peak (GMPP), making optimal power harvesting
more challenging. This is our motivation to propose a lightweight and fast GMPPT
algorithm suitable for challenging situations where a lot of PSCs are expected.

Figure 2.5: Behaviour of solar array, with and without bypass diodes, under partial
shading.

This chapter has two main objectives. The first is to graph the distribution
of GMPPs, which means plotting the occurrence of voltage at GMPP Vgmpp. It
is assumed in the GMPPT literature (e.g. [62], [63], [64]) that they should occur
in distinct zones on the voltage range as illustrated in Figure 2.6, but this was
not yet verified by any quantitative analysis. To achieve this, we simulated a PV
array under millions of different irradiance and temperature (G-T) conditions
and determined the GMPP, meaning calculating both the power at GMPP Pgmpp

and the voltage at GMPP Vgmpp, for each of these conditions. However, given
the large number of G-T conditions, a section would be dedicated to compute
optimisations where we progressively introduce improvements to reduce the runtime
of the program and quantify their impacts.
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Figure 2.6: P-V curves of eight different irradiance conditions on a string of four PV
blocks showing how GMPPs may be distributed in distinct zones on the voltage range. The
electrical characteristics of the PV modules used to generate this example graph is found
in Figure 2.2

.

The second objective is to build an electrical simulation of our solar harvest-
ing system consisting of a PV array with bypass diodes, a buck converter, and a
stable voltage load (e.g. Li-ion battery). The work was done on an existing low-
cost, low-power hardware from a previous project in the laboratory, since it already
matches the target application type. Although we could directly carry out all stud-
ies in experimental setups, the software environment provides several advantages.
Having a 1000W light source is not very comfortable, and physically replicating
the same PSCs is difficult. It also facilitates fine-tuning the algorithm before it is
deployed to the microcontroller.

However, before tackling these two objectives, the first section will discuss mod-
elling a PV array under partial shading conditions. We first start from the
PV cell, then build up to a full PV array, and finally discuss how to determine the
model parameters.
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2.1 Modelling a PV array under partial shading condi-
tions

In this section, our goal is to model a partially shaded array with bypass diodes.
We start from the cell, move up to the module, and finally integrate the bypass
diode to simulate a PV block. From there, we discuss how to obtain the I-V for a
string of these blocks.

2.1.1 PV cell modelling

Figure 2.7: A summary of PV cell models.

Among existing works, Villalva et al. [65] seem to provide the most comprehensive
approach to photovoltaic modelling. In its most basic form, an ideal solar cell is
a current generator in parallel with a single diode (Figure 2.7 Ideal PV model).
The equivalent current generator is linearly dependent on the solar irradiance and
is influenced by the cell’s temperature, whereas the diode is modelled using the
Shockley diode equation.

Although the simplicity of the ideal photovoltaic model is a plus, it does not con-
sider the effect of parasitic elements that may be significant when we want to model
multiple cells connected together [66]. The practical single-diode model in Figure
2.7 reflects this, introducing a parallel resistance Rpcell and a series resistance Rscell,
to account for imperfections such as the leakage current through the semiconductor
or the resistance of the soldering joints connecting them to the bus bars. Its math-
ematical representation is found in equation 2.1 where Ipvcell and Vpvcell are the
current and voltage of the PV cell, respectively, ILcell the photocurrent generated
by the cell, I0cell the reverse saturation current of the internal diode formed by the
p-n junction in the solar cell, Idcell the current traversing this diode, kB the Boltz-
mann constant, Acell the ideality factor of the diode of the cell, q the elementary
charge, T the cell temperature, and G is the irradiance received by the cell.
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Several authors have also chosen to neglect the effect of the parallel resistance whose
value is usually very high, resulting in a simplified single-diode model where only the
series resistance Rscell is left (Figure 2.7). This simplification is justified because the
parallel path is usually very limited due to the nature of the p-n junction and Rpcell

are usually three to four orders of magnitude higher than Rscell. Our equation
2.1 has also partially included this simplification where in the formula for ILcell,
Rscell+Rpcell

Rpcell
Iscncell was simplified to just Iscncell because Rscell+Rpcell

Rpcell
≈ 1.

Ipvcell = ILcell − Idcell −
Vpvcell + IpvcellRscell

Rpcell

ILcell = G

Gref
(Iscncell +Kicell(T − Tref ))

Idcell = I0cell(e
q(Vpvcell+IpvcellRscell)

Acell.kB.T − 1)

I0cell = Iscncell + Kicell(T − Tref )
e

( q
Acell.kB.T

(Vocncell+Kvcell(T −Tref ))) − 1

(2.1)

Finally, several works in the literature add an additional diode in parallel to ac-
count for carrier recombination losses, making it a two-diode model (Figure 2.7).
This model is mostly used for high-precision modelling, most notably in the PV
material science community. However, it is difficult to properly determine the pa-
rameters needed to simulate a double diode model [67] and it also suffers from high
computational complexity without an explicit solution [68].

Our goal is to have a good compromise between complexity and precision. Having
a simple model will reduce simulation time, while a "good enough" precision should
be sufficient to evaluate GMPPT algorithms in the laboratory setup. Therefore, we
chose the single diode model which ticks all of these boxes.

2.1.2 PV module modelling

Figure 2.8: PV module used throughout our work.

To describe a PV module which usually is an array of cells, we need to consider
Ns, the number of cells in series, and Np, the number of strings in parallel. Ex-
perimentally, we use this small 3W module for solar hobbyists shown in Figure 2.8
that has six cells in series cut from a single Maxeon solar cell. These modules were
used because they were available from a previous project and the existing solar
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Figure 2.9: A PV module consisting of Np strings of Ns cells.

harvesting board was designed to work of them in mind. Assuming that each PV
cell comprising the array has the characteristics described in equation 2.1 and that
they have the same irradiance and temperature (illustrated in Figure 2.9), we have
Ipv = NpIpvcell and Vpv = NsVpvcell. Applying these basic equalities to equation
2.1, the module’s current Ipv and voltage Vpv could be described as equation 2.2.

Ipv = NpIpvcell = Np(ILcell − Idcell −
Vpv

Ns
+ Ipv

Np
Rscell

Rpcell

)

ILcell = G

Gref
(Iscncell +Kicell(T − Tref ))

Idcell = I0cell(e
q(Vpvcell+IpvcellRscell)

Acell.kB.T − 1) = I0cell(e
q(

Vpv
Ns

+
Ipv
Np

Rscell)

Acell.kB.T − 1)

I0cell = Iscncell + Kicell(T − Tref )
e

( q
Acell.kB.T

(Vocncell+Kvcell(T −Tref ))) − 1

(2.2)

The above equations are not very practical because we cannot characterise each of
the encapsulated cells in the solar panel. However, it has been proven that it is
possible to use the single diode model to describe this array of PV cells, as shown
by Nguyen Ngoc Ban [69] and illustrated in Figure 2.9. To show the mathematical
equivalence, we first transform equation 2.2 by distributing the Np term in Ipv to the
other equations, and multiply the numerator and denominator of all exponents by
Ns. This results in equation 2.3 where we could now see the equivalent photocurrent
IL, the equivalent diode reverse saturation current I0, and the equivalent diode
current Id.



52 CHAPTER 2. PV SIMULATION FOR STUDYING GMPPT

Ipv = IL − Id −
Vpv + Ipv

Ns
Np
Rscell

Ns
Np
Rpcell

IL = G

Gref
(NpIscncell +NpKicell(T − Tref ))

Id = I0(e
q(Vpv+Ipv

Ns
Np

Rs)

Acell.Ns.kB.T − 1)

I0 = NpIscncell + NpKicell(T − Tref )
e

( q
Acell.Ns.kB.T

(NsVocncell+NsKvcell(T −Tref ))) − 1

(2.3)

Let the module’s equivalent series resistance be Rs = Ns
Np
Rscell, equivalent parallel

resistance be Rp = Ns
Np
Rpcell, equivalent nominal open circuit voltage be Vocn =

NsVocncell, equivalent nominal short circuit current be Iscn = NpIscncell, equivalent
current temperature coefficient be Ki = NpKicell, equivalent voltage temperature
coefficient be Kv = NsKvcell, and equivalent diode ideality factor be A = NsAcell.
The transformation gives us equation 2.4 which accurately describe a single diode
model in Figure 2.9.

Ipv = IL − Id − Vpv + IpvRs

Rp

IL = G

Gref
(Iscn +Ki(T − Tref ))

Id = I0(e
q(Vpv+IpvRs)

AkBT − 1)

I0 = Iscn +Ki(T − Tref )
e

( q
AkBT

(Vocn+Kv(T −Tref ))) − 1

(2.4)

IMPORTANT NOTICE: Using the equation 2.4 to describe a complete PV
module is only valid if all PV cells of the PV module are equally irradiated
and have the same temperature. This assumption will be applied throughout
this work.

Figure 2.10: Equivalent irradiance received by the PV module when being proportionally
shaded the same (30%) but the shading patterns are different.
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However, a short discussion of the situations in which a shadow casting proportion-
ally the same area on a solar panel but creating vastly different I-V characteristics
is worth considering. Generally, it is the most shaded PV cell in the string
of PV cells that impose the I-V of the string. In Figure 2.10 we present a
situation where a solar panel consisting of six cells in series is shaded by 30% but
with different shading patterns. We could see that the pattern on the left com-
pletely covers two of its six cells, and as we have discussed, the most shaded cells
impose the current of the entire string. Therefore, this solar panel behaves just like
a completely shaded panel. This can be seen in Figure 2.11 where we observe that
the current of the module is almost zero after having shaded only one cell. However,
on the right, we see that the six cells are equally shaded, so it is equivalent to a PV
module receiving 700Wm−2. Therefore, a better way to accurately model would be
to analyse the arrangement of the PV cells in a module and the shading pattern,
determine the most shaded PV cell, and use its shading factor to apply to the whole
PV module.

Figure 2.11: Testing result showing how one completely shaded cell among the six in
series impacts the power generation of the entire PV module.

2.1.3 PV block modelling

To describe a PV block, the bypass diode is added in parallel to the single diode
model as shown in Figure 2.12. To facilitate the discussion, we refer to the set of
equations 2.4 using two simplified representations, Ipv = fm(Vpv) or Vpv = gm(Ipv).
We could then write the current output Iblock of the block as Equation 2.5.

Iblock = fm(Vpv) + Idb (2.5)

There are two possible approaches to model a diode. The first is the Shockley
equation 2.6 where Ibyp is the diode’s reverse saturation current and Abyp its ideality
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Figure 2.12: PV block model

factor. The second is the piecewise linear equation 2.7 usually found in electrical
simulations where Vf is the diode’s forward voltage and Rdon its on-resistance.
While there is also the more complex two-diode model, we did not see the higher
accuracy to be necessary. Again, for simplicity, we refer to equation 2.5 using two
simplified forms, Iblock = f(Vpv) and Vpv = g(Iblock), in the sections below.

Idb = Ibyp(e
−qVpv

AbypKT − 1) (2.6)

Idb =

0 if − Vpv < Vf
(−Vpv−Vf )

Rdon
if − Vpv ≥ Vf

(2.7)

Figure 2.13: I-V of a PV block with its two operating regimes being highlighted.

When we plot the I-V based on equation 2.5, we get Figure 2.13 where we could
observe two distinct operating regions of a PV block. When the current passing
through it is lower than the module’s Isc, the module would be actively generating
current and the block’s voltage would be positive. However, when the current
traversing the PV block is higher than what the module could deliver such as
during a partial shading condition, the bypass diode becomes active and the block’s
voltage becomes slightly negative due to the diode’s forward voltage.
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2.1.4 Modelling a string of PV blocks

Figure 2.14: Illustration of how the PV string’s global current is calculated from the
current of its composing PV blocks.

Kirchhoff’s current law dictates that the current traversing any electrical compo-
nents in series is the same, so the voltage Vstring of a string of n blocks would be
the sum of each block’s voltage under the same current as shown in equation 2.8
with gk(), k ∈ 1..n describing the I-V characteristics of each block k. Figure 2.14
illustrates how the I-V of four PV blocks in series are constructed, a configuration
that would be used throughout our thesis. We could also see the two operating
regions of a PV block. Above 0V, the module is actively generating current, and
below 0V, the module is inactive since the bypass diode is conducting the current
generated by other modules. It also shows that the bypass current never exceeds
the highest irradiated module’s current, which is useful knowledge to select and
model the bypass diode. Finally, with the I-V of the string at hand, its P-V could
be obtained by simply multiplying the currents and voltages together.

Vstring =
n∑

k=1
gk(Iblock) (2.8)

Figure 2.15: I-V and P-V curve of four PV blocks in series to showcase the relationship
between LMPPs and the current roll-off regions (highlighted in blue).
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Now we can discuss the assumption that GMPPs occur in distinct regions on the
voltage range found in several GMPPT works such as [62], [63], [64], etc. First,
knowing that the MPP of a module is located around its current roll-off region, we
could deduce that the LMPPs of several PV blocks in series should be found in its
multiple current roll-off regions (Figure 2.15). Since GMPP is just the maximum
among the LMPPs, we could conclude that the GMPP of n blocks in series should
also occur in these n current roll-off regions. Most of the work in the GMPPT
literature estimates that the different GMP region i, i ∈ 1..n counted from low
to high voltage, would be around a GMPP estimate of i× Vmpp with Vmpp being
the voltage at the MPP of the PV modules. However, we believe that this is not
always valid. For example, in Figure 2.16, we could clearly see that the current
roll-off occurs much lower than the expected GMPP estimate 1 × Vmpp for region
one because there are three active bypass diodes, which reduce the voltage of the
only contributing module. Therefore, the GMPP estimate i× Vmpp for the GMPP
regions i would only be valid if (n−1)Vf is negligible compared to Vmpp. Otherwise,
we must consider the effect of the forward voltage of the bypass diode, and a GMPP
estimate of i×Vmpp − (n− i) ×Vf would be a better approximation. We will study
the accuracy of these GMPP estimates in a later section.

Figure 2.16: I-V of four PV blocks in series with different operating regions highlighted
based on the number of active bypass diodes. Each region’s color is consistent with which
module’s MPP is contributing to the array’s LMPP in that region.

2.1.5 Determining model parameters

2.1.5.1 DC parameters of the PV module

All symbols in equation 2.4 could be divided into 4 groups as the variables (Ipv,
Vpv, G, T ), the constants (kB, q, Gref , Tref ), the specifications (Vocn, Iscn, Kv,
Ki), and the modelling parameters (Rs, Rp, A).
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Figure 2.17: Impact of the model parameters Rs, Rp, and A on the I-V of the PV module.

In our research, a module consisting of six PV cells in series cut from a single
Maxeon Solar PV cell was used (Figure 2.8), and specifications are easily acquired
through the manufacturer’s documentation. As for the modelling parameters, these
are easily acquired for most commercial solar panels in NREL’s SAM database [21].
However, data for our hobby-grade module are not available, so we characterised
them ourselves. The procedure involves tracing the module’s I-V under a known
irradiance and temperature. We used the MP-165 from EKO Instruments to trace
the I-V, which has pyranometer and thermocouple inputs to measure solar irra-
diance and panel temperature, respectively. The tests were conducted by putting
the solar panels out on a sunny day during summer 2021 with no clouds overhead
and we proceeded to trace the I-V of the module. For more context, the irradi-
ance and temperature received by panels one to four are 967.26Wm−2 and 32.6◦C,
967.02Wm−2 and 32.2◦C, 966.78Wm−2 and 32.4◦C, 966.78Wm−2 and 33.1◦C, re-
spectively. While the the measurement condition were not properly controlled,
these parameters are sufficient to simulate the P-V of the modules to compare with
the experimental results. Next, we progressively fine-tuned the parameters based
on the effect of each component on the I-V profile which are summarised in Figure
2.17. If a more analytical approach is preferred, a good reference to consider is
Cotfas et al. [67] where the authors compiled 34 different ways to determine the
DC parameters of solar panels in detail. All identified numerical values of our PV
module are summarised in Table 2.1.
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Figure 2.18: Measurement configuration of four solar panels and their measured P-V
curves and Vmpp compared to simulation result.

In MPPT research context, a low Vmpp error as well as a good correlation between
the measured and simulated P-V curves are desirable. Furthermore, it is important
to verify that the model works under partial shading. Therefore, we traced the P-V
of four identical solar panels under the same global irradiance and temperature,
with three of them artificially shaded by 80%, 60%, and 20%. It is important to
point out that we have intentionally placed the cardboard so that all individual cells
are equally covered. This is because using the single diode model requires equal
irradiance and temperature for all composing PV cells, and this assumption would
be applied to our work. If they are unequally shaded, the resulting P-V profile
would be much more complex, as shown in [70].

Figure 2.19: Dispersion of difference between the measured power minus the simulated
power at each voltage of four solar panels.

The test configuration as well as each panel’s measured and simulated P-V plots
are shown in Figure 2.18. To quantify the visual difference, we calculated the
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correlation factor of each dataset and obtained 0.9995 for configuration one, 0.9598
for configuration two, 0.9928 for configuration three, and 0.9975 for configuration
four. Overall, the model provides a very good estimate. We also determined the
relative error on Vmpp and found that it never exceeds 3.8%. Next, we graphed
the dispersion of absolute power error between the measured and simulated results
in Figure 2.19. While the median errors are mostly satisfactory with the absolute
value never exceeding 4mW, the dispersion is relatively wide and there are a lot of
outliers in test configurations two and three. Overall, despite these imperfections,
these parameters would be accurate enough for studying GMPPT.

Figure 2.20: P-V graph of the string of four PV blocks where four modules are shaded
like in the test configuration in Figure 2.18. The characteristics of the bypass diodes would
be discussed in the following section.

Finally, we provided in Figure 2.20 the P-V graph obtained when we characterise
the string of four PV blocks shaded similarly to the test conditions in Figure 2.18.
The test was carried out similarly to the test with four individual solar panels,
where the system is placed outside on a sunny day with no cloud overhead, and we
measured the irradiance at 961.03Wm−2 when the measurement was taken. As for
their temperature, we leave the four solar panels without the shading cardboards
for sometimes out under the sun so that their temperature reaches equilibrium
(they all reached 46.6◦C). Then, we put on the cardboard shadings and quickly
performed the measurement so that their temperature have not varied. Overall,
although we did not achieve a perfect match between simulation and reality, this
result still confirms that we could model the string of four PV blocks with an
acceptable accuracy.
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Parameter Value Unit
Vocn 3.725 V
Iscn 1.05 A
Vmpp 3 V
Impp 0.98 A
Kv -11 mV K−1

Ki 3 mAK−1

Rp 1200 Ω
Rs 0.2 Ω
A 9.5 Unitless

Table 2.1: Summary of our PV module’s DC parameters.

2.1.5.2 DC parameters of the bypass diode

Parameter Value Unit
Ibyp 0.0076 A
Abyp 3.38 Unitless
Vf 0.26 V
Rdon 0.18 Ω

Table 2.2: Summary of our bypass diode’s DC parameters.

This section would discuss how to determine the bypass diode’s parameters for both
the Shockley model in equation 2.6 and the piecewise model in equation 2.7. We
traced the I-V of four SL42 diodes from 0A to 1.2A using the N6705A DC Power
Analyser. This test was carried out on the individual diodes without having them
connected to the PV modules in the laboratory with no exact control of the com-
ponent’s temperature. The range was chosen because the module’s current cannot
exceed 1.2A. The diode parameters are determined using MATLAB’s cftool() curve
fitting toolbox and are summarised in Table 2.2.

Visually in Figure 2.21A, we observe that both models, the Shockley equation and
the piecewise equation, are equally valid due to the variance of the diodes for cur-
rents above 0.2A (green region highlighted in Figure 2.21). Below that, the piece-
wise model underestimates and the Shockley equation overestimates the current
(red region highlighted in Figure 2.21). The errors in this region are quantified in
Figure 2.21B where we see a higher median error on the Shockley model and more
significant outliers on the piecewise model. Since there is no convincing evidence to
choose one model over the other nor do we require a very high accuracy, we simply
chose the convenient option depending on the context.
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Figure 2.21: Bypass diode characterization result. Section A: Graph showing the I-V
of four SL42 diodes measured in laboratory setup, the estimated I-V of the diodes from
Shockley equation model, and the estimated I-V of the diodes from piecewise equation
model. Section B: Boxplot graph showcasing the current error between our two diode
models and the measurement for the "problematic" region in section A where the current
is below 0.2A.
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2.2 Graph the distribution of GMPPs

In this section, we concretely plot the GMPP distribution to validate our estimation
of the GMPP regions. To achieve this, we first describe the string of four PV blocks
using the model obtained above in MATLAB with the parameters found in Table
2.1 and Table 2.2. We then iterated through millions of different G-T conditions and
determined the GMPP of each simulated P-V in a process called G-T sweep. The
higher the resolution of this sweep, meaning more irradiance conditions or more
temperature conditions, the more detailed the result would be but the program
would also take longer to run and might not actually provide any additional useful
information.

There are some terminologies to clarify before we proceed. An irradiance con-
dition is the four irradiance values that our four PV blocks receive, an set of
irradiance is a list of irradiance conditions, and the irradiance resolution is the
number of irradiance conditions in a set. The same logic apply to set of tem-
perature, temperature condition, and temperature resolution. The total
number of iterations per G-T sweep would then be the irradiance resolution times
the temperature resolution. Each G-T sweep generates a distribution dataset
containing all the Vgmpp and Pgmpp that was recorded, and to specify which distri-
bution dataset, we would refer to it using the name of the set of irradiance and the
set of temperature used in the sweep.

2.2.1 Selecting the set of irradiance for the G-T sweep

Figure 2.22: Photo of our biking measurement trip, carried out from 10h34 to 11h22 on
the 21/06/2021 in Toulouse, France. The positioning of the pyranometers was inspired by
how the four PV modules could be positioned.

Given that the irradiance of each module could vary independently, the first option
is to sweep all possible combinations of four values of irradiances with repetition
and assume that they all have equal probability of occurring. A combination with
repetition of x items from a set of y items means that we pick out x items from
this set where order does not matter and that the same item from y could appear
multiple times in the combination of x items. This is because when we look back
at equation 2.8 and Figure 2.14, the I-V of a string would not change if we permute
the irradiances of the PV blocks. Therefore, we iterate through all combinations of
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four irradiances with repetition from a set of 10Wm−2 to 1000Wm−2 at a step of
10Wm−2. We call this the set of equal probability irradiance. In total, this set
contains 4,421,275 irradiance conditions.

However, it would be interesting to observe the distribution in a more realistic and
challenging use case. For this, we rode a bicycle around the city while measuring
solar irradiance using four SP Lite2 pyranometers as shown in Figure 2.22. This
test situation was somewhat arbitrary because our initial research objective was to
study what happens to a solar array under unstable and rapidly changing irradiance
profiles and measuring irradiance on a mobile system was the first thing that came
to mind. However, while we could have studied any other situations like oscillating
shadows cast by the branches of a tree or solar panels on the wings of an airplane,
measuring the irradiance on the back of a bike provides the quickest way to obtain
a lot of different shadow dynamics. Each channel is sampled at 5kHz by a NI-6009
DAQ and the raw acquisitions are then filtered to four irradiance profiles, each
effectively sampled at 100Hz. We then round the acquired irradiance values to the
nearest 10Wm−2 and use this measurement as our second irradiances set that we
call the set of bicycle irradiance. In total, this set contains 201,808 irradiance
conditions, where 38,802 are distinct irradiance conditions.

2.2.2 Selecting the set of temperature for the G-T sweep

As for the set of temperature, we want a more limited resolution because of the
massive amount of irradiance conditions already at hand. Furthermore, it is un-
reasonable to simply sweep the temperature of each module from −10◦C to 80◦C

because we would simulate some situations where one block is operating at −10◦C

while the other is operating at 80◦C. Therefore, we would make several loose as-
sumptions on the temperature of our PV blocks, as shown in Figure 2.23. However,
the goal here is not to have a highly accurate representation of their tem-
perature, but rather to put them in some challenging context so that we could
observe their impact on the GMPP distribution.

Figure 2.23: Illustration of the contexts to estimate the temperature of the PV modules.

Imagine that we want to observe the P-V of four PV blocks in series being evenly
irradiated when they are suddenly shaded by an object resulting in one of the
irradiance conditions. We first consider what the temperature of the modules would
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be when the PV of the string was supposedly measured immediately after the
shading event. Since all PV modules were evenly irradiated, it is reasonable to
say that each module’s temperature is close to the string’s average temperature
with some variance, and their temperature could not have varied instantaneously
after the shading event. Next, we need to consider the temperature of the bypass
diodes since their characteristics are also temperature dependent, and for the sake of
simplicity we would assume that they share their respective module’s temperature
because they are installed directly in the modules. So, in this context, it is safe to
assume an average temperature for the string, and the temperature of each module
would be this average value plus some uniformly distributed random temperature
delta between ±5◦C. For the averaged string temperature, we chose −10◦C for a
very cold operating condition, 25◦C for the optimal operating condition, and 60◦C

for a very hot operating condition. This is called the set of quasi-homogeneous
temperature with three temperature conditions.

However, if we wait some time after the shading event before observing the P-V of
the string, we could assume that the more irradiated modules are hotter than the
less irradiated ones. Of course, this is not always the case because the heat that
each PV module receives also depends on solar spectrum, wind speed, humidity,
structure of the module, etc. But, for the sake of simplicity, we suppose that its
temperature is linearly dependent on its irradiance. In this context, the temperature
of each PV block would be the ambient temperature plus a positive temperature
delta linearly dependent on the irradiance it receives. We also assume here that
the bypass diode’s temperature is equal to its respective PV module. We then
need a reasonable estimate for the temperature deltas at the two extremes of the
irradiance values, 0Wm−2 and 1000Wm−2, and from there we linearly interpolate
the temperature delta for all other irradiance levels. First, a completely shaded
module should not have any sunlight heating it up, so its temperature would be at
ambient. Second, based on our solar panel characterisations and information from
residential solar energy forums, we concluded that a 25◦C higher than ambient
temperature delta is a reasonable estimate for a 1000Wm−2 irradiated module.
An example of linear interpolation is that a module receiving 500Wm−2 would be
12.5◦C hotter than ambient temperature. We decided on three values of ambient
temperature, 40◦C for a very hot day, 25◦C for a good day and −10◦C for a very
cold day. This is called the set of irradiance-dependent temperature with
three temperature conditions.

2.2.3 Studying the GMPP distribution from the G-T sweeps

In total, we have four distinct G-T sweeps that could be done with our two set of
irrdiance and two sets of temperature. First, let us look at the two distribution
datasets obtained when running the set of equal probability irradiance with the set
of quasi-homogeneous temperature and the set of irradiance-dependent tempera-
ture. Both datasets have 13,263,825 recorded GMPP. Figure 2.24 plots the occur-
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Figure 2.24: Vgmpp distribution from the G-T sweep where we have the equal probability
irradiance set combined with the quasi-homogeneous temperature set and the irradiance-
dependent temperature set. Different GMPP regions are highlighted as zone one to four.
Dotted line shows the GMPP regions estimate value with and without considering the effect
of bypass diodes.

rence rate of distinct Vgmpp as a percentage of total GMPP at each temperature
condition. Overall, we could clearly distinguish the four GMPP regions confirming
the assumption that GMPPs should occur in distinct zones. Furthermore, we also
show that the GMPP region estimate is better when the effect of the bypass diode’s
forward voltage is considered than when it is neglected. How these GMPP estimate
values are calculated could be found in Section 2.1.4. Furthermore, while we could
see some differences between the distributions under the two different temperature
assumptions, the small temperature coefficients of the panels mean that their ef-
fect is not overly significant (meaning that the regions do not overlap even under
extreme temperatures).

However, the regions are less clear when we visualise the two distribution datasets
obtained when running the set of bicycle irradiance with the set of quasi-
homogeneous temperature and the set of irradiance-dependent temperature. While
there is still separation between regions one and two and three, there is no clear
delimitation between regions three and four. To see why this is the case, we now
must consider the power at GMPP Pgmpp and we extracted two specific subsets
of the distribution for this in Figure 2.24. It shows that for the same tempera-
ture condition, we have many lower values Pgmpp with the set of bicycle irradiance.
Therefore, we could conclude that the assumption of distinct GMPP regions is only
valid if the array is not frequently heavily shaded.
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Figure 2.25: Vgmpp distribution from the G-T sweep where we have the bicycle irradiance
set combined with the quasi-homogeneous temperature set and the irradiance-dependent
temperature set. Different GMPP regions are highlighted as zone 1 to 4 in the figure.
Dotted line shows the GMPP regions estimate value with and without considering the
effect of bypass diodes.

Figure 2.26: Vgmpp, Pgmpp occurrence. On the left was data taken from the distribution
dataset generated by the set of equal probability irradiance and quasi-homogeneous tem-
perature at 25◦C. On the right was data taken from the distribution dataset generated by
the set of bicycle irradiance and quasi-homogeneous temperature at 25◦C.
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2.3 Compute optimisations

Since the idea of examining all possible P-Vs to see how the GMPPs are distributed
is relatively simple, the lack of quantitative analysis in the literature could be at-
tributed to the long computation time caused by the complexity of the PV equation.
Therefore, we find it important to present the optimisations needed to simulate the
massive set of G-T conditions in a reasonable timeframe. The goal is to evaluate
how much time is needed to calculate the GMPP of the array per G-T condition
and see the improvement provided by each optimisation. For this, we will time each
simulation of 1000 different G-T conditions and plot the runtime in a boxplot to see
the average and variance. It must be noted that the flow of the discussion followed
our logic at the time, so some subsequent optimisations might render some previous
ones redundant.

2.3.1 Two basic G-T sweep scripts

Figure 2.27: Simulink schema to sweep voltage and current. The PV modules and diodes
are built-in Simulink models.

To set a baseline for execution time, we crafted two simple scripts to find the
GMPP of four PV blocks in series that take no longer than 30 minutes to setup.
The hardware specification of the computer used for the program is a Ryzen 7
3700X, 32GB of RAM at 3200MT/s, and 1TB of NVME SSD. These specifications
influence, respectively, the computing speed, the number of variables to be kept in
quick access during the execution of the program, and the initial loading time of
the model.

Our first simple MATLAB program will call a Simulink model where we sweep the
voltage of a PV array while measuring the power at each operating point (Figure
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2.27). The bypass diode model used by Simulink is based on the piecewise equa-
tion 2.7. After simulation, the Simulink I-V graph is transferred to MATLAB to
determine Vgmpp and Pgmpp.

The first step of the second method involves solving the set of equations 2.4 with
the help of MATLAB’s built-in function solve() to acquire the I-V of the module.
It finds the symbolic solution to which we could then apply a whole vector of
input values without the need to iterate through each I-V pair. We need to choose
a form of solution for our PV module which could be Ipv = fm(Vpv) or Vpv =
gm(Ipv). However, there is not much of a choice, since Vpv = gm(Ipv) is unusable
because its explicit form contains the LambertW function, which causes double
precision overflow during intermediate computation steps. Note that while the
explicit solution of Ipv = fm(Vpv) also has the LambertW function, it does not lead
to double precision overflow. This non-linear function would be further explored
when we use it to solve the set of equations 2.4 ourselves to reduce the computation
overhead. After getting the I-V of a module, the next step would be to add in the
bypass diodes to get the I-V of a PV block, this time modelled with the Shockley
equation, because it is slightly more convenient to write a single equation. At this
stage, we have the I-V of a PV block in the form Iblock = f(Vpv), which is quite
inconvenient since the next step would be to construct the string voltage in the form
Vstring = ∑n

k=1 gk(Iblock) found in equation 2.8. Since this would be a recurrent
problem when mathematically simulating the PV string with bypass diodes, let us
discuss it and find a solution.

Figure 2.28: How the PV block’s explicit form impacts computation.

Computationally, obtaining an I-V from a PV block in the form Iblock = f(Vpv)
means giving it a linearly spaced array of voltages V linear

pv and receiving an unknown
spaced array of corresponding currents Inonlinear

block as output. On the other hand, we
need Vpv = g(Iblock) to work in the form Vstring = ∑n

k=1 gk(Iblock) is. In this form, we
would obtain an array of linearly spaced currents I linear

block tied to an unknownly spaced
array of voltages V nonlinear

pv . To better understand this, we made a visualisation
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in Figure 2.28. To fix this, we utilised the interp1() function in MATLAB that
interpolates a V linear

pv tied to Inonlinear
block to I linear

block tied to V nonlinear
pv . From there, it

would be trivial to get Vstring = ∑n
k=1 gk(Iblock) and determine the GMPP.

Figure 2.29: Execution time of our two simple MPP evaluation method as baseline mea-
surement.

We now assess the execution time of these two methods and graph the boxplot of the
simulation time of 1000 different G-T conditions in Figure 2.29. The median runtime
using Simulink is 0.865s while the median runtime using solve() is 0.209s. From
the above results, the use of Simulink is inefficient and inconsistent. Furthermore,
the solver frequently fails to converge, which is a problem that will be addressed
later when we model our system in Simulink. Regarding the use of the solve()
function, the extra work put into describing the PV block paid off and the simulation
was completed in a reasonable timeframe, but there are still some inconsistencies.
However, when we start considering how many iterations could be fit into a specific
timeframe, it paints a different picture. We plotted the number of iterations over
the runtime of the program in Figure 2.30 and took 24h to be an arbitrary limit to
the maximum run time of the program. In this period, we could calculate a total
of 414720 GMPPs, which could be exhausted by simulating four PV blocks at a
resolution of 12 irradiance conditions and six temperature conditions. This leaves
little room for more PV blocks or a higher sweep resolution. Therefore, optimisation
is essential.
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Figure 2.30: The number of iterations completable within the 24h time frame of the 02
methods to simulate GMPP.

Since the previous methods are very primitive, there is much room for improvement.
By looking into different aspects of the program, we see four potential time saves
that are investigated in this section. Although these are standard knowledge in
computer science, it is still worth going into detail and evaluating the improvements
they brought.

2.3.2 Improvement one: Reducing program instructions

A program with more machine instructions will generally run longer than one with
less instructions, therefore the runtime would be reduced if we directly provide
the explicit PV model solution instead of using solve(). Although the PV model of
equation 2.4 is non-linear due to the presence of exponents, it is possible to arrive at
an explicit solution using the LambertW function [71] and its definition is found in
equation 2.9. In the PV literature, there were works using LambertW to determine
the parameters of the PV model [72][73], to perform MPPT in real time [74], and
there were also discussions on its optimisation for PV applications [75][76].

yey = x then y = LambertW (x) (2.9)

Step by step, we describe how to arrive at the solution Iblock = f(Vpv) to describe
a PV block. But we have to start at the PV module level where we first transform
the equation 2.4 as follows to consolidate the terms Ipv and Vpv:
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Ipv (1 + Rs

Rp
) = (IL + I0 − Vpv

Rp
) − I0e
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(2.10)

Let us now have the following terms:

K = q

AkT

X =
(IL + I0 − Vpv

Rp
)

(1 + Rs
Rp

)

Y = I0e
KVpv

(1 + Rs
Rp

)

(2.11)

With both equations 2.10 and 2.11, we arrive at this simplified form:

Ipv = X − Y eKRsIpv (2.12)

We continue to modify the equation reach the form yey = x:

KRs(X − Ipv)eKRs(X−Ipv) = KY Rse
KXRs (2.13)

By applying the Lambert W function to equation 2.13, we have the following:

KRs(X − Ipv) = LambertW (KY Rse
KXRs) (2.14)

By simply rearranging the terms, we now reach the desired form Ipv = fm(Vpv):

Ipv = X − LambertW (KY Rse
KXRs)

KRs
(2.15)

Since the above equation just describe the I-V of the PV module, we now include the
bypass diode’s current giving us the PV block’s characteristics in equation 2.16. To
implement in MATLAB, we replaces K, X and Y with their definition in equation
2.11.

Iblock = X − LambertW (KY Rse
KXRs)

KRs
+ Ibyp(e

−qVpv
AbypKT − 1) (2.16)
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2.3.3 Improvement two: Vectorisation

Vectorisation, also known as array programming, is a programming paradigm that
leverages operation between arrays of values instead of iterating through each ele-
ment and performing the calculation individually. This feat is possible due to the
computing power we have today, where all processors have vector accelerating units,
and computer memory is not a significant concern. The idea is simple: replaces
for loops with matrix computation if possible. We have partially vectorised
the computation of Iblock up to now, but it is also possible to reduce the four for
loops used to compute Iblock with different irradiances with vectorisation.

2.3.4 Improvement three: Look-up table (LUT)

The program up to now has been calculating the I-V of each PV block every time
a new G-T condition is checked. But this is very redundant because their I-V
under the same irradiance and same temperature does not change. Therefore, we
should precompute the I-V characteristics of each PV block for all potential G-
T conditions and store them in a LUT, meaning that we have all the possible
Vpv = g(Iblock) stored in memory. When the program iterates through the different
G-T conditions of the string, it could construct the I-V of the string using the
quick addition Vstring = ∑n

k=1 gk(Iblock) on the already computed I-V profiles it
needs. However, the LUT takes up large amounts of system memory, but in our
use case it is negligible at around 200MB. To time the impact of this optimisation,
we would not include the LUT table compute time, because it is constant and does
not significantly impact the global program runtime.

2.3.5 Improvement four: Parallel computing

Next on our agenda would be irreducible loops because we are evaluating a range of
G-T conditions. With today’s computing horsepower, we could leverage multi-core
processors to execute them in parallel. In MATLAB specifically, parfor could dis-
tribute the loop content to run on different threads (called workers in MATLAB),
effectively dividing the total run time of the program by the number of true par-
allel threads. We used this term because the x86 architecture powering the vast
majority of PCs and servers is hyper-threaded (a term coined by Intel). It means
that a single physical core has two parallel threads, but paralleling the code on two
threads of a single core does not half the program’s runtime. This is furthermore
complicated by the fact that the gain from parallelism depends on the processor’s
thread count and core count, the occupancy level of the operating system, the data
distribution to workers’ overhead, latency due to shared memory access, etc. There-
fore, we decided to approximate that the number of true parallel threads is about
1.25 times the number of hyperthreaded physical cores. This means that the pro-
gram’s runtime will be divided by 1.25 times the number of hyperthreaded physical
cores, assuming that the number of loops is large enough to offset the initial data
distribution time and that the OS does not have a lot of other tasks running. Since
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we could not simulate a single G-T condition in parallel, timing this optimisation
would be done slightly differently. For each of the 1000 G-T conditions, we would
perform the same calculation eight million times in a parallel loop and take the
total loop time divided by eight million to be the run-time of that G-T condition.

2.3.6 Evaluating the execution time impact of the optimisations

We graphed the box plots of the 1,000 run-times per each optimisation in Figure
2.31. Overall, we have reduced the runtime by about five orders of magnitude with
all of these improvements. However, not all of them are equally impactful. First, by
solving the equation ourselves rather than using the solve() function, the median
simulation time of one G-T condition drops to 0.6ms from the previous 209ms.
However, given that we are still computing on demand for every G-T condition,
this means that vectorisation simply replaces a loop of four separate I-V compute
of the four PV blocks. Therefore, we see that the compute time only drops to 0.38
ms from 0.6 ms. On the other hand, using the look-up table provides a massive time
reduction from 380µs to 4µs. This is due to the removal of the costly interpolation
function interp1() from the loops. We could see that if we started using the LUTs
directly, solving the PV equation and using vectorisation would be fairly redundant.
However, they do contribute to computing the LUT much more efficiently, reducing
the time from minutes to less than 1s. But this is still inconsequential because
the program itself would still take around 5 to 10 minutes to iterate through the
massive number of G-T conditions. Finally, the parallelisation creates an effective
time reduction from 4µs to 0.6µs, but this result is machine-dependent, so a more
powerful machine should make the compute time even faster.

By plotting the theoretical number of iterations that could be completed in a time
frame shown in Figure 2.32, we could expect to complete around 145 billion G-T
conditions in 24 h or around six billion G-T conditions per hour. Therefore, we could
comfortably say that these optimisations make the study of a larger photovoltaic
array very feasible. For example, taking one hour to simulate a random set of six
billion G-T conditions of an array of 20 modules with bypass diodes should give a
good insight into how the GMPPs are distributed. Of course, the more modules we
have, the more additions we have per loop. However, these calculations are very
efficient on modern machines, so we do not expect a substantial time increase here.
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Figure 2.31: Boxplot of execution time for each optimization.

2.4 Electrical simulation of solar harvesting system

2.4.1 The basics of software GMPPT algorithm

Figure 2.33: Block diagram of our solar harvesting system.

Figure 2.33 shows the block diagram of our solar harvesting system: a string of
four PV blocks, a microcontroller measuring the voltage and current of the string,
a buck converter, a battery, and a load. Why this architecture was kept instead of
a new solution will be explained in the next chapter. For now, let us proceed with
the core principle of software MPPT and the the modelling objective.
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Figure 2.32: Theoretical number of iterations that could be completed over time based
on the average execution time.

Figure 2.34: Time diagram showing the power evolution of the PV array when MPPT is
active.

The overarching principle of MPPT is that the microcontroller measures the power
obtained at each duty cycle and makes duty cycle adjustments based on those pre-
vious measurements to increase the power output of the array. This is repeated
until the maximum power point is reached, which is called convergence. To bet-
ter understand this concept, as well as establish important nomenclatures for later
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discussion, we provide a simple time diagram of the power evolution of a photo-
voltaic array when the system is tracking maximum power point in Figure 2.34.
At each iteration k, the microcontroller waits for the converter to settle from the
input of the duty cycle Dk−1 from the previous iteration k − 1, then measures the
voltage V k

pv of the array and the power P k
pv of the array to update a new duty cycle

Dk driving the DC/DC. The sampling time Ts as implemented in the microcon-
troller is the time between the previous update of the duty cycle Dk−1 and the
current measurement of voltage V k

pv and power P k
pv. However, since the measure-

ment and computation phase is mostly negligible (exaggerated in Figure 2.34 for
better clarity), iteration k could be considered to last exactly one sampling time.
Nevertheless, keep in mind that it might not be the case if the compute time on
the microcontroller is important.

The modelling objective of this section is to represent our system in Simulink so
that we could study the GMPPT algorithms before deploying them in a physical
setup. Since we already have a physical system at hand, the model is primarily used
for preliminary testing of the algorithm flow to avoid any surprises that might be
harder to debug on a physical system. Furthermore, it could help us pre-tune the
algorithm’s operational parameters before experimental deployment in C because
repeatedly flashing a microcontroller without a good starting point is not the best
experience. Therefore, we want a fast and lightweight model where accuracy is not
paramount.

2.4.2 Electrical model of the PV string

We start this section with a brief background on the PV string modelling process.
In the previous section on computational optimisations, we showed that Simulink
provides a built-in PV array block that could conveniently simulate any PV module
or array without bypass diodes (Figure 2.27). We also discussed how we ran into
solver errors when simulating the string of four PV blocks with this Simulink model,
which is how we initially modelled them to test our algorithms. Believing that these
errors were caused by the way the built-in block is written, we set out to develop our
own single diode model based on equation 2.4. After finishing our model, the solver
errors still occurred, but we found through trial and error that adding a parasitic
capacitance to the modules fixed the problem. This is the reason we explicitly
modelled the module in Simulink and did not use the built-in model. Furthermore,
we could not have used the optimised computation using the LambertW function
because it could not be used in Simulink. By the time we realised that an LUT table
could be used to accelerate the Simulink model by replacing the entire string with
a voltage-current-dependent source, we had proceeded past the simulation phase.

2.4.2.1 Electrical model of the PV module

The model requires the SimScape Electrical toolbox, which allows for electrical
signal simulations. The implementation is relatively simple since we just need to



2.4. ELECTRICAL SIMULATION OF SOLAR HARVESTING SYSTEM 77

follow the block diagram of the single-diode model in Figure 2.7 coupled with the
mathematical representation found in equation 2.4 as shown in Figure 2.35. To
select a reasonable parasitic capacitance, we consulted [77] which stated that the
capacitance of a silicon solar cell is around 40nFcm−2. This number has yet to
include the effect of frequency, but we are looking only for a rough estimate so
that the model no longer runs into errors. Each individual cell that makes up our
photovoltaic module is 1

6 of an original 12.5cm × 12.5cm solar cell, so we estimate
that each cell would have a capacitance of around 1µF . And these six cells are
connected in series to make up our module, so we estimate the module’s capacitance
to be around 330nF .

Figure 2.35: Our electrical model of one PV module in Simulink.

2.4.2.2 Adding the bypass diodes to model the PV string

To create our string of four PV blocks, we need bypass diodes. For these, we conve-
niently used the built-in Simscape Electrical toolbox’s which is modelled using the
piecewise equation and the parameters in Table 2.2. Although it is sufficiently close
to our Shockley mathematical model used in the mathematical model in Section
2.1.4, it does cause some very small discrepancy. Nevertheless, we observed that
the I-V of the PV string was not significantly impacted, so we proceeded with this
choice. The final model of the string in Simulink is found in Figure 2.36.

2.4.3 Electrical model of the converter board

In this section, we study how our existing converter board in Figure 2.37 could be
modelled in Simulink. We have extracted all relevant components and present a
simplified schematic of the board in Figure 2.38 where we could see a controller
section and the buck converter section. These two blocks are simulated as sep-
arate submodules in Simulink, so we start with the buck converter section followed
by the controller section.
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Figure 2.36: Simulink model of the PV string.

Figure 2.37: Photo of the converter board we used. The board was originally designed
for a previous project in the laboratory.

2.4.3.1 Modelling the buck converter section

For this section, we extracted the core electrical components of the buck converter
and connected it to a simplified representation of the PV string and a battery in
Figure 2.39A to facilitate the discussion. First, our buck is a synchronous buck
converter that replaces the usual low side diode with a MOSFET to reduce loss.
Second, we remark on the presence of a diode D0 between the converter’s output
and the battery. This diode serves to block a flow of current from the battery back
into the PV module. Without it, there is a low resistance path from the battery
through the ground via the body diode D1 of the high-side MOSFET S1, the very
small Rs equivalent series resistance of the PV string and the equivalent internal
diode of the PV string. This diode is responsible for most of the power losses in the
conversion, so it was considered in the model. Losses in the input capacitor C1 and
the output capacitor C2, the inductance L, and both MOSFETs S1 and S2 would
be neglected because they are not important enough to be relevant.

We first address the filter circuit and the LTC6992 PWM generator in Figure 2.38. A
10kHz PWM signal is sent from our microcontroller that is filtered to an analogue
voltage by the simple low-pass filter made up of R1, R2, and C3. This circuit
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Figure 2.38: A simplified electrical schema of our controller board with 2 distinct sections,
the controller section and the buck converter section.

has a cutoff frequency of 100Hz. Then, the PWM generator LT6992 reads that
analogue voltage and generates a 100kHz PWM signal with the same duty cycle as
the original duty cycle sent out by the microcontroller, and this 100kHz signal is
fed to the MCP14628 gate driver that controls the MOSFETs.

The buck converter is a simple chopper converter that generates a lower voltage
output Vout from a higher voltage input Vin and generates a higher current output
Iout from a lower current input Iin. It is controlled by a duty cycle D who tells us
the percentage of time where the high-side MOSFET is ON. The most obvious
solution with the Simscape Electrical Toolbox at hand would be to use the built-
in MOSFET, inductance, and capacitor models and practically copy-paste their
parameters from their respective datasheets. However, with a switching frequency
at 100kHz, the Simulink model must simulate at a much lower time step than

1
100000 = 10ms. This is not suitable for rapid and speedy simulation. Therefore,
we turn to a averaged buck converter model. Its principle could be further
examined in this article by Gragger et al. [78]. The idea is to separate the operation
of the buck converter into two clear phases, as shown in Figure 2.39B: D where the
highside MOSFET is ON and the lowside MOSFET is OFF, and 1 −D where the
highside MOSFET is OFF and the lowside MOSFET is ON. We added node A
denoting the point between the two MOSFETs and the inductance L for clarity.
During D of the time when the high-side MOSFET is ON, node A is shortcircuited
to the input voltage; therefore, the current Is1 is equal to Iout and the voltage of
node A VA is equal to Vin. Next, during 1 − D of the time when the low-side
MOSFET is ON, we have a short circuit from node A to ground, so VA = 0V . By
adding these two operating regimes together, we get the averaged buck model in
which the high-side MOSFET is represented as a current-dependent source whose
value isDIL and the low-side MOSFET is represented as a voltage-dependent source
whose value is DVin.
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Figure 2.39: A: a simplified electrical model of the PV string (we neglected the bypass
dioes so the string could now be modelled homogeneously using the single diode model), the
buck converter, and the battery. B: illustrating how to obtained the averaged buck model.

Figure 2.40: Model of the buck converter section of the converter board in Simulink.

2.4.3.2 Modelling the controller section

The main component of the controller section is the low-power 8-bit microcontroller
PIC18LF1220 from Microchip, where we are utilising two of its ADC inputs and
one PWM output. The ADC outputs have a full-scale range from 0V to 5V and
a resolution of 10 bits. The PWM on the other hand controls the duty cycle from
0% to 100% with a resolution of 8 bits. Therefore, when the duty cycle D is
implemented in the microcontroller code, it is represented by an 8-bit duty cycle
variable that varies from 0 to 255. When necessary, in addition to the duty cycle
value from 0% to 100%, we will also provide the value of the duty cycle variable
over 255 to provide the reader with further implementation information. Next, we
have the voltage measurement which is the output of a resistor divider consisting
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of R3 = 500kΩ and R4 = 1.6MΩ which gives a gain of 1
3 . This is designed so

that voltages up to 15V are still within the ADC’s full-scale range. Finally, we
have the current measurement based on a Rshunt = 40mΩ and the INA198 100V/V
differential amplifier, which means that the overall structure has a gain of 4V/A.
Because the array’s current never exceeds 1.25A, this was designed so that we could
use the ADC’s full-scale range. We model these components in Simulink as shown in
Figure 2.38. Each ADC measurement is modelled as a gain, followed by a saturator
to clamp the value between 0V and 5V, and a simulated ADC that converts the
input to an integer between 0 and 1023. The microcontroller is modelled as a
function that takes the digitised input voltage and current and generates an 8-bit
duty cycle. Finally, there is a gain converting this 8-bit duty cycle variable to a
floating value between 0 and 1 for compatibility with the buck converter model.

Figure 2.41: Model of the controller section of the converter board in Simulink.

2.4.4 Simple battery and load model

Figure 2.42: Model of the battery and load in Simulink.

As the structure of the battery and load shown in Figure 2.33 behaves essentially
like a voltage source with a resistance in short time frames, we decided to use a
simple voltage source and a resistor to simulate them (Figure 2.42). This choice
was aimed at accelerating the simulation because Simscape proposes a good battery
model, but its accuracy makes the simulation very slow. However, if the voltage
source is connected directly to the load of the buck converter, it sometimes causes
problems with the solver, so we added parasitic resistance to fix it.
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2.4.5 Evaluating the Simulink model

We present two test results to see how accurate our model is compared to the
physical board. The first test involves a input voltage sweep from 4V to
10V of the buck converter at a fixed duty cycle and observes the output
voltage under a constant load of 1A. This tells us where we would get the
same output voltage for the same duty cycle value in the experiment and in the
simulation. This test was carried out for five duty cycles from 30% to 70% with a
10% step, and the result is presented in Figure 2.43. We observe that the estimation
is very good at D = 50%, but the model underestimates the output voltage for duty
cycles above 50% and overestimates the output voltage for duty cycles below 50%.
However, as previously discussed, this discrepancy is not detrimental to our work
because it does not interfere with the algorithm’s operation.

Figure 2.43: Validation result of the buck converter model for an input voltage sweep and
a constant current load of 1A.

The second test involves comparing the response time of the buck converter when
connected to the PV string, the battery, and the load. Specifically, we study the
response of the input voltage of the converter to two duty cycle steps, from 40%
to 90% and from 90% to 40%. However, this response is not entirely dependent on
the converter as it also depends on the characteristics of the PV string. The input
voltage response is dictated by the voltage on the input capacitor, meaning that
the response time is heavily impacted by the current coming in to charge up this
capacitor. Therefore, we put the PV string in a low irradiance condition where all
four PV modules receive only 200Wm−2 and their temperatures are arbitrarily fixed
at 25◦C. The input voltage response times for both duty cycle steps, in experiment
and simulation, are shown in Figure 2.44. We highlighted the 8ms time frame in
each result where we could consider that the response has settled. This value was
chosen because its the minimum value that could cover the response time while being
convenient to implement in the microcontroller. We notice that the response time to
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the duty cycle step from 90% down to 40% is slightly slower than the response time
to the duty cycle step from 40% up to 90%. This was primarily caused by the fact
that the current generated by the PV string is higher at lower voltage (toward the
current plateau) and lower at higher voltages (toward the current roll-off). So when
the voltage approaches the string’s open-circuit voltage, less current is generated to
charge up the input capacitor, leading to a slightly slower input voltage response.
Also, we should point out that a lower duty cycle induces higher input voltage, and
a higher duty cycle induces lower input voltage because we are operating with a
fixed voltage load. This is important to keep in mind for the later discussion on the
operation of MPPT algorithms.

Figure 2.44: Validation result of the buck converter model’s input voltage response time
when a duty cycle step is applied. The converter is connected to a weakly generating PV
string, a 4V battery, and a load.

Generally, this is not a highly accurate model, but it does satisfy our need. However,
the simulation of a specific time frame is still longer than in real life, for example, a
2s sequence still takes more than 2s. It fluctuates depending on the operating point
of the PV string. This aspect will influence one of our testing decisions in the next
chapter.
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2.5 Conclusion and perspective of Chapter 2

Generally, this chapter focused on the mathematical modelling of a PV module.
We resume everything that was done and the information that we obtained below.

• We studied the various models of a PV cell, chosen the single diode model to
proceed because it provides good compromise between accuracy and ease of
use.

• We provided mathematical proof that if all PV cells composing a PV module
are under the same irradiance and all at the same temperature, it is possible to
model it using an equivalent single diode model. This assumption is important
to keep in mind for the next chapter as well.

• The method to acquire the necessary modelling parameters was discussed,
and an accuracy analysis was presented.

• We highlight two different operating regimes of a PV block, one in which
the module is actively generating current and one in which the module is
bypassed. This trivial fact will also be important in the next chapter.

• We propose a better way to arrive at a GMPP estimate by also considering
the forward voltage of the bypass diodes. Our graph of GMPP distributions
proved definitively that GMPP regions do occur in distinct zones and that
our GMPP estimate is more accurate. However, it is only valid when there
are more than three cells in series per bypass diode. This is because fewer
cells lead to a lower Vmpp of the block, and therefore the regions will be less
seperated.

• All optimisations to mathematically simulate the I-V characteristic of the PV
string were given so that it could be applied to even larger PV arrays with an
arbitrary number of PV cells per PV block and an arbitrary number of PV
blocks in series or parallel. The two most impactful improvements were using
the LambertW function to explicitly solve equation 2.4 and using a LUT
to quickly construct the I-V of the PV string. This is a novel use case and
unlocks the ability to quickly visualise in high detail the GMPP distribution
of any arbitrary PV array.

• We built and discussed a Simulink model of a photovoltaic chain consisting
of a PV string with bypass diodes, a buck converter, and a battery. It is used
to quickly simulate the operation of an MPPT algorithm to fine-tune them
before deploying them in C to a microcontroller. Although the accuracy
analysis showed that the model is not exactly a digital twin of the physical
system, we perceive that it was sufficient given the task at hand.

However, there are still some limitations to this work that could be summarised as
follows:
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• The assumption that all PV cells composing a PV module are receiving even
irradiance and all at the same temperature is not highly accurate under par-
tial shadings. This is because we would have to assume that the shadows are
distributed equally among the PV cells. For a better model, we should con-
sider the arrangement of the PV cells and compute, for a particular shading
pattern, which cell is most shaded. Then, its shading factor is applied to the
entire PV module.

• The measurements to acquire the model parameters were not performed in
an optimal and controlled environnment so most error sources could not be
accurately accertained.

• Although we discussed computing optimisations, it was not used to accelerate
the electrical simulation in Simulink, mainly because the LambertW function
was not available in the Simulink environment. However, there could be
workarounds by computing those profiles as LUTs in MATLAB workspace
and transferring them into the Simulink workspace to use as a voltage-current-
dependent source.

• The distribution results were still mostly in theoretical situations except for
the irradiance measured during the bicycle ride. We intend to expand the
analysis to more shadowing situations to provide a better overview of potential
shading patterns.





Chapter 3

Global maximum power point
tracking algorithms

We should consider the context of work being small-scale solar harvesting as dis-
cussed in the Introduction and that we are trying to mitigate the effect of unex-
pected shadows moving at varying speeds. In the spirit of keeping the cost
and complexity very low for the end user, we want to extract the maximum amount
of solar energy from the most basic hardware possible. This is why despite having
a capable microcontroller, we are seeking a lightweight solution so that it could
be implemented even on the weakest microcontrollers. Furthermore, it is also the
reason why we proceeded with an existing unoptimised hardware.

In general, there are two paradigms of shading management: hardware-based
and software-based. We will look at some hardware-based shading management
in this introductory section, but the main objective of this chapter is software-based
shading management, which is maximum power point tracking (MPPT) in
case the PV array only has one singular power peak, or global maximum power
point tracking (GMPPT) in case the PV array could have multiple power peaks.

Let us now explore some hardware-based shading management methods. The basic
PV system consists of an array of PV modules (with or without bypass) in series-
parallel configuration connected to a single central converter, usually DC-DC
for standalone applications and DC-AC for grid-connected, responsible for harvest-
ing optimal power from the array. However, there is the possibility to modify the
configuration of the array and the architecture of the converter for better
shading management that was explored in the literature.

Figure 3.1: Wiring diagrams of three solar arrays configuration: the classical SP configu-
ration (a), total-cross-tied (b), and bridge-linked (c). Figure extracted from [79].

87
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First, we discuss some studies on modifying the array’s configuration. Bidram et
al.[79] have compiled two novel panel arrangements, total-cross-tied and bridge-
linked (Figure 3.1). These are proposed to mitigate the potential damage to solar
panels, as well as the power loss caused by uneven irradiance. Expanding on this
idea, there are several works that implement a switch matrix to dynamically rear-
range the array’s configuration such as Velasco-Queseda et al. [80], thesis by Youssef
El Basri [81], and thesis by Luiz Fernando Lavado Villa [82]. Despite the promising
results, they do require more wiring and sophisticated algorithms to optimise power
generation [80].

Figure 3.2: Distributed MPPT architectures: the conventional central inverter architec-
ture (a), series-connected DC-DC to a central inverter (b), parallel-connected DC-DC to a
central inverter (c), and micro-inverters (d). Figure extracted from [79].

Next, it is possible to replace the single central converter with multiple converters
in a schema called distributed architecture where each converter handles the
MPPT of each module in the array. These could be found in studies such as
Solorzano et al. [61], Saranrom et al. [83], Gao et al. [84]; thesis by Stéphane
Petibon [85], thesis by Cédric Cabal [86], and thesis by Angel Cid Pastor [87].
Distributed architecture is a good choice for large installations with hundreds or
more solar panels because a single converter handling hundreds of potential power
peaks is simply not practical. Because of this, they are more frequently applied in
AC grid applications, and currently there are three commonly used schemas: series
connected DC-DC to a central inverter, parallel connected DC-DC to a central
inverter, and micro-inverters (Figure 3.2). Of course, these architectures are not
AC exclusive and could be easily adapted to supply a DC output. This shading
management technique is very effective because each converter performs a highly
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efficient MPPT, and it also comes with an additional benefit. In Chapter 2, we
have seen that the I-V of a string of PV blocks is not affected when we permute
the order of the shaded modules, and we only know that shading is indeed present.
Applying the same logic to module failure, it would manifest itself in the I-V, but it
is impossible to pinpoint which one has failed without characterising each module.
Considering that a large-scale solar panel installation could have up to thousands of
solar panels, the task of identifying the failed module would be extremely tedious.
Distributed architecture would provide the diagnostic capability to easily find the
failed module.

We believe that this should be used when possible. As we shall see at the end
of this chapter, GMPPT algorithms and operation under partial shadings have
some inherent challenges that are hard to overcome. But distributing to every
single panel would also not be very practical in terms of cost and complexity, so
combining distribution and GMPPT for a distributed GMPPT schema could be a
good compromise.

Figure 3.3: Illustration of how MPP evolves under varying irradiance when there could
only be a single peak and when multiple peaks may be present. We suppose here that the
power output changes progressively from condition one to condition five.

There is a fundamental problem in the characteristics of a partially shaded PV string
with bypass diodes that needs to be discussed before we proceed. This is illustrated
in Figure 3.3. A maximum power point tracking algorithm operates when the array
only has one power peak. Under varying irradiance and temperature, this peak will
stay in a relatively narrow voltage zone, as shown in Figure 3.3A. This means
that during searches, the algorithm is not required to depart from this zone
and therefore does not suffer a significant power loss during the search. But when
partial shading comes into play, we have situations that resemble Figure 3.3B where
the maximum power peak suddenly occurs at a distant voltage point. Therefore,
all GMPPT algorithms are required to search a wide range of voltages to
detect the maximum power peak, which is called global searches. During this
phase, the algorithm will inevitably land on various non-optimal operating points
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and suffer power drops. This information will be important to evaluate the efficacy
of GMPPT by the end of this chapter.

We start with a review of the literature in which we explore, classify, and critique
the various MPPT and GMPPT algorithms. From this evaluation, we propose our
own lightweight GMPPT algorithm based on the information gathered in Chapter
2. Seeing that there is currently no procedure that fits our research context of
varying partial shadows, a novel testing configuration will be proposed to put these
algorithms under constantly fluctuating shadows over time. Finally, we test
our algorithm against three other algorithms in the literature and provide some
insight into the GMPPT problem as a whole.
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3.1 Literature review

3.1.1 Overview of software MPPT

This review consists of duty cycle control and online methods that are applicable
to standalone harvesting using a DC-DC converter. Duty control means that
the algorithm generates a duty cycle directly to drive the DC-DC chopper instead
of a reference voltage value. This negates the need for an analogue PID controller
to regulate the input voltage of the converter, but we do not exclude the use of
simple digital proportional controller. Being online means that the algorithm must
be performed without disconnecting the solar panels. The standalone harvesting
architecture that we target is a string of PV modules in series with bypass diodes
harvested by a buck converter to charge a stable voltage load (i.e. supercapacitor,
battery).

We first set out to classify existing algorithms into clear groups and superficially
compare them. The first criterion is the nature of the algorithm. A method is said
to be characteristics-based (CB) when inspired by the physical properties of so-
lar panels such as the form of the P-V curve or the negative temperature coefficient
Kv of Si-based solar panel. Algorithms that are not based on the characteristics
of the array could be intelligent control (IntelC) or optimisation algorithms
(OptA). Next, we are interested in their ability to track the global power peak,
which we call being multiple peak capable (MPC). GMPPT algorithms are MPC
while MPPT ones are not. Another important metric is whether the algorithm is
parameter-dependant (PD), meaning that they require fine-tuning from a user
before deployment. Consequently, its tracking quality may degrade when PV mod-
ules are damaged or age. Therefore, being non-PD would be more advantageous.
The set of measurements needed for the algorithm is also of interest, since some
measurements are harder than others and monitoring too many variables may also
introduce more noise. We compile the characteristics of several methods in Table
3.1 and a good paper to study them in detail. Since most methods have multiple
contributions, we only provided reference to one that best explained their operating
principle.

Generally, CB algorithms are good at tracking, but if the PV array has damaged
modules, the tracking may not work properly, with the exception of voltage scan-
ning. IntelC methods have a very fast convergence time, but they are highly depen-
dent on the array’s parameters and require extensive fine tuning before deployment.
Finally, OptA algorithms are a great choice when multiple peaks are present and
they also boast fast convergence time, but they do not guarantee convergence to
GMPP because of their metaheuristic nature. To go deeper than this superficial
analysis, we need to look into how each of them operates and discuss their merits
and demerits. All technical examples will be based on a string of four PV blocks
connected to a buck converter that delivers current to a stable voltage load similar
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to Figure 2.33. The characteristics of the photovoltaic modules are shown in Table
2.1.

MPPT method basic comparison table
Algorithm name Nature MPC PD Sensor data
Perturb and Observe / Hill Climbing [88] CB No No Voltage, Current
Incremental Conductance (InC) [89] CB No No Voltage, Current
Fractional open circuit voltage [90] CB No Yes Voltage
β-parameter [91] CB No Yes Voltage, Current
Equivalent model [92] CB No Yes Voltage, Current,

Temperature
Temperature based [93] CB No Yes Voltage, Temper-

ature
Neural network [94] IntelC No Yes Voltage, Current
Fuzzy logic controller (FLC) [95] IntelC No Yes Voltage, Current
nVoc method [63] CB Yes Yes Voltage, Current
Voltage scanning [96] CB Yes No Voltage, Current
Probabilistic approach [97] CB Yes Yes Voltage, Current
Particle Swarm Optimisation [98] OptA Yes No Voltage, Current
Differential Evolution Optimisation [99] OptA Yes No Voltage, Current
Grey Wolf Optimisation [100] OptA Yes No Voltage, Current
Artificial Bee Colony Optimisation [101] OptA Yes No Voltage, Current
Dragonfly Optimisation [102] OptA Yes No Voltage, Current
Grasshopper Optimisation [103] OptA Yes No Voltage, Current
Flower Pollination Optimisation [104] OptA Yes No Voltage, Current
Ant Colony Optimisation [105] OptA Yes No Voltage, Current
Flashing Fireflies Colonies Optimisation
[106]

OptA Yes No Voltage, Current

Cuckcoo Search [107] OptA Yes No Voltage, Current
Student Psychology [108] OptA Yes No Voltage, Current
Most Valuable Player Algorithm [109] OptA Yes No Voltage, Current
Teaching-Learning Based [110] OptA Yes No Voltage, Current
Fibonacci Search [111] OptA Yes No Voltage, Current
Simulated Annealing [112] OptA Yes No Voltage, Current
Henri Gas Optimisation [113] OptA Yes No Voltage, Current

Table 3.1: Basic compairison of existing MPPT methods.

3.1.2 In-depth analysis of MPPT algorithms

3.1.2.1 Perturb and Observe - Hill Climbing (P&O/HC)

Figure 3.4: Illustration of how P&O/HC track MPP. The P-V characteristics is that of
four PV modules in series with four bypass diodes under even 1000W−2 irradiance.

This is by far the most widely used and discussed method. Its working principle
is to vary the duty cycle of the converter in a particular direction (increasing or
decreasing) to slightly perturb the operating point and measure the newly acquired
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power. If the array’s power has increased, the controller continues the perturbation
in the same direction, and inverts the direction if it has decreased. While P&O
and HC are essentially the same, their naming difference lies in the control signal
that is perturbed: the voltage of the array for P&O and duty cycle for HC. Since
duty cycle control is our focus, the name HC will be used from this point on. An
illustration of how the algorithm tracks the MPP is provided in Figure 3.4 with an
exagerated voltage variation for better clarity.

Overall, this is a very simple MPPT algorithm, only requiring a comparison between
the power samples from the previous and current iterations to make a decision.
Furthermore, it is non-PD so it works with any PV array once the controller was
flashed.

However, it is not capable of tracking the global peak, so this algorithm may not
be suitable for situations where multiple local peaks are present [64], illustrated in
Figure 3.5.

Figure 3.5: Illustration of how P&O/HC fails to locate MPP. The P-V characteristics
belongs to a string of four PV blocks under 1000W−2 irradiance, but one module is pro-
gressively shaded to 800→600→400W−2 creating a partial shading condition.

The first problem is the oscillation around MPP previously shown in Figure 3.4.
Studies by Ahmed et al. [114] and Killi et al. [115] proposed a variable duty cycle
step size that is gradually reduced every time an oscillation is detected, resulting
in a much more stable power output.

The second problem is the slow convergence time if the starting operating point is far
away from the MPP. The solution could be to limit the voltage search window such
as proposed by Ahmed et al. [114] or Scarpa et al. [93]. A slight inconvenience
is that the added voltage search window requires knowledge of the PV array to
implement, making it PD. A more advanced way of achieving this is to add another
algorithm that is faster in locating the general MPP region before initiating hill
climbing (e.g. β-parameter by Jain et al. [91] (PD), PSO-aided by Lian et al. [116]
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Figure 3.6: Detailed flowchart of HC as we implemented.

(non-PD), ABC-aided by Pilakkat et al. [117] (non-PD)). These are called hybrid
algorithms and the overall schema could also be made multiple peak capable.

The third problem with HC is the loss of tracking in a rapidly increasing irradiance,
where the algorithm momentarily diverges away from the MPP region [115]. This
is because the controller cannot distinguish whether the higher power output is
caused by its perturbation or by the externally increasing irradiance. Two proposed
solutions involved adding an additional measurement cycle between two duty cycle
updates (Sera et al. [118]) and adding an evaluation of the change in the current
of the array (Killi et al. [115]). Neither of these improvements adds any significant
drawback.

Since HC is very widely used, it will be included to compare with our algorithm
despite not being a GMPPT algorithm. The detailed flow chart of HC is shown
in Figure 3.6. We fix the duty cycle step ∆D = 0.78% ( 2

255). dmin and dmax are
the minimum and maximum values of the duty cycle, respectively, fixed around 5%
and 95% of the full duty cycle range. Seeing that reaching these limits likely means
that HC has lost track of MPP, we reset the duty cycle to 70% (180

255) and a new
search is initiated.

3.1.2.2 Incremental Conductance (InC)

InC’s core principle relies on the derivative of power over voltage of the P-V char-
acteristic as shown in Figure 3.7. The algorithm seeks to increase the voltage
operating point when dP

dV > 0, decrease it when dP
dV < 0 and stop the search when

dP
dV = 0. Due to measurement errors, the principle in practice is rather to increase
the voltage operating point when dP

dV > ε, decrease it when dP
dV < −ε and stops

the search when −ε < dP
dV < ε, where ε > 0 is higher than the noise level of the

measurement.
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Figure 3.7: Derivative of power over voltage in three different zones across the voltage
range of the PV array.

dP

dV
= d(IV )

dV
= d(I)V

dV
+ d(V )I

dV
= V

dI

dV
+ I (3.1)

Since the algorithm has a steady state, a problem arises where the current changes
due to varying irradiance, causing a change to dP yet dV = 0. This leads us to the
actual implementation of the algorithm in practice. A mathematical transform is
made as shown in equation 3.1. The first check for voltage variation is performed, in
which case the algorithm will proceed with evaluating dP

dV . If the voltage was instead
constant since the last update, a check on the current variation dI is performed. If
dI ̸= 0, then a duty cycle step will be applied according to the sign of dI.

InC is only slightly more complex and HC, requiring some extra decision making,
and is also non-PD. But it shares the same three demerits with HC: being non-MPC,
having slow convergence time, and may momentarily diverge from the MPP under
varying irradiance. The mitigations for these problems are also similar to HC such
as introducing variable step size (Liu et al. [89]) or some other techniques to help
limit the search window (Hsieh et al. [119]). However, given that its performance is
similar to HC, we struggle to see any inherent advantage of InC because it requires
more computation and is more sensitive to measurement errors.

3.1.2.3 Beta parameter

β = ln( I
V

) + c ∗ V

c = q

AkT

(3.2)

This is an intermediary tracking variable first proposed by Jain et al. [91] that is
used to appropriately size the duty cycle step. They first introduce a linear variable
to the array voltage β with the mathematical expression found in equation 3.2,
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where q is the electronic charge in A.s, k is Boltzmann’s constant in m2.kg.s−2.K−1,
A is the ideality factor of the PV module and T is the ambient temperature 298.15K.
It has the interesting property of being highly dependent on temperature and mostly
independent of irradiance (Figure 3.8). When operating at MPP, we can expect
βmpp to fall in a range of βmin and βmax. The authors have determined that the
best choice for these two parameters would be βmpp at the lowest and highest
expected temperature and irradiance, respectively (corresponding to β3 and β2
Figure 3.8). A value of βg within this range is chosen so that it corresponds to the
most probable operating temperature of the PV module. By measuring β on each
sample, we can use βerror = β − βg to size an appropriate duty cycle step in the
form of kβerror, where k is an appropriate proportional coefficient [120]. Overall,
the parameter proved to be effective in reducing the convergence speed to MPP
when used in conjunction with another method such as HC [121] or FLC [95].

Figure 3.8: Graph displaying the value of β parameter when operating at MPP for four
conditions of temperature and irradiance. Irradiance of the four PV modules (G1, G2, G3,
G4) are given in Wm2 and their temperature T is given in ◦C.

There are several flaws with the β parameter approach. First, we graphed the
β parameter of our string under partial shading conditions and confirmed that
it is indeed linear even under partial shading, so it could not help us detect the
local peaks. Second, determining the βmin and βmax requires an extra step to
determine the parameters of the solar panel, in which case we could just determine
the minimum MPP voltage Vmpp_min and maximum MPP voltage Vmpp_max. Vmpp

has the same properties as βmpp, both of which are highly dependent on temperature
and mostly independent of irradiance, β to also linear with voltage of the array. We
can then choose a Vmpp_g that corresponds to the most likely operating temperature
of the PV module, measuring its distance from the current operating point Verror =
V − Vmpp_g and use this quantity to size an appropriate duty cycle step with a
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simple proportional controller. This is actually the principle behind the variable
step size HC proposed by Kollimalla and Mishra [122].

3.1.2.4 Equivalent model

The almost flat current plateau where the voltage of the array is below Vmpp is the
main inspiration for this technique. With the knowledge of the current and voltage,
as well as the module temperature, it is possible to reconstruct the profile and de-
termine the voltage at the MPP. Farivar et al. [92] have implemented this method
with the help of the Lambert function, and the result is an immediate convergence
to MPP after one single measurement. Of course, this great capability comes with
great complexity. It is heavily parameter-dependent, sensitive to parameter errors
as well as measurement errors, requires temperature measurement of the PV mod-
ule, which is not trivial, and the algorithm generates a reference voltage value for
the converter to regulate instead of a direct duty cycle. To directly generate a duty
cycle, we also now need to know the exact characteristics of the converter and the
load. Furthermore, it requires complex computation, albeit very few cycles, due to
its high convergence speed. A simpler option would be to use a Thevenin equivalent
model of the entire system as proposed by Moradi et al. [123] to directly determine
the duty cycle to put the system in MPP, but the process still requires an offline
measurement phase and characterisation not only of the photovoltaic array but also
of the converter and load.

3.1.2.5 Fractional open circuit voltage (fVoc)

Seeing that the MPP is typically around 80% of Voc, we can set the controller to
always force the voltage of the array to this value. Of course, this means that the
energy efficiency is not the best. However, there are situations where fractional open
circuit voltage is useful. First, when irradiance is very low, the signal-to-noise ratio
dramatically decreases, leading to unreliable measurements. At these conditions,
any algorithms depending on accurate measurements could lose tracking of the MPP
anyway, and therefore forcing a constant array voltage would be a better option.
Second, it is more suitable for ultra-low cost harvesting applications that do not
require the highest efficiency [90]. There are also several simple commercial MPPT
converters for ultra low power harvesting that employed fVoc such as the BQ25570
[124] and the SPV1050 [125].

3.1.2.6 Temperature and irradiance measurement

Measuring the irradiance and temperature for MPPT purposes is a logical choice,
given that MPP depends directly on these variables. Examples include the study
by Lei et al. [126] where MPPT was performed with irradiance measurement and
the study by Moradi et al. [127] where MPPT was performed with temperature
measurement. However, the MPP efficiency relies heavily on parameter’s accuracy
and the algorithm requires extra sensors. Furthermore, accurately determining the
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temperature of an encapsulated PV cell is difficult, and obtaining a good irradi-
ance reading, for which the equipment is already costly, might still not accurately
represent the irradiance received by the PV modules under PSC.

3.1.2.7 Fuzzy logic controller (FLC)

Fuzzy logic was inspired by the way we humans make decisions. Instead of assigning
a binary TRUE or FALSE to how cold it is outside, we describe it as a range, like
"a bit cold", "cold", or "very cold". Numerically, this is represented by a range of
values from 0 to 1 called logic values. A fuzzy logic controller receives a set of
input variables and outputs a set of control signals to drive the system, similar
to a PID controller. The Mamdani rule-based schema is the most widely used for
MPPT applications and works in three steps: fuzzification, inference with a
rule base, and defuzzification [95].

Figure 3.9: Representation of the three steps in a FLC: fuzzification, inference, and
defuzzification.

Let us take a simple example to better understand how an FLC works (Figure 3.9).
Imagine a simple hair dryer with a fan and a heating coil powered by a constant
current, where we measure the temperature of the air and control the fan speed.
When using the hair dryer, the user could perceive the air temperature to be either
just warm (TL, Temperature Low), hot (TM, Temperature Medium) or too hot
(TH, Temperature High). Fuzzification means assigning a "rating" to the measured
temperature according to these "feelings", mathematically called truth values. For
example, 40◦C air could be considered a bit more than warm, but still not quite
hot, so its mathematical representation could be "0.5TL and 0.5TM". We also have
a set of truth values for our fan speed, like low (FL, fan low), medium (FM, fan
medium), and high (FH, fan high). When the temperature is not high enough, we
would like the fan to spin down for a hotter air flow. This is where inference with
a rule base comes in. When the temperature is high, we want the fan speed to
be high, when the temperature is medium, we want the fan to spin at medium,
and when the temperature is low, we want the fan to be low. Continuing with
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our example, a measurement of "0.5TL and 0.5TM" becomes a desired output of
"0.5FL and 0.5FM" after inference. However, the fan speed is driven by an analogue
voltage signal, so we have to convert "0.5FL and 0.5FM" to an analogue value. This
is defuzzification, where we map the range of desired fan speed truth values to
a continuous range of the analogue fan control voltage. Building the appropriate
controller consists of selecting the number of truth values for input and output, as
well as the appropriate functions for each of the three steps.

In general, FLC gives good tracking results as reported by Alajmi et al. 2011 [128],
Alajmi et al. 2013 [129], El Khateb et al. [130], Shah et al. [131], Kumar et al.
[132], Yilmaz et al. [133], and Li et al. [95]. However, the showcased results are
mostly on par with simpler techniques such as variable step HC by Ahmed et al.
[114] or variable step InC by Liu et al. [89], making the added complexity hard to
justify, more so that the method itself is not MPC and is highly PD. Although FLC
applied to MPPT does not require complex mathematical operations, determining
the optimal parameters for the fuzzification and defuzzification process is, however,
very tedious.

3.1.2.8 Neural network (NN)

Machine learning technique is also frequently explored for MPPT applications, in
this case specifically the feedforward neural network. A simple description of this
network is a set of layers, with one input layer receiving sensor information, one or
more hidden layers, and one output layer that generates the control signal to our
converter (Figure 3.10). The sensor readings are processed through the layers until
it reaches the output, hence the name feedforward. They are useful for non-linear
and abstract problems, which are indeed the characteristics of a solar panel’s P-V
curve [134]. The performance of using NN is well proven by the results from studies
by Meng et al. [134], Rahman et al. [94], Agha et al., [135], and Jyothy et al. [136].

Figure 3.10: Schema of a neural-network-based MPPT controller with an input layer, an
output layer, and 2 hidden layers.



3.1. LITERATURE REVIEW 101

Just like FLCs, we perceive the gain in convergence speed and efficiency to be not
worth the complexity added to the system, since implementing the NN requires
an accurate and large dataset to train and a capable microcontroller. This means
that NN is highly PD and is very time consuming to implement on a new set of PV
array. From a data science point of view, it is important to point out some demerits
of these NN MPPT proposals. First, some lack the justification for why a specific
type of model was used [134] or for how the number of neurones was chosen [136].
Second, some models were trained with a small dataset that could not guarantee
the reliability of the result, such as [135] and [94]. Finally, although the problem
was indeed non-linear and abstract, we do have the full mathematical description
of the P-V curve. Given that NN requires high computation, good knowledge of
the characteristics of the array and the converter, it could be simpler to use the
Lambert function to solve for MPP where Farivar et al. [92] also achieved instant
MPP convergence.

3.1.3 In-depth analysis of GMPPT algorithms

3.1.3.1 Voltage scanning

This schema marks the passage to GMPPT algorithms where they are considered
mulitple peak capable. Voltage scanning means that the controller periodically or
contextually initiates a full range duty cycle variation from 0% to 100% (or more
likely 5% to 95% in practice) to determine which duty cycle yields maximum power.
It is not parameter dependent, does not require any significant computation, and
guarantees convergence toward GMPP. It is also the only method that provides
data for a potential diagnosis of the state-of-health of the photovoltaic array if
necessary. However, there is a trade-off: a smaller duty cycle step ensures higher
tracking accuracy but takes longer to converge, and vice versa. Voltage scanning is
rarely used alone, but rather combined with another method like HC (Ghasemi et
al. [96]) or FLC (Shah et al. [131]).

3.1.3.2 nVoc method

Improving on voltage scanning by considering the PV array’s parameters, we have
nVoc method. It is a common understanding in the GMPPT research community
that GMPP occurs at regular intervals on the PV array’s voltage range, a fact
that we have also visualised in the previous chapter. Its name was inspired by the
simple GMPP estimate found in Section 2.1.4. By initiating a MPPT algorithm
in different zones of the voltage range, the controller can evaluate the multiple
local peaks and select the global maximum power point. Therefore, nVoc is not
a standalone algorithm, but rather an extension to MPPT algorithms to handle
PSC. It was used with HC by Ramyar et al. [62] and with InC by Tey et al. [64]
with good experimental results. Although the search range is narrower than voltage
scanning, letting the MPPT algorithm finish in each zone before moving on to the
next still results in an overall slow convergence time toward GMPP.
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3.1.3.3 Probabilistic approach

This approach was first found in a research work by Tang et al. [137] where the
authors drastically reduced the voltage scan to only 24 points and the one having
the highest power was chosen as the seed to begin the HC phase. While the paper in
itself is not interesting with limited simulation testing and no experimental setup,
it is the only other work besides our own in this category, as far as we can find.
Our contributions to this category were documented in two conference papers: [138]
with simulation results and [97] with experimental results, which will be discussed
in detail later. In general, these algorithms are parameter-dependent and have a
fast convergence time. However, it might sometimes not converge toward GMPP
due to the probabilistic nature, which is a demerit compared to nVoc and voltage
scanning.

3.1.3.4 Optimisation-based algorithms

Optimisation is a process that determines the optimal value of a function and is
used in almost all scientific fields. In the GMPPT context, it is determining the
GMPP of the PV array with the mathematical representation found in equation
3.3 where P is the power of the array and D is the duty cycle.

maxP = f(D) (3.3)

The principles of all algorithms based on optimisation are similar and could be
distinguished into two different phases: evaluation and decision. The evaluation
phase consists of gathering information on the power profile by sending a set of ran-
dom duty cycles, mathematically called candidate solutions, and observing how
much power is harvested at these points. Based on these measurements, a decision
is then made on whether to continue the search with a new set of duty cycles or
to stop the search. Each completed evaluation phase is called a search iteration
(shortened to s-iteration) of the algorithm, and the decision phase occurs at the
transition from one iteration to the next. This is to distinguish it from an iteration
which we have defined in Figure 2.34 in the previous chapter. Since only one can-
didate solution is checked per sampling cycle, the time to complete each s-iteration
is the number of candidate solutions times the sampling period. Throughout the
evaluation decision cycle, the maximum power achieved is recorded among other
parameters that different algorithms require. A stopping criterion is checked at
every decision phase, and if met, the search is terminated, and the converter will
then be driven by the duty cycle yielding maximum power.

We proceed with an example to see how an optimisation algorithm works in the
context of MPPT (Figure 3.11). This generic algorithm will be performed with
three candidate solutions per s-iteration, and a maximum of three s-iterations is
the termination criterion. This means that each s-iteration takes three sampling
periods to complete. S-iteration 1 starts with an evaluation of three randomly
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Figure 3.11: An illustration for 3 steps of a generic optimisation algorithm.

chosen duty cycles {d1, d2, d3} and the controller observes three associated power
values {p1, p2, p3}. The decision phase is performed where a set of new duty cycles
{d4, d5, d6} is calculated. At s-iteration two, this new set is then sent, and the
controller observes three associated power values {p4, p5, p6}. The process is then
repeated until we finish iteration three. At this point, the termination criterion is
reached, and the search is stopped.

The biggest advantage of optimisation-based MPPT is their independence from the
characteristics and parameters of the PV array. However, they could be compu-
tationally complex, caused by the calculations performed at each decision phase.
Furthermore, their random nature means that they sometimes do not converge
toward GMPP ([112]).

In the following sections, two specific optimisation algorithms will be discussed: de-
terministic particle swarm optimisation (DPSO) and grey wolf optimisation (GWO)
([98] and [139] respectively). There are several reasons for this choice, in addition to
the fact that they are both well documented, simple algorithms with good simulated
and experimental results. First, they have different termination criteria. Second,
one is deterministic, while the other one is randomised. This gives us a diversi-
fied view of how some characteristics would impact the algorithm’s performance.
For improved clarity, a lot of descriptive language would be used, and their math-
ematical representation would be adapted to our specific MPPT context. These
optimisation algorithms were chosen because there seems to be a lot of interest in
this technique and the result seems to always be very promising.

3.1.3.5 Deterministic Particle Swarm Optimisation

The first optimisation-based MPPT algorithm was introduced in [140] by Miyatake
et al. based on PSO. A descriptive way to summarise its search mechanism is by
imagining a set of agents moving throughout the range of duty cycles and each one
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Figure 3.12: A descriptive way to visualize the PSO’s mechanism.

reporting the best power value observed (Figure 3.12). An agent i among n agents
at s-iteration x moves to its assigned position at duty cycle di

x and records a power
value of pi

x. The controller surveys the personal best power pi
x of each agent at

s-iteration x (and the associated duty cycle dbi
x at this personal best power) as well

as the global best power gbest achieved by all agents (and the associated duty cycle
dbest at global best power). Finishing the iteration, each agent moves toward their
new duty cycle value di

x+1 (equation 3.5) with a step of vi
x+1 (equation 3.4) where

w is the momentum coefficient, c1 and c2 are acceleration coefficients, and r1, r2 are
uniformly distributed random numbers between 0 and 1. w, c1, c2 are subjected to
fine-tuning before deployment for the optimal search result.

vi
x+1 = wvi

x + c1r1(dbi
x − di

x) + c2r2(dbest − di
x) (3.4)

di
x+1 = di

x + vi
x+1 (3.5)

vi
x+1 = wvi

x + dbi
x + dbest − 2di

x (3.6)

Seeing that the MPPT problem does not necessarily benefit from a randomised
process, the authors of [98] proposed to make the algorithm deterministic where
c1, r1, c2, r2 equals 1 and equation 3.4 becomes equation 3.6. There are numerous
advantages to DPSO: it is simpler to fine-tune by the user with only w left to be
determined and it is very lightweight. Furthermore, being deterministic makes the
convergence time and rate consistent. However, eliminating randomisation limits
the exploration capacity of each agent. Therefore, if somehow all of them missed the
MPP region, recovery would be impossible. To combat this, the authors suggested
an upper limit to vi

x+1 that we called ∆Dmax and its value was fixed to about 8%
( 20

255) of the full duty cycle range .
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Figure 3.13: Detailed flowchart of DPSO as we implemented. *: either when equation
3.7 or 3.8 is reached. **: using equation 3.5 and 3.6

The detailed flow chart of the algorithm is provided in Figure 3.13. Since three
candidate solutions were the choice of the authors, we also implemented ours with
three candidate solutions. w was fixed to 1 because it works well and has the
added benefit of reducing computation steps. The initial search duty cycle are
chosen far apart on the duty cycle range. The search is terminated when the
absolute differences of at least two of the candidate solutions are smaller than
dblimit (equation 3.7) or when a maximum number of s-iterations without any power
improvement no_update_max is reached (equation 3.8). Equation 3.7 is used to
accelerate the convergence time since reaching it usually means that the GMPP
was found. Most OptA algorithms that do not have an s-iteration cap usually relies
on the second criterion based on equation 3.8.

∃a, b ∈ 1..n, |dba
x − dbb

x| < dblimit (3.7)

no_update > no_update_max (3.8)

The algorithm has a steady state phase in which the microcontroller sets the con-
verter at the global maximum power point found Pgmpp and only monitors the
power output P k

pv for any changes |Pgmpp − P k
pv|. When the power variation over

the power at global maximum power point exceeds a certain ε (shown in equation
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3.9), the controller will initiate a new global search. Note that the Pgmpp notation
of equation 3.9 depends on the flow chart of each algorithm. We chose ε = 1.5%
for all algorithms in this work.

|Pgmpp − P k
pv|

Pgmpp
> ε (3.9)

3.1.3.6 Grey Wolf Optimisation

Figure 3.14: A descriptive way to visualize the GWO’s mechanism.

This algorithm was inspired by how wolves move in a pack to find food. They use
their sense of smell to sniff out a potential catch and the closer they are to their tar-
get, the higher the scent of the prey could be detected (Figure 3.14). To be efficient,
the pack converges toward the position closest to the prey while still maintaining
some sense of exploration to make sure that they are indeed approaching the right
target.

Transferring to our MPPT context, the amount of scent that each wolf is detecting
is equivalent to the power measured, and the position of the wolf is equivalent to
the duty cycle. At s-iteration x, each wolf i among n wolves is at a position di

x and
detects a certain amount of scent pi

x from its prey. Only the results of the two best
wolves, alpha and beta, are recorded. The alpha’s position is dα and the scent it
detects is pα, the beta’s position is dβ and the scent it detects is pβ. The position
of each wolf for the next s-iteration di

x+1 is determined using the set of equations
3.10 where r1 and r2 are random numbers from 0 to 1, ax is a linearly decreasing
variable through each iteration from 2 to 0, A1 and A2 are A with two differently
randomised r1, C1 and C2 are C with two differently randomised r2. The voltage
with highest detected power is recorded throughout the process, and the algorithm
stops searching when ax reaches 0. GWO was proven to be competitive in GMPP
tracking capability versus HC and PSO in the experimental results by Mohanty et
al. [139].

GWO would be included in our algorithm performance comparison and the detailed
flow chart can be found in Figure 3.15. All operations were implemented exclusively
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Figure 3.15: Detailed flowchart of GWO as we implemented. *: using equation 3.10

using integer maths. The randomisation of r1 and r2 are taken from an analogue
measurement from a floating ADC pin of the microcontroller. The decreasing rate
of ax was chosen so that the algorithm would finish after eight s-iterations. The
steady state phase is implemented similarly to DPSO.

A = (2ax − 1)r1

C = 2r2

Dα = |C1dα − di
x|

Dβ = |C2dβ − di
x|

dA = dα −A1Dα

dB = dβ −A2Dβ

di
x+1 = dA + dB

2

(3.10)

3.1.4 State of the literature

Before proceeding with our algorithm, it is important to look at how MPPT and
GMPPT algorithms are presented in the literature and contemplate the various
aspects of the algorithms so that we could come up with a good validation setup.

A total of 88 papers from 2000 to 2021 were evaluated from both journals and
conference publications, giving us a total of 92 algorithms where 51 are MPC (55%).
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Here is the exhaustive list of all papers that we included for this review: Sridhar et
al. 2021 [103], Pervez et al. 2021 [109], Pal et al. 2021 [108], Lodhi et al. 2021 [102],
Riquelme-Dominguez and Martinez 2020 [88], Mirza et al. 2020 [141], Mansoor et
al. 2020 [142], Rahman et al. 2019 [94], Priyadarshi et al. 2019 [143], Pilakkat and
Kanthalakshmi 2019 [117], Meng et al. 2019 [134], Li et al. 2019 [95], Yilmaz et
al. 2018 [133], Tey et al. 2018 [144], Pei et al. 2018 [145], Kumar et al. 2018 [132],
Jyothy et al. 2018 [136], Titri et al. 2017 [146], Rezk and Fathy 2017 [110], Ramyar
et al. 2017 [62], Prasanth Ram and Rajesekar 2017 [104], Mohanty et al. 2017
[139], Fang et al. 2017 [63], Cherukuri et al. 2017 [147], Agha et al. 2017 [135],
Veerasamy et al. 2016 [148], Shah et al. 2016 [131], Manickam et al. 2016 [149],
Lyden et al. 2016 [112], Li et al. 2016 [121], Ghasemi et al. 2016 [96], Ahmed et al.
2016 [114], Ahmed et al. 2016 [150], Tang et al. 2015 [137], Sundareswaran et al.
2015 [101], Sundareswaran et al. 2015 [151], Seyedmahmoudian et al. 2015 [152],
Li et al. 2015 [120], Killi et al. 2015 [115], Kermadi et al. 2015 [153], Dahhani et al.
2015 [154], Benyoucef et al. 2015 [155], Tey et al. 2014 [99], Tey et al. 2014 [64],
Tajuddin et al. 2014 [156], Sundareswaran et al. 2014 [106], Lian et al. 2014 [116],
Kollimalla et al. 2014 [122], Jiang et al. 2014 [105], Faraji et al. 2014 [157], Elnosh
et al. 2014 [158], El Khateb et al. 2014 [130], Boztepe et al. 2014 [159], Ahmed
and Salam 2014 [107], Moradi et al. 2013 [123], Ishaque et al. 2013 [98], Hsieh et
al. 2013 [119], Hosseini et al. 2013 [160], Farivar et al. 2013 [92], Alajmi et al.
2013 [129], Liu et al. 2012 [161], Koutroulis et al. 2012 [162], Ishaque et al. 2012
[163], Zhou et al. 2011 [164], Petrone et al. 2011 [165], Moradi et al. 2011 [127],
Miyatake et al. 2011 [140], Mei et al. 2011 [166], Ji et al. 2011 [167], Alajmi et al.
2011 [128], Abdelsalam et al. 2011 [168], Taheri et al. 2010 [169], Roy Chowdhury
and Saha 2010 [170], Li et al. 2010 [90], Dzung et al. 2010 [171], Coelho et al. 2010
[172], Scarpa et al. 2009 [93], Sera et al. 2008 [118], Liu et al. 2008 [89], Pandey et
al. 2007 [173], Khaehintung et al. 2006 [174], Femia et al. 2005 [175], Miyatake et
al. 2004 [111], Jain et al. 2004 [91], Ho et al. 2004 [176], Hua and Lin 2003 [177],
Koutroulis et al. 2001 [178], Zhang et al. 2000[179].

3.1.4.1 Simulation results

Simulation testing is generally preferred, with 73 out of 92 (79%) articles having
a set of simulated validations, 32 out of 92 (35%) having only a set of simulated
results without hardware experiment. Software simulation using tools like MAT-
LAB/Simulink is convenient for testing the general behaviour of the algorithm, but
they neglect experimental challenges such as measurement errors. This accelerated
testing capability was fully used by Liu et al. [161], Benyoucef et al. [155], Sun-
dareswaran et al. [101], and Lyden et al. [112] to evaluate the convergence rate of
their metaheuristic algorithm by repeating the same condition multiple times and
seeing how often the algorithm converges on the GMPP. On the other hand, we have
an example of simulation’s shortcomings such as when working with Incremental
Conductance (InC). Its operating principle requires a perfectly clean measurement
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of the voltage and current of the array, which is not a problem in simulation but
essentially impossible to obtain in practice as shown by Femia et al. [175].

3.1.4.2 Experimental results

Experimental testings are included for 60 of 92 (65%) of the proposals, 25 of which
(42%) are tested using solar simulators with the other 35 (58%) using PV modules or
having an unknown setup. To study the effect of moving shadows and continuous
irradiance variations, it would be preferable to use laboratory instruments that
could accurately and consistently recreate a sequence of P-V characteristics multiple
times to compare different shading mitigation algorithms (e.g. experimental results
by Li et al. [95], Tey et al. [144], and Mohanty et al. [139]). The complexity
of accurately replicating varying shading conditions using PV modules is probably
why most papers with this setup type only look at the algorithm’s response under
stable irradiance (e.g. experimental results of Tey et al. [144], Ramyar et al. [62],
and Lyden et al. [112]).

3.1.4.3 Steady state phase and irradiance perturbation detection

This section is relevant because of the way hill climbing works. Most HC implemen-
tations do not stop the search after convergence, leading to an oscillation around
MPP that causes some efficiency reduction [88]. But there is a reason why HC was
implemented this way. When there could only be one power peak, a continuous
search ensures that the converter closely follows the MPP that stays in a relatively
small voltage window even when irradiance and temperature change (Figure 3.3A).

However, when the power output is stable, oscillations would affect efficiency. Fur-
thermore, if HC was implemented with a global search to tackle partial shading
conditions, this continuous tracking is also not useful because the peak could jump
to a far away operating point as shown in Figure 3.3B that is inaccessible by HC.
Therefore, this oscillation is frequently referred to by many authors as a setback
that needs to be rectified.

As for GMPPT algorithms, they perform global searches and consequently spend
a lot of time at non-optimal operating points during this phase, so letting them
search indefinitely is also not good for efficiency. Due to the above drawbacks, most
algorithms implement a steady state phase where after determining the MPP,
the microcontroller sets the converter at the optimal operating point found and
monitors power generation for any changes.

Having a steady state means that there must be an irradiance perturbation
detection mechanism to initiate a new search when necessary. Miyatake et al.
[140] proposed a simple criterion that we used in equation 3.9 when describing our
implementation of Deterministic Particle Swarm Optimisation.

This detection mechanism is widely adopted used in the literature, where among 33
of the 51 MPC algorithm proposals (65%) discussing their irradiance perturbation
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detection mechanism, 27 (82%) used the same criterion, and the other six being
essentially its slight variations. There is a compromise to consider when choosing
the threshold: a tighter limit would ensure that even the slightest perturbations are
detected, but the risk of initiating a search due to measurement noise would also
increase.

Figure 3.16: A case study where the shading detection proposed by Miyatake et al. [140]
might fail.

Although the above criterion works every time a shadow causes a power drop or
when the global irradiation changes, it might sometimes fail to detect a shadow
moving away from the PV array. To illustrate the problem, we provide in Figure
3.16 two P-V curves of four PV blocks in series under partial shading. We assume
that the array is handled by an MPC algorithm with a steady-state phase and a
tight power threshold ε = 1%. Initially, a PV module is underperforming due to
shadows (condition one) and the search converges correctly toward Pmpp = 8.4W
at 8.2V where the algorithm enters steady state. The shadow then moves slightly
away, resulting in the P-V curve of condition two. The microcontroller observes
Pk = 8.42W at the same 8.2V operating point and calculates |Pmpp−Pk| = 0.02W <

0.084W , so it does not initiate a GMPP search. However, we know that the optimal
operating point has increased to 8.8W at 12.2V in condition two. Nevertheless, it
must be noted that we cherry-picked this situation to point out the problem, and
while it did occasionally occur in our tests (see Figure 3.17), this blind spot is not
a significant concern.
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Figure 3.17: An example of where the irradiance perturbation detection mechanism failed
in our tests with DPSO. On the left is the voltage of the array during experiment in orange
and the expected voltage at GMPP in blue. On the right is the power of the array during
experiment in orange and the expected power at GMPP in blue. We highlighted the region
where the GMPP suddely jump to another voltage operating point and optimal power is
changing but the algorithm did not catch the variation at its current operating point.

3.1.4.4 Choice of test profiles

Figure 3.18: Extract of test results using the EN 50530 MPPT standard from [114].

Regarding testing profiles, the vast majority of proposals, 80 out of 92 (87%), rely
exclusively on irradiance steps. This means that a particular I-V characteristic was
initially set and an immediate change to a new profile was applied (i.e., simulation
and experimental result by Li et al. [95], Tey et al. [144], Mohanty et al. [139]). This
test is useful for evaluating the response time of the algorithm, as well as its accuracy
after the response has settled. However, this procedure is not representative of real-
world applications. Operating in the field, irradiance received by the solar panels
may decrease over a span of time, from 10ms (fast moving shadows) to hours (static
object shadow throughout the day).

Testing algorithms under continuous shading variations or discretised continuous
shading variations using solar simulators is not yet widespread in the literature. We
found a varying irradiance profile based on the European Norm for grid-connected



112 CHAPTER 3. GMPPT ALGORITHMS

solar inverter efficiency, EN 50530 [180], and Ahmed et al. [114] have tested their
MPPT algorithm proposal using this standard (Figure 3.18). No proposal GMPPT
algorithm was tested according to this standard, as far as we know (only claimed
by Lian et al. in [116]). But the norm could only account for global irradiance
changes and not partial shading conditions, which are much more complex in nature.
Overall, this is a great gap in the research on GMPPT under partial shadings.

3.1.4.5 Result presentation

Which parameters to present are inconsistent in the literature. Usually, this is
not a problem, but for comparison and performance evaluation purposes, many
frequently reported metrics are not very useful. A good case study would be the
PSO convergence time metric, which ranges from 2s in the studies of Miyatake et
al. [140] to 7s in Liu et al. [161], and simulation results could go as low as 0.04s in
the studies by Mohanty et al. [139]. These differences are due to different sampling
rates being chosen for each test which depends on the microcontroller sampling
time. A better metric to report would be the number of sampling cycles necessary
before convergence as presented by Benyoucef et al. [155], or to explicitly state the
sampling rate, available in 31 of the 60 experimental results (52%) and in 43 of the
73 simulation results (59%).

Another metric is the efficiency result, presented in 42 of the 92 proposals ex-
amined (46%). This could be power efficiency, the measured power over theoret-
ical maximum power in W

W found in 26 of those 42 (62%), or energy efficiency,
the measured energy over theoretical maximum energy in W h

W h in 16 of those 42
(38%). Among these two, we believe that energy efficiency is the better metric.
As previously discussed, being MPC means having a global search phase spend-
ing time at non-optimal operating points that causes power loss. If it is called
frequently enough, energy efficiency would be greatly impacted. These two met-
rics are only similar when the irradiance is relatively stable, and, consequently, the
global searches are called more infrequently. In situations of constantly varying
irradiance, it is better to focus on energy efficiency, such as the theoretical estimate
performed by Mirza et al. [113] or the 10 hour test profile performed by Ishaque et
al. [98]. Energy effciency figures actually account for other aspects of the algorithm,
such as its irradiance perturbation mechanism and convergence rate as well.

Next, we have the convergence rate, i.e. the consistency of algorithm’s capability
to converge toward MPP. As mentioned previously, noise in measurements could
throw the algorithm off course and it may fail to converge. This is even more
necessary for the metaheuristic OptA algorithms due to their random nature. In
general, we only found simulated evaluations such as those by Liu et al. [161],
Benyoucef et al. [155], Sundareswaran et al. [101], and Lyden et al. [112], while
experimental results were not available.

Algorithm complexity is difficult to objectively quantify, and there are not many
papers that include this metric. Most evaluations are limited to simple statements
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such as high or low cost (e.g. Erdem et al. [181], Mohapatra et al. [182]) without
a set of clear guidelines on how the conclusion was made. A concrete way to objec-
tively compare the complexity could be the computation time necessary to perform
a duty cycle update, as well as the amount of memory usage of the algorithm on the
microcontroller (both ROM and RAM), as presented by Liu et al. in [161]. While
this is insignificant most of the time since computing power has evolved so much in
the last several decades, there are still ultra-low power microcontroller running at
very low frequencies that may struggle even with floating point operations because
of the lack of a dedicated floating point unit, let alone functions like exponentials
and sinusoidal.
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3.2 A probabilistic GMPPT algorithm based on
GMPP distribution

3.2.1 Algorithm description

Figure 3.19: The general idea of our proposed simple GMPPT algorithm.

Knowing that GMPP occurs in distinct zones, we suggest a very limited search
in which a single power point is evaluated in each GMPP region and then the
maximum of these is chosen as the starting point for hill climbing (Figure 3.19).
We call this algorithm fast GMPPT because on paper it seems to trade efficiency
for a faster convergence time. These voltage values to evaluate are called voltage
targets. Although having the concrete distribution results found in Figure 2.24
and Figure 2.25 would be nice to choose these targets, using the GMPP estimates
shown in Section 2.1.4 should suffice.

Our proposed algorithm consists of four main phases as shown in the flow chart in
Figure 3.6: initialisation of variables, voltage search to find the initial seed for HC,
improved HC, and steady state. The initialisation phase is where all the parameters
are loaded into the program memory, and the steady state phase is implemented
similarly to DPSO and GWO. Therefore, we have two important phases to discuss,
the voltage search phase and the improved HC phase.

In the voltage search phase, n voltage targets are evaluated and the maximum is
chosen as a seed for the subsequent improved HC phase. While in this work we are
only targeting the GMPP regions, n could be any number of points, but too many
points would defeat the purpose of a limited global search. Due to measurement
noise, we relaxed the "point" requirement of each voltage target i to a "narrow
voltage window". In the program, this is represented by the optimal point vi

target,
the upper limit vi

up, and the lower limit vi
low. As long as the array’s voltage is in this

window, the voltage target is considered reached. However, since we are not directly
controlling the voltage of the string because we are in duty cycle control, we added
a simple proportional controller in the form of Dk = Dk−1 + p(V k

pv − vi
target) where

Dk is the duty cycle to be sent for the current iteration, Dk−1 is the duty cycle from
the previous iteration, V k

pv is the measurement from the current iteration, and p is
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Figure 3.20: Flowchart of our algorithm proposal.

the proportional coefficient. To refresh about the algorithm’s iteration convention,
refer to Figure 2.34. An array of initial guessed duty cycles was given as di

est and
constantly updated at every voltage search phase with the duty cycle that gets to
the voltage target to accelerate subsequent searches.

Next, we present the improved HC phase where we addressed two main drawbacks
of the basic HC algorithm: the oscillation around the peak and the potential loss
of tracking. To remove the oscillation, we could detect when it happens and force
the system to a steady state at MPP. Figure 3.21 shows the voltage evolution of
our PV string when HC has converged. We observe that frequent inversion of duty
cycle variation with one sample in between is a sign of oscillation. However, this is
a relatively perfect example because measurement noise might sometimes lead to
some extra steps between the inversions. Furthermore, inversion could also occur
when the power continuously changes, as shown in Figure 3.5. Therefore, we must
examine how many times the duty cycle variation is inverted inv as well as the
streak of samples without inversion ninv. When ninv exceeds a limit of ninvlimit,
we could conclude that the algorithm is in the search phase or that the irradiance
is varying, so inv is reset to 0. When an inversion occurs, inv is incremented and
ninv is reset to 0 only if ninv is non-zero, otherwise we are seeing a continuous
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Figure 3.21: Voltage graph showing the behavior of oscillation around MPP.

inversion which suggests continuous power variation and inv is reset. Finally, the
oscillation is confirmed when inv exceeds a certain limit invlimit. We determined
that ninvlimit = 2 and invlimit = 3 are optimal. Regarding tracking loss, we added
a simple iteration counter cter in the HC phase, and the algorithm reverts back to
the sweep phase when it exceeds cterlimit = 100. This value could be arbitrarily
chosen as long as it is not too low so that hill climbing could have enough time to
converge in normal operation.

3.2.2 Theoretical evaluation of the search mechanism

We used our accelerated simulation capabilities shown in the previous chapter to
roughly estimate how often this GMPPT schema successfully tracks GMPP. Know-
ing that HC is only successful when the power between the starting point and the
GMPP increases strictly, we used this as a simple criterion to evaluate the theoret-
ical success rate of our algorithm (Figure 3.22). So, we need is to go through a lot
of P-V characteristics of our string, calculate the power at these voltage targets,
and see if in theory the algorithm could track toward GMPP.

Figure 3.22: Illustration of the criterion to theoretically evaluate the capability of our
algorithm.
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However, the voltage targets in our implementation are rather narrow voltage win-
dows instead of points, so this dispersion should be considered. First, we start
with the target voltage values that are 5.4V, 8.7V, and 12V based on the GMPP
estimates. Note that we do not consider 2.1V because our buck converter could not
reach this string voltage because the output being limited to around 4V. Next, in
our implementation, the upper bound is vi

up = vi
target + 16 and the lower bound in

vi
lower = vi

target − 16. Since the microcontroller’s ADC has a resolution of 10-bit on
a full-scale range of 0 to 5V, so this delta of 16 translates to a 0.08V delta on the
ADC’s measurement. But, this measurement is only 1

3 of the string’s voltage as
shown in Section 2.4.3, so this delta on the voltage of the string would be 0.24V.
Rounding the limits, we need to evaluate the success rate when the target voltages
are in 5.4V ± 0.3V , 8.7V ± 0.3V , and 12V ± 0.3V . It is worth noting that our G-T
sweep generates the I-V curve of the PV string that has an array of unknownly
spaced voltage array tied to a linearly spaced current array. We need to first inter-
polate the data back to a linearly spaced voltage array with a step of 0.1V tied to
an unknownly spaced current array. From there, we could consider seven voltages
per each of these voltage target windows (e.g. 5.4V ± 0.3V = 5.1V, 5.2V, ...5.7V ).
If each of the three voltage targets could have seven values, the total combination
of possible voltage targets would be 73 = 343.

Figure 3.23: Theoretical estimation of successful MPPT rate.

We modified our four G-T sweeps from section 2.2 to add in a calculation of the
power of the string at the voltage targets and evaluate the power gradient between
the maximum power points among them and the GMPP of the string. We plot the
success rate of each of the 343 sets of voltage points in each G-T sweep in Figure
3.23. We observe that the probability of successful MPPT tracking ranges from
86% to 97%, with the worst case scenario being 82%. Notice how the result is
worse with the I-Vs from the set of bicycle irradiance, where there are many low
power conditions.
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3.3 Validation of our algorithm proposal

To evaluate our algorithm, we compared it with three others that shares the
same relatively lightweight structure, namely Hill Climbing (HC), Determin-
istic Particle Swarm Optimisation (DPSO), and Grey Wolf Optimisation
(GWO). All tests were carried out on the string of four PV blocks whose charac-
teristics are found in Table 2.1 and Table 2.2.

First, we want to observe the convergence time, but not to compare the con-
vergence time of each algorithm. Rather, they give insight into the algorithm’s
operating principle, which is important to discuss their capability. Second, the en-
ergy efficiency must be assessed because the ultimate goal of having a GMPPT
algorithm is the optimal extraction of solar energy.

3.3.1 Test profiles

The best scenario to observe the operating principle of each algorithm in action,
as well as its convergence time, is a sequence of irradiance steps. Figure 3.24
shows the five conditions with which we tested the algorithms, and the irradiance
and temperature of each PV block are summarised in Table 3.2 where Gk is the
irradiance received by module k and T is the same temperature for all modules.
The test sequence consists of conditions one to five sent in that order, and each
condition lasts one second. Note that this is a small showcase of the results as we
have performed many more of these irradiance steps during development, but this
limited set should be sufficient to present their operating principle and to give a
general idea of the convergence time. We present the results from both the simulated
environment and the experimental setup.

Condition G1(W m−2) G2(W m−2) G3(W m−2) G4(W m−2) T (◦C)
1 900 900 900 900 60
2 900 900 900 200 60
3 900 900 200 200 60
4 900 700 700 700 60
5 900 700 700 200 60

Table 3.2: Summary of the five irradiance-temperature conditions used in the sequence of
irradiance steps.

Regarding energy efficiency, we believe that the optimal test would be to put the al-
gorithms to work in various varying irradiance profiles since they would put all
aspects of the algorithm under scrutiny such as convergence rate, convergence accu-
racy, its irradiance perturbation detection mechanism and its resilience to varying
irradiance during global search. Therefore, the idea is to simulate the irradiance of
each PV module over time as an object passes by them while maintaining a constant
global irradiance.

We devised a simplified mathematical model to achieve this, as shown in Figure
3.25. This shading profile creator first has the string of four square solar panels
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Figure 3.24: P-V curves of the five test conditions in the sequence of irradiance steps.
Their respective Vgmpp and Pgmpp are provided in the figure.

placed in a square formation on the Oxy plane. For convenience, the length 1l of
the sides of these square solar panels is used as a unit basis in this reference frame.
They are receiving even Gglobal irradiance and all at the same temperature Tglobal.
A shading object with arbitrary width wshade and height hshade starting from an
arbitrary position (xshade, yshade) moves across the plane at a velocity described by
vshade and its angle relative to Ox θshade. At each timestamp, we calculate the over-
lap between the shading object and the solar panels to obtain their instantaneous
irradiance. Note that the shading factor of a photovoltaic module is assumed to
be applied equally to all of its individual cells (ref Section 2.1.2). By changing the
global irradiance, global temperature, and how the shading object moves, we could
conveniently create a list of different varying irradiance profiles, each lasting an ar-
bitrarily chosen 8s. The list of different parameters is summarised in Table 3.3 and
we combined them all for a total of 288 different varying irradiance profiles. Since
simulating these varying irradiance profiles is very slow, we exclusively performed
this test on the experimental setup.

Figure 3.25: Illustration of our shading profile creator, a simplified mathematical model
to estimate how the irradiance of each PV module could vary over time.
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Parameter List of values Unit
Gglobal 800, 600, 400 W m−2

Tglobal 45, 65 ◦C
wshade 1, 1.5 l
hshade 1, 3 l
xshade equals −hshade l
yshade -0.25, -0.75 l
vshade 0.1, 0.5 ls−1

θshade 0, 30, 60 degrees

Table 3.3: List of different values for each parameter in our shading profile creator.

3.3.2 Test setups

The simulation test setup used was already discussed in Section 2.4.3 and we provide
the complete model in Figure 3.26. The model corresponding to each algorithm are
called from the MATLAB workspace, the irradiance and temperature timeseries
are sent, the model is simulated, and the data are retrieved in the workspace to be
processed.

Figure 3.26: Simulink model of the system of test the algorithms. The detailed description
of the blocks could be found in Section 2.4.3.

As for the experimental setup, it is based on the Agilent E4360A solar simulator, the
voltage and current measurements were acquired using the Keysight DSOX3014A
oscilloscope, and the battery was emulated using N6705B. The current was mea-
sured using a Tektronix A622 current probe with 10 wiring loops for a current gain
of 10V/A. The probe was calibrated before each irradiance step sequence and before
running the whole sequence of varying irradiance profiles. A MATLAB interface
interacts with the solar simulator to send out the different I-V characteristics. For
the irradiance steps, the MATLAB program communicates a new I-V character-
istics to the solar simulator every second. For the varying irradiance profile test,
a new I-V characteristic corresponding to a new G-T condition is communicated
every 100ms to the simulator which is its hardware limit. The oscilloscope captures
the measurements in 1s segments and they are retrieved via USB to be processed
in MATLAB.
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Figure 3.27: Block diagram of the experimental setup to evaluate the algorithms’ perfor-
mances.

3.3.3 Results for a sequence of irradiance steps

Figure 3.28: Sequence of irradiance steps results of four algorithms in simulation: HC,
DSPO, GWO and fast GMPPT. The sampling time Ts are given to put each algorithm’s
response time in perspective.

The simulated and experimental tests results for the sequence of irradiance steps
are presented in Figure 3.28 and Figure 3.29 respectively. All algorithms were sim-
ulated with a sampling time Ts = 8ms. Note that in the simulated result, the Vgmpp

and Pgmpp estimates were calculated using Shockley equation bypass diode model
which is slightly different from the piecewise model used in Simulink. However, the
discrepancy is slight enough that we could still conclude on the algorithm’s ability
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Figure 3.29: Sequence of irradiance steps results of four algorithms in experiment: HC,
DSPO, GWO and fast GMPPT. The sampling time are given to put each algorithm’s
response time in perspective.

to converge. As for the experimental setup, the Vgmpp and Pgmpp are taken from
the same P-V profile sent to the simulator. In general, the agreed simulated and
experimental results show that the algorithms were consistently implemented. Fur-
thermore, the parameters we tuned via the simulation also performed very well in
the experiment. But there is a small delay of 50ms between the expected GMPP
and the experimental measurement because of the initialisation phase in the micro-
controller which is removed when we discuss the algorithm’s convergence.

First, the result of HC showcases its inconsistency in partial shading conditions
where it failed to correctly track toward GMPP in one condition. Its convergence
time varies widely from a very low 08 iterations up to 34 iterations (64ms to 272ms).
There is a significant difference between the convergence time at condition one in
the simulation and in experimental setup caused by the different initial duty cycles.
We remark then that its convergence time and successful tracking capability heavily
depends on the initial search position.

Next, we have the DPSO’s response that progressively converges toward the GMPP
between 04 to 06 s-iterations (96ms to 144ms). No significant response time differ-
ence was detected between the simulated and experimental result indicates that the
algorithm was not heavy on the microcontroller. As for GWO, it should consistently
converge after 08 s-iterations, but the simulated result shows a consistent 192ms
convergence time while the experimental results ranges from 200ms to 250ms. By
zooming in, we noticed that the duty cycle updates are applied at varying times in-
dicating that the randomised number generation using the ADC ports has impacted
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its performance in experiment. Furthermore, we could see its failure to converge
with high accuracy under condition four in the experimental result, a drawback of
its randomised nature. Overall, the two OptA methods boast good tracking time
and good accuracy, but cause a lot of power jitters.

Finally, we have fast GMPPT correctly tracks toward GMPP in all five conditions
and its convergence time ranges from 20 to 32 iterations (160ms - 256ms). Generally,
our method causes less power jitter than the OptA algorithms, but its convergence
time is slightly slower than DPSO and comparable to GWO. However, the slower
convergence time is mostly contributed by the hill climbing phase that was already
near the GMPP, so losses are minimised. The only significant power loss is caused
during the global search phase, where it searches for the voltage targets.

Generally, under heavy partial shading, GMPPT algorithms will perform better
than HC which is understandable given how they operate. But we further comment
on this result to add to our previous point made in Section 3.1.4.5. Truth be told,
this sequence of irradiance steps could be manipulated to draw any conclusion that
we would like. For example, we could have made HC fail every condition to make
the other algorithms look even better. If we want a high energy efficiency, we
could increase the test length and reduce the number of steps, which significantly
downplays the effect of the global searches. Our own result itself has a lot of blind
spots. For example, the experimental convergence rate of GWO is much worse
than what our graphs suggest, probably due to the poor random generator on the
microcontroller. Furthermore, we did not showcase conditions where fast GMPPT
failed, not to avoid bad results, but because we had to actively find these edge cases.

3.3.4 Results for under varying irradiance profiles

This is where the algorithms are evaluated as a whole from convergence time, con-
vergence rate, convergence accuracy, its irradiance perturbation mechanism, and
the most important metric of all, energy efficiency. A raw data figure is provided in
Figure 3.30. We present in Figure 3.31 the distribution of energy efficiency of the
four algorithms under the 288 varying irradiance profiles. The median, lowest, and
highest energy efficiency are compiled in Table 3.4.

Algorithm Median Lowest Highest
HC 93.64% 56.2% 98.35%
Fast GMPPT 94.74% 72.68% 97.74%
DPSO 90.68% 75.20% 97.42%
GWO 86% 71% 96.97%

Table 3.4: Compilation of energy efficiency figures of the four tested algorithms. The
worst and best result in each category is highlighted in red and green, respectively.
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Figure 3.30: One varying irradiance profile raw result from testing four algorithms.
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HC having the worst lowest energy efficiency of 56.2% demonstrates that it lost
GMPP tracking under certain conditions, but its highest energy efficiency of 98.35%
is also the best among the four. We observe that fast GMPPT, DPSO, and GWO
all have better lowest energy efficiencies but slightly worse highest energy efficien-
cies compared to HC. This highlights the advantages, but also drawbacks, of global
search. In challenging situations where hill climbing failed, they managed to con-
verge and extract more power. This could be seen in the first 4s of the test profile
given in Figure 3.30 where the HC stuck very close to the peak while the other three
caused some power drops. However, in more mildly varying situations, HC tracks
the peak without any perturbations, while the MPC algorithms inevitably initiate
global searches that cause energy losses. This could be seen in the last 4s of the
test profile given in Figure 3.30 where HC was unable to track GMPP accurately.

Fast GMPPT has the best overall median energy efficiency at 94.74%, followed
by HC at 93.64%, then DPSO at 90.68%, and finally GWO at 86%. Among the
GMPPT algorithms, fast GMPPT, DPSO, and GWO, we could see that limiting
the global search phase to only where GMPP could appear is very advantageous.
However, this is just a compromise to be made; by considering the characteristics
of the PV string, the search becomes more optimal, but it also means that the
algorithm is now parameter-dependent.

Figure 3.31: Average energy efficiency of each algorithm (Hill Climbing, Fast GMPPT,
Deterministic Particle Swarm Optimisation, and Grey Wolf Optimisation) under the 288
varying irradiance profiles.

We now focus on some specific shadow speed to further comment on fast GMPPT
performance. Note that our solar panels have a dimension of 10cm × 10cm, so
vshade = 0.1ls−1 = 1cms−1 and vshade = 0.5ls−1 = 5cms−1. First, we examine a
condition where there is a slow shadow vshade = 0.1ls−1 = 1cms−1 moving across the
solar panels, which is the situation provided in Figure 3.32. Since slower shadows
would behave the same given the convergence speed of the algorithms (around
200ms), this could be considered equivalent to a shadow cast by a static object
throughout the day. In this context with light partial shading, HC perfectly tracks
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the peak without any disturbance and yields an energy efficiency of 98.15%, while
fast GMPPT tries to trigger global searches, causes power losses, and ends the test
with an energy efficiency of 96.54%. Of course, when solar panels are more heavily
shaded, fast GMPPT will perform better.

Figure 3.32: Result of HC and fast GMPPT in a very slow moving shadow and light
partial shading situation.

We now look at the tracking capacity of fast GMPPT compared to HC with the
faster variation speed that we had in our data set, which means vshade = 0.5ls−1 =
5cms−1. This speed is equivalent to shadows cast by moving objects, such as
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swinging branches. We compiled a set of efficiency numbers for this shadow speed,
with different shadow directions and all other parameters being the same, in Table
3.5. We could perceive that, generally, our algorithm tracks relatively well under
these faster varying shadows, and also better when the partial shading conditions
become more complex when the direction of the shadow changes. Usually, in the
literature, we discuss how well an algorithm tracks under specific variations, but
this shows that its tracking capacity also depends on the direction of the shadow
across the array.

Algorithm θshade = 0◦ θshade = 30◦ θshade = 60◦

HC 97.58% 82.68% 87.68%
Fast GMPPT 95.06% 90.68% 89.63%

Table 3.5: Compilation of efficiency figure from HC and Fast GMPPT under a fast varying
shadow but different shadow direction.

From the above results, we could conclude some strong points of fast GMPPT:

• In theory, it should correctly track toward the global power peak in around
86% to 97% of the time with this limited global search.

• It could track GMPP very well under stable irradiance conditions, as proved
by the step irradiance result.

• It is slightly less efficient than HC under slow varying shadows with light
partial shading because it still tries to initiate global searches, but the limited
global search significantly improves its overall energy efficiency compared to
DSPO and GWO.

• It is more efficient than HC under fast varying irradiance with heavy partial
shading because of its improved tracking capability. It is also better than
DPSO and GWO for the same reason, which is having more efficient global
searches.
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3.4 Conclusion and perspective of Chapter 3

In general, we looked at the current literature of MPPT and GMPPT, did an ex-
tensive deep dive into the mechanism of several algorithms of both types, discussed
how algorithms were studied in the literature, proposed our own algorithm called
fast GMPPT, and compared it to several other methods with promising results.
Going a bit further into the details, we compiled several key notes.

• There are a lot of MPPT and GMPPT algorithms that we struggle to find a
practical use case for. Although not all research is about having a concrete
use case, there are some proposals whose inherent advantages we could not
determine. An example could be Incremental Conductance, where it is hard
to justify how it is better than the basic Hill Climbing algorithm. Or β-
parameter where we provided an example of how its supposed advantage could
be replicated without having the parameter itself.

• We discussed a core challenge of GMPPT where a peak could suddenly appear
elsewhere on the voltage range. We speculated that the global searches of
GMPPT will inevitably cause a lot of power loss and our experimental result
eventually proved it.

• Seeing that there is no testing method in the literature that fits our research
context, we presented our own procedure to better simulate fluidly changing
irradiance. We argued that this novel testing method is better at stressing
both MPPT and GMPPT algorithms to assess their true performance when
deployed.

• We developed fast GMPPT inspired by nVoc method and a probabilistic ap-
proach where we also provided its theoretical efficiency via intensive simu-
lation. Its operating principle is simple requiring no complex computation,
and all the parameters needed to get one running are easily accessible via
the documentations of the components used. We compared our algorithm
against Hill Climbing, Deterministic Particle Swarm Optimisation, and Grey
Wolf Optimisation. The end results show that fast GMPPT is the overall
best option for fast but complex shading patterns and a competitive option
for slow but light partial shadings.

However, this work still has several limitations that we could have improved. They
are not overlooked, but rather neglected for several reasons, including out of scope
or time constraints. We first discuss some drawbacks of our novel testing procedure
involving varying irradiance profiles. Improving these setbacks will make testing
MPPT and GMPPT algorithms even more robust, and we could have more confi-
dence in the performance assessment.

• Throughout this work, we are using the simplified assumption in Section 2.1.2
to simulate our string of PV blocks. Accurate modelling the I-V of a solar
module by determining the minimum irradiated cell should fix this. There
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are also untouched subjects, such as more strings in parallel, module ageing,
module damage, etc. that could change the characteristics of the PV array.

• It is worth evaluating the different shading patterns, how the PV cells are
arranged within the PV modules, how the modules are arranged in the array,
etc. with the more accurate I-V so that that result better represents real-world
applications.

• The varying irradiance profiles are still discrete with a sampling step of 100ms
limited by the solar simulator, and we have not tested the algorithm with
physical photovoltaic modules. However, it would be very difficult to recreate
consistently varying irradiance profiles in this situation to accurately assess
the performance of different algorithms. We did have an experimental bench
of oscillating wings to simulate varying irradiance but it could not yet consider
partial shadings.

Next, although fast GMPPT performed very well, it is not without several demerits.

• The varying irradiance did not include very low irradiance conditions, and
the minimum global irradiance was 400Wm−2. These situations cause the
signal-to-noise ratio to drastically increase, which could potentially throw the
algorithms off course. Generally, algorithms should include a phase in which
we implement a fractional open circuit voltage because at least harvesting
something is preferable over a search that just jitters around due to measure-
ment errors.

• Although the chosen test condition indeed represents some use case, it does
not cover every possible situation.

• The test scenario is limited to four PV modules with bypass diodes, and we
did not test with more PV modules in series, nor did we test with parallel PV
strings. Our algorithm achieved this performance because the global search
was limited to a few potential GMPP regions. If the number of potential
GMPP regions increases, its advantage over others, such as DPSO or GWO,
could be less significant.

We now address the fact that hill climbing performed, on average, better than
two other GMPPT algorithms under varying irradiance profiles. This is surprising
because it is frequently called out in the literature as being unsuitable for partial
shading conditions. In our varying irradiance profiles, which included many PSCs
as shown in Figure 3.30, even fast GMPPT performs barely better than HC. This
puts into question the effectiveness of global searches under varying shadows; they
are very inefficient, and being frequently called during a long varying irradiance
situation, also shown in Figure 3.30, did cause significant energy loss.

Therefore, we conclude that GMPPT is not the definitive answer to our problem.
This conclusion may sound strange, given that fast GMPPT provides numerous
advantages and could be considered the most well-rounded solution among the four
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algorithms that we tested. But it only performed this well because the search is
limited to only three voltage targets. Having more potential peaks would almost
certainly diminish its only strong point. Although it is true that designing a bet-
ter buck converter that provides cleaner signals to spend less samples to digitally
filter the measurements and responds quicker to duty cycle steps will improve the
algorithm’s performance significantly, this is slightly out-of-scope. We stuck to this
basic and rough system because it is inexpensive and easy to obtain. If these con-
straints are completely removed, there are many better options. This would be
an important point for the end user to consider. For example, if complexity and
cost are not of concern, we recommend distributing the array into smaller portions
and running multiple MPPT algorithms to track the peak of individual modules,
or GMPPT algorithms with targeted search such as fast GMPPT to track the peak
of a small subgroup of modules.



Conclusion
To conclude, we are going back to the original research context, which is solar
harvesting and optimisation for autonomous low to medium power sup-
plies between 10W and 100W, and see how this work fits into that framework.
Furthermore, there is also the constraint of keeping the solution inexpensive and
simple for the end user to consider.

The first question is how could we estimate the solar availability of the
PV system in these challenging situations with relative accuracy? which
was answered by the studies presented in Chapter 1. We have proposed a proce-
dure that consists only of taking a fisheye photo of the sky above the intended
deployment site and calibrating the camera using a simple printed calibration
pattern. With this information, the shading information is inferred via the detected
obstructions and the estimated solar position throughout the day in the image. It
is then incorporated into the meteorological data from PVGIS to generate a solar
estimate that, in the studied use case, is 50% more accurate than when shading
was not considered. This shading compensated irradiation is then used to simulate
the energy profile of a solar harvesting system, where we graphed the evolution
of the system battery’s minimum state of charge, showcasing the importance of
having a good solar estimate to ensure continuous operation of the autonomous
power supply. All of this was done within the constraints of the work. First, only
inexpensive tools were used: a fisheye lens from e-commerce sites, a calibration
pattern printed on A4 paper. Second, the simple user procedure involves only
two steps as described in Chapter 1 that anyone could use, even those who are not
familiar with solar energy. We believe that our biologist colleagues will be satisfied
with this toolbox for this next wave of sensor deployment. And third, the script is
entirely open-source and provided on GitHub so that anyone could extend the
work to match their use case.

The second question we asked was what is the impact of the partial shad-
ing conditions on the available power of the PV system? Chapter 2 has
answered the reason why a series of cells without bypass diodes is a bad idea; the
most shaded cell limit the current of the string, leading to significant power loss
when the string is only slightly covered. Although bypass diodes did help, they
lead to multiple local power peaks among which we could find the global maxi-
mum power point. To better understand how these are distributed so that a good
tracking algorithm could be deployed, we mathematically model the PV cell, PV
module, PV block (which is a module and a bypass diode), and a string
of PV blocks. We discussed in detail how they could be simulated efficiently by
presenting the compute optimisations, the two most significant improvements being
the usage of the LambertW() function and a pre-computed look-up table for all
current-voltage characteristics of each PV block under all potential irradiance and

131



132 CONCLUSION

temperature conditions. This toolbox unlocks the capability to analyse the GMPP
distribution of an arbitrarily designed PV array in a reasonable time frame. We pre-
sented the GMPP distribution of a string of four PV blocks in two specific contexts,
one where we assumed an equal probability between all irradiance and temperature
conditions, and one where the irradiance was measured by a matrix of pyranome-
ters based behind a moving bicycle. Also in Chapter 2, we build a Simulink model
for the photovoltaic harvesting system consisting of a string of PV blocks, a buck
converter, and a battery, and present experimental results to validate the model.
Although not having the highest level of accuracy, it was good enough that we could
port the tuned parameters from the simulation directly to the microcontroller and
have the algorithm work consistently with what was observed in the simulation.

The final question is how could we extract the maximum energy from the
system under these unstable irradiance conditions caused by unexpected
shadowing events? and Chapter 3 was where we answered this question. To
choose the right tool for the right solution, we performed a deep analysis of many
algorithms in the literature and analysed how they are presented to critically eval-
uate the algorithms better. From there, we saw the need to propose a novel testing
methodology if we are to really tackle the question of varying partial shadows,
which resulted in a simplified mathematical shading profile creator. Next, based
on various methods in the literature and the constraints of simplicity, we proposed
fast GMPPT algorithm based on the nVoc method, but with an extremely lim-
ited global search. We theoretically analysed its tracking accuracy to be around
86% to 97%, a very good result for such a limited search range. We then com-
pared it with three other algorithms, MPPT Hill Climbing, GMPPT Deterministic
Particle Swarm Optimisation, and GMPPT Grey Wolf Optimisation algorithm. It
tracks very well in our sequence of irradiance steps, proving that it was capable of
tracking GMPPs and it does so while causing little power jitters, unlike DPSO and
GWO. Furthermore, its 94.74% energy efficiency came out on top when tested in
our varying shading profile. Looking deeper into the data, we confirmed that fast
GMPPT performs well when faced with fast and complex shading patterns, but is
only competitive with HC when faced with simple and slow shadows. In general,
we believe that fast GMPPT was a great solution for very basic hardware and could
be implemented even on random hobby grade electronics. In general, it is a great
solution given the constraint, but it would not always be the optimal solution if
cost and complexity were no longer a significant concern. Rather, a distributed
architecture should be considered so that a fast GMPPT does not have to handle
more than three PV blocks in series.

The thesis overall has resulted in some scientific productions that are referenced
in [183], [184], [138], [97], [185]. Although this work has made several interesting
contributions, it is not without several drawbacks and simplified assumptions that
were already discussed in each chapter. Despite that, we have reason to believe
that the work here could be applied to systems with higher power output. For ex-
ample, the solar estimation method in Chapter 1 is not exclusive to low-power solar



CONCLUSION 133

harvesting; any user with a clip-on fisheye lens for their smartphone could follow
the procedure presented to estimate how much energy their home solar installation
will produce. Of course, there are precautions to follow such as taking multiple
photos at different places across the intended surface of the solar panels so that the
program could come up with a shading pattern or trying to get a good orientation
measurement to ensure higher solar estimate accuracy.

As for fast GMPPT, it only makes sense in a certain context, like for a string of
less than four PV blocks where moving shadows are expected. However, it could
be great when coupled with a distributed architecture. Let us provide an example
where we have a system of 12 solar panels with 12 bypass diodes to be deployed
among nature for an autonomous pumping application and we want to mitigate the
effect of partial shadings. Here are the three options:

• Option A: A single converter that handles all 12 converters. They could run
Hill Climbing or fast GMPPT.

• Option B: Three converters, each for four solar panels. They could run either
HC or fast GMPPT.

• Option C: One converter per panel for a total of 12 converters. Each converter
run HC.

If cost, complexity and logistic problems are not of concern, option C will be the
best. However, if the bare minimum is prefered, we could go for option A with
fast GMPPT, at least it will handle fast and complex shading patterns better than
HC but the longer global search may be inefficient in slower and simpler shading
patterns. The optimal solution would be option B where each converter runs fast
GMPPT for a group of four solar panels. If partial shadings are very light, even HC
could suffice. In general, the best solution is the one that suits the need. If anyone
is in search of the absolute best solution, we will recommend not having shadows
on the solar panels in the first place. This is an interesting analysis, and with the
strong foundation we have set in this thesis, we believe that a future project could
eventually provide the best solution for each given use case.
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Abstract: This thesis focuses on the resource estimation and optimisation of
autonomous power supplies ranging from 10 to 100W, powered by photovoltaic
(PV) panels in complex environments (such as forests, bicycles, drones, etc.)

The first chapter of this thesis deals with the estimation of available solar energy
for stationary systems. Estimation is straightforward under simple shadows (such
as those cast by buildings or utility poles). However, for complex shading scenarios,
shadow forecast becomes more challenging and requires a detailed understanding of
obstructions that cannot be easily modelled with simple shapes. For such cases, a
study was conducted using an inexpensive fisheye lens attached to a smartphone. A
photo taken toward the sky captures the obstructions at the intended site. A Python
script processes the photo, infers the shading information from the solar position in
the photo to compensate for the meteorological data from the site, and generates an
hourly irradiation estimation over the desired period. Experimental measurements
validated the approach and demonstrated its use case. These irradiation estimates
are then used to model an autonomous system (solar panel, battery, loads, charger),
providing insight into the evolution of the minimum state of charge of the battery,
which is a clear indicator of its capacity to ensure continuous operation.

To achieve the desired voltage level, solar cells are connected in series. Under
uniform irradiance, the power-voltage characteristics of the PV array have a sin-
gle maximum. However, under partial shading conditions, multiple local maxima
emerge. The second chapter addresses the distribution of these maxima’ positions
on the full voltage range of the array under different irradiance and temperature
conditions. To achieve this, the PV module and string are modelled and optimised
with the help of the Lambert function, as well as other optimisation techniques.
This helps to simulate its characteristics under a multitude of irradiance and tem-
perature conditions in a reasonable time frame. Analysing the results, assuming
equiprobability of possible conditions and based on experimental data from a mo-
bile system, yields the distribution of the PV panel’s global maximum power point
(GMPP). In Simulink, a comprehensive model of a simple autonomous system is
established, comprising a solar panel with four bypass diodes associated with a
buck converter to recharge a battery. The microcontroller measurement inputs and
the buck converter’s control are also modelled. This model was validated to have
reasonable accuracy with experimental measurements, and it was used to quickly
simulate shading management algorithms in the next section.

The third chapter of this thesis delves into the real-time optimisation of solar power
under partial shading conditions, particularly focussing on software-based global
maximum power point (GMPPT) algorithms. A thorough literature review and
critical examination of these GMPPT controls were performed. Seeing a gap of
validation methodology for the research context at hand, a new approach is proposed
to simulate the varying irradiance perceived by each solar panel over time under
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moving shadows. A simple and lightweight algorithm is suggested and inspired
by the distribution observed in the previous chapter. A comparative experimental
analysis is conducted using various shading profiles, implementing this algorithm
as well as some other algorithms with similar complexity on an actual converter
connected to a computer-controlled physical solar simulator. The results highlight
the merits and limitations of the proposed control approach and, more broadly, the
GMPPT algorithms.

Keywords: photovoltaic, shading forecast, photovoltaic modelling, global maxi-
mum power point tracking (GMPPT)
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